• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // MSVC++ requires this to be set before any other includes to get M_PI.
6 #define _USE_MATH_DEFINES
7 
8 #include <cmath>
9 
10 #include "base/bind.h"
11 #include "base/bind_helpers.h"
12 #include "base/strings/string_number_conversions.h"
13 #include "base/time/time.h"
14 #include "build/build_config.h"
15 #include "media/base/sinc_resampler.h"
16 #include "testing/gmock/include/gmock/gmock.h"
17 #include "testing/gtest/include/gtest/gtest.h"
18 
19 using testing::_;
20 
21 namespace media {
22 
23 static const double kSampleRateRatio = 192000.0 / 44100.0;
24 
25 // Helper class to ensure ChunkedResample() functions properly.
26 class MockSource {
27  public:
28   MOCK_METHOD2(ProvideInput, void(int frames, float* destination));
29 };
30 
ACTION(ClearBuffer)31 ACTION(ClearBuffer) {
32   memset(arg1, 0, arg0 * sizeof(float));
33 }
34 
ACTION(FillBuffer)35 ACTION(FillBuffer) {
36   // Value chosen arbitrarily such that SincResampler resamples it to something
37   // easily representable on all platforms; e.g., using kSampleRateRatio this
38   // becomes 1.81219.
39   memset(arg1, 64, arg0 * sizeof(float));
40 }
41 
42 // Test requesting multiples of ChunkSize() frames results in the proper number
43 // of callbacks.
TEST(SincResamplerTest,ChunkedResample)44 TEST(SincResamplerTest, ChunkedResample) {
45   MockSource mock_source;
46 
47   // Choose a high ratio of input to output samples which will result in quick
48   // exhaustion of SincResampler's internal buffers.
49   SincResampler resampler(
50       kSampleRateRatio, SincResampler::kDefaultRequestSize,
51       base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
52 
53   static const int kChunks = 2;
54   int max_chunk_size = resampler.ChunkSize() * kChunks;
55   scoped_ptr<float[]> resampled_destination(new float[max_chunk_size]);
56 
57   // Verify requesting ChunkSize() frames causes a single callback.
58   EXPECT_CALL(mock_source, ProvideInput(_, _))
59       .Times(1).WillOnce(ClearBuffer());
60   resampler.Resample(resampler.ChunkSize(), resampled_destination.get());
61 
62   // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
63   testing::Mock::VerifyAndClear(&mock_source);
64   EXPECT_CALL(mock_source, ProvideInput(_, _))
65       .Times(kChunks).WillRepeatedly(ClearBuffer());
66   resampler.Resample(max_chunk_size, resampled_destination.get());
67 }
68 
69 // Test flush resets the internal state properly.
TEST(SincResamplerTest,Flush)70 TEST(SincResamplerTest, Flush) {
71   MockSource mock_source;
72   SincResampler resampler(
73       kSampleRateRatio, SincResampler::kDefaultRequestSize,
74       base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
75   scoped_ptr<float[]> resampled_destination(new float[resampler.ChunkSize()]);
76 
77   // Fill the resampler with junk data.
78   EXPECT_CALL(mock_source, ProvideInput(_, _))
79       .Times(1).WillOnce(FillBuffer());
80   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
81   ASSERT_NE(resampled_destination[0], 0);
82 
83   // Flush and request more data, which should all be zeros now.
84   resampler.Flush();
85   testing::Mock::VerifyAndClear(&mock_source);
86   EXPECT_CALL(mock_source, ProvideInput(_, _))
87       .Times(1).WillOnce(ClearBuffer());
88   resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.get());
89   for (int i = 0; i < resampler.ChunkSize() / 2; ++i)
90     ASSERT_FLOAT_EQ(resampled_destination[i], 0);
91 }
92 
93 // Test flush resets the internal state properly.
TEST(SincResamplerTest,DISABLED_SetRatioBench)94 TEST(SincResamplerTest, DISABLED_SetRatioBench) {
95   MockSource mock_source;
96   SincResampler resampler(
97       kSampleRateRatio, SincResampler::kDefaultRequestSize,
98       base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
99 
100   base::TimeTicks start = base::TimeTicks::HighResNow();
101   for (int i = 1; i < 10000; ++i)
102     resampler.SetRatio(1.0 / i);
103   double total_time_c_ms =
104       (base::TimeTicks::HighResNow() - start).InMillisecondsF();
105   printf("SetRatio() took %.2fms.\n", total_time_c_ms);
106 }
107 
108 
109 // Define platform independent function name for Convolve* tests.
110 #if defined(ARCH_CPU_X86_FAMILY)
111 #define CONVOLVE_FUNC Convolve_SSE
112 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
113 #define CONVOLVE_FUNC Convolve_NEON
114 #endif
115 
116 // Ensure various optimized Convolve() methods return the same value.  Only run
117 // this test if other optimized methods exist, otherwise the default Convolve()
118 // will be tested by the parameterized SincResampler tests below.
