1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include <string.h>
17
18 #include "vpx_mem/vpx_mem.h"
19
20 #include "vp9/common/vp9_alloccommon.h"
21 #include "vp9/common/vp9_common.h"
22 #include "vp9/common/vp9_entropymode.h"
23 #include "vp9/common/vp9_quant_common.h"
24 #include "vp9/common/vp9_seg_common.h"
25 #include "vp9/common/vp9_systemdependent.h"
26
27 #include "vp9/encoder/vp9_encodemv.h"
28 #include "vp9/encoder/vp9_ratectrl.h"
29
30 // Max rate target for 1080P and below encodes under normal circumstances
31 // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB
32 #define MAX_MB_RATE 250
33 #define MAXRATE_1080P 2025000
34
35 #define DEFAULT_KF_BOOST 2000
36 #define DEFAULT_GF_BOOST 2000
37
38 #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1
39
40 #define MIN_BPB_FACTOR 0.005
41 #define MAX_BPB_FACTOR 50
42
43 #define FRAME_OVERHEAD_BITS 200
44
45 #if CONFIG_VP9_HIGHBITDEPTH
46 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
47 do { \
48 switch (bit_depth) { \
49 case VPX_BITS_8: \
50 name = name##_8; \
51 break; \
52 case VPX_BITS_10: \
53 name = name##_10; \
54 break; \
55 case VPX_BITS_12: \
56 name = name##_12; \
57 break; \
58 default: \
59 assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \
60 " or VPX_BITS_12"); \
61 name = NULL; \
62 } \
63 } while (0)
64 #else
65 #define ASSIGN_MINQ_TABLE(bit_depth, name) \
66 do { \
67 (void) bit_depth; \
68 name = name##_8; \
69 } while (0)
70 #endif
71
72 // Tables relating active max Q to active min Q
73 static int kf_low_motion_minq_8[QINDEX_RANGE];
74 static int kf_high_motion_minq_8[QINDEX_RANGE];
75 static int arfgf_low_motion_minq_8[QINDEX_RANGE];
76 static int arfgf_high_motion_minq_8[QINDEX_RANGE];
77 static int inter_minq_8[QINDEX_RANGE];
78 static int rtc_minq_8[QINDEX_RANGE];
79
80 #if CONFIG_VP9_HIGHBITDEPTH
81 static int kf_low_motion_minq_10[QINDEX_RANGE];
82 static int kf_high_motion_minq_10[QINDEX_RANGE];
83 static int arfgf_low_motion_minq_10[QINDEX_RANGE];
84 static int arfgf_high_motion_minq_10[QINDEX_RANGE];
85 static int inter_minq_10[QINDEX_RANGE];
86 static int rtc_minq_10[QINDEX_RANGE];
87 static int kf_low_motion_minq_12[QINDEX_RANGE];
88 static int kf_high_motion_minq_12[QINDEX_RANGE];
89 static int arfgf_low_motion_minq_12[QINDEX_RANGE];
90 static int arfgf_high_motion_minq_12[QINDEX_RANGE];
91 static int inter_minq_12[QINDEX_RANGE];
92 static int rtc_minq_12[QINDEX_RANGE];
93 #endif
94
95 static int gf_high = 2000;
96 static int gf_low = 400;
97 static int kf_high = 5000;
98 static int kf_low = 400;
99
100 // Functions to compute the active minq lookup table entries based on a
101 // formulaic approach to facilitate easier adjustment of the Q tables.
102 // The formulae were derived from computing a 3rd order polynomial best
103 // fit to the original data (after plotting real maxq vs minq (not q index))
get_minq_index(double maxq,double x3,double x2,double x1,vpx_bit_depth_t bit_depth)104 static int get_minq_index(double maxq, double x3, double x2, double x1,
105 vpx_bit_depth_t bit_depth) {
106 int i;
107 const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq,
108 maxq);
109
110 // Special case handling to deal with the step from q2.0
111 // down to lossless mode represented by q 1.0.
112 if (minqtarget <= 2.0)
113 return 0;
114
115 for (i = 0; i < QINDEX_RANGE; i++) {
116 if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth))
117 return i;
118 }
119
120 return QINDEX_RANGE - 1;
121 }
122
init_minq_luts(int * kf_low_m,int * kf_high_m,int * arfgf_low,int * arfgf_high,int * inter,int * rtc,vpx_bit_depth_t bit_depth)123 static void init_minq_luts(int *kf_low_m, int *kf_high_m,
124 int *arfgf_low, int *arfgf_high,
125 int *inter, int *rtc, vpx_bit_depth_t bit_depth) {
126 int i;
127 for (i = 0; i < QINDEX_RANGE; i++) {
128 const double maxq = vp9_convert_qindex_to_q(i, bit_depth);
129 kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth);
130 kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
131 arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth);
132 arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth);
133 inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth);
134 rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth);
135 }
136 }
137
vp9_rc_init_minq_luts()138 void vp9_rc_init_minq_luts() {
139 init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8,
140 arfgf_low_motion_minq_8, arfgf_high_motion_minq_8,
141 inter_minq_8, rtc_minq_8, VPX_BITS_8);
142 #if CONFIG_VP9_HIGHBITDEPTH
143 init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10,
144 arfgf_low_motion_minq_10, arfgf_high_motion_minq_10,
145 inter_minq_10, rtc_minq_10, VPX_BITS_10);
146 init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12,
147 arfgf_low_motion_minq_12, arfgf_high_motion_minq_12,
148 inter_minq_12, rtc_minq_12, VPX_BITS_12);
149 #endif
150 }
151
152 // These functions use formulaic calculations to make playing with the
153 // quantizer tables easier. If necessary they can be replaced by lookup
154 // tables if and when things settle down in the experimental bitstream
vp9_convert_qindex_to_q(int qindex,vpx_bit_depth_t bit_depth)155 double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) {
156 // Convert the index to a real Q value (scaled down to match old Q values)
157 #if CONFIG_VP9_HIGHBITDEPTH
158 switch (bit_depth) {
159 case VPX_BITS_8:
160 return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
161 case VPX_BITS_10:
162 return vp9_ac_quant(qindex, 0, bit_depth) / 16.0;
163 case VPX_BITS_12:
164 return vp9_ac_quant(qindex, 0, bit_depth) / 64.0;
165 default:
166 assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12");
167 return -1.0;
168 }
169 #else
170 return vp9_ac_quant(qindex, 0, bit_depth) / 4.0;
171 #endif
172 }
173
vp9_rc_bits_per_mb(FRAME_TYPE frame_type,int qindex,double correction_factor,vpx_bit_depth_t bit_depth)174 int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
175 double correction_factor,
176 vpx_bit_depth_t bit_depth) {
177 const double q = vp9_convert_qindex_to_q(qindex, bit_depth);
178 int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000;
179
180 // q based adjustment to baseline enumerator
181 enumerator += (int)(enumerator * q) >> 12;
182 return (int)(enumerator * correction_factor / q);
183 }
184
estimate_bits_at_q(FRAME_TYPE frame_type,int q,int mbs,double correction_factor,vpx_bit_depth_t bit_depth)185 static int estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs,
186 double correction_factor,
187 vpx_bit_depth_t bit_depth) {
188 const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor,
189 bit_depth));
190 return ((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS;
191 }
192
vp9_rc_clamp_pframe_target_size(const VP9_COMP * const cpi,int target)193 int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) {
194 const RATE_CONTROL *rc = &cpi->rc;
195 const int min_frame_target = MAX(rc->min_frame_bandwidth,
196 rc->avg_frame_bandwidth >> 5);
197 if (target < min_frame_target)
198 target = min_frame_target;
199 if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) {
200 // If there is an active ARF at this location use the minimum
201 // bits on this frame even if it is a constructed arf.
