• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for DWARF4 hashing of DIEs.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DIE.h"
17 #include "DwarfDebug.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/CodeGen/AsmPrinter.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Dwarf.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/MD5.h"
25 #include "llvm/Support/raw_ostream.h"
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "dwarfdebug"
30 
31 /// \brief Grabs the string in whichever attribute is passed in and returns
32 /// a reference to it.
getDIEStringAttr(const DIE & Die,uint16_t Attr)33 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
34   const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
35   const DIEAbbrev &Abbrevs = Die.getAbbrev();
36 
37   // Iterate through all the attributes until we find the one we're
38   // looking for, if we can't find it return an empty string.
39   for (size_t i = 0; i < Values.size(); ++i) {
40     if (Abbrevs.getData()[i].getAttribute() == Attr) {
41       DIEValue *V = Values[i];
42       assert(isa<DIEString>(V) && "String requested. Not a string.");
43       DIEString *S = cast<DIEString>(V);
44       return S->getString();
45     }
46   }
47   return StringRef("");
48 }
49 
50 /// \brief Adds the string in \p Str to the hash. This also hashes
51 /// a trailing NULL with the string.
addString(StringRef Str)52 void DIEHash::addString(StringRef Str) {
53   DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
54   Hash.update(Str);
55   Hash.update(makeArrayRef((uint8_t)'\0'));
56 }
57 
58 // FIXME: The LEB128 routines are copied and only slightly modified out of
59 // LEB128.h.
60 
61 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
addULEB128(uint64_t Value)62 void DIEHash::addULEB128(uint64_t Value) {
63   DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
64   do {
65     uint8_t Byte = Value & 0x7f;
66     Value >>= 7;
67     if (Value != 0)
68       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
69     Hash.update(Byte);
70   } while (Value != 0);
71 }
72 
addSLEB128(int64_t Value)73 void DIEHash::addSLEB128(int64_t Value) {
74   DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
75   bool More;
76   do {
77     uint8_t Byte = Value & 0x7f;
78     Value >>= 7;
79     More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
80               ((Value == -1) && ((Byte & 0x40) != 0))));
81     if (More)
82       Byte |= 0x80; // Mark this byte to show that more bytes will follow.
83     Hash.update(Byte);
84   } while (More);
85 }
86 
87 /// \brief Including \p Parent adds the context of Parent to the hash..
addParentContext(const DIE & Parent)88 void DIEHash::addParentContext(const DIE &Parent) {
89 
90   DEBUG(dbgs() << "Adding parent context to hash...\n");
91 
92   // [7.27.2] For each surrounding type or namespace beginning with the
93   // outermost such construct...
94   SmallVector<const DIE *, 1> Parents;
95   const DIE *Cur = &Parent;
96   while (Cur->getParent()) {
97     Parents.push_back(Cur);
98     Cur = Cur->getParent();
99   }
100   assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
101          Cur->getTag() == dwarf::DW_TAG_type_unit);
102 
103   // Reverse iterate over our list to go from the outermost construct to the
104   // innermost.
105   for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
106                                                       E = Parents.rend();
107        I != E; ++I) {
108     const DIE &Die = **I;
109 
110     // ... Append the letter "C" to the sequence...
111     addULEB128('C');
112 
113     // ... Followed by the DWARF tag of the construct...
114     addULEB128(Die.getTag());
115 
116     // ... Then the name, taken from the DW_AT_name attribute.
117     StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
118     DEBUG(dbgs() << "... adding context: " << Name << "\n");
119     if (!Name.empty())
120       addString(Name);
121   }
122 }
123 
124 // Collect all of the attributes for a particular DIE in single structure.
