• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 //   - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 //     function-scope locals)
17 //   - All functions/classes/etc reside in namespace __tsan, except for those
18 //     declared in tsan_interface.h.
19 //   - Platform-specific files should be used instead of ifdefs (*).
20 //   - No system headers included in header files (*).
21 //   - Platform specific headres included only into platform-specific files (*).
22 //
23 //  (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28 
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_allocator_internal.h"
31 #include "sanitizer_common/sanitizer_asm.h"
32 #include "sanitizer_common/sanitizer_common.h"
33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
34 #include "sanitizer_common/sanitizer_libignore.h"
35 #include "sanitizer_common/sanitizer_suppressions.h"
36 #include "sanitizer_common/sanitizer_thread_registry.h"
37 #include "tsan_clock.h"
38 #include "tsan_defs.h"
39 #include "tsan_flags.h"
40 #include "tsan_sync.h"
41 #include "tsan_trace.h"
42 #include "tsan_vector.h"
43 #include "tsan_report.h"
44 #include "tsan_platform.h"
45 #include "tsan_mutexset.h"
46 #include "tsan_ignoreset.h"
47 #include "tsan_stack_trace.h"
48 
49 #if SANITIZER_WORDSIZE != 64
50 # error "ThreadSanitizer is supported only on 64-bit platforms"
51 #endif
52 
53 namespace __tsan {
54 
55 #ifndef TSAN_GO
56 #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW
57 const uptr kAllocatorSpace = 0x7d0000000000ULL;
58 #else
59 const uptr kAllocatorSpace = 0x7d0000000000ULL;
60 #endif
61 const uptr kAllocatorSize  =  0x10000000000ULL;  // 1T.
62 
63 struct MapUnmapCallback;
64 typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0,
65     DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
66 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
67 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
68 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
69     SecondaryAllocator> Allocator;
70 Allocator *allocator();
71 #endif
72 
73 void TsanCheckFailed(const char *file, int line, const char *cond,
74                      u64 v1, u64 v2);
75 
76 const u64 kShadowRodata = (u64)-1;  // .rodata shadow marker
77 
78 // FastState (from most significant bit):
79 //   ignore          : 1
80 //   tid             : kTidBits
81 //   unused          : -
82 //   history_size    : 3
83 //   epoch           : kClkBits
84 class FastState {
85  public:
FastState(u64 tid,u64 epoch)86   FastState(u64 tid, u64 epoch) {
87     x_ = tid << kTidShift;
88     x_ |= epoch;
89     DCHECK_EQ(tid, this->tid());
90     DCHECK_EQ(epoch, this->epoch());
91     DCHECK_EQ(GetIgnoreBit(), false);
92   }
93 
FastState(u64 x)94   explicit FastState(u64 x)
95       : x_(x) {
96   }
97 
raw()98   u64 raw() const {
99     return x_;
100   }
101 
tid()102   u64 tid() const {
103     u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
104     return res;
105   }
106 
TidWithIgnore()107   u64 TidWithIgnore() const {
108     u64 res = x_ >> kTidShift;
109     return res;
110   }
111 
epoch()112   u64 epoch() const {
113     u64 res = x_ & ((1ull << kClkBits) - 1);
114     return res;
115   }
116 
IncrementEpoch()117   void IncrementEpoch() {
118     u64 old_epoch = epoch();
119     x_ += 1;
120     DCHECK_EQ(old_epoch + 1, epoch());
121     (void)old_epoch;
122   }
123 
SetIgnoreBit()124   void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()125   void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()126   bool GetIgnoreBit() const { return (s64)x_ < 0; }
127 
SetHistorySize(int hs)128   void SetHistorySize(int hs) {
129     CHECK_GE(hs, 0);
130     CHECK_LE(hs, 7);
131     x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
132   }
133 
134   ALWAYS_INLINE
GetHistorySize()135   int GetHistorySize() const {
136     return (int)((x_ >> kHistoryShift) & kHistoryMask);
137   }
138 
ClearHistorySize()139   void ClearHistorySize() {
140     SetHistorySize(0);
141   }
142 
143   ALWAYS_INLINE
GetTracePos()144   u64 GetTracePos() const {
145     const int hs = GetHistorySize();
146     // When hs == 0, the trace consists of 2 parts.