202 // The active maximum quantizer insures that an appropriate
203 // number of bits will be spent if needed for constructed ARFs.
204 target = min_frame_target;
205 }
206 // Clip the frame target to the maximum allowed value.
207 if (target > rc->max_frame_bandwidth)
208 target = rc->max_frame_bandwidth;
209 return target;
210 }
211
vp9_rc_clamp_iframe_target_size(const VP9_COMP * const cpi,int target)212 int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) {
213 const RATE_CONTROL *rc = &cpi->rc;
214 const VP9EncoderConfig *oxcf = &cpi->oxcf;
215 if (oxcf->rc_max_intra_bitrate_pct) {
216 const int max_rate = rc->avg_frame_bandwidth *
217 oxcf->rc_max_intra_bitrate_pct / 100;
218 target = MIN(target, max_rate);
219 }
220 if (target > rc->max_frame_bandwidth)
221 target = rc->max_frame_bandwidth;
222 return target;
223 }
224
225
226 // Update the buffer level for higher layers, given the encoded current layer.
update_layer_buffer_level(SVC * svc,int encoded_frame_size)227 static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) {
228 int temporal_layer = 0;
229 int current_temporal_layer = svc->temporal_layer_id;
230 for (temporal_layer = current_temporal_layer + 1;
231 temporal_layer < svc->number_temporal_layers; ++temporal_layer) {
232 LAYER_CONTEXT *lc = &svc->layer_context[temporal_layer];
233 RATE_CONTROL *lrc = &lc->rc;
234 int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
235 encoded_frame_size);
236 lrc->bits_off_target += bits_off_for_this_layer;
237
238 // Clip buffer level to maximum buffer size for the layer.
239 lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size);
240 lrc->buffer_level = lrc->bits_off_target;
241 }
242 }
243
244 // Update the buffer level: leaky bucket model.
update_buffer_level(VP9_COMP * cpi,int encoded_frame_size)245 static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) {
246 const VP9_COMMON *const cm = &cpi->common;
247 RATE_CONTROL *const rc = &cpi->rc;
248
249 // Non-viewable frames are a special case and are treated as pure overhead.
250 if (!cm->show_frame) {
251 rc->bits_off_target -= encoded_frame_size;
252 } else {
253 rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size;
254 }
255
256 // Clip the buffer level to the maximum specified buffer size.
257 rc->bits_off_target = MIN(rc->bits_off_target, rc->maximum_buffer_size);
258 rc->buffer_level = rc->bits_off_target;
259
260 if (cpi->use_svc && cpi->oxcf.rc_mode == VPX_CBR) {
261 update_layer_buffer_level(&cpi->svc, encoded_frame_size);
262 }
263 }
264
vp9_rc_init(const VP9EncoderConfig * oxcf,int pass,RATE_CONTROL * rc)265 void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) {
266 int i;
267
268 if (pass == 0 && oxcf->rc_mode == VPX_CBR) {
269 rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q;
270 rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q;
271 } else {
272 rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q +
273 oxcf->best_allowed_q) / 2;
274 rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q +
275 oxcf->best_allowed_q) / 2;
276 }
277
278 rc->last_q[KEY_FRAME] = oxcf->best_allowed_q;
279 rc->last_q[INTER_FRAME] = oxcf->best_allowed_q;
280
281 rc->buffer_level = rc->starting_buffer_level;
282 rc->bits_off_target = rc->starting_buffer_level;
283
284 rc->rolling_target_bits = rc->avg_frame_bandwidth;
285 rc->rolling_actual_bits = rc->avg_frame_bandwidth;
286 rc->long_rolling_target_bits = rc->avg_frame_bandwidth;
287 rc->long_rolling_actual_bits = rc->avg_frame_bandwidth;
288
289 rc->total_actual_bits = 0;
290 rc->total_target_bits = 0;
291 rc->total_target_vs_actual = 0;
292
293 rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
294 rc->frames_since_key = 8; // Sensible default for first frame.
295 rc->this_key_frame_forced = 0;
296 rc->next_key_frame_forced = 0;
297 rc->source_alt_ref_pending = 0;
298 rc->source_alt_ref_active = 0;
299
300 rc->frames_till_gf_update_due = 0;
301
302 rc->ni_av_qi = oxcf->worst_allowed_q;
303 rc->ni_tot_qi = 0;
304 rc->ni_frames = 0;
305
306 rc->tot_q = 0.0;
307 rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth);
308
309 for (i = 0; i < RATE_FACTOR_LEVELS; ++i) {
310 rc->rate_correction_factors[i] = 1.0;
311 }
312 }
313
vp9_rc_drop_frame(VP9_COMP * cpi)314 int vp9_rc_drop_frame(VP9_COMP *cpi) {
315 const VP9EncoderConfig *oxcf = &cpi->oxcf;
316 RATE_CONTROL *const rc = &cpi->rc;
317
318 if (!oxcf->drop_frames_water_mark) {
319 return 0;
320 } else {
321 if (rc->buffer_level < 0) {
322 // Always drop if buffer is below 0.
323 return 1;
324 } else {
325 // If buffer is below drop_mark, for now just drop every other frame
326 // (starting with the next frame) until it increases back over drop_mark.
327 int drop_mark = (int)(oxcf->drop_frames_water_mark *
328 rc->optimal_buffer_level / 100);
329 if ((rc->buffer_level > drop_mark) &&
330 (rc->decimation_factor > 0)) {
331 --rc->decimation_factor;
332 } else if (rc->buffer_level <= drop_mark &&
333 rc->decimation_factor == 0) {
334 rc->decimation_factor = 1;
335 }
336 if (rc->decimation_factor > 0) {
337 if (rc->decimation_count > 0) {
338 --rc->decimation_count;
339 return 1;
340 } else {
341 rc->decimation_count = rc->decimation_factor;
342 return 0;
343 }
344 } else {
345 rc->decimation_count = 0;
346 return 0;
347 }
348 }
349 }
350 }
351
get_rate_correction_factor(const VP9_COMP * cpi)352 static double get_rate_correction_factor(const VP9_COMP *cpi) {
353 const RATE_CONTROL *const rc = &cpi->rc;
354
355 if (cpi->common.frame_type == KEY_FRAME) {
356 return rc->rate_correction_factors[KF_STD];
357 } else if (cpi->oxcf.pass == 2) {
358 RATE_FACTOR_LEVEL rf_lvl =
359 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
360 return rc->rate_correction_factors[rf_lvl];
361 } else {
362 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
363 !rc->is_src_frame_alt_ref &&
364 !(cpi->use_svc && cpi->oxcf.rc_mode == VPX_CBR))
365 return rc->rate_correction_factors[GF_ARF_STD];
366 else
367 return rc->rate_correction_factors[INTER_NORMAL];
368 }
369 }
370
set_rate_correction_factor(VP9_COMP * cpi,double factor)371 static void set_rate_correction_factor(VP9_COMP *cpi, double factor) {
372 RATE_CONTROL *const rc = &cpi->rc;
373
374 if (cpi->common.frame_type == KEY_FRAME) {
375 rc->rate_correction_factors[KF_STD] = factor;
376 } else if (cpi->oxcf.pass == 2) {
377 RATE_FACTOR_LEVEL rf_lvl =
378 cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index];
379 rc->rate_correction_factors[rf_lvl] = factor;
380 } else {
381 if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) &&
382 !rc->is_src_frame_alt_ref &&
383 !(cpi->use_svc && cpi->oxcf.rc_mode == VPX_CBR))
384 rc->rate_correction_factors[GF_ARF_STD] = factor;
385 else
386 rc->rate_correction_factors[INTER_NORMAL] = factor;
387 }
388 }
389
vp9_rc_update_rate_correction_factors(VP9_COMP * cpi,int damp_var)390 void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
391 const VP9_COMMON *const cm = &cpi->common;
392 int correction_factor = 100;
393 double rate_correction_factor = get_rate_correction_factor(cpi);
394 double adjustment_limit;
395
396 int projected_size_based_on_q = 0;
397
398 // Do not update the rate factors for arf overlay frames.
