/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <inttypes.h> #include <stdio.h> #include <stdlib.h> #include <sys/stat.h> #include <valgrind.h> #include <fstream> #include <iostream> #include <sstream> #include <string> #include <unordered_set> #include <vector> #if defined(__linux__) && defined(__arm__) #include <sys/personality.h> #include <sys/utsname.h> #endif #define ATRACE_TAG ATRACE_TAG_DALVIK #include <cutils/trace.h> #include "art_method-inl.h" #include "arch/instruction_set_features.h" #include "arch/mips/instruction_set_features_mips.h" #include "base/dumpable.h" #include "base/macros.h" #include "base/stl_util.h" #include "base/stringpiece.h" #include "base/time_utils.h" #include "base/timing_logger.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "compiler.h" #include "compiler_callbacks.h" #include "dex_file-inl.h" #include "dex/pass_manager.h" #include "dex/verification_results.h" #include "dex/quick_compiler_callbacks.h" #include "dex/quick/dex_file_to_method_inliner_map.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "elf_file.h" #include "elf_writer.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "image_writer.h" #include "interpreter/unstarted_runtime.h" #include "leb128.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "oat_writer.h" #include "os.h" #include "runtime.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change.h" #include "utils.h" #include "vector_output_stream.h" #include "well_known_classes.h" #include "zip_archive.h" namespace art { static int original_argc; static char** original_argv; static std::string CommandLine() { std::vector<std::string> command; for (int i = 0; i < original_argc; ++i) { command.push_back(original_argv[i]); } return Join(command, ' '); } // A stripped version. Remove some less essential parameters. If we see a "--zip-fd=" parameter, be // even more aggressive. There won't be much reasonable data here for us in that case anyways (the // locations are all staged). static std::string StrippedCommandLine() { std::vector<std::string> command; // Do a pre-pass to look for zip-fd. bool saw_zip_fd = false; for (int i = 0; i < original_argc; ++i) { if (StartsWith(original_argv[i], "--zip-fd=")) { saw_zip_fd = true; break; } } // Now filter out things. for (int i = 0; i < original_argc; ++i) { // All runtime-arg parameters are dropped. if (strcmp(original_argv[i], "--runtime-arg") == 0) { i++; // Drop the next part, too. continue; } // Any instruction-setXXX is dropped. if (StartsWith(original_argv[i], "--instruction-set")) { continue; } // The boot image is dropped. if (StartsWith(original_argv[i], "--boot-image=")) { continue; } // This should leave any dex-file and oat-file options, describing what we compiled. // However, we prefer to drop this when we saw --zip-fd. if (saw_zip_fd) { // Drop anything --zip-X, --dex-X, --oat-X, --swap-X. if (StartsWith(original_argv[i], "--zip-") || StartsWith(original_argv[i], "--dex-") || StartsWith(original_argv[i], "--oat-") || StartsWith(original_argv[i], "--swap-")) { continue; } } command.push_back(original_argv[i]); } // Construct the final output. if (command.size() <= 1U) { // It seems only "/system/bin/dex2oat" is left, or not even that. Use a pretty line. return "Starting dex2oat."; } return Join(command, ' '); } static void UsageErrorV(const char* fmt, va_list ap) { std::string error; StringAppendV(&error, fmt, ap); LOG(ERROR) << error; } static void UsageError(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); } NO_RETURN static void Usage(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); UsageError("Command: %s", CommandLine().c_str()); UsageError("Usage: dex2oat [options]..."); UsageError(""); UsageError(" -j<number>: specifies the number of threads used for compilation."); UsageError(" Default is the number of detected hardware threads available on the"); UsageError(" host system."); UsageError(" Example: -j12"); UsageError(""); UsageError(" --dex-file=<dex-file>: specifies a .dex, .jar, or .apk file to compile."); UsageError(" Example: --dex-file=/system/framework/core.jar"); UsageError(""); UsageError(" --dex-location=<dex-location>: specifies an alternative dex location to"); UsageError(" encode in the oat file for the corresponding --dex-file argument."); UsageError(" Example: --dex-file=/home/build/out/system/framework/core.jar"); UsageError(" --dex-location=/system/framework/core.jar"); UsageError(""); UsageError(" --zip-fd=<file-descriptor>: specifies a file descriptor of a zip file"); UsageError(" containing a classes.dex file to compile."); UsageError(" Example: --zip-fd=5"); UsageError(""); UsageError(" --zip-location=<zip-location>: specifies a symbolic name for the file"); UsageError(" corresponding to the file descriptor specified by --zip-fd."); UsageError(" Example: --zip-location=/system/app/Calculator.apk"); UsageError(""); UsageError(" --oat-file=<file.oat>: specifies the oat output destination via a filename."); UsageError(" Example: --oat-file=/system/framework/boot.oat"); UsageError(""); UsageError(" --oat-fd=<number>: specifies the oat output destination via a file descriptor."); UsageError(" Example: --oat-fd=6"); UsageError(""); UsageError(" --oat-location=<oat-name>: specifies a symbolic name for the file corresponding"); UsageError(" to the file descriptor specified by --oat-fd."); UsageError(" Example: --oat-location=/data/dalvik-cache/system@app@Calculator.apk.oat"); UsageError(""); UsageError(" --oat-symbols=<file.oat>: specifies the oat output destination with full symbols."); UsageError(" Example: --oat-symbols=/symbols/system/framework/boot.oat"); UsageError(""); UsageError(" --image=<file.art>: specifies the output image filename."); UsageError(" Example: --image=/system/framework/boot.art"); UsageError(""); UsageError(" --image-classes=<classname-file>: specifies classes to include in an image."); UsageError(" Example: --image=frameworks/base/preloaded-classes"); UsageError(""); UsageError(" --base=<hex-address>: specifies the base address when creating a boot image."); UsageError(" Example: --base=0x50000000"); UsageError(""); UsageError(" --boot-image=<file.art>: provide the image file for the boot class path."); UsageError(" Example: --boot-image=/system/framework/boot.art"); UsageError(" Default: $ANDROID_ROOT/system/framework/boot.art"); UsageError(""); UsageError(" --android-root=<path>: used to locate libraries for portable linking."); UsageError(" Example: --android-root=out/host/linux-x86"); UsageError(" Default: $ANDROID_ROOT"); UsageError(""); UsageError(" --instruction-set=(arm|arm64|mips|mips64|x86|x86_64): compile for a particular"); UsageError(" instruction set."); UsageError(" Example: --instruction-set=x86"); UsageError(" Default: arm"); UsageError(""); UsageError(" --instruction-set-features=...,: Specify instruction set features"); UsageError(" Example: --instruction-set-features=div"); UsageError(" Default: default"); UsageError(""); UsageError(" --compile-pic: Force indirect use of code, methods, and classes"); UsageError(" Default: disabled"); UsageError(""); UsageError(" --compiler-backend=(Quick|Optimizing): select compiler backend"); UsageError(" set."); UsageError(" Example: --compiler-backend=Optimizing"); if (kUseOptimizingCompiler) { UsageError(" Default: Optimizing"); } else { UsageError(" Default: Quick"); } UsageError(""); UsageError(" --compiler-filter=" "(verify-none" "|interpret-only" "|space" "|balanced" "|speed" "|everything" "|time):"); UsageError(" select compiler filter."); UsageError(" Example: --compiler-filter=everything"); UsageError(" Default: speed"); UsageError(""); UsageError(" --huge-method-max=<method-instruction-count>: threshold size for a huge"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --huge-method-max=%d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(""); UsageError(" --large-method-max=<method-instruction-count>: threshold size for a large"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --large-method-max=%d", CompilerOptions::kDefaultLargeMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultLargeMethodThreshold); UsageError(""); UsageError(" --small-method-max=<method-instruction-count>: threshold size for a small"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --small-method-max=%d", CompilerOptions::kDefaultSmallMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultSmallMethodThreshold); UsageError(""); UsageError(" --tiny-method-max=<method-instruction-count>: threshold size for a tiny"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --tiny-method-max=%d", CompilerOptions::kDefaultTinyMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultTinyMethodThreshold); UsageError(""); UsageError(" --num-dex-methods=<method-count>: threshold size for a small dex file for"); UsageError(" compiler filter tuning. If the input has fewer than this many methods"); UsageError(" and the filter is not interpret-only or verify-none, overrides the"); UsageError(" filter to use speed"); UsageError(" Example: --num-dex-method=%d", CompilerOptions::kDefaultNumDexMethodsThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultNumDexMethodsThreshold); UsageError(""); UsageError(" --inline-depth-limit=<depth-limit>: the depth limit of inlining for fine tuning"); UsageError(" the compiler. A zero value will disable inlining. Honored only by Optimizing."); UsageError(" Has priority over the --compiler-filter option. Intended for "); UsageError(" development/experimental use."); UsageError(" Example: --inline-depth-limit=%d", CompilerOptions::kDefaultInlineDepthLimit); UsageError(" Default: %d", CompilerOptions::kDefaultInlineDepthLimit); UsageError(""); UsageError(" --inline-max-code-units=<code-units-count>: the maximum code units that a method"); UsageError(" can have to be considered for inlining. A zero value will disable inlining."); UsageError(" Honored only by Optimizing. Has priority over the --compiler-filter option."); UsageError(" Intended for development/experimental use."); UsageError(" Example: --inline-max-code-units=%d", CompilerOptions::kDefaultInlineMaxCodeUnits); UsageError(" Default: %d", CompilerOptions::kDefaultInlineMaxCodeUnits); UsageError(""); UsageError(" --dump-timing: display a breakdown of where time was spent"); UsageError(""); UsageError(" --include-patch-information: Include patching information so the generated code"); UsageError(" can have its base address moved without full recompilation."); UsageError(""); UsageError(" --no-include-patch-information: Do not include patching information."); UsageError(""); UsageError(" -g"); UsageError(" --generate-debug-info: Generate debug information for native debugging,"); UsageError(" such as stack unwinding information, ELF symbols and DWARF sections."); UsageError(" This generates all the available information. Unneeded parts can be"); UsageError(" stripped using standard command line tools such as strip or objcopy."); UsageError(" (enabled by default in debug builds, disabled by default otherwise)"); UsageError(""); UsageError(" --no-generate-debug-info: Do not generate debug information for native debugging."); UsageError(""); UsageError(" --runtime-arg <argument>: used to specify various arguments for the runtime,"); UsageError(" such as initial heap size, maximum heap size, and verbose output."); UsageError(" Use a separate --runtime-arg switch for each argument."); UsageError(" Example: --runtime-arg -Xms256m"); UsageError(""); UsageError(" --profile-file=<filename>: specify profiler output file to use for compilation."); UsageError(""); UsageError(" --print-pass-names: print a list of pass names"); UsageError(""); UsageError(" --disable-passes=<pass-names>: disable one or more passes separated by comma."); UsageError(" Example: --disable-passes=UseCount,BBOptimizations"); UsageError(""); UsageError(" --print-pass-options: print a list of passes that have configurable options along " "with the setting."); UsageError(" Will print default if no overridden setting exists."); UsageError(""); UsageError(" --pass-options=Pass1Name:Pass1OptionName:Pass1Option#," "Pass2Name:Pass2OptionName:Pass2Option#"); UsageError(" Used to specify a pass specific option. The setting itself must be integer."); UsageError(" Separator used between options is a comma."); UsageError(""); UsageError(" --swap-file=<file-name>: specifies a file to use for swap."); UsageError(" Example: --swap-file=/data/tmp/swap.001"); UsageError(""); UsageError(" --swap-fd=<file-descriptor>: specifies a file to use for swap (by descriptor)."); UsageError(" Example: --swap-fd=10"); UsageError(""); std::cerr << "See log for usage error information\n"; exit(EXIT_FAILURE); } // The primary goal of the watchdog is to prevent stuck build servers // during development when fatal aborts lead to a cascade of failures // that result in a deadlock. class WatchDog { // WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks #undef CHECK_PTHREAD_CALL #define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \ do { \ int rc = call args; \ if (rc != 0) { \ errno = rc; \ std::string message(# call); \ message += " failed for "; \ message += reason; \ Fatal(message); \ } \ } while (false) public: explicit WatchDog(bool is_watch_dog_enabled) { is_watch_dog_enabled_ = is_watch_dog_enabled; if (!is_watch_dog_enabled_) { return; } shutting_down_ = false; const char* reason = "dex2oat watch dog thread startup"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, nullptr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason); } ~WatchDog() { if (!is_watch_dog_enabled_) { return; } const char* reason = "dex2oat watch dog thread shutdown"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); shutting_down_ = true; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason); } private: static void* CallBack(void* arg) { WatchDog* self = reinterpret_cast<WatchDog*>(arg); ::art::SetThreadName("dex2oat watch dog"); self->Wait(); return nullptr; } NO_RETURN static void Fatal(const std::string& message) { // TODO: When we can guarantee it won't prevent shutdown in error cases, move to LOG. However, // it's rather easy to hang in unwinding. // LogLine also avoids ART logging lock issues, as it's really only a wrapper around // logcat logging or stderr output. LogMessage::LogLine(__FILE__, __LINE__, LogSeverity::FATAL, message.c_str()); exit(1); } void Wait() { // TODO: tune the multiplier for GC verification, the following is just to make the timeout // large. constexpr int64_t multiplier = kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1; timespec timeout_ts; InitTimeSpec(true, CLOCK_REALTIME, multiplier * kWatchDogTimeoutSeconds * 1000, 0, &timeout_ts); const char* reason = "dex2oat watch dog thread waiting"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); while (!shutting_down_) { int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts)); if (rc == ETIMEDOUT) { Fatal(StringPrintf("dex2oat did not finish after %" PRId64 " seconds", kWatchDogTimeoutSeconds)); } else if (rc != 0) { std::string message(StringPrintf("pthread_cond_timedwait failed: %s", strerror(errno))); Fatal(message.c_str()); } } CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); } // When setting timeouts, keep in mind that the build server may not be as fast as your desktop. // Debug builds are slower so they have larger timeouts. static constexpr int64_t kSlowdownFactor = kIsDebugBuild ? 5U : 1U; // 9.5 minutes scaled by kSlowdownFactor. This is slightly smaller than the Package Manager // watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that dex2oat will abort // itself before that watchdog would take down the system server. static constexpr int64_t kWatchDogTimeoutSeconds = kSlowdownFactor * (9 * 60 + 30); bool is_watch_dog_enabled_; bool shutting_down_; // TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases. pthread_mutex_t mutex_; pthread_cond_t cond_; pthread_attr_t attr_; pthread_t pthread_; }; static void ParseStringAfterChar(const std::string& s, char c, std::string* parsed_value) { std::string::size_type colon = s.find(c); if (colon == std::string::npos) { Usage("Missing char %c in option %s\n", c, s.c_str()); } // Add one to remove the char we were trimming until. *parsed_value = s.substr(colon + 1); } static void ParseDouble(const std::string& option, char after_char, double min, double max, double* parsed_value) { std::string substring; ParseStringAfterChar(option, after_char, &substring); bool sane_val = true; double value; if (false) { // TODO: this doesn't seem to work on the emulator. b/15114595 std::stringstream iss(substring); iss >> value; // Ensure that we have a value, there was no cruft after it and it satisfies a sensible range. sane_val = iss.eof() && (value >= min) && (value <= max); } else { char* end = nullptr; value = strtod(substring.c_str(), &end); sane_val = *end == '\0' && value >= min && value <= max; } if (!sane_val) { Usage("Invalid double value %s for option %s\n", substring.c_str(), option.c_str()); } *parsed_value = value; } static constexpr size_t kMinDexFilesForSwap = 2; static constexpr size_t kMinDexFileCumulativeSizeForSwap = 20 * MB; static bool UseSwap(bool is_image, std::vector<const DexFile*>& dex_files) { if (is_image) { // Don't use swap, we know generation should succeed, and we don't want to slow it down. return false; } if (dex_files.size() < kMinDexFilesForSwap) { // If there are less dex files than the threshold, assume it's gonna be fine. return false; } size_t dex_files_size = 0; for (const auto* dex_file : dex_files) { dex_files_size += dex_file->GetHeader().file_size_; } return dex_files_size >= kMinDexFileCumulativeSizeForSwap; } class Dex2Oat FINAL { public: explicit Dex2Oat(TimingLogger* timings) : compiler_kind_(kUseOptimizingCompiler ? Compiler::kOptimizing : Compiler::kQuick), instruction_set_(kRuntimeISA), // Take the default set of instruction features from the