147     const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
148     return epoch() & mask;
149   }
150 
151  private:
152   friend class Shadow;
153   static const int kTidShift = 64 - kTidBits - 1;
154   static const u64 kIgnoreBit = 1ull << 63;
155   static const u64 kFreedBit = 1ull << 63;
156   static const u64 kHistoryShift = kClkBits;
157   static const u64 kHistoryMask = 7;
158   u64 x_;
159 };
160 
161 // Shadow (from most significant bit):
162 //   freed           : 1
163 //   tid             : kTidBits
164 //   is_atomic       : 1
165 //   is_read         : 1
166 //   size_log        : 2
167 //   addr0           : 3
168 //   epoch           : kClkBits
169 class Shadow : public FastState {
170  public:
Shadow(u64 x)171   explicit Shadow(u64 x)
172       : FastState(x) {
173   }
174 
Shadow(const FastState & s)175   explicit Shadow(const FastState &s)
176       : FastState(s.x_) {
177     ClearHistorySize();
178   }
179 
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)180   void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
181     DCHECK_EQ((x_ >> kClkBits) & 31, 0);
182     DCHECK_LE(addr0, 7);
183     DCHECK_LE(kAccessSizeLog, 3);
184     x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
185     DCHECK_EQ(kAccessSizeLog, size_log());
186     DCHECK_EQ(addr0, this->addr0());
187   }
188 
SetWrite(unsigned kAccessIsWrite)189   void SetWrite(unsigned kAccessIsWrite) {
190     DCHECK_EQ(x_ & kReadBit, 0);
191     if (!kAccessIsWrite)
192       x_ |= kReadBit;
193     DCHECK_EQ(kAccessIsWrite, IsWrite());
194   }
195 
SetAtomic(bool kIsAtomic)196   void SetAtomic(bool kIsAtomic) {
197     DCHECK(!IsAtomic());
198     if (kIsAtomic)
199       x_ |= kAtomicBit;
200     DCHECK_EQ(IsAtomic(), kIsAtomic);
201   }
202 
IsAtomic()203   bool IsAtomic() const {
204     return x_ & kAtomicBit;
205   }
206 
IsZero()207   bool IsZero() const {
208     return x_ == 0;
209   }
210 
TidsAreEqual(const Shadow s1,const Shadow s2)211   static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
212     u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
213     DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
214     return shifted_xor == 0;
215   }
216 
217   static ALWAYS_INLINE
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)218   bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
219     u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
220     return masked_xor == 0;
221   }
222 
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)223   static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
224       unsigned kS2AccessSize) {
225     bool res = false;
226     u64 diff = s1.addr0() - s2.addr0();
227     if ((s64)diff < 0) {  // s1.addr0 < s2.addr0  // NOLINT
228       // if (s1.addr0() + size1) > s2.addr0()) return true;
229       if (s1.size() > -diff)
230         res = true;
231     } else {
232       // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
233       if (kS2AccessSize > diff)
234         res = true;
235     }
236     DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
237     DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
238     return res;
239   }
240 
addr0()241   u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
size()242   u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
IsWrite()243   bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
IsRead()244   bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
245 
246   // The idea behind the freed bit is as follows.
247   // When the memory is freed (or otherwise unaccessible) we write to the shadow
248   // values with tid/epoch related to the free and the freed bit set.
249   // During memory accesses processing the freed bit is considered
250   // as msb of tid. So any access races with shadow with freed bit set
251   // (it is as if write from a thread with which we never synchronized before).
252   // This allows us to detect accesses to freed memory w/o additional
253   // overheads in memory access processing and at the same time restore
254   // tid/epoch of free.
MarkAsFreed()255   void MarkAsFreed() {
256      x_ |= kFreedBit;
257   }
258 
IsFreed()259   bool IsFreed() const {
260     return x_ & kFreedBit;
261   }
262 
GetFreedAndReset()263   bool GetFreedAndReset() {
264     bool res = x_ & kFreedBit;
265     x_ &= ~kFreedBit;
266     return res;
267   }
268 
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)269   bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
270     bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
271         | (u64(kIsAtomic) << kAtomicShift));
272     DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
273     return v;
274   }
275 
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)276   bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
277     bool v = ((x_ >> kReadShift) & 3)
278         <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
279     DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
280         (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
281     return v;
282   }
283 
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)284   bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
285     bool v = ((x_ >> kReadShift) & 3)
286         >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
287     DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
288         (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
289     return v;
290   }
291 
292  private:
293   static const u64 kReadShift   = 5 + kClkBits;
294   static const u64 kReadBit     = 1ull << kReadShift;
295   static const u64 kAtomicShift = 6 + kClkBits;
296   static const u64 kAtomicBit   = 1ull << kAtomicShift;
297 
size_log()298   u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
299 
TwoRangesIntersectSlow(const Shadow s1,const Shadow s2)300   static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
301     if (s1.addr0() == s2.addr0()) return true;
302     if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
303       return true;
304     if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
305       return true;
306     return false;
307   }
308 };
309 
310 struct SignalContext;
311 
312 struct JmpBuf {
313   uptr sp;
314   uptr mangled_sp;
315   uptr *shadow_stack_pos;
316 };
317 
318 // This struct is stored in TLS.