collectAttributes(const DIE & Die,DIEAttrs & Attrs)125 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
126   const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
127   const DIEAbbrev &Abbrevs = Die.getAbbrev();
128 
129 #define COLLECT_ATTR(NAME)                                                     \
130   case dwarf::NAME:                                                            \
131     Attrs.NAME.Val = Values[i];                                                \
132     Attrs.NAME.Desc = &Abbrevs.getData()[i];                                   \
133     break
134 
135   for (size_t i = 0, e = Values.size(); i != e; ++i) {
136     DEBUG(dbgs() << "Attribute: "
137                  << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute())
138                  << " added.\n");
139     switch (Abbrevs.getData()[i].getAttribute()) {
140       COLLECT_ATTR(DW_AT_name);
141       COLLECT_ATTR(DW_AT_accessibility);
142       COLLECT_ATTR(DW_AT_address_class);
143       COLLECT_ATTR(DW_AT_allocated);
144       COLLECT_ATTR(DW_AT_artificial);
145       COLLECT_ATTR(DW_AT_associated);
146       COLLECT_ATTR(DW_AT_binary_scale);
147       COLLECT_ATTR(DW_AT_bit_offset);
148       COLLECT_ATTR(DW_AT_bit_size);
149       COLLECT_ATTR(DW_AT_bit_stride);
150       COLLECT_ATTR(DW_AT_byte_size);
151       COLLECT_ATTR(DW_AT_byte_stride);
152       COLLECT_ATTR(DW_AT_const_expr);
153       COLLECT_ATTR(DW_AT_const_value);
154       COLLECT_ATTR(DW_AT_containing_type);
155       COLLECT_ATTR(DW_AT_count);
156       COLLECT_ATTR(DW_AT_data_bit_offset);
157       COLLECT_ATTR(DW_AT_data_location);
158       COLLECT_ATTR(DW_AT_data_member_location);
159       COLLECT_ATTR(DW_AT_decimal_scale);
160       COLLECT_ATTR(DW_AT_decimal_sign);
161       COLLECT_ATTR(DW_AT_default_value);
162       COLLECT_ATTR(DW_AT_digit_count);
163       COLLECT_ATTR(DW_AT_discr);
164       COLLECT_ATTR(DW_AT_discr_list);
165       COLLECT_ATTR(DW_AT_discr_value);
166       COLLECT_ATTR(DW_AT_encoding);
167       COLLECT_ATTR(DW_AT_enum_class);
168       COLLECT_ATTR(DW_AT_endianity);
169       COLLECT_ATTR(DW_AT_explicit);
170       COLLECT_ATTR(DW_AT_is_optional);
171       COLLECT_ATTR(DW_AT_location);
172       COLLECT_ATTR(DW_AT_lower_bound);
173       COLLECT_ATTR(DW_AT_mutable);
174       COLLECT_ATTR(DW_AT_ordering);
175       COLLECT_ATTR(DW_AT_picture_string);
176       COLLECT_ATTR(DW_AT_prototyped);
177       COLLECT_ATTR(DW_AT_small);
178       COLLECT_ATTR(DW_AT_segment);
179       COLLECT_ATTR(DW_AT_string_length);
180       COLLECT_ATTR(DW_AT_threads_scaled);
181       COLLECT_ATTR(DW_AT_upper_bound);
182       COLLECT_ATTR(DW_AT_use_location);
183       COLLECT_ATTR(DW_AT_use_UTF8);
184       COLLECT_ATTR(DW_AT_variable_parameter);
185       COLLECT_ATTR(DW_AT_virtuality);
186       COLLECT_ATTR(DW_AT_visibility);
187       COLLECT_ATTR(DW_AT_vtable_elem_location);
188       COLLECT_ATTR(DW_AT_type);
189     default:
190       break;
191     }
192   }
193 }
194 
hashShallowTypeReference(dwarf::Attribute Attribute,const DIE & Entry,StringRef Name)195 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
196                                        const DIE &Entry, StringRef Name) {
197   // append the letter 'N'
198   addULEB128('N');
199 
200   // the DWARF attribute code (DW_AT_type or DW_AT_friend),
201   addULEB128(Attribute);
202 
203   // the context of the tag,
204   if (const DIE *Parent = Entry.getParent())
205     addParentContext(*Parent);
206 
207   // the letter 'E',
208   addULEB128('E');
209 
210   // and the name of the type.
211   addString(Name);
212 
213   // Currently DW_TAG_friends are not used by Clang, but if they do become so,
214   // here's the relevant spec text to implement:
215   //
216   // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
217   // the context is omitted and the name to be used is the ABI-specific name
218   // of the subprogram (e.g., the mangled linker name).
219 }
220 
hashRepeatedTypeReference(dwarf::Attribute Attribute,unsigned DieNumber)221 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
222                                         unsigned DieNumber) {
223   // a) If T is in the list of [previously hashed types], use the letter
224   // 'R' as the marker
225   addULEB128('R');
226 
227   addULEB128(Attribute);
228 
229   // and use the unsigned LEB128 encoding of [the index of T in the
230   // list] as the attribute value;
231   addULEB128(DieNumber);
232 }
233 
hashDIEEntry(dwarf::Attribute Attribute,dwarf::Tag Tag,const DIE & Entry)234 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
235                            const DIE &Entry) {
236   assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
237                                         "tags. Add support here when there's "
238                                         "a use case");
239   // Step 5
240   // If the tag in Step 3 is one of [the below tags]
241   if ((Tag == dwarf::DW_TAG_pointer_type ||
242        Tag == dwarf::DW_TAG_reference_type ||
243        Tag == dwarf::DW_TAG_rvalue_reference_type ||
244        Tag == dwarf::DW_TAG_ptr_to_member_type) &&
245       // and the referenced type (via the [below attributes])
246       // FIXME: This seems overly restrictive, and causes hash mismatches
247       // there's a decl/def difference in the containing type of a
248       // ptr_to_member_type, but it's what DWARF says, for some reason.