399 if (cpi->rc.is_src_frame_alt_ref)
400 return;
401
402 // Clear down mmx registers to allow floating point in what follows
403 vp9_clear_system_state();
404
405 // Work out how big we would have expected the frame to be at this Q given
406 // the current correction factor.
407 // Stay in double to avoid int overflow when values are large
408 projected_size_based_on_q = estimate_bits_at_q(cm->frame_type,
409 cm->base_qindex, cm->MBs,
410 rate_correction_factor,
411 cm->bit_depth);
412 // Work out a size correction factor.
413 if (projected_size_based_on_q > 0)
414 correction_factor = (100 * cpi->rc.projected_frame_size) /
415 projected_size_based_on_q;
416
417 // More heavily damped adjustment used if we have been oscillating either side
418 // of target.
419 switch (damp_var) {
420 case 0:
421 adjustment_limit = 0.75;
422 break;
423 case 1:
424 adjustment_limit = 0.375;
425 break;
426 case 2:
427 default:
428 adjustment_limit = 0.25;
429 break;
430 }
431
432 if (correction_factor > 102) {
433 // We are not already at the worst allowable quality
434 correction_factor = (int)(100 + ((correction_factor - 100) *
435 adjustment_limit));
436 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
437
438 // Keep rate_correction_factor within limits
439 if (rate_correction_factor > MAX_BPB_FACTOR)
440 rate_correction_factor = MAX_BPB_FACTOR;
441 } else if (correction_factor < 99) {
442 // We are not already at the best allowable quality
443 correction_factor = (int)(100 - ((100 - correction_factor) *
444 adjustment_limit));
445 rate_correction_factor = (rate_correction_factor * correction_factor) / 100;
446
447 // Keep rate_correction_factor within limits
448 if (rate_correction_factor < MIN_BPB_FACTOR)
449 rate_correction_factor = MIN_BPB_FACTOR;
450 }
451
452 set_rate_correction_factor(cpi, rate_correction_factor);
453 }
454
455
vp9_rc_regulate_q(const VP9_COMP * cpi,int target_bits_per_frame,int active_best_quality,int active_worst_quality)456 int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame,
457 int active_best_quality, int active_worst_quality) {
458 const VP9_COMMON *const cm = &cpi->common;
459 int q = active_worst_quality;
460 int last_error = INT_MAX;
461 int i, target_bits_per_mb;
462 const double correction_factor = get_rate_correction_factor(cpi);
463
464 // Calculate required scaling factor based on target frame size and size of
465 // frame produced using previous Q.
466 target_bits_per_mb =
467 ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs;
468
469 i = active_best_quality;
470
471 do {
472 const int bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i,
473 correction_factor,
474 cm->bit_depth);
475
476 if (bits_per_mb_at_this_q <= target_bits_per_mb) {
477 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
478 q = i;
479 else
480 q = i - 1;
481
482 break;
483 } else {
484 last_error = bits_per_mb_at_this_q - target_bits_per_mb;
485 }
486 } while (++i <= active_worst_quality);
487
488 return q;
489 }
490
get_active_quality(int q,int gfu_boost,int low,int high,int * low_motion_minq,int * high_motion_minq)491 static int get_active_quality(int q, int gfu_boost, int low, int high,
492 int *low_motion_minq, int *high_motion_minq) {
493 if (gfu_boost > high) {
494 return low_motion_minq[q];
495 } else if (gfu_boost < low) {
496 return high_motion_minq[q];
497 } else {
498 const int gap = high - low;
499 const int offset = high - gfu_boost;
500 const int qdiff = high_motion_minq[q] - low_motion_minq[q];
501 const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap;
502 return low_motion_minq[q] + adjustment;
503 }
504 }
505
get_kf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)506 static int get_kf_active_quality(const RATE_CONTROL *const rc, int q,
507 vpx_bit_depth_t bit_depth) {
508 int *kf_low_motion_minq;
509 int *kf_high_motion_minq;
510 ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq);
511 ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq);
512 return get_active_quality(q, rc->kf_boost, kf_low, kf_high,
513 kf_low_motion_minq, kf_high_motion_minq);
514 }
515
get_gf_active_quality(const RATE_CONTROL * const rc,int q,vpx_bit_depth_t bit_depth)516 static int get_gf_active_quality(const RATE_CONTROL *const rc, int q,
517 vpx_bit_depth_t bit_depth) {
518 int *arfgf_low_motion_minq;
519 int *arfgf_high_motion_minq;
520 ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq);
521 ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq);
522 return get_active_quality(q, rc->gfu_boost, gf_low, gf_high,
523 arfgf_low_motion_minq, arfgf_high_motion_minq);
524 }
525
calc_active_worst_quality_one_pass_vbr(const VP9_COMP * cpi)526 static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) {
527 const RATE_CONTROL *const rc = &cpi->rc;
528 const unsigned int curr_frame = cpi->common.current_video_frame;
529 int active_worst_quality;
530
531 if (cpi->common.frame_type == KEY_FRAME) {
532 active_worst_quality = curr_frame == 0 ? rc->worst_quality
533 : rc->last_q[KEY_FRAME] * 2;
534 } else {
535 if (!rc->is_src_frame_alt_ref &&
536 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
537 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 / 4
538 : rc->last_q[INTER_FRAME];
539 } else {
540 active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 2
541 : rc->last_q[INTER_FRAME] * 2;
542 }
543 }
544 return MIN(active_worst_quality, rc->worst_quality);
545 }
546
547 // Adjust active_worst_quality level based on buffer level.
calc_active_worst_quality_one_pass_cbr(const VP9_COMP * cpi)548 static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) {
549 // Adjust active_worst_quality: If buffer is above the optimal/target level,
550 // bring active_worst_quality down depending on fullness of buffer.
551 // If buffer is below the optimal level, let the active_worst_quality go from
552 // ambient Q (at buffer = optimal level) to worst_quality level
553 // (at buffer = critical level).
554 const VP9_COMMON *const cm = &cpi->common;
555 const RATE_CONTROL *rc = &cpi->rc;
556 // Buffer level below which we push active_worst to worst_quality.
557 int64_t critical_level = rc->optimal_buffer_level >> 2;
558 int64_t buff_lvl_step = 0;
559 int adjustment = 0;
560 int active_worst_quality;
561 if (cm->frame_type == KEY_FRAME)
562 return rc->worst_quality;
563 if (cm->current_video_frame > 1)
564 active_worst_quality = MIN(rc->worst_quality,
565 rc->avg_frame_qindex[INTER_FRAME] * 5 / 4);
566 else
567 active_worst_quality = MIN(rc->worst_quality,
568 rc->avg_frame_qindex[KEY_FRAME] * 3 / 2);
569 if (rc->buffer_level > rc->optimal_buffer_level) {
570 // Adjust down.