319 struct ThreadState {
320   FastState fast_state;
321   // Synch epoch represents the threads's epoch before the last synchronization
322   // action. It allows to reduce number of shadow state updates.
323   // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
324   // if we are processing write to X from the same thread at epoch=200,
325   // we do nothing, because both writes happen in the same 'synch epoch'.
326   // That is, if another memory access does not race with the former write,
327   // it does not race with the latter as well.
328   // QUESTION: can we can squeeze this into ThreadState::Fast?
329   // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
330   // taken by epoch between synchs.
331   // This way we can save one load from tls.
332   u64 fast_synch_epoch;
333   // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
334   // We do not distinguish beteween ignoring reads and writes
335   // for better performance.
336   int ignore_reads_and_writes;
337   int ignore_sync;
338   // Go does not support ignores.
339 #ifndef TSAN_GO
340   IgnoreSet mop_ignore_set;
341   IgnoreSet sync_ignore_set;
342 #endif
343   // C/C++ uses fixed size shadow stack embed into Trace.
344   // Go uses malloc-allocated shadow stack with dynamic size.
345   uptr *shadow_stack;
346   uptr *shadow_stack_end;
347   uptr *shadow_stack_pos;
348   u64 *racy_shadow_addr;
349   u64 racy_state[2];
350   MutexSet mset;
351   ThreadClock clock;
352 #ifndef TSAN_GO
353   AllocatorCache alloc_cache;
354   InternalAllocatorCache internal_alloc_cache;
355   Vector<JmpBuf> jmp_bufs;
356   int ignore_interceptors;
357 #endif
358   u64 stat[StatCnt];
359   const int tid;
360   const int unique_id;
361   bool in_symbolizer;
362   bool in_ignored_lib;
363   bool is_alive;
364   bool is_freeing;
365   bool is_vptr_access;
366   const uptr stk_addr;
367   const uptr stk_size;
368   const uptr tls_addr;
369   const uptr tls_size;
370   ThreadContext *tctx;
371 
372   InternalDeadlockDetector internal_deadlock_detector;
373   DDPhysicalThread *dd_pt;
374   DDLogicalThread *dd_lt;
375 
376   bool in_signal_handler;
377   SignalContext *signal_ctx;
378 
379   DenseSlabAllocCache block_cache;
380   DenseSlabAllocCache sync_cache;
381 
382 #ifndef TSAN_GO
383   u32 last_sleep_stack_id;
384   ThreadClock last_sleep_clock;
385 #endif
386 
387   // Set in regions of runtime that must be signal-safe and fork-safe.
388   // If set, malloc must not be called.
389   int nomalloc;
390 
391   explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
392                        unsigned reuse_count,
393                        uptr stk_addr, uptr stk_size,
394                        uptr tls_addr, uptr tls_size);
395 };
396 
397 #ifndef TSAN_GO
398 __attribute__((tls_model("initial-exec")))
399 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()400 INLINE ThreadState *cur_thread() {
401   return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
402 }
403 #endif
404 
405 class ThreadContext : public ThreadContextBase {
406  public:
407   explicit ThreadContext(int tid);
408   ~ThreadContext();
409   ThreadState *thr;
410   u32 creation_stack_id;
411   SyncClock sync;
412   // Epoch at which the thread had started.
413   // If we see an event from the thread stamped by an older epoch,
414   // the event is from a dead thread that shared tid with this thread.
415   u64 epoch0;
416   u64 epoch1;
417 
418   // Override superclass callbacks.
