/*
* Copyright (c) 2009-2012 jMonkeyEngine
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of 'jMonkeyEngine' nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package com.jme3.bullet.objects;
import com.bulletphysics.collision.dispatch.CollisionFlags;
import com.bulletphysics.dynamics.RigidBody;
import com.bulletphysics.dynamics.RigidBodyConstructionInfo;
import com.bulletphysics.linearmath.Transform;
import com.jme3.bullet.PhysicsSpace;
import com.jme3.bullet.collision.PhysicsCollisionObject;
import com.jme3.bullet.collision.shapes.CollisionShape;
import com.jme3.bullet.collision.shapes.MeshCollisionShape;
import com.jme3.bullet.joints.PhysicsJoint;
import com.jme3.bullet.objects.infos.RigidBodyMotionState;
import com.jme3.bullet.util.Converter;
import com.jme3.export.InputCapsule;
import com.jme3.export.JmeExporter;
import com.jme3.export.JmeImporter;
import com.jme3.export.OutputCapsule;
import com.jme3.math.Matrix3f;
import com.jme3.math.Quaternion;
import com.jme3.math.Vector3f;
import com.jme3.scene.Geometry;
import com.jme3.scene.Node;
import com.jme3.scene.Spatial;
import com.jme3.scene.debug.Arrow;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
/**
*
PhysicsRigidBody - Basic physics object
* @author normenhansen
*/
public class PhysicsRigidBody extends PhysicsCollisionObject {
protected RigidBodyConstructionInfo constructionInfo;
protected RigidBody rBody;
protected RigidBodyMotionState motionState = new RigidBodyMotionState();
protected float mass = 1.0f;
protected boolean kinematic = false;
protected javax.vecmath.Vector3f tempVec = new javax.vecmath.Vector3f();
protected javax.vecmath.Vector3f tempVec2 = new javax.vecmath.Vector3f();
protected Transform tempTrans = new Transform(new javax.vecmath.Matrix3f());
protected javax.vecmath.Matrix3f tempMatrix = new javax.vecmath.Matrix3f();
//TEMP VARIABLES
protected javax.vecmath.Vector3f localInertia = new javax.vecmath.Vector3f();
protected ArrayList joints = new ArrayList();
public PhysicsRigidBody() {
}
/**
* Creates a new PhysicsRigidBody with the supplied collision shape
* @param shape
*/
public PhysicsRigidBody(CollisionShape shape) {
collisionShape = shape;
rebuildRigidBody();
}
public PhysicsRigidBody(CollisionShape shape, float mass) {
collisionShape = shape;
this.mass = mass;
rebuildRigidBody();
}
/**
* Builds/rebuilds the phyiscs body when parameters have changed
*/
protected void rebuildRigidBody() {
boolean removed = false;
if(collisionShape instanceof MeshCollisionShape && mass != 0){
throw new IllegalStateException("Dynamic rigidbody can not have mesh collision shape!");
}
if (rBody != null) {
if (rBody.isInWorld()) {
PhysicsSpace.getPhysicsSpace().remove(this);
removed = true;
}
rBody.destroy();
}
preRebuild();
rBody = new RigidBody(constructionInfo);
postRebuild();
if (removed) {
PhysicsSpace.getPhysicsSpace().add(this);
}
}
protected void preRebuild() {
collisionShape.calculateLocalInertia(mass, localInertia);
if (constructionInfo == null) {
constructionInfo = new RigidBodyConstructionInfo(mass, motionState, collisionShape.getCShape(), localInertia);
} else {
constructionInfo.mass = mass;
constructionInfo.collisionShape = collisionShape.getCShape();
constructionInfo.motionState = motionState;
}
}
protected void postRebuild() {
rBody.setUserPointer(this);
if (mass == 0.0f) {
rBody.setCollisionFlags(rBody.getCollisionFlags() | CollisionFlags.STATIC_OBJECT);
} else {
rBody.setCollisionFlags(rBody.getCollisionFlags() & ~CollisionFlags.STATIC_OBJECT);
}
}
/**
* @return the motionState
*/
public RigidBodyMotionState getMotionState() {
return motionState;
}
/**
* Sets the physics object location
* @param location the location of the actual physics object
*/
public void setPhysicsLocation(Vector3f location) {
rBody.getCenterOfMassTransform(tempTrans);
Converter.convert(location, tempTrans.origin);
rBody.setCenterOfMassTransform(tempTrans);
motionState.setWorldTransform(tempTrans);
}
/**
* Sets the physics object rotation
* @param rotation the rotation of the actual physics object
*/
public void setPhysicsRotation(Matrix3f rotation) {
rBody.getCenterOfMassTransform(tempTrans);
Converter.convert(rotation, tempTrans.basis);
rBody.setCenterOfMassTransform(tempTrans);
motionState.setWorldTransform(tempTrans);
