# Copyright (C) 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from collections import deque, OrderedDict from hashlib import sha1 import common import heapq import itertools import multiprocessing import os import re import subprocess import threading import tempfile from rangelib import RangeSet __all__ = ["EmptyImage", "DataImage", "BlockImageDiff"] def compute_patch(src, tgt, imgdiff=False): srcfd, srcfile = tempfile.mkstemp(prefix="src-") tgtfd, tgtfile = tempfile.mkstemp(prefix="tgt-") patchfd, patchfile = tempfile.mkstemp(prefix="patch-") os.close(patchfd) try: with os.fdopen(srcfd, "wb") as f_src: for p in src: f_src.write(p) with os.fdopen(tgtfd, "wb") as f_tgt: for p in tgt: f_tgt.write(p) try: os.unlink(patchfile) except OSError: pass if imgdiff: p = subprocess.call(["imgdiff", "-z", srcfile, tgtfile, patchfile], stdout=open("/dev/null", "a"), stderr=subprocess.STDOUT) else: p = subprocess.call(["bsdiff", srcfile, tgtfile, patchfile]) if p: raise ValueError("diff failed: " + str(p)) with open(patchfile, "rb") as f: return f.read() finally: try: os.unlink(srcfile) os.unlink(tgtfile) os.unlink(patchfile) except OSError: pass class Image(object): def ReadRangeSet(self, ranges): raise NotImplementedError def TotalSha1(self, include_clobbered_blocks=False): raise NotImplementedError class EmptyImage(Image): """A zero-length image.""" blocksize = 4096 care_map = RangeSet() clobbered_blocks = RangeSet() extended = RangeSet() total_blocks = 0 file_map = {} def ReadRangeSet(self, ranges): return () def TotalSha1(self, include_clobbered_blocks=False): # EmptyImage always carries empty clobbered_blocks, so # include_clobbered_blocks can be ignored. assert self.clobbered_blocks.size() == 0 return sha1().hexdigest() class DataImage(Image): """An image wrapped around a single string of data.""" def __init__(self, data, trim=False, pad=False): self.data = data self.blocksize = 4096 assert not (trim and pad) partial = len(self.data) % self.blocksize padded = False if partial > 0: if trim: self.data = self.data[:-partial] elif pad: self.data += '\0' * (self.blocksize - partial) padded = True else: raise ValueError(("data for DataImage must be multiple of %d bytes " "unless trim or pad is specified") % (self.blocksize,)) assert len(self.data) % self.blocksize == 0 self.total_blocks = len(self.data) / self.blocksize self.care_map = RangeSet(data=(0, self.total_blocks)) # When the last block is padded, we always write the whole block even for # incremental OTAs. Because otherwise the last block may get skipped if # unchanged for an incremental, but would fail the post-install # verification if it has non-zero contents in the padding bytes. # Bug: 23828506 if padded: self.clobbered_blocks = RangeSet( data=(self.total_blocks-1, self.total_blocks)) else: self.clobbered_blocks = RangeSet() self.extended = RangeSet() zero_blocks = [] nonzero_blocks = [] reference = '\0' * self.blocksize for i in range(self.total_blocks-1 if padded else self.total_blocks): d = self.data[i*self.blocksize : (i+1)*self.blocksize] if d == reference: zero_blocks.append(i) zero_blocks.append(i+1) else: nonzero_blocks.append(i) nonzero_blocks.append(i+1) self.file_map = {"__ZERO": RangeSet(zero_blocks), "__NONZERO": RangeSet(nonzero_blocks)} if self.clobbered_blocks: self.file_map["__COPY"] = self.clobbered_blocks def ReadRangeSet(self, ranges): return [self.data[s*self.blocksize:e*self.blocksize] for (s, e) in ranges] def TotalSha1(self, include_clobbered_blocks=False): if not include_clobbered_blocks: ranges = self.care_map.subtract(self.clobbered_blocks) return sha1(self.ReadRangeSet(ranges)).hexdigest() else: return sha1(self.data).hexdigest() class Transfer(object): def __init__(self, tgt_name, src_name, tgt_ranges, src_ranges, style, by_id): self.tgt_name = tgt_name self.src_name = src_name self.tgt_ranges = tgt_ranges self.src_ranges = src_ranges self.style = style self.intact = (getattr(tgt_ranges, "monotonic", False) and getattr(src_ranges, "monotonic", False)) # We use OrderedDict rather than dict so that the output is repeatable; # otherwise it would depend on the hash values of the Transfer objects. self.goes_before = OrderedDict() self.goes_after = OrderedDict() self.stash_before = [] self.use_stash = [] self.id = len(by_id) by_id.append(self) def NetStashChange(self): return (sum(sr.size() for (_, sr) in self.stash_before) - sum(sr.size() for (_, sr) in self.use_stash)) def ConvertToNew(self): assert self.style != "new" self.use_stash = [] self.style = "new" self.src_ranges = RangeSet() def __str__(self): return (str(self.id) + ": <" + str(self.src_ranges) + " " + self.style + " to " + str(self.tgt_ranges) + ">") # BlockImageDiff works on two image objects. An image object is # anything that provides the following attributes: # # blocksize: the size in bytes of a block, currently must be 4096. # # total_blocks: the total size of the partition/image, in blocks. # # care_map: a RangeSet containing which blocks (in the range [0, # total_blocks) we actually care about; i.e. which blocks contain # data. # # file_map: a dict that partitions the blocks contained in care_map # into smaller domains that are useful for doing diffs on. # (Typically a domain is a file, and the key in file_map is the # pathname.) # # clobbered_blocks: a RangeSet containing which blocks contain data # but may be altered by the FS. They need to be excluded when # verifying the partition integrity. # # ReadRangeSet(): a function that takes a RangeSet and returns the # data contained in the image blocks of that RangeSet. The data # is returned as a list or tuple of strings; concatenating the # elements together should produce the requested data. # Implementations are free to break up the data into list/tuple # elements in any way that is convenient. # # TotalSha1(): a function that returns (as a hex string) the SHA-1 # hash of all the data in the image (ie, all the blocks in the # care_map minus clobbered_blocks, or including the clobbered # blocks if include_clobbered_blocks is True). # # When creating a BlockImageDiff, the src image may be None, in which # case the list of transfers produced will never read from the # original image. class BlockImageDiff(object): def __init__(self, tgt, src=None, threads=None, version=3): if threads is None: threads = multiprocessing.cpu_count() // 2 if threads == 0: threads = 1 self.threads = threads self.version = version self.transfers = [] self.src_basenames = {} self.src_numpatterns = {} assert version in (1, 2, 3) self.tgt = tgt if src is None: src = EmptyImage() self.src = src # The updater code that installs the patch always uses 4k blocks. assert tgt.blocksize == 4096 assert src.blocksize == 4096 # The range sets in each filemap should comprise a partition of # the care map. self.AssertPartition(src.care_map, src.file_map.values()) self.AssertPartition(tgt.care_map, tgt.file_map.values()) def Compute(self, prefix): # When looking for a source file to use as the diff input for a # target file, we try: # 1) an exact path match if available, otherwise # 2) a exact basename match if available, otherwise # 3) a basename match after all runs of digits are replaced by # "#" if available, otherwise # 4) we have no source for this target. self.AbbreviateSourceNames() self.FindTransfers() # Find the ordering dependencies among transfers (this is O(n^2) # in the number of transfers). self.GenerateDigraph() # Find a sequence of transfers that satisfies as many ordering # dependencies as possible (heuristically). self.FindVertexSequence() # Fix up the ordering dependencies