419   void OnDead();
420   void OnJoined(void *arg);
421   void OnFinished();
422   void OnStarted(void *arg);
423   void OnCreated(void *arg);
424   void OnReset();
425 };
426 
427 struct RacyStacks {
428   MD5Hash hash[2];
429   bool operator==(const RacyStacks &other) const {
430     if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
431       return true;
432     if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
433       return true;
434     return false;
435   }
436 };
437 
438 struct RacyAddress {
439   uptr addr_min;
440   uptr addr_max;
441 };
442 
443 struct FiredSuppression {
444   ReportType type;
445   uptr pc;
446   Suppression *supp;
447 };
448 
449 struct Context {
450   Context();
451 
452   bool initialized;
453   bool after_multithreaded_fork;
454 
455   MetaMap metamap;
456 
457   Mutex report_mtx;
458   int nreported;
459   int nmissed_expected;
460   atomic_uint64_t last_symbolize_time_ns;
461 
462   void *background_thread;
463   atomic_uint32_t stop_background_thread;
464 
465   ThreadRegistry *thread_registry;
466 
467   Vector<RacyStacks> racy_stacks;
468   Vector<RacyAddress> racy_addresses;
469   // Number of fired suppressions may be large enough.
470   InternalMmapVector<FiredSuppression> fired_suppressions;
471   DDetector *dd;
472 
473   Flags flags;
474 
475   u64 stat[StatCnt];
476   u64 int_alloc_cnt[MBlockTypeCount];
477   u64 int_alloc_siz[MBlockTypeCount];
478 };
479 
480 extern Context *ctx;  // The one and the only global runtime context.
481 
482 struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptorsScopedIgnoreInterceptors483   ScopedIgnoreInterceptors() {
484 #ifndef TSAN_GO
485     cur_thread()->ignore_interceptors++;
486 #endif
487   }
488 
~ScopedIgnoreInterceptorsScopedIgnoreInterceptors489   ~ScopedIgnoreInterceptors() {
490 #ifndef TSAN_GO
491     cur_thread()->ignore_interceptors--;
492 #endif
493   }
494 };
495 
496 class ScopedReport {
497  public:
498   explicit ScopedReport(ReportType typ);
499   ~ScopedReport();
500 
501   void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack,
502                        const MutexSet *mset);
503   void AddStack(const StackTrace *stack, bool suppressable = false);
504   void AddThread(const ThreadContext *tctx, bool suppressable = false);
505   void AddThread(int unique_tid, bool suppressable = false);
506   void AddUniqueTid(int unique_tid);
507   void AddMutex(const SyncVar *s);
508   u64 AddMutex(u64 id);
509   void AddLocation(uptr addr, uptr size);
510   void AddSleep(u32 stack_id);
511   void SetCount(int count);
512 
513   const ReportDesc *GetReport() const;
514 
515  private:
516   ReportDesc *rep_;
517   // Symbolizer makes lots of intercepted calls. If we try to process them,
518   // at best it will cause deadlocks on internal mutexes.
519   ScopedIgnoreInterceptors ignore_interceptors_;
520 
521   void AddDeadMutex(u64 id);
522 
523   ScopedReport(const ScopedReport&);
524   void operator = (const ScopedReport&);
525 };
526 
527 void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset);
528 
529 void StatAggregate(u64 *dst, u64 *src);
530 void StatOutput(u64 *stat);
531 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
532   if (kCollectStats)
533     thr->stat[typ] += n;
534 }
StatSet(ThreadState * thr,StatType typ,u64 n)535 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
536   if (kCollectStats)
537     thr->stat[typ] = n;
538 }
539 
540 void MapShadow(uptr addr, uptr size);
541 void MapThreadTrace(uptr addr, uptr size);
542 void DontNeedShadowFor(uptr addr, uptr size);
543 void InitializeShadowMemory();
544 void InitializeInterceptors();
545 void InitializeLibIgnore();
546 void InitializeDynamicAnnotations();
547 
548 void ForkBefore(ThreadState *thr, uptr pc);
549 void ForkParentAfter(ThreadState *thr, uptr pc);
550 void ForkChildAfter(ThreadState *thr, uptr pc);
551 
552 void ReportRace(ThreadState *thr);
553 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
554 bool IsFiredSuppression(Context *ctx,
555                         const ScopedReport &srep,
556                         const StackTrace &trace);
557 bool IsExpectedReport(uptr addr, uptr size);
558 void PrintMatchedBenignRaces();
559 bool FrameIsInternal(const ReportStack *frame);
560 ReportStack *SkipTsanInternalFrames(ReportStack *ent);
561 
562 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
563 # define DPrintf Printf
564 #else
565 # define DPrintf(...)
566 #endif
567 
568 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
569 # define DPrintf2 Printf
570 #else
571 # define DPrintf2(...)
