• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkScalar_DEFINED
9 #define SkScalar_DEFINED
10 
11 #include "SkFixed.h"
12 #include "SkFloatingPoint.h"
13 
14 //#define SK_SUPPORT_DEPRECATED_SCALARROUND
15 
16 typedef float   SkScalar;
17 
18 /** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
19 */
20 #define SK_Scalar1              (1.0f)
21 /** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
22 */
23 #define SK_ScalarHalf           (0.5f)
24 /** SK_ScalarInfinity is defined to be infinity as an SkScalar
25 */
26 #define SK_ScalarInfinity       SK_FloatInfinity
27 /** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
28 */
29 #define SK_ScalarNegativeInfinity       SK_FloatNegativeInfinity
30 /** SK_ScalarMax is defined to be the largest value representable as an SkScalar
31 */
32 #define SK_ScalarMax            (3.402823466e+38f)
33 /** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
34 */
35 #define SK_ScalarMin            (-SK_ScalarMax)
36 /** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
37 */
38 #define SK_ScalarNaN            SK_FloatNaN
39 /** SkScalarIsNaN(n) returns true if argument is not a number
40 */
SkScalarIsNaN(float x)41 static inline bool SkScalarIsNaN(float x) { return x != x; }
42 
43 /** Returns true if x is not NaN and not infinite */
SkScalarIsFinite(float x)44 static inline bool SkScalarIsFinite(float x) {
45     // We rely on the following behavior of infinities and nans
46     // 0 * finite --> 0
47     // 0 * infinity --> NaN
48     // 0 * NaN --> NaN
49     float prod = x * 0;
50     // At this point, prod will either be NaN or 0
51     // Therefore we can return (prod == prod) or (0 == prod).
52     return prod == prod;
53 }
54 
55 /** SkIntToScalar(n) returns its integer argument as an SkScalar
56 */
57 #define SkIntToScalar(n)        ((float)(n))
58 /** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
59 */
60 #define SkFixedToScalar(x)      SkFixedToFloat(x)
61 /** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
62 */
63 #define SkScalarToFixed(x)      SkFloatToFixed(x)
64 
65 #define SkScalarToFloat(n)      (n)
66 #ifndef SK_SCALAR_TO_FLOAT_EXCLUDED
67 #define SkFloatToScalar(n)      (n)
68 #endif
69 
70 #define SkScalarToDouble(n)      (double)(n)
71 #define SkDoubleToScalar(n)      (float)(n)
72 
73 /** SkScalarFraction(x) returns the signed fractional part of the argument
74 */
75 #define SkScalarFraction(x)     sk_float_mod(x, 1.0f)
76 
77 #define SkScalarFloorToScalar(x)    sk_float_floor(x)
78 #define SkScalarCeilToScalar(x)     sk_float_ceil(x)
79 #define SkScalarRoundToScalar(x)    sk_float_floor((x) + 0.5f)
80 
81 #define SkScalarFloorToInt(x)       sk_float_floor2int(x)
82 #define SkScalarCeilToInt(x)        sk_float_ceil2int(x)
83 #define SkScalarRoundToInt(x)       sk_float_round2int(x)
84 #define SkScalarTruncToInt(x)       static_cast<int>(x)
85 
86 /**
87  *  Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using
88  *  double, to avoid possibly losing the low bit(s) of the answer before calling floor().
89  *
90  *  This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the
91  *  extra precision is known to be valuable.
92  *
93  *  In particular, this catches the following case:
94  *      SkScalar x = 0.49999997;
95  *      int ix = SkScalarRoundToInt(x);
96  *      SkASSERT(0 == ix);    // <--- fails
97  *      ix = SkDScalarRoundToInt(x);
98  *      SkASSERT(0 == ix);    // <--- succeeds
99  */
SkDScalarRoundToInt(SkScalar x)100 static inline int SkDScalarRoundToInt(SkScalar x) {
101     double xx = x;
102     xx += 0.5;
103     return (int)floor(xx);
104 }
105 
106 /** Returns the absolute value of the specified SkScalar
107 */
108 #define SkScalarAbs(x)          sk_float_abs(x)
109 /** Return x with the sign of y
110  */
111 #define SkScalarCopySign(x, y)  sk_float_copysign(x, y)
112 /** Returns the value pinned between 0 and max inclusive
113 */
SkScalarClampMax(SkScalar x,SkScalar max)114 inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
115     return x < 0 ? 0 : x > max ? max : x;
116 }
117 /** Returns the value pinned between min and max inclusive
118 */
SkScalarPin(SkScalar x,SkScalar min,SkScalar max)119 inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
120     return x < min ? min : x > max ? max : x;
121 }
122 /** Returns the specified SkScalar squared (x*x)
123 */
SkScalarSquare(SkScalar x)124 inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
125 /** Returns the product of two SkScalars
126 */
127 #define SkScalarMul(a, b)       ((float)(a) * (b))
128 /** Returns the product of two SkScalars plus a third SkScalar
129 */
130 #define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
131 /** Returns the quotient of two SkScalars (a/b)
132 */
133 #define SkScalarDiv(a, b)       ((float)(a) / (b))
134 /** Returns the mod of two SkScalars (a mod b)
135 */