571 // Maximum limit for down adjustment, ~30%.
572 int max_adjustment_down = active_worst_quality / 3;
573 if (max_adjustment_down) {
574 buff_lvl_step = ((rc->maximum_buffer_size -
575 rc->optimal_buffer_level) / max_adjustment_down);
576 if (buff_lvl_step)
577 adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) /
578 buff_lvl_step);
579 active_worst_quality -= adjustment;
580 }
581 } else if (rc->buffer_level > critical_level) {
582 // Adjust up from ambient Q.
583 if (critical_level) {
584 buff_lvl_step = (rc->optimal_buffer_level - critical_level);
585 if (buff_lvl_step) {
586 adjustment =
587 (int)((rc->worst_quality - rc->avg_frame_qindex[INTER_FRAME]) *
588 (rc->optimal_buffer_level - rc->buffer_level) /
589 buff_lvl_step);
590 }
591 active_worst_quality = rc->avg_frame_qindex[INTER_FRAME] + adjustment;
592 }
593 } else {
594 // Set to worst_quality if buffer is below critical level.
595 active_worst_quality = rc->worst_quality;
596 }
597 return active_worst_quality;
598 }
599
rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)600 static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi,
601 int *bottom_index,
602 int *top_index) {
603 const VP9_COMMON *const cm = &cpi->common;
604 const RATE_CONTROL *const rc = &cpi->rc;
605 int active_best_quality;
606 int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi);
607 int q;
608 int *rtc_minq;
609 ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq);
610
611 if (frame_is_intra_only(cm)) {
612 active_best_quality = rc->best_quality;
613 // Handle the special case for key frames forced when we have reached
614 // the maximum key frame interval. Here force the Q to a range
615 // based on the ambient Q to reduce the risk of popping.
616 if (rc->this_key_frame_forced) {
617 int qindex = rc->last_boosted_qindex;
618 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
619 int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
620 (last_boosted_q * 0.75),
621 cm->bit_depth);
622 active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
623 } else if (cm->current_video_frame > 0) {
624 // not first frame of one pass and kf_boost is set
625 double q_adj_factor = 1.0;
626 double q_val;
627
628 active_best_quality =
629 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
630 cm->bit_depth);
631
632 // Allow somewhat lower kf minq with small image formats.
633 if ((cm->width * cm->height) <= (352 * 288)) {
634 q_adj_factor -= 0.25;
635 }
636
637 // Convert the adjustment factor to a qindex delta
638 // on active_best_quality.
639 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
640 active_best_quality += vp9_compute_qdelta(rc, q_val,
641 q_val * q_adj_factor,
642 cm->bit_depth);
643 }
644 } else if (!rc->is_src_frame_alt_ref &&
645 !cpi->use_svc &&
646 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
647 // Use the lower of active_worst_quality and recent
648 // average Q as basis for GF/ARF best Q limit unless last frame was
649 // a key frame.
650 if (rc->frames_since_key > 1 &&
651 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
652 q = rc->avg_frame_qindex[INTER_FRAME];
653 } else {
654 q = active_worst_quality;
655 }
656 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
657 } else {
658 // Use the lower of active_worst_quality and recent/average Q.
659 if (cm->current_video_frame > 1) {
660 if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality)
661 active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]];
662 else
663 active_best_quality = rtc_minq[active_worst_quality];
664 } else {
665 if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality)
666 active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]];
667 else
668 active_best_quality = rtc_minq[active_worst_quality];
669 }
670 }
671
672 // Clip the active best and worst quality values to limits
673 active_best_quality = clamp(active_best_quality,
674 rc->best_quality, rc->worst_quality);
675 active_worst_quality = clamp(active_worst_quality,
676 active_best_quality, rc->worst_quality);
677
678 *top_index = active_worst_quality;
679 *bottom_index = active_best_quality;
680
681 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
682 // Limit Q range for the adaptive loop.
683 if (cm->frame_type == KEY_FRAME &&
684 !rc->this_key_frame_forced &&
685 !(cm->current_video_frame == 0)) {
686 int qdelta = 0;
687 vp9_clear_system_state();
688 qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
689 active_worst_quality, 2.0,
690 cm->bit_depth);
691 *top_index = active_worst_quality + qdelta;
692 *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
693 }
694 #endif
695
696 // Special case code to try and match quality with forced key frames
697 if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) {
698 q = rc->last_boosted_qindex;
699 } else {
700 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
701 active_best_quality, active_worst_quality);
702 if (q > *top_index) {
703 // Special case when we are targeting the max allowed rate
704 if (rc->this_frame_target >= rc->max_frame_bandwidth)
705 *top_index = q;
706 else
707 q = *top_index;
708 }
709 }
710 assert(*top_index <= rc->worst_quality &&
711 *top_index >= rc->best_quality);
712 assert(*bottom_index <= rc->worst_quality &&
713 *bottom_index >= rc->best_quality);
714 assert(q <= rc->worst_quality && q >= rc->best_quality);
715 return q;
716 }
717
get_active_cq_level(const RATE_CONTROL * rc,const VP9EncoderConfig * const oxcf)718 static int get_active_cq_level(const RATE_CONTROL *rc,
719 const VP9EncoderConfig *const oxcf) {
720 static const double cq_adjust_threshold = 0.5;
721 int active_cq_level = oxcf->cq_level;
722 if (oxcf->rc_mode == VPX_CQ &&
723 rc->total_target_bits > 0) {
724 const double x = (double)rc->total_actual_bits / rc->total_target_bits;
725 if (x < cq_adjust_threshold) {
726 active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold);
727 }
728 }
729 return active_cq_level;
730 }
731
rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP * cpi,int * bottom_index,int * top_index)732 static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi,
733 int *bottom_index,
734 int *top_index) {
735 const VP9_COMMON *const cm = &cpi->common;
736 const RATE_CONTROL *const rc = &cpi->rc;
737 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
738 const int cq_level = get_active_cq_level(rc, oxcf);
739 int active_best_quality;
740 int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi);
741 int q;
742 int *inter_minq;
743 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
744
745 if (frame_is_intra_only(cm)) {
746
747 // Handle the special case for key frames forced when we have reached
748 // the maximum key frame interval. Here force the Q to a range
749 // based on the ambient Q to reduce the risk of popping.
750 if (rc->this_key_frame_forced) {
751 int qindex = rc->last_boosted_qindex;
752 double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
753 int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
754 last_boosted_q * 0.75,
755 cm->bit_depth);
756 active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
757 } else {
758 // not first frame of one pass and kf_boost is set
759 double q_adj_factor = 1.0;
760 double q_val;
761
762 active_best_quality =
763 get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME],
764 cm->bit_depth);
765
766 // Allow somewhat lower kf minq with small image formats.
767 if ((cm->width * cm->height) <= (352 * 288)) {
768 q_adj_factor -= 0.25;
769 }
770
771 // Convert the adjustment factor to a qindex delta
772 // on active_best_quality.
773 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
774 active_best_quality += vp9_compute_qdelta(rc, q_val,
775 q_val * q_adj_factor,
776 cm->bit_depth);
777 }
778 } else if (!rc->is_src_frame_alt_ref &&
779 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
780 // Use the lower of active_worst_quality and recent
781 // average Q as basis for GF/ARF best Q limit unless last frame was
782 // a key frame.