that the sequence didn't # satisfy. if self.version == 1: self.RemoveBackwardEdges() else: self.ReverseBackwardEdges() self.ImproveVertexSequence() # Ensure the runtime stash size is under the limit. if self.version >= 2 and common.OPTIONS.cache_size is not None: self.ReviseStashSize() # Double-check our work. self.AssertSequenceGood() self.ComputePatches(prefix) self.WriteTransfers(prefix) def HashBlocks(self, source, ranges): # pylint: disable=no-self-use data = source.ReadRangeSet(ranges) ctx = sha1() for p in data: ctx.update(p) return ctx.hexdigest() def WriteTransfers(self, prefix): out = [] total = 0 stashes = {} stashed_blocks = 0 max_stashed_blocks = 0 free_stash_ids = [] next_stash_id = 0 for xf in self.transfers: if self.version < 2: assert not xf.stash_before assert not xf.use_stash for s, sr in xf.stash_before: assert s not in stashes if free_stash_ids: sid = heapq.heappop(free_stash_ids) else: sid = next_stash_id next_stash_id += 1 stashes[s] = sid stashed_blocks += sr.size() if self.version == 2: out.append("stash %d %s\n" % (sid, sr.to_string_raw())) else: sh = self.HashBlocks(self.src, sr) if sh in stashes: stashes[sh] += 1 else: stashes[sh] = 1 out.append("stash %s %s\n" % (sh, sr.to_string_raw())) if stashed_blocks > max_stashed_blocks: max_stashed_blocks = stashed_blocks free_string = [] if self.version == 1: src_str = xf.src_ranges.to_string_raw() elif self.version >= 2: # <# blocks> # OR # <# blocks> # OR # <# blocks> - size = xf.src_ranges.size() src_str = [str(size)] unstashed_src_ranges = xf.src_ranges mapped_stashes = [] for s, sr in xf.use_stash: sid = stashes.pop(s) stashed_blocks -= sr.size() unstashed_src_ranges = unstashed_src_ranges.subtract(sr) sh = self.HashBlocks(self.src, sr) sr = xf.src_ranges.map_within(sr) mapped_stashes.append(sr) if self.version == 2: src_str.append("%d:%s" % (sid, sr.to_string_raw())) else: assert sh in stashes src_str.append("%s:%s" % (sh, sr.to_string_raw())) stashes[sh] -= 1 if stashes[sh] == 0: free_string.append("free %s\n" % (sh)) stashes.pop(sh) heapq.heappush(free_stash_ids, sid) if unstashed_src_ranges: src_str.insert(1, unstashed_src_ranges.to_string_raw()) if xf.use_stash: mapped_unstashed = xf.src_ranges.map_within(unstashed_src_ranges) src_str.insert(2, mapped_unstashed.to_string_raw()) mapped_stashes.append(mapped_unstashed) self.AssertPartition(RangeSet(data=(0, size)), mapped_stashes) else: src_str.insert(1, "-") self.AssertPartition(RangeSet(data=(0, size)), mapped_stashes) src_str = " ".join(src_str) # all versions: # zero # new # erase # # version 1: # bsdiff patchstart patchlen # imgdiff patchstart patchlen # move # # version 2: # bsdiff patchstart patchlen # imgdiff patchstart patchlen # move # # version 3: # bsdiff patchstart patchlen srchash tgthash # imgdiff patchstart patchlen srchash tgthash # move hash tgt_size = xf.tgt_ranges.size() if xf.style == "new": assert xf.tgt_ranges out.append("%s %s\n" % (xf.style, xf.tgt_ranges.to_string_raw())) total += tgt_size elif xf.style == "move": assert xf.tgt_ranges assert xf.src_ranges.size() == tgt_size if xf.src_ranges != xf.tgt_ranges: if self.version == 1: out.append("%s %s %s\n" % ( xf.style, xf.src_ranges.to_string_raw(), xf.tgt_ranges.to_string_raw())) elif self.version == 2: out.append("%s %s %s\n" % ( xf.style, xf.tgt_ranges.to_string_raw(), src_str)) elif self.version >= 3: # take into account automatic stashing of overlapping blocks if xf.src_ranges.overlaps(xf.tgt_ranges): temp_stash_usage = stashed_blocks + xf.src_ranges.size() if temp_stash_usage > max_stashed_blocks: max_stashed_blocks = temp_stash_usage out.append("%s %s %s %s\n" % ( xf.style, self.HashBlocks(self.tgt, xf.tgt_ranges), xf.tgt_ranges.to_string_raw(), src_str)) total += tgt_size elif xf.style in ("bsdiff", "imgdiff"): assert