• Home
  • Raw
  • Download

Lines Matching refs:CvMat

244     CvNormalBayesClassifier( const CvMat* _train_data, const CvMat* _responses,
245 const CvMat* _var_idx=0, const CvMat* _sample_idx=0 );
247 virtual bool train( const CvMat* _train_data, const CvMat* _responses,
248 const CvMat* _var_idx = 0, const CvMat* _sample_idx=0, bool update=false );
250 virtual float predict( const CvMat* _samples, CvMat* results=0 ) const;
258 CvMat* var_idx;
259 CvMat* cls_labels;
260 CvMat** count;
261 CvMat** sum;
262 CvMat** productsum;
263 CvMat** avg;
264 CvMat** inv_eigen_values;
265 CvMat** cov_rotate_mats;
266 CvMat* c;
282 CvKNearest( const CvMat* _train_data, const CvMat* _responses,
283 const CvMat* _sample_idx=0, bool _is_regression=false, int max_k=32 );
285 virtual bool train( const CvMat* _train_data, const CvMat* _responses,
286 const CvMat* _sample_idx=0, bool is_regression=false,
289 virtual float find_nearest( const CvMat* _samples, int k, CvMat* results=0,
290 const float** neighbors=0, CvMat* neighbor_responses=0, CvMat* dist=0 ) const;
301 const float* neighbor_responses, const float* dist, CvMat* _results,
302 CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const;
304 virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
325 CvMat* _class_weights, CvTermCriteria _term_crit );
336 CvMat* class_weights; // for CV_SVM_C_SVC
497 CvSVM( const CvMat* _train_data, const CvMat* _responses,
498 const CvMat* _var_idx=0, const CvMat* _sample_idx=0,
501 virtual bool train( const CvMat* _train_data, const CvMat* _responses,
502 const CvMat* _var_idx=0, const CvMat* _sample_idx=0,
504 virtual bool train_auto( const CvMat* _train_data, const CvMat* _responses,
505 const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams _params,
514 virtual float predict( const CvMat* _sample ) const;
534 const CvMat* _responses, CvMemStorage* _storage, double* alpha );
542 CvMat* class_labels;
546 CvMat* var_idx;
547 CvMat* class_weights;
570 … const CvMat* _probs=0, const CvMat* _weights=0, const CvMat* _means=0, const CvMat** _covs=0 ) :
578 const CvMat* probs;
579 const CvMat* weights;
580 const CvMat* means;
581 const CvMat** covs;
596 CvEM( const CvMat* samples, const CvMat* sample_idx=0,
597 CvEMParams params=CvEMParams(), CvMat* labels=0 );
601 virtual bool train( const CvMat* samples, const CvMat* sample_idx=0,
602 CvEMParams params=CvEMParams(), CvMat* labels=0 );
604 virtual float predict( const CvMat* sample, CvMat* probs ) const;
608 const CvMat* get_means() const;
609 const CvMat** get_covs() const;
610 const CvMat* get_weights() const;
611 const CvMat* get_probs() const;
623 CvMat* labels, CvTermCriteria criteria,
624 const CvMat* means );
628 CvMat* means;
629 CvMat** covs;
630 CvMat* weights;
631 CvMat* probs;
633 CvMat* log_weight_div_det;
634 CvMat* inv_eigen_values;
635 CvMat** cov_rotate_mats;
740 CvDTreeTrainData( const CvMat* _train_data, int _tflag,
741 const CvMat* _responses, const CvMat* _var_idx=0,
742 const CvMat* _sample_idx=0, const CvMat* _var_type=0,
743 const CvMat* _missing_mask=0,
748 virtual void set_data( const CvMat* _train_data, int _tflag,
749 const CvMat* _responses, const CvMat* _var_idx=0,
750 const CvMat* _sample_idx=0, const CvMat* _var_type=0,
751 const CvMat* _missing_mask=0,
756 virtual void get_vectors( const CvMat* _subsample_idx,
759 virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
799 CvMat* cat_count;
800 CvMat* cat_ofs;
801 CvMat* cat_map;
803 CvMat* counts;
804 CvMat* buf;
805 CvMat* direction;
806 CvMat* split_buf;
808 CvMat* var_idx;
809 CvMat* var_type; // i-th element =
812 CvMat* priors;
813 CvMat* priors_mult;
837 virtual bool train( const CvMat* _train_data, int _tflag,
838 const CvMat* _responses, const CvMat* _var_idx=0,
839 const CvMat* _sample_idx=0, const CvMat* _var_type=0,
840 const CvMat* _missing_mask=0,
843 virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx );
845 virtual CvDTreeNode* predict( const CvMat* _sample, const CvMat* _missing_data_mask=0,
847 virtual const CvMat* get_var_importance();
864 virtual bool do_train( const CvMat* _subsample_idx );
898 CvMat* var_importance;
916 …virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx, CvRTrees* forest );
922 virtual bool train( const CvMat* _train_data, int _tflag,
923 const CvMat* _responses, const CvMat* _var_idx=0,
924 const CvMat* _sample_idx=0, const CvMat* _var_type=0,
925 const CvMat* _missing_mask=0,