572 #endif
573 
574 u32 CurrentStackId(ThreadState *thr, uptr pc);
575 ReportStack *SymbolizeStackId(u32 stack_id);
576 void PrintCurrentStack(ThreadState *thr, uptr pc);
577 void PrintCurrentStackSlow();  // uses libunwind
578 
579 void Initialize(ThreadState *thr);
580 int Finalize(ThreadState *thr);
581 
582 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
583 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
584 
585 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
586     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
587 void MemoryAccessImpl(ThreadState *thr, uptr addr,
588     int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
589     u64 *shadow_mem, Shadow cur);
590 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
591     uptr size, bool is_write);
592 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
593     uptr size, uptr step, bool is_write);
594 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
595     int size, bool kAccessIsWrite, bool kIsAtomic);
596 
597 const int kSizeLog1 = 0;
598 const int kSizeLog2 = 1;
599 const int kSizeLog4 = 2;
600 const int kSizeLog8 = 3;
601 
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)602 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
603                                      uptr addr, int kAccessSizeLog) {
604   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
605 }
606 
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)607 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
608                                       uptr addr, int kAccessSizeLog) {
609   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
610 }
611 
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)612 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
613                                            uptr addr, int kAccessSizeLog) {
614   MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
615 }
616 
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)617 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
618                                             uptr addr, int kAccessSizeLog) {
619   MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
620 }
621 
622 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
623 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
624 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
625 
626 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
627 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
628 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
629 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
630 
631 void FuncEntry(ThreadState *thr, uptr pc);
632 void FuncExit(ThreadState *thr);
633 
634 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
635 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
636 void ThreadFinish(ThreadState *thr);
637 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
638 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
639 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
640 void ThreadFinalize(ThreadState *thr);
641 void ThreadSetName(ThreadState *thr, const char *name);
642 int ThreadCount(ThreadState *thr);
643 void ProcessPendingSignals(ThreadState *thr);
644 
645 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
646                  bool rw, bool recursive, bool linker_init);
647 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
648 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
649                bool try_lock = false);
650 int  MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
651 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
652 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
653 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
654 void MutexRepair(ThreadState *thr, uptr pc, uptr addr);  // call on EOWNERDEAD
655 
656 void Acquire(ThreadState *thr, uptr pc, uptr addr);
657 void AcquireGlobal(ThreadState *thr, uptr pc);
658 void Release(ThreadState *thr, uptr pc, uptr addr);
659 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
660 void AfterSleep(ThreadState *thr, uptr pc);
661 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
662 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
663 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
664 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
665 
666 // The hacky call uses custom calling convention and an assembly thunk.
667 // It is considerably faster that a normal call for the caller
668 // if it is not executed (it is intended for slow paths from hot functions).
669 // The trick is that the call preserves all registers and the compiler
670 // does not treat it as a call.
671 // If it does not work for you, use normal call.
672 #if TSAN_DEBUG == 0
673 // The caller may not create the stack frame for itself at all,
674 // so we create a reserve stack frame for it (1024b must be enough).
675 #define HACKY_CALL(f) \
676   __asm__ __volatile__("sub $1024, %%rsp;" \
677                        CFI_INL_ADJUST_CFA_OFFSET(1024) \
678                        ".hidden " #f "_thunk;" \
679                        "call " #f "_thunk;" \
680                        "add $1024, %%rsp;" \
681                        CFI_INL_ADJUST_CFA_OFFSET(-1024) \
682                        ::: "memory", "cc");
683 #else
684 #define HACKY_CALL(f) f()
685 #endif
686 
687 void TraceSwitch(ThreadState *thr);
688 uptr TraceTopPC(ThreadState *thr);
689 uptr TraceSize();
690 uptr TraceParts();
691 Trace *ThreadTrace(int tid);
692 
693 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)694 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
695                                         EventType typ, u64 addr) {
696   if (!kCollectHistory)
697     return;
698   DCHECK_GE((int)typ, 0);
699   DCHECK_LE((int)typ, 7);
700   DCHECK_EQ(GetLsb(addr, 61), addr);
701   StatInc(thr, StatEvents);
702   u64 pos = fs.GetTracePos();
703   if (UNLIKELY((pos % kTracePartSize) == 0)) {
704 #ifndef TSAN_GO
705     HACKY_CALL(__tsan_trace_switch);
706 #else
707     TraceSwitch(thr);
708 #endif
709   }
710   Event *trace = (Event*)GetThreadTrace(fs.tid());
711   Event *evp = &trace[pos];
712   Event ev = (u64)addr | ((u64)typ << 61);
713   *evp = ev;
714 }
715 
716 }  // namespace __tsan
717 
718 #endif  // TSAN_RTL_H
719