783 if (rc->frames_since_key > 1 &&
784 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
785 q = rc->avg_frame_qindex[INTER_FRAME];
786 } else {
787 q = rc->avg_frame_qindex[KEY_FRAME];
788 }
789 // For constrained quality dont allow Q less than the cq level
790 if (oxcf->rc_mode == VPX_CQ) {
791 if (q < cq_level)
792 q = cq_level;
793
794 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
795
796 // Constrained quality use slightly lower active best.
797 active_best_quality = active_best_quality * 15 / 16;
798
799 } else if (oxcf->rc_mode == VPX_Q) {
800 if (!cpi->refresh_alt_ref_frame) {
801 active_best_quality = cq_level;
802 } else {
803 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
804 }
805 } else {
806 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
807 }
808 } else {
809 if (oxcf->rc_mode == VPX_Q) {
810 active_best_quality = cq_level;
811 } else {
812 // Use the lower of active_worst_quality and recent/average Q.
813 if (cm->current_video_frame > 1)
814 active_best_quality = inter_minq[rc->avg_frame_qindex[INTER_FRAME]];
815 else
816 active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]];
817 // For the constrained quality mode we don't want
818 // q to fall below the cq level.
819 if ((oxcf->rc_mode == VPX_CQ) &&
820 (active_best_quality < cq_level)) {
821 active_best_quality = cq_level;
822 }
823 }
824 }
825
826 // Clip the active best and worst quality values to limits
827 active_best_quality = clamp(active_best_quality,
828 rc->best_quality, rc->worst_quality);
829 active_worst_quality = clamp(active_worst_quality,
830 active_best_quality, rc->worst_quality);
831
832 *top_index = active_worst_quality;
833 *bottom_index = active_best_quality;
834
835 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
836 {
837 int qdelta = 0;
838 vp9_clear_system_state();
839
840 // Limit Q range for the adaptive loop.
841 if (cm->frame_type == KEY_FRAME &&
842 !rc->this_key_frame_forced &&
843 !(cm->current_video_frame == 0)) {
844 qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
845 active_worst_quality, 2.0,
846 cm->bit_depth);
847 } else if (!rc->is_src_frame_alt_ref &&
848 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
849 qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
850 active_worst_quality, 1.75,
851 cm->bit_depth);
852 }
853 *top_index = active_worst_quality + qdelta;
854 *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index;
855 }
856 #endif
857
858 if (oxcf->rc_mode == VPX_Q) {
859 q = active_best_quality;
860 // Special case code to try and match quality with forced key frames
861 } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) {
862 q = rc->last_boosted_qindex;
863 } else {
864 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
865 active_best_quality, active_worst_quality);
866 if (q > *top_index) {
867 // Special case when we are targeting the max allowed rate
868 if (rc->this_frame_target >= rc->max_frame_bandwidth)
869 *top_index = q;
870 else
871 q = *top_index;
872 }
873 }
874
875 assert(*top_index <= rc->worst_quality &&
876 *top_index >= rc->best_quality);
877 assert(*bottom_index <= rc->worst_quality &&
878 *bottom_index >= rc->best_quality);
879 assert(q <= rc->worst_quality && q >= rc->best_quality);
880 return q;
881 }
882
883 #define STATIC_MOTION_THRESH 95
rc_pick_q_and_bounds_two_pass(const VP9_COMP * cpi,int * bottom_index,int * top_index)884 static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi,
885 int *bottom_index,
886 int *top_index) {
887 const VP9_COMMON *const cm = &cpi->common;
888 const RATE_CONTROL *const rc = &cpi->rc;
889 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
890 const int cq_level = get_active_cq_level(rc, oxcf);
891 int active_best_quality;
892 int active_worst_quality = cpi->twopass.active_worst_quality;
893 int q;
894 int *inter_minq;
895 ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq);
896
897 if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) {
898 // Handle the special case for key frames forced when we have reached
899 // the maximum key frame interval. Here force the Q to a range
900 // based on the ambient Q to reduce the risk of popping.
901 if (rc->this_key_frame_forced) {
902 double last_boosted_q;
903 int delta_qindex;
904 int qindex;
905
906 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
907 qindex = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
908 active_best_quality = qindex;
909 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
910 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
911 last_boosted_q * 1.25,
912 cm->bit_depth);
913 active_worst_quality = MIN(qindex + delta_qindex, active_worst_quality);
914
915 } else {
916 qindex = rc->last_boosted_qindex;
917 last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth);
918 delta_qindex = vp9_compute_qdelta(rc, last_boosted_q,
919 last_boosted_q * 0.75,
920 cm->bit_depth);
921 active_best_quality = MAX(qindex + delta_qindex, rc->best_quality);
922 }
923 } else {
924 // Not forced keyframe.
925 double q_adj_factor = 1.0;
926 double q_val;
927 // Baseline value derived from cpi->active_worst_quality and kf boost.
928 active_best_quality = get_kf_active_quality(rc, active_worst_quality,
929 cm->bit_depth);
930
931 // Allow somewhat lower kf minq with small image formats.
932 if ((cm->width * cm->height) <= (352 * 288)) {
933 q_adj_factor -= 0.25;
934 }
935
936 // Make a further adjustment based on the kf zero motion measure.
937 q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct);
938
939 // Convert the adjustment factor to a qindex delta
940 // on active_best_quality.
941 q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth);
942 active_best_quality += vp9_compute_qdelta(rc, q_val,
943 q_val * q_adj_factor,
944 cm->bit_depth);
945 }
946 } else if (!rc->is_src_frame_alt_ref &&
947 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) {
948 // Use the lower of active_worst_quality and recent
949 // average Q as basis for GF/ARF best Q limit unless last frame was
950 // a key frame.
951 if (rc->frames_since_key > 1 &&
952 rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) {
953 q = rc->avg_frame_qindex[INTER_FRAME];
954 } else {
955 q = active_worst_quality;
956 }
957 // For constrained quality dont allow Q less than the cq level
958 if (oxcf->rc_mode == VPX_CQ) {
959 if (q < cq_level)
960 q = cq_level;
961
962 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
963
964 // Constrained quality use slightly lower active best.
965 active_best_quality = active_best_quality * 15 / 16;
966
967 } else if (oxcf->rc_mode == VPX_Q) {
968 if (!cpi->refresh_alt_ref_frame) {
969 active_best_quality = cq_level;
970 } else {
971 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
972 }
973 } else {
974 active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth);
975 }
976 } else {
977 if (oxcf->rc_mode == VPX_Q) {
978 active_best_quality = cq_level;
979 } else {
980 active_best_quality = inter_minq[active_worst_quality];
981
982 // For the constrained quality mode we don't want
983 // q to fall below the cq level.
984 if ((oxcf->rc_mode == VPX_CQ) &&
985 (active_best_quality < cq_level)) {
986 active_best_quality = cq_level;
987 }
988 }
989 }
990
991 #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY
992 vp9_clear_system_state();
993 // Static forced key frames Q restrictions dealt with elsewhere.
994 if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) ||
995 !rc->this_key_frame_forced ||
996 (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) {
997 const GF_GROUP *const gf_group = &cpi->twopass.gf_group;
998 const double rate_factor_deltas[RATE_FACTOR_LEVELS] = {
999 1.00, // INTER_NORMAL
1000 1.00, // INTER_HIGH
1001 1.50, // GF_ARF_LOW
1002 1.75, // GF_ARF_STD
1003 2.00, // KF_STD
1004 };
1005 const double rate_factor =
1006 rate_factor_deltas[gf_group->rf_level[gf_group->index]];
1007 int qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type,
1008 active_worst_quality, rate_factor,
1009 cm->bit_depth);
1010 active_worst_quality = active_worst_quality + qdelta;
1011 active_worst_quality = MAX(active_worst_quality, active_best_quality);
1012 }
1013 #endif
1014
1015 // Clip the active best and worst quality values to limits.