build. verification_results_(nullptr), method_inliner_map_(), runtime_(nullptr), thread_count_(sysconf(_SC_NPROCESSORS_CONF)), start_ns_(NanoTime()), oat_fd_(-1), zip_fd_(-1), image_base_(0U), image_classes_zip_filename_(nullptr), image_classes_filename_(nullptr), compiled_classes_zip_filename_(nullptr), compiled_classes_filename_(nullptr), compiled_methods_zip_filename_(nullptr), compiled_methods_filename_(nullptr), image_(false), is_host_(false), driver_(nullptr), dump_stats_(false), dump_passes_(false), dump_timing_(false), dump_slow_timing_(kIsDebugBuild), swap_fd_(-1), timings_(timings) {} ~Dex2Oat() { // Free opened dex files before deleting the runtime_, because ~DexFile // uses MemMap, which is shut down by ~Runtime. class_path_files_.clear(); opened_dex_files_.clear(); // Log completion time before deleting the runtime_, because this accesses // the runtime. LogCompletionTime(); if (kIsDebugBuild || (RUNNING_ON_VALGRIND != 0)) { delete runtime_; // See field declaration for why this is manual. delete driver_; delete verification_results_; } } // Parse the arguments from the command line. In case of an unrecognized option or impossible // values/combinations, a usage error will be displayed and exit() is called. Thus, if the method // returns, arguments have been successfully parsed. void ParseArgs(int argc, char** argv) { original_argc = argc; original_argv = argv; InitLogging(argv); // Skip over argv[0]. argv++; argc--; if (argc == 0) { Usage("No arguments specified"); } std::string oat_symbols; std::string boot_image_filename; const char* compiler_filter_string = nullptr; bool compile_pic = false; int huge_method_threshold = CompilerOptions::kDefaultHugeMethodThreshold; int large_method_threshold = CompilerOptions::kDefaultLargeMethodThreshold; int small_method_threshold = CompilerOptions::kDefaultSmallMethodThreshold; int tiny_method_threshold = CompilerOptions::kDefaultTinyMethodThreshold; int num_dex_methods_threshold = CompilerOptions::kDefaultNumDexMethodsThreshold; static constexpr int kUnsetInlineDepthLimit = -1; int inline_depth_limit = kUnsetInlineDepthLimit; static constexpr int kUnsetInlineMaxCodeUnits = -1; int inline_max_code_units = kUnsetInlineMaxCodeUnits; // Profile file to use double top_k_profile_threshold = CompilerOptions::kDefaultTopKProfileThreshold; bool debuggable = false; bool include_patch_information = CompilerOptions::kDefaultIncludePatchInformation; bool generate_debug_info = kIsDebugBuild; bool watch_dog_enabled = true; bool abort_on_hard_verifier_error = false; bool requested_specific_compiler = false; PassManagerOptions pass_manager_options; std::string error_msg; for (int i = 0; i < argc; i++) { const StringPiece option(argv[i]); const bool log_options = false; if (log_options) { LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i]; } if (option.starts_with("--dex-file=")) { dex_filenames_.push_back(option.substr(strlen("--dex-file=")).data()); } else if (option.starts_with("--dex-location=")) { dex_locations_.push_back(option.substr(strlen("--dex-location=")).data()); } else if (option.starts_with("--zip-fd=")) { const char* zip_fd_str = option.substr(strlen("--zip-fd=")).data(); if (!ParseInt(zip_fd_str, &zip_fd_)) { Usage("Failed to parse --zip-fd argument '%s' as an integer", zip_fd_str); } if (zip_fd_ < 0) { Usage("--zip-fd passed a negative value %d", zip_fd_); } } else if (option.starts_with("--zip-location=")) { zip_location_ = option.substr(strlen("--zip-location=")).data(); } else if (option.starts_with("--oat-file=")) { oat_filename_ = option.substr(strlen("--oat-file=")).data(); } else if (option.starts_with("--oat-symbols=")) { oat_symbols = option.substr(strlen("--oat-symbols=")).data(); } else if (option.starts_with("--oat-fd=")) { const char* oat_fd_str = option.substr(strlen("--oat-fd=")).data(); if (!ParseInt(oat_fd_str, &oat_fd_)) { Usage("Failed to parse --oat-fd argument '%s' as an integer", oat_fd_str); } if (oat_fd_ < 0) { Usage("--oat-fd passed a negative value %d", oat_fd_); } } else if (option == "--watch-dog") { watch_dog_enabled = true; } else if (option == "--no-watch-dog") { watch_dog_enabled = false; } else if (option.starts_with("-j")) { const char* thread_count_str = option.substr(strlen("-j")).data(); if (!ParseUint(thread_count_str, &thread_count_)) { Usage("Failed to parse -j argument '%s' as an integer", thread_count_str); } } else if (option.starts_with("--oat-location=")) { oat_location_ = option.substr(strlen("--oat-location=")).data(); } else if (option.starts_with("--image=")) { image_filename_ = option.substr(strlen("--image=")).data(); } else if (option.starts_with("--image-classes=")) { image_classes_filename_ = option.substr(strlen("--image-classes=")).data(); } else if (option.starts_with("--image-classes-zip=")) { image_classes_zip_filename_ = option.substr(strlen("--image-classes-zip=")).data(); } else if (option.starts_with("--compiled-classes=")) { compiled_classes_filename_ = option.substr(strlen("--compiled-classes=")).data(); } else if (option.starts_with("--compiled-classes-zip=")) { compiled_classes_zip_filename_ = option.substr(strlen("--compiled-classes-zip=")).data(); } else if (option.starts_with("--compiled-methods=")) { compiled_methods_filename_ = option.substr(strlen("--compiled-methods=")).data(); } else if (option.starts_with("--compiled-methods-zip=")) { compiled_methods_zip_filename_ = option.substr(strlen("--compiled-methods-zip=")).data(); } else if (option.starts_with("--base=")) { const char* image_base_str = option.substr(strlen("--base=")).data(); char* end; image_base_ = strtoul(image_base_str, &end, 16); if (end == image_base_str || *end != '\0') { Usage("Failed to parse hexadecimal value for option %s", option.data()); } } else if (option.starts_with("--boot-image=")) { boot_image_filename = option.substr(strlen("--boot-image=")).data(); } else if (option.starts_with("--android-root=")) { android_root_ = option.substr(strlen("--android-root=")).data(); } else if (option.starts_with("--instruction-set=")) { StringPiece instruction_set_str = option.substr(strlen("--instruction-set=")).data(); // StringPiece is not necessarily zero-terminated, so need to make a copy and ensure it. std::unique_ptr<char[]> buf(new char[instruction_set_str.length() + 1]); strncpy(buf.get(), instruction_set_str.data(), instruction_set_str.length()); buf.get()[instruction_set_str.length()] = 0; instruction_set_ = GetInstructionSetFromString(buf.get()); // arm actually means thumb2. if (instruction_set_ == InstructionSet::kArm) { instruction_set_ = InstructionSet::kThumb2; } } else if (option.starts_with("--instruction-set-variant=")) { StringPiece str = option.substr(strlen("--instruction-set-variant=")).data(); instruction_set_features_.reset( InstructionSetFeatures::FromVariant(instruction_set_, str.as_string(), &error_msg)); if (instruction_set_features_.get() == nullptr) { Usage("%s", error_msg.c_str()); } } else if (option.starts_with("--instruction-set-features=")) { StringPiece str = option.substr(strlen("--instruction-set-features=")).data(); if (instruction_set_features_.get() == nullptr) { instruction_set_features_.reset( InstructionSetFeatures::FromVariant(instruction_set_, "default", &error_msg)); if (instruction_set_features_.get() == nullptr) { Usage("Problem initializing default instruction set features variant: %s", error_msg.c_str()); } } instruction_set_features_.reset( instruction_set_features_->AddFeaturesFromString(str.as_string(), &error_msg)); if (instruction_set_features_.get() == nullptr) { Usage("Error parsing '%s': %s", option.data(), error_msg.c_str()); } } else if (option.starts_with("--compiler-backend=")) { requested_specific_compiler = true; StringPiece backend_str = option.substr(strlen("--compiler-backend=")).data(); if (backend_str == "Quick") { compiler_kind_ = Compiler::kQuick; } else if (backend_str == "Optimizing") { compiler_kind_ = Compiler::kOptimizing; } else { Usage("Unknown compiler backend: %s", backend_str.data()); } } else if (option.starts_with("--compiler-filter=")) { compiler_filter_string = option.substr(strlen("--compiler-filter=")).data(); } else if (option == "--compile-pic") { compile_pic = true; } else if (option.starts_with("--huge-method-max=")) { const char* threshold = option.substr(strlen("--huge-method-max=")).data(); if (!ParseInt(threshold, &huge_method_threshold)) { Usage("Failed to parse --huge-method-max '%s' as an integer", threshold); } if (huge_method_threshold < 0) { Usage("--huge-method-max passed a negative value %s", huge_method_threshold); } } else if (option.starts_with("--large-method-max=")) { const char* threshold = option.substr(strlen("--large-method-max=")).data(); if (!ParseInt(threshold, &large_method_threshold)) { Usage("Failed to parse --large-method-max '%s' as an integer", threshold); } if (large_method_threshold < 0) { Usage("--large-method-max passed a negative value %s", large_method_threshold); } } else if (option.starts_with("--small-method-max=")) { const char* threshold = option.substr(strlen("--small-method-max=")).data(); if (!ParseInt(threshold, &small_method_threshold)) { Usage("Failed to parse --small-method-max '%s' as an integer", threshold); } if (small_method_threshold < 0) { Usage("--small-method-max passed a negative value %s", small_method_threshold); } } else if (option.starts_with("--tiny-method-max=")) { const char* threshold = option.substr(strlen("--tiny-method-max=")).data(); if (!ParseInt(threshold, &tiny_method_threshold)) { Usage("Failed to parse --tiny-method-max '%s' as an integer", threshold); } if (tiny_method_threshold < 0) { Usage("--tiny-method-max passed a negative value %s", tiny_method_threshold); } } else if (option.starts_with("--num-dex-methods=")) { const char* threshold = option.substr(strlen("--num-dex-methods=")).data(); if (!ParseInt(threshold, &num_dex_methods_threshold)) { Usage("Failed to parse --num-dex-methods '%s' as an integer", threshold); } if (num_dex_methods_threshold < 0) { Usage("--num-dex-methods passed a negative value %s", num_dex_methods_threshold); } } else if (option.starts_with("--inline-depth-limit=")) { const char* limit = option.substr(strlen("--inline-depth-limit=")).data(); if (!ParseInt(limit, &inline_depth_limit)) { Usage("Failed to parse --inline-depth-limit '%s' as an integer", limit); } if (inline_depth_limit < 0) { Usage("--inline-depth-limit passed a negative value %s", inline_depth_limit); } } else if (option.starts_with("--inline-max-code-units=")) { const char* code_units = option.substr(strlen("--inline-max-code-units=")).data(); if (!ParseInt(code_units, &inline_max_code_units)) { Usage("Failed to parse --inline-max-code-units '%s' as an integer", code_units); } if (inline_max_code_units < 0) { Usage("--inline-max-code-units passed a negative value %s", inline_max_code_units); } } else if (option == "--host") { is_host_ = true; } else if (option == "--runtime-arg") { if (++i >= argc) { Usage("Missing required argument for --runtime-arg"); } if (log_options) { LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i]; } runtime_args_.push_back(argv[i]); } else if (option == "--dump-timing") { dump_timing_ = true; } else if (option == "--dump-passes") { dump_passes_ = true; } else if (option.starts_with("--dump-cfg=")) { dump_cfg_file_name_ = option.substr(strlen("--dump-cfg=")).data(); } else if (option == "--dump-stats") { dump_stats_ = true; } else if (option == "--generate-debug-info" || option == "-g") { generate_debug_info = true; } else if (option == "--no-generate-debug-info") { generate_debug_info = false; } else if (option == "--debuggable") { debuggable = true; generate_debug_info = true; } else if (option.starts_with("--profile-file=")) { profile_file_ = option.substr(strlen("--profile-file=")).data(); VLOG(compiler) << "dex2oat: profile file is " << profile_file_; } else if (option == "--no-profile-file") { // No profile } else if (option.starts_with("--top-k-profile-threshold=")) { ParseDouble(option.data(), '=', 0.0, 100.0, &top_k_profile_threshold); } else if (option == "--print-pass-names") { pass_manager_options.SetPrintPassNames(true); } else if (option.starts_with("--disable-passes=")) { const std::string disable_passes = option.substr(strlen("--disable-passes=")).data(); pass_manager_options.SetDisablePassList(disable_passes); } else if (option.starts_with("--print-passes=")) { const std::string print_passes = option.substr(strlen("--print-passes=")).data(); pass_manager_options.SetPrintPassList(print_passes); } else if (option == "--print-all-passes") { pass_manager_options.SetPrintAllPasses(); } else if (option.starts_with("--dump-cfg-passes=")) { const std::string dump_passes_string = option.substr(strlen("--dump-cfg-passes=")).data(); pass_manager_options.SetDumpPassList(dump_passes_string); } else if (option == "--print-pass-options") { pass_manager_options.SetPrintPassOptions(true); } else if (option.starts_with("--pass-options=")) { const std::string options = option.substr(strlen("--pass-options=")).data(); pass_manager_options.SetOverriddenPassOptions(options); } else if (option == "--include-patch-information") { include_patch_information = true; } else if (option == "--no-include-patch-information") { include_patch_information = false; } else if (option.starts_with("--verbose-methods=")) { // TODO: rather than switch off compiler logging, make all VLOG(compiler) messages // conditional on having verbost methods. gLogVerbosity.compiler = false; Split(option.substr(strlen("--verbose-methods=")).ToString(), ',', &verbose_methods_); } else if (option.starts_with("--dump-init-failures=")) { std::string file_name = option.substr(strlen("--dump-init-failures=")).data(); init_failure_output_.reset(new std::ofstream(file_name)); if (init_failure_output_.get() == nullptr) { LOG(ERROR) << "Failed to allocate ofstream"; } else if (init_failure_output_->fail()) { LOG(ERROR) << "Failed to open " << file_name << " for writing the initialization " << "failures."; init_failure_output_.reset(); } } else if (option.starts_with("--swap-file=")) { swap_file_name_ = option.substr(strlen("--swap-file=")).data(); } else if (option.starts_with("--swap-fd=")) { const char* swap_fd_str = option.substr(strlen("--swap-fd=")).data(); if (!ParseInt(swap_fd_str, &swap_fd_)) { Usage("Failed to parse --swap-fd argument '%s' as an integer", swap_fd_str); } if (swap_fd_ < 0) { Usage("--swap-fd passed a negative value %d", swap_fd_); } } else if (option == "--abort-on-hard-verifier-error") { abort_on_hard_verifier_error = true; } else { Usage("Unknown argument %s", option.data()); } } image_ = (!image_filename_.empty()); if (!requested_specific_compiler && !kUseOptimizingCompiler) { // If no specific compiler is requested, the current behavior is // to compile the boot image with Quick, and the rest with Optimizing. compiler_kind_ = image_ ? Compiler::kQuick : Compiler::kOptimizing; } if (compiler_kind_ == Compiler::kOptimizing) { // Optimizing only supports PIC mode. compile_pic = true; } if (oat_filename_.empty() && oat_fd_ == -1) { Usage("Output must be supplied with either --oat-file or --oat-fd"); } if (!oat_filename_.empty() && oat_fd_ != -1) { Usage("--oat-file should not be used with --oat-fd"); } if (!oat_symbols.empty() && oat_fd_ != -1) { Usage("--oat-symbols should not be used with --oat-fd"); } if (!oat_symbols.empty() && is_host_) { Usage("--oat-symbols should not be used with --host"); } if (oat_fd_ != -1 && !image_filename_.empty()) { Usage("--oat-fd should not be used with --image"); } if (android_root_.empty()) { const char* android_root_env_var = getenv("ANDROID_ROOT"); if (android_root_env_var == nullptr) { Usage("--android-root unspecified and ANDROID_ROOT not set"); } android_root_ += android_root_env_var; } if (!image_ && boot_image_filename.empty()) { boot_image_filename += android_root_; boot_image_filename += "/framework/boot.art"; } if (!boot_image_filename.empty()) { boot_image_option_ += "-Ximage:"; boot_image_option_ += boot_image_filename; } if (image_classes_filename_ != nullptr && !image_) { Usage("--image-classes should only be used with --image"); } if (image_classes_filename_ != nullptr && !boot_image_option_.empty()) { Usage("--image-classes should not be used with --boot-image"); } if (image_classes_zip_filename_ != nullptr && image_classes_filename_ == nullptr) { Usage("--image-classes-zip should be used with --image-classes"); } if (compiled_classes_filename_ != nullptr && !image_) { Usage("--compiled-classes should only be used with --image"); } if (compiled_classes_filename_ != nullptr && !boot_image_option_.empty()) { Usage("--compiled-classes should not be used with --boot-image"); } if (compiled_classes_zip_filename_ != nullptr && compiled_classes_filename_ == nullptr) { Usage("--compiled-classes-zip should be used with --compiled-classes"); } if (dex_filenames_.empty() && zip_fd_ == -1) { Usage("Input must be supplied with either --dex-file or --zip-fd"); } if (!dex_filenames_.empty() && zip_fd_ != -1) { Usage("--dex-file should not be used with --zip-fd"); } if (!dex_filenames_.empty() && !zip_location_.empty()) { Usage("--dex-file should not be used with --zip-location"); } if (dex_locations_.empty()) { for (const char* dex_file_name : dex_filenames_) { dex_locations_.push_back(dex_file_name); } } else if (dex_locations_.size() != dex_filenames_.size()) { Usage("--dex-location arguments do not match --dex-file arguments"); } if (zip_fd_ != -1 && zip_location_.empty()) { Usage("--zip-location should be supplied with --zip-fd"); } if (boot_image_option_.empty()) { if (image_base_ == 0) { Usage("Non-zero --base not specified"); } } oat_stripped_ = oat_filename_; if (!oat_symbols.empty()) { oat_unstripped_ = oat_symbols; } else { oat_unstripped_ = oat_filename_; } // If no instruction set feature was given, use the default one for the target // instruction set. if (instruction_set_features_.get() == nullptr) { instruction_set_features_.reset( InstructionSetFeatures::FromVariant(instruction_set_, "default", &error_msg)); if (instruction_set_features_.get() == nullptr) { Usage("Problem initializing default instruction set features variant: %s", error_msg.c_str()); } } if (instruction_set_ == kRuntimeISA) { std::unique_ptr<const InstructionSetFeatures> runtime_features( InstructionSetFeatures::FromCppDefines()); if (!instruction_set_features_->Equals(runtime_features.get())) { LOG(WARNING) << "Mismatch between dex2oat instruction set features (" << *instruction_set_features_ << ") and those of dex2oat executable (" << *runtime_features <<") for the command line:\n" << CommandLine(); } } if (compiler_filter_string == nullptr) { compiler_filter_string = "speed"; } CHECK(compiler_filter_string != nullptr); CompilerOptions::CompilerFilter compiler_filter = CompilerOptions::kDefaultCompilerFilter; if (strcmp(compiler_filter_string, "verify-none") == 0) { compiler_filter = CompilerOptions::kVerifyNone; } else if (strcmp(compiler_filter_string, "interpret-only") == 0) { compiler_filter = CompilerOptions::kInterpretOnly; } else if (strcmp(compiler_filter_string, "verify-at-runtime") == 0) { compiler_filter = CompilerOptions::kVerifyAtRuntime; } else if (strcmp(compiler_filter_string, "space") == 0) { compiler_filter = CompilerOptions::kSpace; } else if (strcmp(compiler_filter_string, "balanced") == 0) { compiler_filter = CompilerOptions::kBalanced; } else if (strcmp(compiler_filter_string, "speed") == 0) { compiler_filter = CompilerOptions::kSpeed; } else if (strcmp(compiler_filter_string, "everything") == 0) { compiler_filter = CompilerOptions::kEverything; } else if (strcmp(compiler_filter_string, "time") == 0) { compiler_filter = CompilerOptions::kTime; } else { Usage("Unknown --compiler-filter value %s", compiler_filter_string); } // It they are not set, use default values for inlining settings. // TODO: We should rethink the compiler filter. We mostly save // time here, which is orthogonal to space. if (inline_depth_limit == kUnsetInlineDepthLimit) { inline_depth_limit = (compiler_filter == CompilerOptions::kSpace) // Implementation of the space filter: limit inlining depth. ? CompilerOptions::kSpaceFilterInlineDepthLimit : CompilerOptions::kDefaultInlineDepthLimit; } if (inline_max_code_units == kUnsetInlineMaxCodeUnits) { inline_max_code_units = (compiler_filter == CompilerOptions::kSpace) // Implementation of the space filter: limit inlining max code units. ? CompilerOptions::kSpaceFilterInlineMaxCodeUnits : CompilerOptions::kDefaultInlineMaxCodeUnits; } // Checks are all explicit until we know the architecture. bool implicit_null_checks = false; bool implicit_so_checks = false; bool implicit_suspend_checks = false; // Set the compilation target's implicit checks options. switch (instruction_set_) { case kArm: case kThumb2: case kArm64: case kX86: case kX86_64: case kMips: case kMips64: implicit_null_checks = true; implicit_so_checks = true; break; default: // Defaults are correct. break; } compiler_options_.reset(new CompilerOptions(compiler_filter, huge_method_threshold, large_method_threshold, small_method_threshold, tiny_method_threshold, num_dex_methods_threshold, inline_depth_limit, inline_max_code_units, include_patch_information, top_k_profile_threshold, debuggable, generate_debug_info, implicit_null_checks, implicit_so_checks, implicit_suspend_checks, compile_pic, verbose_methods_.empty() ? nullptr : &verbose_methods_, new PassManagerOptions(pass_manager_options), init_failure_output_.get(), abort_on_hard_verifier_error)); // Done with usage checks, enable watchdog if requested if (watch_dog_enabled) { watchdog_.reset(new WatchDog(true)); } // Fill some values into the key-value store for the oat header. key_value_store_.reset(new SafeMap<std::string, std::string>()); // Insert some compiler things. { std::ostringstream oss; for (int i = 0; i < argc; ++i) { if (i > 0) { oss << ' '; } oss << argv[i]; } key_value_store_->Put(OatHeader::kDex2OatCmdLineKey, oss.str()); oss.str(""); // Reset. oss << kRuntimeISA; key_value_store_->Put(OatHeader::kDex2OatHostKey, oss.str()); key_value_store_->Put(OatHeader::kPicKey, compile_pic ? OatHeader::kTrueValue : OatHeader::kFalseValue); key_value_store_->Put(OatHeader::kDebuggableKey, debuggable ? OatHeader::kTrueValue : OatHeader::kFalseValue); } } // Check whether the oat output file is writable, and open it for later. Also open a swap file, // if a name is given. bool OpenFile() { bool create_file = !oat_unstripped_.empty(); // as opposed to using open file descriptor if (create_file) { // We're supposed to create this file. If the file already exists, it may be in use currently. // We must not change the content of that file, then. So unlink it first. unlink(oat_unstripped_.c_str()); oat_file_.reset(OS::CreateEmptyFile(oat_unstripped_.c_str())); if (oat_location_.empty()) { oat_location_ = oat_filename_; } } else { oat_file_.reset(new File(oat_fd_, oat_location_, true)); oat_file_->DisableAutoClose(); if (oat_file_->SetLength(0) != 0) { PLOG(WARNING) << "Truncating oat file " << oat_location_ << " failed."; } } if (oat_file_.get() == nullptr) { PLOG(ERROR) << "Failed to create oat file: " << oat_location_; return false; } if (create_file && fchmod(oat_file_->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make oat file world readable: " << oat_location_; oat_file_->Erase(); return false; } // Swap file handling. // // If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file // that we can use for swap. // // If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We // will immediately unlink to satisfy the swap fd assumption. if (swap_fd_ == -1 && !swap_file_name_.empty()) { std::unique_ptr<File> swap_file(OS::CreateEmptyFile(swap_file_name_.c_str())); if (swap_file.get() == nullptr) { PLOG(ERROR) << "Failed to create swap file: " << swap_file_name_; return false; } swap_fd_ = swap_file->Fd(); swap_file->MarkUnchecked(); // We don't we to track this, it will be unlinked immediately. swap_file->DisableAutoClose(); // We'll handle it ourselves, the File object will be // released immediately. unlink(swap_file_name_.c_str()); } return true; } void EraseOatFile() { DCHECK(oat_file_.get() != nullptr); oat_file_->Erase(); oat_file_.reset(); } // Set up the environment for compilation. Includes starting the runtime and loading/opening the // boot class path. bool Setup() { TimingLogger::ScopedTiming t("dex2oat Setup", timings_); RuntimeOptions runtime_options; art::MemMap::Init(); // For ZipEntry::ExtractToMemMap. if (boot_image_option_.empty()) { std::string boot_class_path = "-Xbootclasspath:"; boot_class_path += Join(dex_filenames_, ':'); runtime_options.push_back(std::make_pair(boot_class_path, nullptr)); std::string boot_class_path_locations = "-Xbootclasspath-locations:"; boot_class_path_locations += Join(dex_locations_, ':'); runtime_options.push_back(std::make_pair(boot_class_path_locations, nullptr)); } else { runtime_options.push_back(std::make_pair(boot_image_option_, nullptr)); } for (size_t i = 0; i < runtime_args_.size(); i++) { runtime_options.push_back(std::make_pair(runtime_args_[i], nullptr)); } verification_results_ = new VerificationResults(compiler_options_.get()); callbacks_.reset(new QuickCompilerCallbacks( verification_results_, &method_inliner_map_, image_ ? CompilerCallbacks::CallbackMode::kCompileBootImage : CompilerCallbacks::CallbackMode::kCompileApp)); runtime_options.push_back(std::make_pair("compilercallbacks", callbacks_.get())); runtime_options.push_back( std::make_pair("imageinstructionset", GetInstructionSetString(instruction_set_))); // Only allow no boot image for the runtime if we're compiling one. When we compile an app, // we don't want fallback mode, it will abort as we do not push a boot classpath (it might // have been stripped in preopting, anyways). if (!image_) { runtime_options.push_back(std::make_pair("-Xno-dex-file-fallback", nullptr)); } if (!CreateRuntime(runtime_options)) { return false; } // Runtime::Create acquired the mutator_lock_ that is normally given away when we // Runtime::Start, give it away now so that we don't starve GC. Thread* self = Thread::Current(); self->TransitionFromRunnableToSuspended(kNative); // If we're doing the image, override the compiler filter to force full compilation. Must be // done ahead of WellKnownClasses::Init that causes verification. Note: doesn't force // compilation of class initializers. // Whilst we're in native take the opportunity to initialize well known classes. WellKnownClasses::Init(self->GetJniEnv()); // If --image-classes was specified, calculate the full list of classes to include in the image if (image_classes_filename_ != nullptr) { std::string error_msg; if (image_classes_zip_filename_ != nullptr) { image_classes_.reset(ReadImageClassesFromZip(image_classes_zip_filename_, image_classes_filename_, &error_msg)); } else { image_classes_.reset(ReadImageClassesFromFile(image_classes_filename_)); } if (image_classes_.get() == nullptr) { LOG(ERROR) << "Failed to create list of image classes from '" << image_classes_filename_ << "': " << error_msg; return false; } } else if (image_) { image_classes_.reset(new std::unordered_set<std::string>); } // If --compiled-classes was specified, calculate the full list of classes to compile in the // image. if (compiled_classes_filename_ != nullptr) { std::string error_msg; if (compiled_classes_zip_filename_ != nullptr) { compiled_classes_.reset(ReadImageClassesFromZip(compiled_classes_zip_filename_, compiled_classes_filename_, &error_msg)); } else { compiled_classes_.reset(ReadImageClassesFromFile(compiled_classes_filename_)); } if (compiled_classes_.get() == nullptr) { LOG(ERROR) << "Failed to create list of compiled classes from '" << compiled_classes_filename_ << "': " << error_msg; return false; } } else { compiled_classes_.reset(nullptr); // By default compile everything. } // If --compiled-methods was specified, read the methods to compile from the given file(s). if (compiled_methods_filename_ != nullptr) { std::string error_msg; if (compiled_methods_zip_filename_ != nullptr) { compiled_methods_.reset(ReadCommentedInputFromZip(compiled_methods_zip_filename_, compiled_methods_filename_, nullptr, // No post-processing. &error_msg)); } else { compiled_methods_.reset(ReadCommentedInputFromFile(compiled_methods_filename_, nullptr)); // No post-processing. } if (compiled_methods_.get() == nullptr) { LOG(ERROR) << "Failed to create list of compiled methods from '" << compiled_methods_filename_ << "': " << error_msg; return false; } } else { compiled_methods_.reset(nullptr); // By default compile everything. } if (boot_image_option_.empty()) { dex_files_ = Runtime::Current()->GetClassLinker()->GetBootClassPath(); } else { if (dex_filenames_.empty()) { ATRACE_BEGIN("Opening zip archive from file descriptor"); std::string error_msg; std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(zip_fd_, zip_location_.c_str(), &error_msg)); if (zip_archive.get() == nullptr) { LOG(ERROR) << "Failed to open zip from file descriptor for '" << zip_location_ << "': " << error_msg; return false; } if (!DexFile::OpenFromZip(*zip_archive.get(), zip_location_, &error_msg, &opened_dex_files_)) { LOG(ERROR) << "Failed to open dex from file descriptor for zip file '" << zip_location_ << "': " << error_msg; return false; } for (auto& dex_file : opened_dex_files_) { dex_files_.push_back(dex_file.get()); } ATRACE_END(); } else { size_t failure_count = OpenDexFiles(dex_filenames_, dex_locations_, &opened_dex_files_); if (failure_count > 0) { LOG(ERROR) << "Failed to open some dex files: " << failure_count; return false; } for (auto& dex_file : opened_dex_files_) { dex_files_.push_back(dex_file.get()); } } constexpr bool kSaveDexInput = false; if (kSaveDexInput) { for (size_t i = 0; i < dex_files_.size(); ++i) { const DexFile* dex_file = dex_files_[i]; std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex", getpid(), i)); std::unique_ptr<File> tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str())); if (tmp_file.get() == nullptr) { PLOG(ERROR) << "Failed to open file " << tmp_file_name << ". Try: adb shell chmod 777 /data/local/tmp"; continue; } // This is just dumping files for debugging. Ignore errors, and leave remnants. UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size())); UNUSED(tmp_file->Flush()); UNUSED(tmp_file->Close()); LOG(INFO) << "Wrote input to " << tmp_file_name; } } } // Ensure opened dex files are writable for dex-to-dex transformations. for (const auto& dex_file : dex_files_) { if (!dex_file->EnableWrite()) { PLOG(ERROR) << "Failed to make .dex file writeable '" << dex_file->GetLocation() << "'\n"; } } // If we use a swap file, ensure we are above the threshold to make it necessary. if (swap_fd_ != -1) { if (!UseSwap(image_, dex_files_)) { close(swap_fd_); swap_fd_ = -1; VLOG(compiler) << "Decided to run without swap."; } else { LOG(INFO) << "Large app, accepted running with swap."; } } // Note that dex2oat won't close the swap_fd_. The compiler driver's swap space will do that. /* * If we're not in interpret-only or verify-none mode, go ahead and compile small applications. * Don't bother to check if we're doing the image. */ if (!image_ && compiler_options_->IsCompilationEnabled() && compiler_kind_ == Compiler::kQuick) { size_t num_methods = 0; for (size_t i = 0; i != dex_files_.size(); ++i) { const DexFile* dex_file = dex_files_[i]; CHECK(dex_file != nullptr); num_methods += dex_file->NumMethodIds(); } if (num_methods <= compiler_options_->GetNumDexMethodsThreshold()) { compiler_options_->SetCompilerFilter(CompilerOptions::kSpeed); VLOG(compiler) << "Below method threshold, compiling anyways"; } } return true; } // Create and invoke the compiler driver. This will compile all the dex files. void Compile() { TimingLogger::ScopedTiming t("dex2oat Compile", timings_); compiler_phases_timings_.reset(new CumulativeLogger("compilation times")); // Handle and ClassLoader creation needs to come after Runtime::Create jobject class_loader = nullptr; Thread* self = Thread::Current(); if (!boot_image_option_.empty()) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); OpenClassPathFiles(runtime_->GetClassPathString(), dex_files_, &class_path_files_); ScopedObjectAccess soa(self); // Classpath: first the class-path given. std::vector<const DexFile*> class_path_files; for (auto& class_path_file : class_path_files_) { class_path_files.push_back(class_path_file.get()); } // Store the classpath we have right now. key_value_store_->Put(OatHeader::kClassPathKey, OatFile::EncodeDexFileDependencies(class_path_files)); // Then the dex files we'll compile. Thus we'll resolve the class-path first. class_path_files.insert(class_path_files.end(), dex_files_.begin(), dex_files_.end()); class_loader = class_linker->CreatePathClassLoader(self, class_path_files); } driver_ = new CompilerDriver(compiler_options_.get(), verification_results_, &method_inliner_map_, compiler_kind_, instruction_set_, instruction_set_features_.get(), image_, image_classes_.release(), compiled_classes_.release(), nullptr, thread_count_, dump_stats_, dump_passes_, dump_cfg_file_name_, compiler_phases_timings_.get(), swap_fd_, profile_file_); driver_->CompileAll(class_loader, dex_files_, timings_); } // Notes on the interleaving of creating the image and oat file to // ensure the references between the two are correct. // // Currently we have a memory layout that looks something like this: // // +--------------+ // | image | // +--------------+ // | boot oat | // +--------------+ // | alloc spaces | // +--------------+ // // There are several constraints on the loading of the image and boot.oat. // // 1. The image is expected to be loaded at an absolute address and // contains Objects with absolute pointers within the image. // // 2. There are absolute pointers from Methods in the image to their // code in the oat. // // 3. There are absolute pointers from the code in the oat to Methods // in the image. // // 4. There are absolute pointers from code in the oat to other code // in the oat. // // To get this all correct, we go through several steps. // // 1. We prepare offsets for all data in the oat file and calculate // the oat data size and code size. During this stage, we also set // oat code offsets in methods for use by the image writer. // // 2. We prepare offsets for the objects in the image and calculate // the image size. // // 3. We create the oat file. Originally this was just our own proprietary // file but now it is contained within an ELF dynamic object (aka an .so // file). Since we know the image size and oat data size and code size we // can prepare the ELF headers and we then know the ELF memory segment // layout and we can now resolve all references. The compiler provides // LinkerPatch information in each CompiledMethod and we resolve these, // using the layout information and image object locations provided by // image writer, as we're writing the method code. // // 4. We create the image file. It needs to know where the oat file // will be loaded after itself. Originally when oat file was simply // memory mapped so we could predict where its contents were based // on the file size. Now that it is an ELF file, we need to inspect // the ELF file to understand the in memory segment layout including // where the oat header is located within. // TODO: We could just remember this information from step 3. // // 5. We fixup the ELF program headers so that dlopen will try to // load the .so at the desired location at runtime by offsetting the // Elf32_Phdr.p_vaddr values by the desired base address. // TODO: Do this in step 3. We already know the layout there. // // Steps 1.-3. are done by the CreateOatFile() above, steps 4.