xf.tgt_ranges assert xf.src_ranges if self.version == 1: out.append("%s %d %d %s %s\n" % ( xf.style, xf.patch_start, xf.patch_len, xf.src_ranges.to_string_raw(), xf.tgt_ranges.to_string_raw())) elif self.version == 2: out.append("%s %d %d %s %s\n" % ( xf.style, xf.patch_start, xf.patch_len, xf.tgt_ranges.to_string_raw(), src_str)) elif self.version >= 3: # take into account automatic stashing of overlapping blocks if xf.src_ranges.overlaps(xf.tgt_ranges): temp_stash_usage = stashed_blocks + xf.src_ranges.size() if temp_stash_usage > max_stashed_blocks: max_stashed_blocks = temp_stash_usage out.append("%s %d %d %s %s %s %s\n" % ( xf.style, xf.patch_start, xf.patch_len, self.HashBlocks(self.src, xf.src_ranges), self.HashBlocks(self.tgt, xf.tgt_ranges), xf.tgt_ranges.to_string_raw(), src_str)) total += tgt_size elif xf.style == "zero": assert xf.tgt_ranges to_zero = xf.tgt_ranges.subtract(xf.src_ranges) if to_zero: out.append("%s %s\n" % (xf.style, to_zero.to_string_raw())) total += to_zero.size() else: raise ValueError("unknown transfer style '%s'\n" % xf.style) if free_string: out.append("".join(free_string)) if self.version >= 2: # Sanity check: abort if we're going to need more stash space than # the allowed size (cache_size * threshold). There are two purposes # of having a threshold here. a) Part of the cache may have been # occupied by some recovery logs. b) It will buy us some time to deal # with the oversize issue. cache_size = common.OPTIONS.cache_size stash_threshold = common.OPTIONS.stash_threshold max_allowed = cache_size * stash_threshold assert max_stashed_blocks * self.tgt.blocksize < max_allowed, \ 'Stash size %d (%d * %d) exceeds the limit %d (%d * %.2f)' % ( max_stashed_blocks * self.tgt.blocksize, max_stashed_blocks, self.tgt.blocksize, max_allowed, cache_size, stash_threshold) # Zero out extended blocks as a workaround for bug 20881595. if self.tgt.extended: out.append("zero %s\n" % (self.tgt.extended.to_string_raw(),)) # We erase all the blocks on the partition that a) don't contain useful # data in the new image and b) will not be touched by dm-verity. all_tgt = RangeSet(data=(0, self.tgt.total_blocks)) all_tgt_minus_extended = all_tgt.subtract(self.tgt.extended) new_dontcare = all_tgt_minus_extended.subtract(self.tgt.care_map) if new_dontcare: out.append("erase %s\n" % (new_dontcare.to_string_raw(),)) out.insert(0, "%d\n" % (self.version,)) # format version number out.insert(1, str(total) + "\n") if self.version >= 2: # version 2 only: after the total block count, we give the number # of stash slots needed, and the maximum size needed (in blocks) out.insert(2, str(next_stash_id) + "\n") out.insert(3, str(max_stashed_blocks) + "\n") with open(prefix + ".transfer.list", "wb") as f: for i in out: f.write(i) if self.version >= 2: max_stashed_size = max_stashed_blocks * self.tgt.blocksize max_allowed = common.OPTIONS.cache_size * common.OPTIONS.stash_threshold print("max stashed blocks: %d (%d bytes), limit: %d bytes (%.2f%%)\n" % ( max_stashed_blocks, max_stashed_size, max_allowed, max_stashed_size * 100.0 / max_allowed)) def ReviseStashSize(self): print("Revising stash size...") stashes = {} # Create the map between a stash and its def/use points. For example, for a # given stash of (idx, sr), stashes[idx] = (sr, def_cmd, use_cmd). for xf in self.transfers: # Command xf defines (stores) all the stashes in stash_before. for idx, sr in xf.stash_before: stashes[idx] = (sr, xf) # Record all the stashes command xf uses. for idx, _ in xf.use_stash: stashes[idx] += (xf,) # Compute the maximum blocks available for stash based on /cache size and # the threshold. cache_size = common.OPTIONS.cache_size stash_threshold = common.OPTIONS.stash_threshold max_allowed = cache_size * stash_threshold / self.tgt.blocksize