1016 active_best_quality = clamp(active_best_quality,
1017 rc->best_quality, rc->worst_quality);
1018 active_worst_quality = clamp(active_worst_quality,
1019 active_best_quality, rc->worst_quality);
1020
1021 if (oxcf->rc_mode == VPX_Q) {
1022 q = active_best_quality;
1023 // Special case code to try and match quality with forced key frames.
1024 } else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) &&
1025 rc->this_key_frame_forced) {
1026 // If static since last kf use better of last boosted and last kf q.
1027 if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) {
1028 q = MIN(rc->last_kf_qindex, rc->last_boosted_qindex);
1029 } else {
1030 q = rc->last_boosted_qindex;
1031 }
1032 } else {
1033 q = vp9_rc_regulate_q(cpi, rc->this_frame_target,
1034 active_best_quality, active_worst_quality);
1035 if (q > active_worst_quality) {
1036 // Special case when we are targeting the max allowed rate.
1037 if (rc->this_frame_target >= rc->max_frame_bandwidth)
1038 active_worst_quality = q;
1039 else
1040 q = active_worst_quality;
1041 }
1042 }
1043 clamp(q, active_best_quality, active_worst_quality);
1044
1045 *top_index = active_worst_quality;
1046 *bottom_index = active_best_quality;
1047
1048 assert(*top_index <= rc->worst_quality &&
1049 *top_index >= rc->best_quality);
1050 assert(*bottom_index <= rc->worst_quality &&
1051 *bottom_index >= rc->best_quality);
1052 assert(q <= rc->worst_quality && q >= rc->best_quality);
1053 return q;
1054 }
1055
vp9_rc_pick_q_and_bounds(const VP9_COMP * cpi,int * bottom_index,int * top_index)1056 int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi,
1057 int *bottom_index, int *top_index) {
1058 int q;
1059 if (cpi->oxcf.pass == 0) {
1060 if (cpi->oxcf.rc_mode == VPX_CBR)
1061 q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index);
1062 else
1063 q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index);
1064 } else {
1065 q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index);
1066 }
1067 if (cpi->sf.use_nonrd_pick_mode) {
1068 if (cpi->sf.force_frame_boost == 1)
1069 q -= cpi->sf.max_delta_qindex;
1070
1071 if (q < *bottom_index)
1072 *bottom_index = q;
1073 else if (q > *top_index)
1074 *top_index = q;
1075 }
1076 return q;
1077 }
1078
vp9_rc_compute_frame_size_bounds(const VP9_COMP * cpi,int frame_target,int * frame_under_shoot_limit,int * frame_over_shoot_limit)1079 void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi,
1080 int frame_target,
1081 int *frame_under_shoot_limit,
1082 int *frame_over_shoot_limit) {
1083 if (cpi->oxcf.rc_mode == VPX_Q) {
1084 *frame_under_shoot_limit = 0;
1085 *frame_over_shoot_limit = INT_MAX;
1086 } else {
1087 // For very small rate targets where the fractional adjustment
1088 // may be tiny make sure there is at least a minimum range.
1089 const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100;
1090 *frame_under_shoot_limit = MAX(frame_target - tolerance - 200, 0);
1091 *frame_over_shoot_limit = MIN(frame_target + tolerance + 200,
1092 cpi->rc.max_frame_bandwidth);
1093 }
1094 }
1095
vp9_rc_set_frame_target(VP9_COMP * cpi,int target)1096 void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) {
1097 const VP9_COMMON *const cm = &cpi->common;
1098 RATE_CONTROL *const rc = &cpi->rc;
1099
1100 rc->this_frame_target = target;
1101
1102 // Target rate per SB64 (including partial SB64s.
1103 rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) /
1104 (cm->width * cm->height);
1105 }
1106
update_alt_ref_frame_stats(VP9_COMP * cpi)1107 static void update_alt_ref_frame_stats(VP9_COMP *cpi) {
1108 // this frame refreshes means next frames don't unless specified by user
1109 RATE_CONTROL *const rc = &cpi->rc;
1110 rc->frames_since_golden = 0;
1111
1112 // Mark the alt ref as done (setting to 0 means no further alt refs pending).
1113 rc->source_alt_ref_pending = 0;
1114
1115 // Set the alternate reference frame active flag
1116 rc->source_alt_ref_active = 1;
1117 }
1118
update_golden_frame_stats(VP9_COMP * cpi)1119 static void update_golden_frame_stats(VP9_COMP *cpi) {
1120 RATE_CONTROL *const rc = &cpi->rc;
1121
1122 // Update the Golden frame usage counts.
1123 if (cpi->refresh_golden_frame) {
1124 // this frame refreshes means next frames don't unless specified by user
1125 rc->frames_since_golden = 0;
1126
1127 if (cpi->oxcf.pass == 2) {
1128 if (!rc->source_alt_ref_pending &&
1129 cpi->twopass.gf_group.rf_level[0] == GF_ARF_STD)
1130 rc->source_alt_ref_active = 0;
1131 } else if (!rc->source_alt_ref_pending) {
1132 rc->source_alt_ref_active = 0;
1133 }
1134
1135 // Decrement count down till next gf
1136 if (rc->frames_till_gf_update_due > 0)
1137 rc->frames_till_gf_update_due--;
1138
1139 } else if (!cpi->refresh_alt_ref_frame) {
1140 // Decrement count down till next gf
1141 if (rc->frames_till_gf_update_due > 0)
1142 rc->frames_till_gf_update_due--;
1143
1144 rc->frames_since_golden++;
1145 }
1146 }
1147
vp9_rc_postencode_update(VP9_COMP * cpi,uint64_t bytes_used)1148 void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
1149 const VP9_COMMON *const cm = &cpi->common;
1150 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1151 RATE_CONTROL *const rc = &cpi->rc;
1152 const int qindex = cm->base_qindex;
1153
1154 // Update rate control heuristics
1155 rc->projected_frame_size = (int)(bytes_used << 3);
1156
1157 // Post encode loop adjustment of Q prediction.
1158 vp9_rc_update_rate_correction_factors(
1159 cpi, (cpi->sf.recode_loop >= ALLOW_RECODE_KFARFGF ||
1160 oxcf->rc_mode == VPX_CBR) ? 2 : 0);
1161
1162 // Keep a record of last Q and ambient average Q.
1163 if (cm->frame_type == KEY_FRAME) {
1164 rc->last_q[KEY_FRAME] = qindex;
1165 rc->avg_frame_qindex[KEY_FRAME] =
1166 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2);
1167 } else {
1168 if (rc->is_src_frame_alt_ref ||
1169 !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) ||
1170 (cpi->use_svc && oxcf->rc_mode == VPX_CBR)) {
1171 rc->last_q[INTER_FRAME] = qindex;
1172 rc->avg_frame_qindex[INTER_FRAME] =
1173 ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2);
1174 rc->ni_frames++;
1175 rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth);
1176 rc->avg_q = rc->tot_q / rc->ni_frames;
1177 // Calculate the average Q for normal inter frames (not key or GFU
1178 // frames).
1179 rc->ni_tot_qi += qindex;
1180 rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames;
1181 }
1182 }
1183
1184 // Keep record of last boosted (KF/KF/ARF) Q value.
1185 // If the current frame is coded at a lower Q then we also update it.