}
/**
* Sets the physics object rotation
* @param rotation the rotation of the actual physics object
*/
public void setPhysicsRotation(Quaternion rotation) {
rBody.getCenterOfMassTransform(tempTrans);
Converter.convert(rotation, tempTrans.basis);
rBody.setCenterOfMassTransform(tempTrans);
motionState.setWorldTransform(tempTrans);
}
/**
* Gets the physics object location, instantiates a new Vector3f object
*/
public Vector3f getPhysicsLocation() {
return getPhysicsLocation(null);
}
/**
* Gets the physics object rotation
*/
public Matrix3f getPhysicsRotationMatrix() {
return getPhysicsRotationMatrix(null);
}
/**
* Gets the physics object location, no object instantiation
* @param location the location of the actual physics object is stored in this Vector3f
*/
public Vector3f getPhysicsLocation(Vector3f location) {
if (location == null) {
location = new Vector3f();
}
rBody.getCenterOfMassTransform(tempTrans);
return Converter.convert(tempTrans.origin, location);
}
/**
* Gets the physics object rotation as a matrix, no conversions and no object instantiation
* @param rotation the rotation of the actual physics object is stored in this Matrix3f
*/
public Matrix3f getPhysicsRotationMatrix(Matrix3f rotation) {
if (rotation == null) {
rotation = new Matrix3f();
}
rBody.getCenterOfMassTransform(tempTrans);
return Converter.convert(tempTrans.basis, rotation);
}
/**
* Gets the physics object rotation as a quaternion, converts the bullet Matrix3f value,
* instantiates new object
*/
public Quaternion getPhysicsRotation(){
return getPhysicsRotation(null);
}
/**
* Gets the physics object rotation as a quaternion, converts the bullet Matrix3f value
* @param rotation the rotation of the actual physics object is stored in this Quaternion
*/
public Quaternion getPhysicsRotation(Quaternion rotation){
if (rotation == null) {
rotation = new Quaternion();
}
rBody.getCenterOfMassTransform(tempTrans);
return Converter.convert(tempTrans.basis, rotation);
}
/**
* Gets the physics object location
* @param location the location of the actual physics object is stored in this Vector3f
*/
public Vector3f getInterpolatedPhysicsLocation(Vector3f location) {
if (location == null) {
location = new Vector3f();
}
rBody.getInterpolationWorldTransform(tempTrans);
return Converter.convert(tempTrans.origin, location);
}
/**
* Gets the physics object rotation
* @param rotation the rotation of the actual physics object is stored in this Matrix3f
*/
public Matrix3f getInterpolatedPhysicsRotation(Matrix3f rotation) {
if (rotation == null) {
rotation = new Matrix3f();
}
rBody.getInterpolationWorldTransform(tempTrans);
return Converter.convert(tempTrans.basis, rotation);
}
/**
* Sets the node to kinematic mode. in this mode the node is not affected by physics
* but affects other physics objects. Its kinetic force is calculated by the amount
* of movement it is exposed to and its weight.
* @param kinematic
*/
public void setKinematic(boolean kinematic) {
this.kinematic = kinematic;
if (kinematic) {
rBody.setCollisionFlags(rBody.getCollisionFlags() | CollisionFlags.KINEMATIC_OBJECT);
rBody.setActivationState(com.bulletphysics.collision.dispatch.CollisionObject.DISABLE_DEACTIVATION);
} else {
rBody.setCollisionFlags(rBody.getCollisionFlags() & ~CollisionFlags.KINEMATIC_OBJECT);
rBody.setActivationState(com.bulletphysics.collision.dispatch.CollisionObject.ACTIVE_TAG);
}
}
public boolean isKinematic() {
return kinematic;
}
public void setCcdSweptSphereRadius(float radius) {
rBody.setCcdSweptSphereRadius(radius);
}
/**
* Sets the amount of motion that has to happen in one physics tick to trigger the continuous motion detection
* This avoids the problem of fast objects moving through other objects, set to zero to disable (default)
* @param threshold
*/
public void setCcdMotionThreshold(float threshold) {
rBody.setCcdMotionThreshold(threshold);
}
public float getCcdSweptSphereRadius() {
return rBody.getCcdSweptSphereRadius();
}
public float getCcdMotionThreshold() {
return rBody.getCcdMotionThreshold();
}
public float getCcdSquareMotionThreshold() {
return rBody.getCcdSquareMotionThreshold();
}
public float getMass() {
return mass;
}
/**
* Sets the mass of this PhysicsRigidBody, objects with mass=0 are static.