stashed_blocks = 0 new_blocks = 0 # Now go through all the commands. Compute the required stash size on the # fly. If a command requires excess stash than available, it deletes the # stash by replacing the command that uses the stash with a "new" command # instead. for xf in self.transfers: replaced_cmds = [] # xf.stash_before generates explicit stash commands. for idx, sr in xf.stash_before: if stashed_blocks + sr.size() > max_allowed: # We cannot stash this one for a later command. Find out the command # that will use this stash and replace the command with "new". use_cmd = stashes[idx][2] replaced_cmds.append(use_cmd) print("%10d %9s %s" % (sr.size(), "explicit", use_cmd)) else: stashed_blocks += sr.size() # xf.use_stash generates free commands. for _, sr in xf.use_stash: stashed_blocks -= sr.size() # "move" and "diff" may introduce implicit stashes in BBOTA v3. Prior to # ComputePatches(), they both have the style of "diff". if xf.style == "diff" and self.version >= 3: assert xf.tgt_ranges and xf.src_ranges if xf.src_ranges.overlaps(xf.tgt_ranges): if stashed_blocks + xf.src_ranges.size() > max_allowed: replaced_cmds.append(xf) print("%10d %9s %s" % (xf.src_ranges.size(), "implicit", xf)) # Replace the commands in replaced_cmds with "new"s. for cmd in replaced_cmds: # It no longer uses any commands in "use_stash". Remove the def points # for all those stashes. for idx, sr in cmd.use_stash: def_cmd = stashes[idx][1] assert (idx, sr) in def_cmd.stash_before def_cmd.stash_before.remove((idx, sr)) new_blocks += sr.size() cmd.ConvertToNew() print(" Total %d blocks are packed as new blocks due to insufficient " "cache size." % (new_blocks,)) def ComputePatches(self, prefix): print("Reticulating splines...") diff_q = [] patch_num = 0 with open(prefix + ".new.dat", "wb") as new_f: for xf in self.transfers: if xf.style == "zero": pass elif xf.style == "new": for piece in self.tgt.ReadRangeSet(xf.tgt_ranges): new_f.write(piece) elif xf.style == "diff": src = self.src.ReadRangeSet(xf.src_ranges) tgt = self.tgt.ReadRangeSet(xf.tgt_ranges) # We can't compare src and tgt directly because they may have # the same content but be broken up into blocks differently, eg: # # ["he", "llo"] vs ["h", "ello"] # # We want those to compare equal, ideally without having to # actually concatenate the strings (these may be tens of # megabytes). src_sha1 = sha1() for p in src: src_sha1.update(p) tgt_sha1 = sha1() tgt_size = 0 for p in tgt: tgt_sha1.update(p) tgt_size += len(p) if src_sha1.digest() == tgt_sha1.digest(): # These are identical; we don't need to generate a patch, # just issue copy commands on the device. xf.style = "move" else: # For files in zip format (eg, APKs, JARs, etc.) we would # like to use imgdiff -z if possible (because it usually # produces significantly smaller patches than bsdiff). # This is permissible if: # # - the source and target files are monotonic (ie, the # data is stored with blocks in increasing order), and # - we haven't removed any blocks from the source set. # # If these conditions are satisfied then appending all the # blocks in the set together in order will produce a valid # zip file (plus possibly extra zeros in the last block), # which is what imgdiff needs to operate. (imgdiff is # fine with extra zeros at the end of the file.) imgdiff = (xf.intact and xf.tgt_name.split(".")