1186 // If all mbs in this group are skipped only update if the Q value is
1187 // better than that already stored.
1188 // This is used to help set quality in forced key frames to reduce popping
1189 if ((qindex < rc->last_boosted_qindex) ||
1190 (((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame ||
1191 (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) {
1192 rc->last_boosted_qindex = qindex;
1193 }
1194 if (cm->frame_type == KEY_FRAME)
1195 rc->last_kf_qindex = qindex;
1196
1197 update_buffer_level(cpi, rc->projected_frame_size);
1198
1199 // Rolling monitors of whether we are over or underspending used to help
1200 // regulate min and Max Q in two pass.
1201 if (cm->frame_type != KEY_FRAME) {
1202 rc->rolling_target_bits = ROUND_POWER_OF_TWO(
1203 rc->rolling_target_bits * 3 + rc->this_frame_target, 2);
1204 rc->rolling_actual_bits = ROUND_POWER_OF_TWO(
1205 rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2);
1206 rc->long_rolling_target_bits = ROUND_POWER_OF_TWO(
1207 rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5);
1208 rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO(
1209 rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5);
1210 }
1211
1212 // Actual bits spent
1213 rc->total_actual_bits += rc->projected_frame_size;
1214 rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0;
1215
1216 rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits;
1217
1218 if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame &&
1219 (cm->frame_type != KEY_FRAME))
1220 // Update the alternate reference frame stats as appropriate.
1221 update_alt_ref_frame_stats(cpi);
1222 else
1223 // Update the Golden frame stats as appropriate.
1224 update_golden_frame_stats(cpi);
1225
1226 if (cm->frame_type == KEY_FRAME)
1227 rc->frames_since_key = 0;
1228 if (cm->show_frame) {
1229 rc->frames_since_key++;
1230 rc->frames_to_key--;
1231 }
1232 }
1233
vp9_rc_postencode_update_drop_frame(VP9_COMP * cpi)1234 void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) {
1235 // Update buffer level with zero size, update frame counters, and return.
1236 update_buffer_level(cpi, 0);
1237 cpi->common.last_frame_type = cpi->common.frame_type;
1238 cpi->rc.frames_since_key++;
1239 cpi->rc.frames_to_key--;
1240 }
1241
1242 // Use this macro to turn on/off use of alt-refs in one-pass mode.
1243 #define USE_ALTREF_FOR_ONE_PASS 1
1244
calc_pframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1245 static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1246 static const int af_ratio = 10;
1247 const RATE_CONTROL *const rc = &cpi->rc;
1248 int target;
1249 #if USE_ALTREF_FOR_ONE_PASS
1250 target = (!rc->is_src_frame_alt_ref &&
1251 (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ?
1252 (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) /
1253 (rc->baseline_gf_interval + af_ratio - 1) :
1254 (rc->avg_frame_bandwidth * rc->baseline_gf_interval) /
1255 (rc->baseline_gf_interval + af_ratio - 1);
1256 #else
1257 target = rc->avg_frame_bandwidth;
1258 #endif
1259 return vp9_rc_clamp_pframe_target_size(cpi, target);
1260 }
1261
calc_iframe_target_size_one_pass_vbr(const VP9_COMP * const cpi)1262 static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) {
1263 static const int kf_ratio = 25;
1264 const RATE_CONTROL *rc = &cpi->rc;
1265 const int target = rc->avg_frame_bandwidth * kf_ratio;
1266 return vp9_rc_clamp_iframe_target_size(cpi, target);
1267 }
1268
vp9_rc_get_one_pass_vbr_params(VP9_COMP * cpi)1269 void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) {
1270 VP9_COMMON *const cm = &cpi->common;
1271 RATE_CONTROL *const rc = &cpi->rc;
1272 int target;
1273 // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1274 if (!cpi->refresh_alt_ref_frame &&
1275 (cm->current_video_frame == 0 ||
1276 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1277 rc->frames_to_key == 0 ||
1278 (cpi->oxcf.auto_key && 0))) {
1279 cm->frame_type = KEY_FRAME;
1280 rc->this_key_frame_forced = cm->current_video_frame != 0 &&
1281 rc->frames_to_key == 0;
1282 rc->frames_to_key = cpi->oxcf.key_freq;
1283 rc->kf_boost = DEFAULT_KF_BOOST;
1284 rc->source_alt_ref_active = 0;
1285 } else {
1286 cm->frame_type = INTER_FRAME;
1287 }
1288 if (rc->frames_till_gf_update_due == 0) {
1289 rc->baseline_gf_interval = DEFAULT_GF_INTERVAL;
1290 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
1291 // NOTE: frames_till_gf_update_due must be <= frames_to_key.
1292 if (rc->frames_till_gf_update_due > rc->frames_to_key)
1293 rc->frames_till_gf_update_due = rc->frames_to_key;
1294 cpi->refresh_golden_frame = 1;
1295 rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS;
1296 rc->gfu_boost = DEFAULT_GF_BOOST;
1297 }
1298 if (cm->frame_type == KEY_FRAME)
1299 target = calc_iframe_target_size_one_pass_vbr(cpi);
1300 else
1301 target = calc_pframe_target_size_one_pass_vbr(cpi);
1302 vp9_rc_set_frame_target(cpi, target);
1303 }
1304
calc_pframe_target_size_one_pass_cbr(const VP9_COMP * cpi)1305 static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
1306 const VP9EncoderConfig *oxcf = &cpi->oxcf;
1307 const RATE_CONTROL *rc = &cpi->rc;
1308 const SVC *const svc = &cpi->svc;
1309 const int64_t diff = rc->optimal_buffer_level - rc->buffer_level;
1310 const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100;
1311 int min_frame_target = MAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS);
1312 int target = rc->avg_frame_bandwidth;
1313 if (svc->number_temporal_layers > 1 &&
1314 oxcf->rc_mode == VPX_CBR) {
1315 // Note that for layers, avg_frame_bandwidth is the cumulative
1316 // per-frame-bandwidth. For the target size of this frame, use the
1317 // layer average frame size (i.e., non-cumulative per-frame-bw).
1318 int current_temporal_layer = svc->temporal_layer_id;
1319 const LAYER_CONTEXT *lc = &svc->layer_context[current_temporal_layer];
1320 target = lc->avg_frame_size;
1321 min_frame_target = MAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS);
1322 }
1323 if (diff > 0) {
1324 // Lower the target bandwidth for this frame.
1325 const int pct_low = (int)MIN(diff / one_pct_bits, oxcf->under_shoot_pct);
1326 target -= (target * pct_low) / 200;
1327 } else if (diff < 0) {
1328 // Increase the target bandwidth for this frame.
1329 const int pct_high = (int)MIN(-diff / one_pct_bits, oxcf->over_shoot_pct);
1330 target += (target * pct_high) / 200;
1331 }
1332 return MAX(min_frame_target, target);
1333 }
1334
calc_iframe_target_size_one_pass_cbr(const VP9_COMP * cpi)1335 static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) {
1336 const RATE_CONTROL *rc = &cpi->rc;
1337 const VP9EncoderConfig *oxcf = &cpi->oxcf;
1338 const SVC *const svc = &cpi->svc;
1339 int target;
1340 if (cpi->common.current_video_frame == 0) {
1341 target = ((rc->starting_buffer_level / 2) > INT_MAX)
1342 ? INT_MAX : (int)(rc->starting_buffer_level / 2);
1343 } else {
1344 int kf_boost = 32;
1345 double framerate = cpi->framerate;
1346 if (svc->number_temporal_layers > 1 &&
1347 oxcf->rc_mode == VPX_CBR) {
1348 // Use the layer framerate for temporal layers CBR mode.