* @param mass
*/
public void setMass(float mass) {
this.mass = mass;
if(collisionShape instanceof MeshCollisionShape && mass != 0){
throw new IllegalStateException("Dynamic rigidbody can not have mesh collision shape!");
}
if (collisionShape != null) {
collisionShape.calculateLocalInertia(mass, localInertia);
}
if (rBody != null) {
rBody.setMassProps(mass, localInertia);
if (mass == 0.0f) {
rBody.setCollisionFlags(rBody.getCollisionFlags() | CollisionFlags.STATIC_OBJECT);
} else {
rBody.setCollisionFlags(rBody.getCollisionFlags() & ~CollisionFlags.STATIC_OBJECT);
}
}
}
public Vector3f getGravity() {
return getGravity(null);
}
public Vector3f getGravity(Vector3f gravity) {
if (gravity == null) {
gravity = new Vector3f();
}
rBody.getGravity(tempVec);
return Converter.convert(tempVec, gravity);
}
/**
* Set the local gravity of this PhysicsRigidBody
* Set this after adding the node to the PhysicsSpace,
* the PhysicsSpace assigns its current gravity to the physics node when its added.
* @param gravity the gravity vector to set
*/
public void setGravity(Vector3f gravity) {
rBody.setGravity(Converter.convert(gravity, tempVec));
}
public float getFriction() {
return rBody.getFriction();
}
/**
* Sets the friction of this physics object
* @param friction the friction of this physics object
*/
public void setFriction(float friction) {
constructionInfo.friction = friction;
rBody.setFriction(friction);
}
public void setDamping(float linearDamping, float angularDamping) {
constructionInfo.linearDamping = linearDamping;
constructionInfo.angularDamping = angularDamping;
rBody.setDamping(linearDamping, angularDamping);
}
public void setLinearDamping(float linearDamping) {
constructionInfo.linearDamping = linearDamping;
rBody.setDamping(linearDamping, constructionInfo.angularDamping);
}
public void setAngularDamping(float angularDamping) {
constructionInfo.angularDamping = angularDamping;
rBody.setDamping(constructionInfo.linearDamping, angularDamping);
}
public float getLinearDamping() {
return constructionInfo.linearDamping;
}
public float getAngularDamping() {
return constructionInfo.angularDamping;
}
public float getRestitution() {
return rBody.getRestitution();
}
/**
* The "bouncyness" of the PhysicsRigidBody, best performance if restitution=0
* @param restitution
*/
public void setRestitution(float restitution) {
constructionInfo.restitution = restitution;
rBody.setRestitution(restitution);
}
/**
* Get the current angular velocity of this PhysicsRigidBody
* @return the current linear velocity
*/
public Vector3f getAngularVelocity() {
return Converter.convert(rBody.getAngularVelocity(tempVec));
}
/**
* Get the current angular velocity of this PhysicsRigidBody
* @param vec the vector to store the velocity in
*/
public void getAngularVelocity(Vector3f vec) {
Converter.convert(rBody.getAngularVelocity(tempVec), vec);
}
/**
* Sets the angular velocity of this PhysicsRigidBody
* @param vec the angular velocity of this PhysicsRigidBody
*/
public void setAngularVelocity(Vector3f vec) {
rBody.setAngularVelocity(Converter.convert(vec, tempVec));
rBody.activate();
}
/**
* Get the current linear velocity of this PhysicsRigidBody
* @return the current linear velocity
*/
public Vector3f getLinearVelocity() {
return Converter.convert(rBody.getLinearVelocity(tempVec));
}
/**
* Get the current linear velocity of this PhysicsRigidBody
* @param vec the vector to store the velocity in
*/
public void getLinearVelocity(Vector3f vec) {
Converter.convert(rBody.getLinearVelocity(tempVec), vec);
}
/**
* Sets the linear velocity of this PhysicsRigidBody
* @param vec the linear velocity of this PhysicsRigidBody
*/
public void setLinearVelocity(Vector3f vec) {
rBody.setLinearVelocity(Converter.convert(vec, tempVec));
rBody.activate();
}
/**
* Apply a force to the PhysicsRigidBody, only applies force if the next physics update call
* updates the physics space.