[-1].lower() in ("apk", "jar", "zip")) xf.style = "imgdiff" if imgdiff else "bsdiff" diff_q.append((tgt_size, src, tgt, xf, patch_num)) patch_num += 1 else: assert False, "unknown style " + xf.style if diff_q: if self.threads > 1: print("Computing patches (using %d threads)..." % (self.threads,)) else: print("Computing patches...") diff_q.sort() patches = [None] * patch_num # TODO: Rewrite with multiprocessing.ThreadPool? lock = threading.Lock() def diff_worker(): while True: with lock: if not diff_q: return tgt_size, src, tgt, xf, patchnum = diff_q.pop() patch = compute_patch(src, tgt, imgdiff=(xf.style == "imgdiff")) size = len(patch) with lock: patches[patchnum] = (patch, xf) print("%10d %10d (%6.2f%%) %7s %s" % ( size, tgt_size, size * 100.0 / tgt_size, xf.style, xf.tgt_name if xf.tgt_name == xf.src_name else ( xf.tgt_name + " (from " + xf.src_name + ")"))) threads = [threading.Thread(target=diff_worker) for _ in range(self.threads)] for th in threads: th.start() while threads: threads.pop().join() else: patches = [] p = 0 with open(prefix + ".patch.dat", "wb") as patch_f: for patch, xf in patches: xf.patch_start = p xf.patch_len = len(patch) patch_f.write(patch) p += len(patch) def AssertSequenceGood(self): # Simulate the sequences of transfers we will output, and check that: # - we never read a block after writing it, and # - we write every block we care about exactly once. # Start with no blocks having been touched yet. touched = RangeSet() # Imagine processing the transfers in order. for xf in self.transfers: # Check that the input blocks for this transfer haven't yet been touched. x = xf.src_ranges if self.version >= 2: for _, sr in xf.use_stash: x = x.subtract(sr) assert not touched.overlaps(x) # Check that the output blocks for this transfer haven't yet been touched. assert not touched.overlaps(xf.tgt_ranges) # Touch all the blocks written by this transfer. touched = touched.union(xf.tgt_ranges) # Check that we've written every target block. assert touched == self.tgt.care_map def ImproveVertexSequence(self): print("Improving vertex order...") # At this point our digraph is acyclic; we reversed any edges that # were backwards in the heuristically-generated sequence. The # previously-generated order is still acceptable, but we hope to # find a better order that needs less memory for stashed data. # Now we do a topological sort to generate a new vertex order, # using a greedy algorithm to choose which vertex goes next # whenever we have a choice. # Make a copy of the edge set; this copy will get destroyed by the # algorithm. for xf in self.transfers: xf.incoming = xf.goes_after.copy() xf.outgoing = xf.goes_before.copy() L = [] # the new vertex order # S is the set of sources in the remaining graph; we always choose # the one that leaves the least amount of stashed data after it's # executed. S = [(u.NetStashChange(), u.order, u) for u in self.transfers if not u.incoming] heapq.heapify(S) while S: _, _, xf = heapq.heappop(S) L.append(xf) for u in xf.outgoing: del u.incoming[xf] if not u.incoming: heapq.heappush(S, (u.NetStashChange(), u.order, u)) # if this fails then our graph had a cycle. assert len(L) == len(self.transfers) self.transfers = L for i, xf in enumerate(L): xf.order = i def RemoveBackwardEdges(self): print("Removing backward edges...") in_order = 0 out_of_order = 0 lost_source = 0 for xf in self.transfers: lost = 0 size = xf.src_ranges.size() for u in xf.goes_before: # xf should go before u if xf.order < u.order: # it does, hurray! in_order += 1 else: # it doesn't, boo. trim the blocks that u writes from xf's # source, so that xf can go after u. out_of_order += 1 assert xf.src_ranges.overlaps(u.tgt_ranges) xf.src_ranges = xf.src_ranges.subtract(u.tgt_ranges) xf.intact = False if xf.style == "diff" and not xf.src_ranges: # nothing left to diff from; treat as new data xf.style = "new" lost = size - xf.src_ranges.size() lost_source += lost print((" %d/%d dependencies (%.2f%%) were violated; " "%d source blocks removed.") % (out_of_order, in_order + out_of_order, (out_of_order * 100.0 / (in_order + out_of_order)) if (in_order + out_of_order) else 0.0, lost_source)) def ReverseBackwardEdges(self): print("Reversing backward edges...") in_order = 0 out_of_order = 0 stashes = 0 stash_size = 0 for xf in self.transfers: for u in xf.goes_before.copy(): # xf should go before u if xf.order < u.order: # it does, hurray! in_order += 1 else: # it doesn't, boo. modify u to stash the blocks that it # writes that xf wants to read, and then require u to go # before xf. out_of_order += 1 overlap = xf.src_ranges.intersect(u.tgt_ranges) assert overlap u.stash_before.append((stashes, overlap)) xf.use_stash.append((stashes, overlap)) stashes += 1 stash_size += overlap.size() # reverse the edge direction; now xf must go after u del xf.goes_before[u] del u.goes_after[xf] xf.goes_after[u] = None # value doesn't matter u.goes_before[xf] = None print((" %d/%d dependencies (%.2f%%) were violated; " "%d source blocks stashed.") % (out_of_order, in_order + out_of_order, (out_of_order * 100.0 / (in_order + out_of_order)) if (in_order + out_of_order) else 0.0, stash_size)) def FindVertexSequence(self): print("Finding vertex sequence...") # This is based on "A Fast & Effective Heuristic for the Feedback # Arc Set Problem" by P. Eades, X. Lin, and W.F. Smyth. Think of # it as starting with the digraph G and moving all the vertices to # be on a horizontal line in some order, trying to minimize the # number of edges that end up pointing to the left. Left-pointing # edges will get removed to turn the digraph into a DAG. In this # case each edge has a weight which is the number of source blocks # we'll lose if that edge is removed; we try to minimize the total # weight rather than just the number of edges. # Make a copy of the edge set; this copy will get destroyed by the # algorithm. for xf in self.transfers: xf.incoming = xf.goes_after.copy() xf.outgoing = xf.goes_before.copy() # We use an OrderedDict instead of just a set so that the output # is repeatable; otherwise it would depend on the hash values of # the transfer objects. G = OrderedDict() for xf in self.transfers: G[xf] = None s1 = deque() # the left side of the sequence, built from left to right s2 = deque() # the right side of the sequence, built from right to left while G: # Put all sinks at the end of the sequence. while True: sinks = [u for u in G if not u.outgoing] if not sinks: break for u in sinks: s2.appendleft(u) del G[u] for iu in u.incoming: del iu.outgoing[u] # Put all the sources at the beginning of the sequence. while True: sources = [u for u in G if not u.incoming] if not sources: break for u in sources: s1.append(u) del G[u] for iu in u.outgoing: del iu.incoming[u] if not G: break # Find the "best" vertex to put next. "Best" is the one that # maximizes the net difference in source blocks saved we get by # pretending it's a source rather than a sink. max_d = None best_u = None for u in G: d = sum(u.outgoing.values()) - sum(u.incoming.values()) if best_u is None or d > max_d: max_d = d best_u = u u = best_u s1.append(u) del G[u] for iu in u.outgoing: del iu.incoming[u] for iu in u.incoming: del iu.outgoing[u] # Now record the sequence in the 'order' field of each transfer, # and by rearranging self.transfers to be in the chosen sequence. new_transfers = [] for x in itertools.chain(s1, s2): x.order = len(new_transfers) new_transfers.append(x) del x.incoming del x.outgoing self.transfers = new_transfers def GenerateDigraph(self): print("Generating digraph...") for a in self.transfers: for b in self.transfers: if a is b: continue # If the blocks written by A are read by B, then B needs to go before A. i = a.tgt_ranges.intersect(b.src_ranges) if i: if b.src_name == "__ZERO": # the cost of removing source blocks for the __ZERO domain # is (nearly) zero. size = 0 else: size = i.size() b.goes_before[a] = size a.goes_after[b] = size def FindTransfers(self): """Parse the file_map to generate all the transfers.""" def