136 #define SkScalarMod(x,y)        sk_float_mod(x,y)
137 /** Returns the product of the first two arguments, divided by the third argument
138 */
139 #define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
140 /** Returns the multiplicative inverse of the SkScalar (1/x)
141 */
142 #define SkScalarInvert(x)       (SK_Scalar1 / (x))
143 #define SkScalarFastInvert(x)   (SK_Scalar1 / (x))
144 /** Returns the square root of the SkScalar
145 */
146 #define SkScalarSqrt(x)         sk_float_sqrt(x)
147 /** Returns b to the e
148 */
149 #define SkScalarPow(b, e)       sk_float_pow(b, e)
150 /** Returns the average of two SkScalars (a+b)/2
151 */
152 #define SkScalarAve(a, b)       (((a) + (b)) * 0.5f)
153 /** Returns one half of the specified SkScalar
154 */
155 #define SkScalarHalf(a)         ((a) * 0.5f)
156 
157 #define SK_ScalarSqrt2          1.41421356f
158 #define SK_ScalarPI             3.14159265f
159 #define SK_ScalarTanPIOver8     0.414213562f
160 #define SK_ScalarRoot2Over2     0.707106781f
161 
162 #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
163 #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI))
164 float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
165 #define SkScalarSin(radians)    (float)sk_float_sin(radians)
166 #define SkScalarCos(radians)    (float)sk_float_cos(radians)
167 #define SkScalarTan(radians)    (float)sk_float_tan(radians)
168 #define SkScalarASin(val)   (float)sk_float_asin(val)
169 #define SkScalarACos(val)   (float)sk_float_acos(val)
170 #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
171 #define SkScalarExp(x)  (float)sk_float_exp(x)
172 #define SkScalarLog(x)  (float)sk_float_log(x)
173 
SkMaxScalar(SkScalar a,SkScalar b)174 inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
SkMinScalar(SkScalar a,SkScalar b)175 inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
176 
SkScalarIsInt(SkScalar x)177 static inline bool SkScalarIsInt(SkScalar x) {
178     return x == (float)(int)x;
179 }
180 
181 // DEPRECATED : use ToInt or ToScalar variant
182 #ifdef SK_SUPPORT_DEPRECATED_SCALARROUND
183 #   define SkScalarFloor(x)    SkScalarFloorToInt(x)
184 #   define SkScalarCeil(x)     SkScalarCeilToInt(x)
185 #   define SkScalarRound(x)    SkScalarRoundToInt(x)
186 #endif
187 
188 /**
189  *  Returns -1 || 0 || 1 depending on the sign of value:
190  *  -1 if x < 0
191  *   0 if x == 0
192  *   1 if x > 0
193  */
SkScalarSignAsInt(SkScalar x)194 static inline int SkScalarSignAsInt(SkScalar x) {
195     return x < 0 ? -1 : (x > 0);
196 }
197 
198 // Scalar result version of above
SkScalarSignAsScalar(SkScalar x)199 static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
200     return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
201 }
202 
203 #define SK_ScalarNearlyZero         (SK_Scalar1 / (1 << 12))
204 
205 static inline bool SkScalarNearlyZero(SkScalar x,
206                                     SkScalar tolerance = SK_ScalarNearlyZero) {
207     SkASSERT(tolerance >= 0);
208     return SkScalarAbs(x) <= tolerance;
209 }
210 
211 static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
212                                      SkScalar tolerance = SK_ScalarNearlyZero) {
213     SkASSERT(tolerance >= 0);
214     return SkScalarAbs(x-y) <= tolerance;
215 }
216 
217 /** Linearly interpolate between A and B, based on t.
218     If t is 0, return A
219     If t is 1, return B
220     else interpolate.
221     t must be [0..SK_Scalar1]
222 */
SkScalarInterp(SkScalar A,SkScalar B,SkScalar t)223 static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
224     SkASSERT(t >= 0 && t <= SK_Scalar1);
225     return A + (B - A) * t;
226 }
227 
228 /** Interpolate along the function described by (keys[length], values[length])
229     for the passed searchKey.  SearchKeys outside the range keys[0]-keys[Length]
230     clamp to the min or max value.  This function was inspired by a desire
231     to change the multiplier for thickness in fakeBold; therefore it assumes
232     the number of pairs (length) will be small, and a linear search is used.
233     Repeated keys are allowed for discontinuous functions (so long as keys is
234     monotonically increasing), and if key is the value of a repeated scalar in
235     keys, the first one will be used.  However, that may change if a binary
236     search is used.
237 */
238 SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
239                             const SkScalar values[], int length);
240 
241 /*
242  *  Helper to compare an array of scalars.
243  */
SkScalarsEqual(const SkScalar a[],const SkScalar b[],int n)244 static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
245     SkASSERT(n >= 0);
246     for (int i = 0; i < n; ++i) {
247         if (a[i] != b[i]) {
248             return false;
249         }
250     }
251     return true;
252 }
253 
254 #endif
255