-5. // are done by the CreateImageFile() below. // Write out the generated code part. Calls the OatWriter and ElfBuilder. Also prepares the // ImageWriter, if necessary. // Note: Flushing (and closing) the file is the caller's responsibility, except for the failure // case (when the file will be explicitly erased). bool CreateOatFile() { CHECK(key_value_store_.get() != nullptr); TimingLogger::ScopedTiming t("dex2oat Oat", timings_); std::unique_ptr<OatWriter> oat_writer; { TimingLogger::ScopedTiming t2("dex2oat OatWriter", timings_); std::string image_file_location; uint32_t image_file_location_oat_checksum = 0; uintptr_t image_file_location_oat_data_begin = 0; int32_t image_patch_delta = 0; if (image_) { PrepareImageWriter(image_base_); } else { TimingLogger::ScopedTiming t3("Loading image checksum", timings_); gc::space::ImageSpace* image_space = Runtime::Current()->GetHeap()->GetImageSpace(); image_file_location_oat_checksum = image_space->GetImageHeader().GetOatChecksum(); image_file_location_oat_data_begin = reinterpret_cast<uintptr_t>(image_space->GetImageHeader().GetOatDataBegin()); image_file_location = image_space->GetImageFilename(); image_patch_delta = image_space->GetImageHeader().GetPatchDelta(); } if (!image_file_location.empty()) { key_value_store_->Put(OatHeader::kImageLocationKey, image_file_location); } oat_writer.reset(new OatWriter(dex_files_, image_file_location_oat_checksum, image_file_location_oat_data_begin, image_patch_delta, driver_, image_writer_.get(), timings_, key_value_store_.get())); } if (image_) { // The OatWriter constructor has already updated offsets in methods and we need to // prepare method offsets in the image address space for direct method patching. TimingLogger::ScopedTiming t2("dex2oat Prepare image address space", timings_); if (!image_writer_->PrepareImageAddressSpace()) { LOG(ERROR) << "Failed to prepare image address space."; return false; } } { TimingLogger::ScopedTiming t2("dex2oat Write ELF", timings_); if (!driver_->WriteElf(android_root_, is_host_, dex_files_, oat_writer.get(), oat_file_.get())) { LOG(ERROR) << "Failed to write ELF file " << oat_file_->GetPath(); return false; } } VLOG(compiler) << "Oat file written successfully (unstripped): " << oat_location_; return true; } // If we are compiling an image, invoke the image creation routine. Else just skip. bool HandleImage() { if (image_) { TimingLogger::ScopedTiming t("dex2oat ImageWriter", timings_); if (!CreateImageFile()) { return false; } VLOG(compiler) << "Image written successfully: " << image_filename_; } return true; } // Create a copy from unstripped to stripped. bool CopyUnstrippedToStripped() { // If we don't want to strip in place, copy from unstripped location to stripped location. // We need to strip after image creation because FixupElf needs to use .strtab. if (oat_unstripped_ != oat_stripped_) { // If the oat file is still open, flush it. if (oat_file_.get() != nullptr && oat_file_->IsOpened()) { if (!FlushCloseOatFile()) { return false; } } TimingLogger::ScopedTiming t("dex2oat OatFile copy", timings_); std::unique_ptr<File> in(OS::OpenFileForReading(oat_unstripped_.c_str())); std::unique_ptr<File> out(OS::CreateEmptyFile(oat_stripped_.c_str())); size_t buffer_size = 8192; std::unique_ptr<uint8_t[]> buffer(new uint8_t[buffer_size]); while (true) { int bytes_read = TEMP_FAILURE_RETRY(read(in->Fd(), buffer.get(), buffer_size)); if (bytes_read <= 0) { break; } bool write_ok = out->WriteFully(buffer.get(), bytes_read); CHECK(write_ok); } if (out->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close copied oat file: " << oat_stripped_; return false; } VLOG(compiler) << "Oat file copied successfully (stripped): " << oat_stripped_; } return true; } bool FlushOatFile() { if (oat_file_.get() != nullptr) { TimingLogger::ScopedTiming t2("dex2oat Flush ELF", timings_); if (oat_file_->Flush() != 0) { PLOG(ERROR) << "Failed to flush oat file: " << oat_location_ << " / " << oat_filename_; oat_file_->Erase(); return false; } } return true; } bool FlushCloseOatFile() { if (oat_file_.get() != nullptr) { std::unique_ptr<File> tmp(oat_file_.release()); if (tmp->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close oat file: " << oat_location_ << " / " << oat_filename_; return false; } } return true; } void DumpTiming() { if (dump_timing_ || (dump_slow_timing_ && timings_->GetTotalNs() > MsToNs(1000))) { LOG(INFO) << Dumpable<TimingLogger>(*timings_); } if (dump_passes_) { LOG(INFO) << Dumpable<CumulativeLogger>(*driver_->GetTimingsLogger()); } } CompilerOptions* GetCompilerOptions() const { return compiler_options_.get(); } bool IsImage() const { return image_; } bool IsHost() const { return is_host_; } private: static size_t OpenDexFiles(const std::vector<const char*>& dex_filenames, const std::vector<const char*>& dex_locations, std::vector<std::unique_ptr<const DexFile>>* dex_files) { DCHECK(dex_files != nullptr) << "OpenDexFiles out-param is nullptr"; size_t failure_count = 0; for (size_t i = 0; i < dex_filenames.size(); i++) { const char* dex_filename = dex_filenames[i]; const char* dex_location = dex_locations[i]; ATRACE_BEGIN(StringPrintf("Opening dex file '%s'", dex_filenames[i]).c_str()); std::string error_msg; if (!OS::FileExists(dex_filename)) { LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'"; continue; } if (!DexFile::Open(dex_filename, dex_location, &error_msg, dex_files)) { LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg; ++failure_count; } ATRACE_END(); } return failure_count; } // Returns true if dex_files has a dex with the named location. We compare canonical locations, // so that relative and absolute paths will match. Not caching for the dex_files isn't very // efficient, but under normal circumstances the list is neither large nor is this part too // sensitive. static bool DexFilesContains(const std::vector<const DexFile*>& dex_files, const std::string& location) { std::string canonical_location(DexFile::GetDexCanonicalLocation(location.c_str())); for (size_t i = 0; i < dex_files.size(); ++i) { if (DexFile::GetDexCanonicalLocation(dex_files[i]->GetLocation().c_str()) == canonical_location) { return true; } } return false; } // Appends to opened_dex_files any elements of class_path that dex_files // doesn't already contain. This will open those dex files as necessary. static void OpenClassPathFiles(const std::string& class_path, std::vector<const DexFile*> dex_files, std::vector<std::unique_ptr<const DexFile>>* opened_dex_files) { DCHECK(opened_dex_files != nullptr) << "OpenClassPathFiles out-param is nullptr"; std::vector<std::string> parsed; Split(class_path, ':', &parsed); // Take Locks::mutator_lock_ so that lock ordering on the ClassLinker::dex_lock_ is maintained. ScopedObjectAccess soa(Thread::Current()); for (size_t i = 0; i < parsed.size(); ++i) { if (DexFilesContains(dex_files, parsed[i])) { continue; } std::string error_msg; if (!DexFile::Open(parsed[i].c_str(), parsed[i].c_str(), &error_msg, opened_dex_files)) { LOG(WARNING) << "Failed to open dex file '" << parsed[i] << "': " << error_msg; } } } // Create a runtime necessary for compilation. bool CreateRuntime(const RuntimeOptions& runtime_options) SHARED_TRYLOCK_FUNCTION(true, Locks::mutator_lock_) { if (!Runtime::Create(runtime_options, false)) { LOG(ERROR) << "Failed to create runtime"; return false; } Runtime* runtime = Runtime::Current(); runtime->SetInstructionSet(instruction_set_); for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) { Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i); if (!runtime->HasCalleeSaveMethod(type)) { runtime->SetCalleeSaveMethod(runtime->CreateCalleeSaveMethod(), type); } } runtime->GetClassLinker()->FixupDexCaches(runtime->GetResolutionMethod()); // Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this // set up. interpreter::UnstartedRuntime::Initialize(); runtime->GetClassLinker()->RunRootClinits(); runtime_ = runtime; return true; } void PrepareImageWriter(uintptr_t image_base) { image_writer_.reset(new ImageWriter(*driver_, image_base, compiler_options_->GetCompilePic())); } // Let the ImageWriter write the image file. If we do not compile PIC, also fix up the oat file. bool CreateImageFile() LOCKS_EXCLUDED(Locks::mutator_lock_) { CHECK(image_writer_ != nullptr); if (!image_writer_->Write(image_filename_, oat_unstripped_, oat_location_)) { LOG(ERROR) << "Failed to create image file " << image_filename_; return false; } uintptr_t oat_data_begin = image_writer_->GetOatDataBegin(); // Destroy ImageWriter before doing FixupElf. image_writer_.reset(); // Do not fix up the ELF file if we are --compile-pic if (!compiler_options_->GetCompilePic()) { std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_unstripped_.c_str())); if (oat_file.get() == nullptr) { PLOG(ERROR) << "Failed to open ELF file: " << oat_unstripped_; return false; } if (!ElfWriter::Fixup(oat_file.get(), oat_data_begin)) { oat_file->Erase(); LOG(ERROR) << "Failed to fixup ELF file " << oat_file->GetPath(); return false; } if (oat_file->FlushCloseOrErase()) { PLOG(ERROR) << "Failed to flush and close fixed ELF file " << oat_file->GetPath(); return false; } } return true; } // Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;) static std::unordered_set<std::string>* ReadImageClassesFromFile( const char* image_classes_filename) { std::function<std::string(const char*)> process = DotToDescriptor; return ReadCommentedInputFromFile(image_classes_filename, &process); } // Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;) static std::unordered_set<std::string>* ReadImageClassesFromZip( const char* zip_filename, const char* image_classes_filename, std::string* error_msg) { std::function<std::string(const char*)> process = DotToDescriptor; return ReadCommentedInputFromZip(zip_filename, image_classes_filename, &process, error_msg); } // Read lines from the given file, dropping comments and empty lines. Post-process each line with // the given function. static std::unordered_set<std::string>* ReadCommentedInputFromFile( const char* input_filename, std::function<std::string(const