AddTransfer(tgt_name, src_name, tgt_ranges, src_ranges, style, by_id, split=False): """Wrapper function for adding a Transfer(). For BBOTA v3, we need to stash source blocks for resumable feature. However, with the growth of file size and the shrink of the cache partition source blocks are too large to be stashed. If a file occupies too many blocks (greater than MAX_BLOCKS_PER_DIFF_TRANSFER), we split it into smaller pieces by getting multiple Transfer()s. The downside is that after splitting, we can no longer use imgdiff but only bsdiff.""" MAX_BLOCKS_PER_DIFF_TRANSFER = 1024 # We care about diff transfers only. if style != "diff" or not split: Transfer(tgt_name, src_name, tgt_ranges, src_ranges, style, by_id) return # Change nothing for small files. if (tgt_ranges.size() <= MAX_BLOCKS_PER_DIFF_TRANSFER and src_ranges.size() <= MAX_BLOCKS_PER_DIFF_TRANSFER): Transfer(tgt_name, src_name, tgt_ranges, src_ranges, style, by_id) return pieces = 0 while (tgt_ranges.size() > MAX_BLOCKS_PER_DIFF_TRANSFER and src_ranges.size() > MAX_BLOCKS_PER_DIFF_TRANSFER): tgt_split_name = "%s-%d" % (tgt_name, pieces) src_split_name = "%s-%d" % (src_name, pieces) tgt_first = tgt_ranges.first(MAX_BLOCKS_PER_DIFF_TRANSFER) src_first = src_ranges.first(MAX_BLOCKS_PER_DIFF_TRANSFER) Transfer(tgt_split_name, src_split_name, tgt_first, src_first, style, by_id) tgt_ranges = tgt_ranges.subtract(tgt_first) src_ranges = src_ranges.subtract(src_first) pieces += 1 # Handle remaining blocks. if tgt_ranges.size() or src_ranges.size(): # Must be both non-empty. assert tgt_ranges.size() and src_ranges.size() tgt_split_name = "%s-%d" % (tgt_name, pieces) src_split_name = "%s-%d" % (src_name, pieces) Transfer(tgt_split_name, src_split_name, tgt_ranges, src_ranges, style, by_id) empty = RangeSet() for tgt_fn, tgt_ranges in self.tgt.file_map.items(): if tgt_fn == "__ZERO": # the special "__ZERO" domain is all the blocks not contained # in any file and that are filled with zeros. We have a # special transfer style for zero blocks. src_ranges = self.src.file_map.get("__ZERO", empty) AddTransfer(tgt_fn, "__ZERO", tgt_ranges, src_ranges, "zero", self.transfers) continue elif tgt_fn == "__COPY": # "__COPY" domain includes all the blocks not contained in any # file and that need to be copied unconditionally to the target. AddTransfer(tgt_fn, None, tgt_ranges, empty, "new", self.transfers) continue elif tgt_fn in self.src.file_map: # Look for an exact pathname match in the source. AddTransfer(tgt_fn, tgt_fn, tgt_ranges, self.src.file_map[tgt_fn], "diff", self.transfers, self.version >= 3) continue b = os.path.basename(tgt_fn) if b in self.src_basenames: # Look for an exact basename match in the source. src_fn = self.src_basenames[b] AddTransfer(tgt_fn, src_fn, tgt_ranges, self.src.file_map[src_fn], "diff", self.transfers, self.version >= 3) continue b = re.sub("[0-9]+", "#", b) if b in self.src_numpatterns: # Look for a 'number pattern' match (a basename match after # all runs of digits are replaced by "#"). (This is useful # for .so files that contain version numbers in the filename # that get bumped.) src_fn = self.src_numpatterns[b] AddTransfer(tgt_fn, src_fn, tgt_ranges, self.src.file_map[src_fn], "diff", self.transfers, self.version >= 3) continue AddTransfer(tgt_fn, None, tgt_ranges, empty, "new", self.transfers) def AbbreviateSourceNames(self): for k in self.src.file_map.keys(): b = os.path.basename(k) self.src_basenames[b] = k b = re.sub("[0-9]+", "#", b) self.src_numpatterns[b] = k @staticmethod def AssertPartition(total, seq): """Assert that all the RangeSets in 'seq' form a partition of the 'total' RangeSet (ie, they are nonintersecting and their union equals 'total').""" so_far = RangeSet() for i in seq: assert not so_far.overlaps(i) so_far = so_far.union(i) assert so_far == total