* To apply an impulse, use applyImpulse, use applyContinuousForce to apply continuous force.
* @param force the force
* @param location the location of the force
*/
public void applyForce(final Vector3f force, final Vector3f location) {
rBody.applyForce(Converter.convert(force, tempVec), Converter.convert(location, tempVec2));
rBody.activate();
}
/**
* Apply a force to the PhysicsRigidBody, only applies force if the next physics update call
* updates the physics space.
* To apply an impulse, use applyImpulse.
*
* @param force the force
*/
public void applyCentralForce(final Vector3f force) {
rBody.applyCentralForce(Converter.convert(force, tempVec));
rBody.activate();
}
/**
* Apply a force to the PhysicsRigidBody, only applies force if the next physics update call
* updates the physics space.
* To apply an impulse, use applyImpulse.
*
* @param torque the torque
*/
public void applyTorque(final Vector3f torque) {
rBody.applyTorque(Converter.convert(torque, tempVec));
rBody.activate();
}
/**
* Apply an impulse to the PhysicsRigidBody in the next physics update.
* @param impulse applied impulse
* @param rel_pos location relative to object
*/
public void applyImpulse(final Vector3f impulse, final Vector3f rel_pos) {
rBody.applyImpulse(Converter.convert(impulse, tempVec), Converter.convert(rel_pos, tempVec2));
rBody.activate();
}
/**
* Apply a torque impulse to the PhysicsRigidBody in the next physics update.
* @param vec
*/
public void applyTorqueImpulse(final Vector3f vec) {
rBody.applyTorqueImpulse(Converter.convert(vec, tempVec));
rBody.activate();
}
/**
* Clear all forces from the PhysicsRigidBody
*
*/
public void clearForces() {
rBody.clearForces();
}
public void setCollisionShape(CollisionShape collisionShape) {
super.setCollisionShape(collisionShape);
if(collisionShape instanceof MeshCollisionShape && mass!=0){
throw new IllegalStateException("Dynamic rigidbody can not have mesh collision shape!");
}
if (rBody == null) {
rebuildRigidBody();
} else {
collisionShape.calculateLocalInertia(mass, localInertia);
constructionInfo.collisionShape = collisionShape.getCShape();
rBody.setCollisionShape(collisionShape.getCShape());
}
}
/**
* reactivates this PhysicsRigidBody when it has been deactivated because it was not moving
*/
public void activate() {
rBody.activate();
}
public boolean isActive() {
return rBody.isActive();
}
/**
* sets the sleeping thresholds, these define when the object gets deactivated
* to save ressources. Low values keep the object active when it barely moves
* @param linear the linear sleeping threshold
* @param angular the angular sleeping threshold
*/
public void setSleepingThresholds(float linear, float angular) {
constructionInfo.linearSleepingThreshold = linear;
constructionInfo.angularSleepingThreshold = angular;
rBody.setSleepingThresholds(linear, angular);
}
public void setLinearSleepingThreshold(float linearSleepingThreshold) {
constructionInfo.linearSleepingThreshold = linearSleepingThreshold;
rBody.setSleepingThresholds(linearSleepingThreshold, constructionInfo.angularSleepingThreshold);
}
public void setAngularSleepingThreshold(float angularSleepingThreshold) {
constructionInfo.angularSleepingThreshold = angularSleepingThreshold;
rBody.setSleepingThresholds(constructionInfo.linearSleepingThreshold, angularSleepingThreshold);
}
public float getLinearSleepingThreshold() {
return constructionInfo.linearSleepingThreshold;
}
public float getAngularSleepingThreshold() {
return constructionInfo.angularSleepingThreshold;
}
public float getAngularFactor() {
return rBody.getAngularFactor();
}
public void setAngularFactor(float factor) {
rBody.setAngularFactor(factor);
}
/**
* do not use manually, joints are added automatically
*/
public void addJoint(PhysicsJoint joint) {
if (!joints.contains(joint)) {
joints.add(joint);
}
updateDebugShape();
}
/**
*
*/
public void removeJoint(PhysicsJoint joint) {
joints.remove(joint);
}
/**
* Returns a list of connected joints. This list is only filled when
* the PhysicsRigidBody is actually added to the physics space or loaded from disk.