249       Attribute == dwarf::DW_AT_type) {
250     // ... has a DW_AT_name attribute,
251     StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
252     if (!Name.empty()) {
253       hashShallowTypeReference(Attribute, Entry, Name);
254       return;
255     }
256   }
257 
258   unsigned &DieNumber = Numbering[&Entry];
259   if (DieNumber) {
260     hashRepeatedTypeReference(Attribute, DieNumber);
261     return;
262   }
263 
264   // otherwise, b) use the letter 'T' as a the marker, ...
265   addULEB128('T');
266 
267   addULEB128(Attribute);
268 
269   // ... process the type T recursively by performing Steps 2 through 7, and
270   // use the result as the attribute value.
271   DieNumber = Numbering.size();
272   computeHash(Entry);
273 }
274 
275 // Hash all of the values in a block like set of values. This assumes that
276 // all of the data is going to be added as integers.
hashBlockData(const SmallVectorImpl<DIEValue * > & Values)277 void DIEHash::hashBlockData(const SmallVectorImpl<DIEValue *> &Values) {
278   for (SmallVectorImpl<DIEValue *>::const_iterator I = Values.begin(),
279                                                    E = Values.end();
280        I != E; ++I)
281     Hash.update((uint64_t)cast<DIEInteger>(*I)->getValue());
282 }
283 
284 // Hash the contents of a loclistptr class.
hashLocList(const DIELocList & LocList)285 void DIEHash::hashLocList(const DIELocList &LocList) {
286   HashingByteStreamer Streamer(*this);
287   DwarfDebug &DD = *AP->getDwarfDebug();
288   for (const auto &Entry :
289        DD.getDebugLocEntries()[LocList.getValue()].List)
290     DD.emitDebugLocEntry(Streamer, Entry);
291 }
292 
293 // Hash an individual attribute \param Attr based on the type of attribute and
294 // the form.
hashAttribute(AttrEntry Attr,dwarf::Tag Tag)295 void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) {
296   const DIEValue *Value = Attr.Val;
297   const DIEAbbrevData *Desc = Attr.Desc;
298   dwarf::Attribute Attribute = Desc->getAttribute();
299 
300   // Other attribute values use the letter 'A' as the marker, and the value
301   // consists of the form code (encoded as an unsigned LEB128 value) followed by
302   // the encoding of the value according to the form code. To ensure
303   // reproducibility of the signature, the set of forms used in the signature
304   // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
305   // DW_FORM_string, and DW_FORM_block.
306 
307   switch (Value->getType()) {
308     // 7.27 Step 3
309     // ... An attribute that refers to another type entry T is processed as
310     // follows:
311   case DIEValue::isEntry:
312     hashDIEEntry(Attribute, Tag, cast<DIEEntry>(Value)->getEntry());
313     break;
314   case DIEValue::isInteger: {
315     addULEB128('A');
316     addULEB128(Attribute);
317     switch (Desc->getForm()) {
318     case dwarf::DW_FORM_data1:
319     case dwarf::DW_FORM_data2:
320     case dwarf::DW_FORM_data4:
321     case dwarf::DW_FORM_data8:
322     case dwarf::DW_FORM_udata:
323     case dwarf::DW_FORM_sdata:
324       addULEB128(dwarf::DW_FORM_sdata);
325       addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue());
326       break;
327     // DW_FORM_flag_present is just flag with a value of one. We still give it a
328     // value so just use the value.
329     case dwarf::DW_FORM_flag_present:
330     case dwarf::DW_FORM_flag:
331       addULEB128(dwarf::DW_FORM_flag);
332       addULEB128((int64_t)cast<DIEInteger>(Value)->getValue());
333       break;
334     default:
335       llvm_unreachable("Unknown integer form!");
336     }
337     break;
338   }
339   case DIEValue::isString:
340     addULEB128('A');
341     addULEB128(Attribute);
342     addULEB128(dwarf::DW_FORM_string);
343     addString(cast<DIEString>(Value)->getString());
344     break;
345   case DIEValue::isBlock:
346   case DIEValue::isLoc:
347   case DIEValue::isLocList:
348     addULEB128('A');
349     addULEB128(Attribute);
350     addULEB128(dwarf::DW_FORM_block);
351     if (isa<DIEBlock>(Value)) {
352       addULEB128(cast<DIEBlock>(Value)->ComputeSize(AP));
353       hashBlockData(cast<DIEBlock>(Value)->getValues());
354     } else if (isa<DIELoc>(Value)) {
355       addULEB128(cast<DIELoc>(Value)->ComputeSize(AP));
356       hashBlockData(cast<DIELoc>(Value)->getValues());
357     } else {
358       // We could add the block length, but that would take
359       // a bit of work and not add a lot of uniqueness
360       // to the hash in some way we could test.