119 #if defined(CONVOLVE_FUNC)
120 static const double kKernelInterpolationFactor = 0.5;
121 
TEST(SincResamplerTest,Convolve)122 TEST(SincResamplerTest, Convolve) {
123   // Initialize a dummy resampler.
124   MockSource mock_source;
125   SincResampler resampler(
126       kSampleRateRatio, SincResampler::kDefaultRequestSize,
127       base::Bind(&MockSource::ProvideInput, base::Unretained(&mock_source)));
128 
129   // The optimized Convolve methods are slightly more precise than Convolve_C(),
130   // so comparison must be done using an epsilon.
131   static const double kEpsilon = 0.00000005;
132 
133   // Use a kernel from SincResampler as input and kernel data, this has the
134   // benefit of already being properly sized and aligned for Convolve_SSE().
135   double result = resampler.Convolve_C(
136       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
137       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
138   double result2 = resampler.CONVOLVE_FUNC(
139       resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
140       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
141   EXPECT_NEAR(result2, result, kEpsilon);
142 
143   // Test Convolve() w/ unaligned input pointer.
144   result = resampler.Convolve_C(
145       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
146       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
147   result2 = resampler.CONVOLVE_FUNC(
148       resampler.kernel_storage_.get() + 1, resampler.kernel_storage_.get(),
149       resampler.kernel_storage_.get(), kKernelInterpolationFactor);
150   EXPECT_NEAR(result2, result, kEpsilon);
151 }
152 #endif
153 
154 // Fake audio source for testing the resampler.  Generates a sinusoidal linear
155 // chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the
156 // resampler for the specific sample rate conversion being used.
157 class SinusoidalLinearChirpSource {
158  public:
SinusoidalLinearChirpSource(int sample_rate,int samples,double max_frequency)159   SinusoidalLinearChirpSource(int sample_rate,
160                               int samples,
161                               double max_frequency)
162       : sample_rate_(sample_rate),
163         total_samples_(samples),
164         max_frequency_(max_frequency),
165         current_index_(0) {
166     // Chirp rate.
167     double duration = static_cast<double>(total_samples_) / sample_rate_;
168     k_ = (max_frequency_ - kMinFrequency) / duration;
169   }
170 
~SinusoidalLinearChirpSource()171   virtual ~SinusoidalLinearChirpSource() {}
172 
ProvideInput(int frames,float * destination)173   void ProvideInput(int frames, float* destination) {
174     for (int i = 0; i < frames; ++i, ++current_index_) {
175       // Filter out frequencies higher than Nyquist.
176       if (Frequency(current_index_) > 0.5 * sample_rate_) {
177         destination[i] = 0;
178       } else {
179         // Calculate time in seconds.
180         double t = static_cast<double>(current_index_) / sample_rate_;
181 
182         // Sinusoidal linear chirp.
183         destination[i] = sin(2 * M_PI * (kMinFrequency * t + (k_ / 2) * t * t));
184       }
185     }
186   }
187 
Frequency(int position)188   double Frequency(int position) {
189     return kMinFrequency + position * (max_frequency_ - kMinFrequency)
190         / total_samples_;
191   }
192 
193  private:
194   enum {
195     kMinFrequency = 5
196   };
197 
198   double sample_rate_;
199   int total_samples_;
200   double max_frequency_;
201   double k_;
202   int current_index_;
203 
204   DISALLOW_COPY_AND_ASSIGN(SinusoidalLinearChirpSource);
205 };
206 
207 typedef std::tr1::tuple<int, int, double, double> SincResamplerTestData;
208 class SincResamplerTest
209     : public testing::TestWithParam<SincResamplerTestData> {
210  public:
SincResamplerTest()211   SincResamplerTest()
212       : input_rate_(std::tr1::get<0>(GetParam())),
213         output_rate_(std::tr1::get<1>(GetParam())),
214         rms_error_(std::tr1::get<2>(GetParam())),
215         low_freq_error_(std::tr1::get<3>(GetParam())) {
216   }
217 
~SincResamplerTest()218   virtual ~SincResamplerTest() {}
219 
220  protected:
221   int input_rate_;
222   int output_rate_;
223   double rms_error_;
224   double low_freq_error_;
225 };
226 
227 // Tests resampling using a given input and output sample rate.
TEST_P(SincResamplerTest,Resample)228 TEST_P(SincResamplerTest, Resample) {
229   // Make comparisons using one second of data.
230   static const double kTestDurationSecs = 1;
231   int input_samples = kTestDurationSecs * input_rate_;
232   int output_samples = kTestDurationSecs * output_rate_;
233 
234   // Nyquist frequency for the input sampling rate.
235   double input_nyquist_freq = 0.5 * input_rate_;
236 
237   // Source for data to be resampled.