* @return list of active joints connected to this PhysicsRigidBody
*/
public List getJoints() {
return joints;
}
/**
* used internally
*/
public RigidBody getObjectId() {
return rBody;
}
/**
* destroys this PhysicsRigidBody and removes it from memory
*/
public void destroy() {
rBody.destroy();
}
@Override
protected Spatial getDebugShape() {
//add joints
Spatial shape = super.getDebugShape();
Node node = null;
if (shape instanceof Node) {
node = (Node) shape;
} else {
node = new Node("DebugShapeNode");
node.attachChild(shape);
}
int i = 0;
for (Iterator it = joints.iterator(); it.hasNext();) {
PhysicsJoint physicsJoint = it.next();
Vector3f pivot = null;
if (physicsJoint.getBodyA() == this) {
pivot = physicsJoint.getPivotA();
} else {
pivot = physicsJoint.getPivotB();
}
Arrow arrow = new Arrow(pivot);
Geometry geom = new Geometry("DebugBone" + i, arrow);
geom.setMaterial(debugMaterialGreen);
node.attachChild(geom);
i++;
}
return node;
}
@Override
public void write(JmeExporter e) throws IOException {
super.write(e);
OutputCapsule capsule = e.getCapsule(this);
capsule.write(getMass(), "mass", 1.0f);
capsule.write(getGravity(), "gravity", Vector3f.ZERO);
capsule.write(getFriction(), "friction", 0.5f);
capsule.write(getRestitution(), "restitution", 0);
capsule.write(getAngularFactor(), "angularFactor", 1);
capsule.write(kinematic, "kinematic", false);
capsule.write(constructionInfo.linearDamping, "linearDamping", 0);
capsule.write(constructionInfo.angularDamping, "angularDamping", 0);
capsule.write(constructionInfo.linearSleepingThreshold, "linearSleepingThreshold", 0.8f);
capsule.write(constructionInfo.angularSleepingThreshold, "angularSleepingThreshold", 1.0f);
capsule.write(getCcdMotionThreshold(), "ccdMotionThreshold", 0);
capsule.write(getCcdSweptSphereRadius(), "ccdSweptSphereRadius", 0);
capsule.write(getPhysicsLocation(new Vector3f()), "physicsLocation", new Vector3f());
capsule.write(getPhysicsRotationMatrix(new Matrix3f()), "physicsRotation", new Matrix3f());
capsule.writeSavableArrayList(joints, "joints", null);
}
@Override
public void read(JmeImporter e) throws IOException {
super.read(e);
InputCapsule capsule = e.getCapsule(this);
float mass = capsule.readFloat("mass", 1.0f);
this.mass = mass;
rebuildRigidBody();
setGravity((Vector3f) capsule.readSavable("gravity", Vector3f.ZERO.clone()));
setFriction(capsule.readFloat("friction", 0.5f));
setKinematic(capsule.readBoolean("kinematic", false));
setRestitution(capsule.readFloat("restitution", 0));
setAngularFactor(capsule.readFloat("angularFactor", 1));
setDamping(capsule.readFloat("linearDamping", 0), capsule.readFloat("angularDamping", 0));
setSleepingThresholds(capsule.readFloat("linearSleepingThreshold", 0.8f), capsule.readFloat("angularSleepingThreshold", 1.0f));
setCcdMotionThreshold(capsule.readFloat("ccdMotionThreshold", 0));
setCcdSweptSphereRadius(capsule.readFloat("ccdSweptSphereRadius", 0));
setPhysicsLocation((Vector3f) capsule.readSavable("physicsLocation", new Vector3f()));
setPhysicsRotation((Matrix3f) capsule.readSavable("physicsRotation", new Matrix3f()));
joints = capsule.readSavableArrayList("joints", null);
}
}