361       hashLocList(*cast<DIELocList>(Value));
362     }
363     break;
364     // FIXME: It's uncertain whether or not we should handle this at the moment.
365   case DIEValue::isExpr:
366   case DIEValue::isLabel:
367   case DIEValue::isDelta:
368   case DIEValue::isTypeSignature:
369     llvm_unreachable("Add support for additional value types.");
370   }
371 }
372 
373 // Go through the attributes from \param Attrs in the order specified in 7.27.4
374 // and hash them.
hashAttributes(const DIEAttrs & Attrs,dwarf::Tag Tag)375 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
376 #define ADD_ATTR(ATTR)                                                         \
377   {                                                                            \
378     if (ATTR.Val != 0)                                                         \
379       hashAttribute(ATTR, Tag);                                                \
380   }
381 
382   ADD_ATTR(Attrs.DW_AT_name);
383   ADD_ATTR(Attrs.DW_AT_accessibility);
384   ADD_ATTR(Attrs.DW_AT_address_class);
385   ADD_ATTR(Attrs.DW_AT_allocated);
386   ADD_ATTR(Attrs.DW_AT_artificial);
387   ADD_ATTR(Attrs.DW_AT_associated);
388   ADD_ATTR(Attrs.DW_AT_binary_scale);
389   ADD_ATTR(Attrs.DW_AT_bit_offset);
390   ADD_ATTR(Attrs.DW_AT_bit_size);
391   ADD_ATTR(Attrs.DW_AT_bit_stride);
392   ADD_ATTR(Attrs.DW_AT_byte_size);
393   ADD_ATTR(Attrs.DW_AT_byte_stride);
394   ADD_ATTR(Attrs.DW_AT_const_expr);
395   ADD_ATTR(Attrs.DW_AT_const_value);
396   ADD_ATTR(Attrs.DW_AT_containing_type);
397   ADD_ATTR(Attrs.DW_AT_count);
398   ADD_ATTR(Attrs.DW_AT_data_bit_offset);
399   ADD_ATTR(Attrs.DW_AT_data_location);
400   ADD_ATTR(Attrs.DW_AT_data_member_location);
401   ADD_ATTR(Attrs.DW_AT_decimal_scale);
402   ADD_ATTR(Attrs.DW_AT_decimal_sign);
403   ADD_ATTR(Attrs.DW_AT_default_value);
404   ADD_ATTR(Attrs.DW_AT_digit_count);
405   ADD_ATTR(Attrs.DW_AT_discr);
406   ADD_ATTR(Attrs.DW_AT_discr_list);
407   ADD_ATTR(Attrs.DW_AT_discr_value);
408   ADD_ATTR(Attrs.DW_AT_encoding);
409   ADD_ATTR(Attrs.DW_AT_enum_class);
410   ADD_ATTR(Attrs.DW_AT_endianity);
411   ADD_ATTR(Attrs.DW_AT_explicit);
412   ADD_ATTR(Attrs.DW_AT_is_optional);
413   ADD_ATTR(Attrs.DW_AT_location);
414   ADD_ATTR(Attrs.DW_AT_lower_bound);
415   ADD_ATTR(Attrs.DW_AT_mutable);
416   ADD_ATTR(Attrs.DW_AT_ordering);
417   ADD_ATTR(Attrs.DW_AT_picture_string);
418   ADD_ATTR(Attrs.DW_AT_prototyped);
419   ADD_ATTR(Attrs.DW_AT_small);
420   ADD_ATTR(Attrs.DW_AT_segment);
421   ADD_ATTR(Attrs.DW_AT_string_length);
422   ADD_ATTR(Attrs.DW_AT_threads_scaled);
423   ADD_ATTR(Attrs.DW_AT_upper_bound);
424   ADD_ATTR(Attrs.DW_AT_use_location);
425   ADD_ATTR(Attrs.DW_AT_use_UTF8);
426   ADD_ATTR(Attrs.DW_AT_variable_parameter);
427   ADD_ATTR(Attrs.DW_AT_virtuality);
428   ADD_ATTR(Attrs.DW_AT_visibility);
429   ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
430   ADD_ATTR(Attrs.DW_AT_type);
431 
432   // FIXME: Add the extended attributes.