928 virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx );
975 virtual bool train( const CvMat* _train_data, int _tflag,
976 const CvMat* _responses, const CvMat* _var_idx=0,
977 const CvMat* _sample_idx=0, const CvMat* _var_type=0,
978 const CvMat* _missing_mask=0,
980 virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
983 virtual const CvMat* get_var_importance();
984 virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
985 const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;
990 CvMat* get_active_var_mask();
1006 CvMat* var_importance;
1010 CvMat* active_var_mask;
1040 const CvMat* subsample_idx, CvBoost* ensemble );
1048 virtual bool train( const CvMat* _train_data, int _tflag,
1049 const CvMat* _responses, const CvMat* _var_idx=0,
1050 const CvMat* _sample_idx=0, const CvMat* _var_type=0,
1051 const CvMat* _missing_mask=0,
1054 virtual bool train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx );
1088 CvBoost( const CvMat* _train_data, int _tflag,
1089 const CvMat* _responses, const CvMat* _var_idx=0,
1090 const CvMat* _sample_idx=0, const CvMat* _var_type=0,
1091 const CvMat* _missing_mask=0,
1094 virtual bool train( const CvMat* _train_data, int _tflag,
1095 const CvMat* _responses, const CvMat* _var_idx=0,
1096 const CvMat* _sample_idx=0, const CvMat* _var_type=0,
1097 const CvMat* _missing_mask=0,
1101 virtual float predict( const CvMat* _sample, const CvMat* _missing=0,
1102 CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
1114 CvMat* get_weights();
1115 CvMat* get_subtree_weights();
1116 CvMat* get_weak_response();
1131 CvMat* orig_response;
1132 CvMat* sum_response;
1133 CvMat* weak_eval;
1134 CvMat* subsample_mask;
1135 CvMat* weights;
1136 CvMat* subtree_weights;
1171 CvANN_MLP( const CvMat* _layer_sizes,
1177 virtual void create( const CvMat* _layer_sizes,
1181 virtual int train( const CvMat* _inputs, const CvMat* _outputs,
1182 const CvMat* _sample_weights, const CvMat* _sample_idx=0,
1185 virtual float predict( const CvMat* _inputs,
1186 CvMat* _outputs ) const;
1200 const CvMat* get_layer_sizes() { return layer_sizes; } in get_layer_sizes()
1209 virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs,
1210 const CvMat* _sample_weights, const CvMat* _sample_idx,
1219 virtual void calc_activ_func( CvMat* xf, const double* bias ) const;
1220 virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const;
1224 virtual void scale_input( const CvMat* _src, CvMat* _dst ) const;
1225 virtual void scale_output( const CvMat* _src, CvMat* _dst ) const;
1232 CvMat* layer_sizes;
1233 CvMat* wbuf;
1234 CvMat* sample_weights;
1280 ( CvCNNLayer* layer, const CvMat* input, CvMat* output );
1283 ( CvCNNLayer* layer, int t, const CvMat* X, const CvMat* dE_dY, CvMat* dE_dX );
1318 CvMat* weights; \
1340 CvMat *connect_mask;
1356 CvMat* exp2ssumWX;
1359 CvMat* sumX;
1374 CvMat* exp2ssumWX;
1390 CvMat* etalons;
1392 CvMat* cls_labels;
1400 CvMat* etalons;
1411 CvMat* connect_mask CV_DEFAULT(0), CvMat* weights CV_DEFAULT(0) );
1416 float init_learn_rate, int learn_rate_decrease_type, CvMat* weights CV_DEFAULT(0) );
1420 float init_learn_rate, int learning_type, CvMat* weights CV_DEFAULT(0) );
1425 const CvMat* train_data, int tflag,
1426 const CvMat* responses,
1428 const CvMat* CV_DEFAULT(0),
1429 const CvMat* sample_idx CV_DEFAULT(0),
1430 const CvMat* CV_DEFAULT(0), const CvMat* CV_DEFAULT(0) );
1435 typedef const CvMat* (CV_CDECL *CvStatModelEstimateGetMat)
1444 const CvMat* features,
1446 const CvMat* responses );
1486 CvMat* sampleIdxTrain; \
1487 CvMat* sampleIdxEval; \
1488 CvMat* predict_results; \
1508 const CvMat* sampleIdx CV_DEFAULT(0) );
1511 cvCrossValidation( const CvMat* trueData,
1513 const CvMat* trueClasses,
1514 CvStatModel* (*createClassifier)( const CvMat*,
1516 const CvMat*,
1518 const CvMat*,
1519 const CvMat*,
1520 const CvMat*,
1521 const CvMat* ),
1524 const CvMat* compIdx CV_DEFAULT(0),
1525 const CvMat* sampleIdx CV_DEFAULT(0),
1527 const CvMat* typeMask CV_DEFAULT(0),
1528 const CvMat* missedMeasurementMask CV_DEFAULT(0) );
1537 CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample,
1541 CVAPI(void) cvRandGaussMixture( CvMat* means[],
1542 CvMat* covs[],
1545 CvMat* sample,
1546 CvMat* sampClasses CV_DEFAULT(0) );
1551 CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
1554 CvMat** responses,
1559 CVAPI(void) cvCompleteSymm( CvMat* matrix, int lower_to_upper );