char*)>* process) { std::unique_ptr<std::ifstream> input_file(new std::ifstream(input_filename, std::ifstream::in)); if (input_file.get() == nullptr) { LOG(ERROR) << "Failed to open input file " << input_filename; return nullptr; } std::unique_ptr<std::unordered_set<std::string>> result( ReadCommentedInputStream(*input_file, process)); input_file->close(); return result.release(); } // Read lines from the given file from the given zip file, dropping comments and empty lines. // Post-process each line with the given function. static std::unordered_set<std::string>* ReadCommentedInputFromZip( const char* zip_filename, const char* input_filename, std::function<std::string(const char*)>* process, std::string* error_msg) { std::unique_ptr<ZipArchive> zip_archive(ZipArchive::Open(zip_filename, error_msg)); if (zip_archive.get() == nullptr) { return nullptr; } std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(input_filename, error_msg)); if (zip_entry.get() == nullptr) { *error_msg = StringPrintf("Failed to find '%s' within '%s': %s", input_filename, zip_filename, error_msg->c_str()); return nullptr; } std::unique_ptr<MemMap> input_file(zip_entry->ExtractToMemMap(zip_filename, input_filename, error_msg)); if (input_file.get() == nullptr) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", input_filename, zip_filename, error_msg->c_str()); return nullptr; } const std::string input_string(reinterpret_cast<char*>(input_file->Begin()), input_file->Size()); std::istringstream input_stream(input_string); return ReadCommentedInputStream(input_stream, process); } // Read lines from the given stream, dropping comments and empty lines. Post-process each line // with the given function. static std::unordered_set<std::string>* ReadCommentedInputStream( std::istream& in_stream, std::function<std::string(const char*)>* process) { std::unique_ptr<std::unordered_set<std::string>> image_classes( new std::unordered_set<std::string>); while (in_stream.good()) { std::string dot; std::getline(in_stream, dot); if (StartsWith(dot, "#") || dot.empty()) { continue; } if (process != nullptr) { std::string descriptor((*process)(dot.c_str())); image_classes->insert(descriptor); } else { image_classes->insert(dot); } } return image_classes.release(); } void LogCompletionTime() { // Note: when creation of a runtime fails, e.g., when trying to compile an app but when there // is no image, there won't be a Runtime::Current(). // Note: driver creation can fail when loading an invalid dex file. LOG(INFO) << "dex2oat took " << PrettyDuration(NanoTime() - start_ns_) << " (threads: " << thread_count_ << ") " << ((Runtime::Current() != nullptr && driver_ != nullptr) ? driver_->GetMemoryUsageString(kIsDebugBuild || VLOG_IS_ON(compiler)) : ""); } std::unique_ptr<CompilerOptions> compiler_options_; Compiler::Kind compiler_kind_; InstructionSet instruction_set_; std::unique_ptr<const InstructionSetFeatures> instruction_set_features_; std::unique_ptr<SafeMap<std::string, std::string> > key_value_store_; // Not a unique_ptr as we want to just exit on non-debug builds, not bringing the compiler down // in an orderly fashion. The destructor takes care of deleting this. VerificationResults* verification_results_; DexFileToMethodInlinerMap method_inliner_map_; std::unique_ptr<QuickCompilerCallbacks> callbacks_; // Ownership for the class path files. std::vector<std::unique_ptr<const DexFile>> class_path_files_; // Not a unique_ptr as we want to just exit on non-debug builds, not bringing the runtime down // in an orderly fashion. The destructor takes care of deleting this. Runtime* runtime_; size_t thread_count_; uint64_t start_ns_; std::unique_ptr<WatchDog> watchdog_; std::unique_ptr<File> oat_file_; std::string oat_stripped_; std::string oat_unstripped_; std::string oat_location_; std::string oat_filename_; int oat_fd_; std::vector<const char*> dex_filenames_; std::vector<const char*> dex_locations_; int zip_fd_; std::string zip_location_; std::string boot_image_option_; std::vector<const char*> runtime_args_; std::string image_filename_; uintptr_t image_base_; const char* image_classes_zip_filename_; const char* image_classes_filename_; const char* compiled_classes_zip_filename_; const char* compiled_classes_filename_; const char* compiled_methods_zip_filename_; const char* compiled_methods_filename_; std::unique_ptr<std::unordered_set<std::string>> image_classes_; std::unique_ptr<std::unordered_set<std::string>> compiled_classes_; std::unique_ptr<std::unordered_set<std::string>> compiled_methods_; bool image_; std::unique_ptr<ImageWriter> image_writer_; bool is_host_; std::string android_root_; std::vector<const DexFile*> dex_files_; std::vector<std::unique_ptr<const DexFile>> opened_dex_files_; // Not a unique_ptr as we want to just exit on non-debug builds, not bringing the driver down // in an orderly fashion. The destructor takes care of deleting this. CompilerDriver* driver_; std::vector<std::string> verbose_methods_; bool dump_stats_; bool dump_passes_; bool dump_timing_; bool dump_slow_timing_; std::string dump_cfg_file_name_; std::string swap_file_name_; int swap_fd_; std::string profile_file_; // Profile file to use TimingLogger* timings_; std::unique_ptr<CumulativeLogger> compiler_phases_timings_; std::unique_ptr<std::ostream> init_failure_output_; DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat); }; static void b13564922() { #if defined(__linux__) && defined(__arm__) int major, minor; struct utsname uts; if (uname(&uts) != -1 && sscanf(uts.release, "%d.%d", &major, &minor) == 2 && ((major < 3) || ((major == 3) && (minor < 4)))) { // Kernels before 3.4 don't handle the ASLR well and we can run out of address // space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization. int old_personality = personality(0xffffffff); if ((old_personality & ADDR_NO_RANDOMIZE) == 0) { int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE); if (new_personality == -1) { LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed."; } } } #endif } static int CompileImage(Dex2Oat& dex2oat) { dex2oat.Compile(); // Create the boot.oat. if (!dex2oat.CreateOatFile()) { dex2oat.EraseOatFile(); return EXIT_FAILURE; } // Flush and close the boot.oat. We always expect the output file by name, and it will be // re-opened from the unstripped name. if (!dex2oat.FlushCloseOatFile()) { return EXIT_FAILURE; } // Creates the boot.art and patches the boot.oat. if (!dex2oat.HandleImage()) { return EXIT_FAILURE; } // When given --host, finish early without stripping. if (dex2oat.IsHost()) { dex2oat.DumpTiming(); return EXIT_SUCCESS; } // Copy unstripped to stripped location, if necessary. if (!dex2oat.CopyUnstrippedToStripped()) { return EXIT_FAILURE; } // FlushClose again, as stripping might have re-opened the oat file. if (!dex2oat.FlushCloseOatFile()) { return EXIT_FAILURE; } dex2oat.DumpTiming(); return EXIT_SUCCESS; } static int CompileApp(Dex2Oat& dex2oat) { dex2oat.Compile(); // Create the app oat. if (!dex2oat.CreateOatFile()) { dex2oat.EraseOatFile(); return EXIT_FAILURE; } // Do not close the oat file here. We might haven gotten the output file by file descriptor, // which we would lose. if (!dex2oat.FlushOatFile()) { return EXIT_FAILURE; } // When given --host, finish early without stripping. if (dex2oat.IsHost()) { if (!dex2oat.FlushCloseOatFile()) { return EXIT_FAILURE; } dex2oat.DumpTiming(); return EXIT_SUCCESS; } // Copy unstripped to stripped location, if necessary. This will implicitly flush & close the // unstripped version. If this is given, we expect to be able to open writable files by name. if (!dex2oat.CopyUnstrippedToStripped()) { return EXIT_FAILURE; } // Flush and close the file. if (!dex2oat.FlushCloseOatFile()) { return EXIT_FAILURE; } dex2oat.DumpTiming(); return EXIT_SUCCESS; } static int dex2oat(int argc, char** argv) { b13564922(); TimingLogger timings("compiler", false, false); Dex2Oat dex2oat(&timings); // Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError. dex2oat.ParseArgs(argc, argv); // Check early that the result of compilation can be written if (!dex2oat.OpenFile()) { return EXIT_FAILURE; } // Print the complete line when any of the following is true: // 1) Debug build // 2) Compiling an image // 3) Compiling with --host // 4) Compiling on the host (not a target build) // Otherwise, print a stripped command line. if (kIsDebugBuild || dex2oat.IsImage() || dex2oat.IsHost() || !kIsTargetBuild) { LOG(INFO) << CommandLine(); } else { LOG(INFO) << StrippedCommandLine(); } if (!dex2oat.Setup()) { dex2oat.EraseOatFile(); return EXIT_FAILURE; } if (dex2oat.IsImage()) { return CompileImage(dex2oat); } else { return CompileApp(dex2oat); } } } // namespace art int main(int argc, char** argv) { int result = art::dex2oat(argc, argv); // Everything was done, do an explicit exit here to avoid running Runtime destructors that take // time (bug 10645725) unless we're a debug build or running on valgrind. Note: The Dex2Oat class // should not destruct the runtime in this case. if (!art::kIsDebugBuild && (RUNNING_ON_VALGRIND == 0)) { exit(result); } return result; }