433 }
434 
435 // Add all of the attributes for \param Die to the hash.
addAttributes(const DIE & Die)436 void DIEHash::addAttributes(const DIE &Die) {
437   DIEAttrs Attrs = {};
438   collectAttributes(Die, Attrs);
439   hashAttributes(Attrs, Die.getTag());
440 }
441 
hashNestedType(const DIE & Die,StringRef Name)442 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
443   // 7.27 Step 7
444   // ... append the letter 'S',
445   addULEB128('S');
446 
447   // the tag of C,
448   addULEB128(Die.getTag());
449 
450   // and the name.
451   addString(Name);
452 }
453 
454 // Compute the hash of a DIE. This is based on the type signature computation
455 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
456 // flattened description of the DIE.
computeHash(const DIE & Die)457 void DIEHash::computeHash(const DIE &Die) {
458   // Append the letter 'D', followed by the DWARF tag of the DIE.
459   addULEB128('D');
460   addULEB128(Die.getTag());
461 
462   // Add each of the attributes of the DIE.
463   addAttributes(Die);
464 
465   // Then hash each of the children of the DIE.
466   for (auto &C : Die.getChildren()) {
467     // 7.27 Step 7
468     // If C is a nested type entry or a member function entry, ...
469     if (isType(C->getTag()) || C->getTag() == dwarf::DW_TAG_subprogram) {
470       StringRef Name = getDIEStringAttr(*C, dwarf::DW_AT_name);
471       // ... and has a DW_AT_name attribute
472       if (!Name.empty()) {
473         hashNestedType(*C, Name);
474         continue;
475       }
476     }
477     computeHash(*C);
478   }
479 
480   // Following the last (or if there are no children), append a zero byte.
481   Hash.update(makeArrayRef((uint8_t)'\0'));
482 }
483 
484 /// This is based on the type signature computation given in section 7.27 of the
485 /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE
486 /// with the exception that we are hashing only the context and the name of the
487 /// type.
computeDIEODRSignature(const DIE & Die)488 uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) {
489 
490   // Add the contexts to the hash. We won't be computing the ODR hash for
491   // function local types so it's safe to use the generic context hashing
492   // algorithm here.
493   // FIXME: If we figure out how to account for linkage in some way we could
494   // actually do this with a slight modification to the parent hash algorithm.
495   if (const DIE *Parent = Die.getParent())
496     addParentContext(*Parent);
497 
498   // Add the current DIE information.
499 
500   // Add the DWARF tag of the DIE.
501   addULEB128(Die.getTag());
502 
503   // Add the name of the type to the hash.
504   addString(getDIEStringAttr(Die, dwarf::DW_AT_name));
505 
506   // Now get the result.
507   MD5::MD5Result Result;
508   Hash.final(Result);
509 
510   // ... take the least significant 8 bytes and return those. Our MD5
511   // implementation always returns its results in little endian, swap bytes
512   // appropriately.
513   return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
514 }
515 
516 /// This is based on the type signature computation given in section 7.27 of the
517 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
518 /// with the inclusion of the full CU and all top level CU entities.
519 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
computeCUSignature(const DIE & Die)520 uint64_t DIEHash::computeCUSignature(const DIE &Die) {
521   Numbering.clear();
522   Numbering[&Die] = 1;
523 
524   // Hash the DIE.
525   computeHash(Die);
526 
527   // Now return the result.
528   MD5::MD5Result Result;
529   Hash.final(Result);
530 
531   // ... take the least significant 8 bytes and return those. Our MD5
532   // implementation always returns its results in little endian, swap bytes
533   // appropriately.
534   return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
535 }
536 
537 /// This is based on the type signature computation given in section 7.27 of the
538 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
539 /// with the inclusion of additional forms not specifically called out in the
540 /// standard.
computeTypeSignature(const DIE & Die)541 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
542   Numbering.clear();
543   Numbering[&Die] = 1;
544 
545   if (const DIE *Parent = Die.getParent())
546     addParentContext(*Parent);
547 
548   // Hash the DIE.
549   computeHash(Die);
550 
551   // Now return the result.
552   MD5::MD5Result Result;
553   Hash.final(Result);
554 
555   // ... take the least significant 8 bytes and return those. Our MD5
556   // implementation always returns its results in little endian, swap bytes
557   // appropriately.
558   return *reinterpret_cast<support::ulittle64_t *>(Result + 8);
559 }
560