1349 const LAYER_CONTEXT *lc = &svc->layer_context[svc->temporal_layer_id];
1350 framerate = lc->framerate;
1351 }
1352 kf_boost = MAX(kf_boost, (int)(2 * framerate - 16));
1353 if (rc->frames_since_key < framerate / 2) {
1354 kf_boost = (int)(kf_boost * rc->frames_since_key /
1355 (framerate / 2));
1356 }
1357 target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4;
1358 }
1359 return vp9_rc_clamp_iframe_target_size(cpi, target);
1360 }
1361
vp9_rc_get_svc_params(VP9_COMP * cpi)1362 void vp9_rc_get_svc_params(VP9_COMP *cpi) {
1363 VP9_COMMON *const cm = &cpi->common;
1364 RATE_CONTROL *const rc = &cpi->rc;
1365 int target = rc->avg_frame_bandwidth;
1366 if ((cm->current_video_frame == 0) ||
1367 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1368 (cpi->oxcf.auto_key && (rc->frames_since_key %
1369 cpi->oxcf.key_freq == 0))) {
1370 cm->frame_type = KEY_FRAME;
1371 rc->source_alt_ref_active = 0;
1372
1373 if (is_two_pass_svc(cpi)) {
1374 cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame = 1;
1375 cpi->ref_frame_flags &=
1376 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
1377 }
1378
1379 if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR) {
1380 target = calc_iframe_target_size_one_pass_cbr(cpi);
1381 }
1382 } else {
1383 cm->frame_type = INTER_FRAME;
1384
1385 if (is_two_pass_svc(cpi)) {
1386 LAYER_CONTEXT *lc = &cpi->svc.layer_context[cpi->svc.spatial_layer_id];
1387 if (cpi->svc.spatial_layer_id == 0) {
1388 lc->is_key_frame = 0;
1389 } else {
1390 lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
1391 if (lc->is_key_frame)
1392 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
1393 }
1394 cpi->ref_frame_flags &= (~VP9_ALT_FLAG);
1395 }
1396
1397 if (cpi->oxcf.pass == 0 && cpi->oxcf.rc_mode == VPX_CBR) {
1398 target = calc_pframe_target_size_one_pass_cbr(cpi);
1399 }
1400 }
1401 vp9_rc_set_frame_target(cpi, target);
1402 rc->frames_till_gf_update_due = INT_MAX;
1403 rc->baseline_gf_interval = INT_MAX;
1404 }
1405
vp9_rc_get_one_pass_cbr_params(VP9_COMP * cpi)1406 void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) {
1407 VP9_COMMON *const cm = &cpi->common;
1408 RATE_CONTROL *const rc = &cpi->rc;
1409 int target;
1410 // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic.
1411 if ((cm->current_video_frame == 0 ||
1412 (cpi->frame_flags & FRAMEFLAGS_KEY) ||
1413 rc->frames_to_key == 0 ||
1414 (cpi->oxcf.auto_key && 0))) {
1415 cm->frame_type = KEY_FRAME;
1416 rc->this_key_frame_forced = cm->current_video_frame != 0 &&
1417 rc->frames_to_key == 0;
1418 rc->frames_to_key = cpi->oxcf.key_freq;
1419 rc->kf_boost = DEFAULT_KF_BOOST;
1420 rc->source_alt_ref_active = 0;
1421 target = calc_iframe_target_size_one_pass_cbr(cpi);
1422 } else {
1423 cm->frame_type = INTER_FRAME;
1424 target = calc_pframe_target_size_one_pass_cbr(cpi);
1425 }
1426 vp9_rc_set_frame_target(cpi, target);
1427 // Don't use gf_update by default in CBR mode.
1428 rc->frames_till_gf_update_due = INT_MAX;
1429 rc->baseline_gf_interval = INT_MAX;
1430 }
1431
vp9_compute_qdelta(const RATE_CONTROL * rc,double qstart,double qtarget,vpx_bit_depth_t bit_depth)1432 int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget,
1433 vpx_bit_depth_t bit_depth) {
1434 int start_index = rc->worst_quality;
1435 int target_index = rc->worst_quality;
1436 int i;
1437
1438 // Convert the average q value to an index.
1439 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1440 start_index = i;
1441 if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart)
1442 break;
1443 }
1444
1445 // Convert the q target to an index
1446 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1447 target_index = i;
1448 if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget)
1449 break;
1450 }
1451
1452 return target_index - start_index;
1453 }
1454
vp9_compute_qdelta_by_rate(const RATE_CONTROL * rc,FRAME_TYPE frame_type,int qindex,double rate_target_ratio,vpx_bit_depth_t bit_depth)1455 int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type,
1456 int qindex, double rate_target_ratio,
1457 vpx_bit_depth_t bit_depth) {
1458 int target_index = rc->worst_quality;
1459 int i;
1460
1461 // Look up the current projected bits per block for the base index
1462 const int base_bits_per_mb = vp9_rc_bits_per_mb(frame_type, qindex, 1.0,
1463 bit_depth);
1464
1465 // Find the target bits per mb based on the base value and given ratio.
1466 const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb);
1467
1468 // Convert the q target to an index
1469 for (i = rc->best_quality; i < rc->worst_quality; ++i) {
1470 target_index = i;
1471 if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <= target_bits_per_mb)
1472 break;
1473 }
1474
1475 return target_index - qindex;
1476 }
1477
vp9_rc_set_gf_max_interval(const VP9_COMP * const cpi,RATE_CONTROL * const rc)1478 void vp9_rc_set_gf_max_interval(const VP9_COMP *const cpi,
1479 RATE_CONTROL *const rc) {
1480 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1481 // Set Maximum gf/arf interval
1482 rc->max_gf_interval = 16;
1483
1484 // Extended interval for genuinely static scenes
1485 rc->static_scene_max_gf_interval = oxcf->key_freq >> 1;
1486 if (rc->static_scene_max_gf_interval > (MAX_LAG_BUFFERS * 2))
1487 rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2;
1488
1489 if (is_altref_enabled(cpi)) {
1490 if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1)
1491 rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1;
1492 }
1493
1494 if (rc->max_gf_interval > rc->static_scene_max_gf_interval)
1495 rc->max_gf_interval = rc->static_scene_max_gf_interval;
1496 }
1497
vp9_rc_update_framerate(VP9_COMP * cpi)1498 void vp9_rc_update_framerate(VP9_COMP *cpi) {
1499 const VP9_COMMON *const cm = &cpi->common;
1500 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1501 RATE_CONTROL *const rc = &cpi->rc;
1502 int vbr_max_bits;
1503
1504 rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate);
1505 rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth *
1506 oxcf->two_pass_vbrmin_section / 100);
1507
1508 rc->min_frame_bandwidth = MAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS);
1509
1510 // A maximum bitrate for a frame is defined.
1511 // The baseline for this aligns with HW implementations that
1512 // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits
1513 // per 16x16 MB (averaged over a frame). However this limit is extended if
1514 // a very high rate is given on the command line or the the rate cannnot
1515 // be acheived because of a user specificed max q (e.g. when the user
1516 // specifies lossless encode.
1517 vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth *
1518 oxcf->two_pass_vbrmax_section) / 100);
1519 rc->max_frame_bandwidth = MAX(MAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P),
1520 vbr_max_bits);
1521
1522 vp9_rc_set_gf_max_interval(cpi, rc);
1523 }
1524