238   SinusoidalLinearChirpSource resampler_source(
239       input_rate_, input_samples, input_nyquist_freq);
240 
241   const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
242   SincResampler resampler(
243       io_ratio, SincResampler::kDefaultRequestSize,
244       base::Bind(&SinusoidalLinearChirpSource::ProvideInput,
245                  base::Unretained(&resampler_source)));
246 
247   // Force an update to the sample rate ratio to ensure dyanmic sample rate
248   // changes are working correctly.
249   scoped_ptr<float[]> kernel(new float[SincResampler::kKernelStorageSize]);
250   memcpy(kernel.get(), resampler.get_kernel_for_testing(),
251          SincResampler::kKernelStorageSize);
252   resampler.SetRatio(M_PI);
253   ASSERT_NE(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
254                       SincResampler::kKernelStorageSize));
255   resampler.SetRatio(io_ratio);
256   ASSERT_EQ(0, memcmp(kernel.get(), resampler.get_kernel_for_testing(),
257                       SincResampler::kKernelStorageSize));
258 
259   // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
260   // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
261   scoped_ptr<float[]> resampled_destination(new float[output_samples]);
262   scoped_ptr<float[]> pure_destination(new float[output_samples]);
263 
264   // Generate resampled signal.
265   resampler.Resample(output_samples, resampled_destination.get());
266 
267   // Generate pure signal.
268   SinusoidalLinearChirpSource pure_source(
269       output_rate_, output_samples, input_nyquist_freq);
270   pure_source.ProvideInput(output_samples, pure_destination.get());
271 
272   // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
273   // we refer to as low and high.
274   static const double kLowFrequencyNyquistRange = 0.7;
275   static const double kHighFrequencyNyquistRange = 0.9;
276 
277   // Calculate Root-Mean-Square-Error and maximum error for the resampling.
278   double sum_of_squares = 0;
279   double low_freq_max_error = 0;
280   double high_freq_max_error = 0;
281   int minimum_rate = std::min(input_rate_, output_rate_);
282   double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
283   double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
284   for (int i = 0; i < output_samples; ++i) {
285     double error = fabs(resampled_destination[i] - pure_destination[i]);
286 
287     if (pure_source.Frequency(i) < low_frequency_range) {
288       if (error > low_freq_max_error)
289         low_freq_max_error = error;
290     } else if (pure_source.Frequency(i) < high_frequency_range) {
291       if (error > high_freq_max_error)
292         high_freq_max_error = error;
293     }
294     // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
295 
296     sum_of_squares += error * error;
297   }
298 
299   double rms_error = sqrt(sum_of_squares / output_samples);
300 
301   // Convert each error to dbFS.
302   #define DBFS(x) 20 * log10(x)
303   rms_error = DBFS(rms_error);
304   low_freq_max_error = DBFS(low_freq_max_error);
305   high_freq_max_error = DBFS(high_freq_max_error);
306 
307   EXPECT_LE(rms_error, rms_error_);
308   EXPECT_LE(low_freq_max_error, low_freq_error_);
309 
310   // All conversions currently have a high frequency error around -6 dbFS.
311   static const double kHighFrequencyMaxError = -6.02;
312   EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
313 }
314 
315 // Almost all conversions have an RMS error of around -14 dbFS.
316 static const double kResamplingRMSError = -14.58;
317 
318 // Thresholds chosen arbitrarily based on what each resampling reported during
319 // testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
320 INSTANTIATE_TEST_CASE_P(
321     SincResamplerTest, SincResamplerTest, testing::Values(
322         // To 44.1kHz
323         std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
324         std::tr1::make_tuple(11025, 44100, kResamplingRMSError, -72.19),
325         std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
326         std::tr1::make_tuple(22050, 44100, kResamplingRMSError, -73.53),
327         std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
328         std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
329         std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
330         std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
331         std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
332 
333         // To 48kHz
334         std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
335         std::tr1::make_tuple(11025, 48000, kResamplingRMSError, -62.61),
336         std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
337         std::tr1::make_tuple(22050, 48000, kResamplingRMSError, -62.42),
338         std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
339         std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
340         std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
341         std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
342         std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
343 
344         // To 96kHz
345         std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
346         std::tr1::make_tuple(11025, 96000, kResamplingRMSError, -62.61),
347         std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
348         std::tr1::make_tuple(22050, 96000, kResamplingRMSError, -62.42),
349         std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
350         std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
351         std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
352         std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
353         std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
354 
355         // To 192kHz
356         std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
357         std::tr1::make_tuple(11025, 192000, kResamplingRMSError, -62.61),
358         std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
359         std::tr1::make_tuple(22050, 192000, kResamplingRMSError, -62.42),
360         std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
361         std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
362         std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
363         std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
364         std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52)));
365 
366 }  // namespace media
367