/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_ml.h" CvForestTree::CvForestTree() { forest = NULL; } CvForestTree::~CvForestTree() { clear(); } bool CvForestTree::train( CvDTreeTrainData* _data, const CvMat* _subsample_idx, CvRTrees* _forest ) { bool result = false; CV_FUNCNAME( "CvForestTree::train" ); __BEGIN__; clear(); forest = _forest; data = _data; data->shared = true; CV_CALL(result = do_train(_subsample_idx)); __END__; return result; } bool CvForestTree::train( const CvMat*, int, const CvMat*, const CvMat*, const CvMat*, const CvMat*, const CvMat*, CvDTreeParams ) { assert(0); return false; } bool CvForestTree::train( CvDTreeTrainData*, const CvMat* ) { assert(0); return false; } CvDTreeSplit* CvForestTree::find_best_split( CvDTreeNode* node ) { int vi; CvDTreeSplit *best_split = 0, *split = 0, *t; CV_FUNCNAME("CvForestTree::find_best_split"); __BEGIN__; CvMat* active_var_mask = 0; if( forest ) { int var_count; CvRNG* rng = forest->get_rng(); active_var_mask = forest->get_active_var_mask(); var_count = active_var_mask->cols; CV_ASSERT( var_count == data->var_count ); for( vi = 0; vi < var_count; vi++ ) { uchar temp; int i1 = cvRandInt(rng) % var_count; int i2 = cvRandInt(rng) % var_count; CV_SWAP( active_var_mask->data.ptr[i1], active_var_mask->data.ptr[i2], temp ); } } for( vi = 0; vi < data->var_count; vi++ ) { int ci = data->var_type->data.i[vi]; if( node->num_valid[vi] <= 1 || (active_var_mask && !active_var_mask->data.ptr[vi]) ) continue; if( data->is_classifier ) { if( ci >= 0 ) split = find_split_cat_class( node, vi ); else split = find_split_ord_class( node, vi ); } else { if( ci >= 0 ) split = find_split_cat_reg( node, vi ); else split = find_split_ord_reg( node, vi ); } if( split ) { if( !best_split || best_split->quality < split->quality ) CV_SWAP( best_split, split, t ); if( split ) cvSetRemoveByPtr( data->split_heap, split ); } } __END__; return best_split; } void CvForestTree::read( CvFileStorage* fs, CvFileNode* fnode, CvRTrees* _forest, CvDTreeTrainData* _data ) { CvDTree::read( fs, fnode, _data ); forest = _forest; } void CvForestTree::read( CvFileStorage*, CvFileNode* ) { assert(0); } void CvForestTree::read( CvFileStorage* _fs, CvFileNode* _node, CvDTreeTrainData* _data ) { CvDTree::read( _fs, _node, _data ); } ////////////////////////////////////////////////////////////////////////////////////////// // Random trees // ////////////////////////////////////////////////////////////////////////////////////////// CvRTrees::CvRTrees() { nclasses = 0; oob_error = 0; ntrees = 0; trees = NULL; data = NULL; active_var_mask = NULL; var_importance = NULL; rng = cvRNG(0xffffffff); default_model_name = "my_random_trees"; } void CvRTrees::clear() { int k; for( k = 0; k < ntrees; k++ ) delete trees[k]; cvFree( &trees ); delete data; data = 0; cvReleaseMat( &active_var_mask ); cvReleaseMat( &var_importance ); ntrees = 0; } CvRTrees::~CvRTrees() { clear(); } CvMat* CvRTrees::get_active_var_mask() { return active_var_mask; } CvRNG* CvRTrees::get_rng() { return &rng; } bool CvRTrees::train( const CvMat* _train_data, int _tflag, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx, const CvMat* _var_type, const CvMat* _missing_mask, CvRTParams params ) { bool result = false; CV_FUNCNAME("CvRTrees::train"); __BEGIN__; int var_count = 0; clear(); CvDTreeParams tree_params( params.max_depth, params.min_sample_count, params.regression_accuracy, params.use_surrogates, params.max_categories, params.cv_folds, params.use_1se_rule, false, params.priors ); data = new CvDTreeTrainData(); CV_CALL(data->set_data( _train_data, _tflag, _responses, _var_idx, _sample_idx, _var_type, _missing_mask, tree_params, true)); var_count = data->var_count; if( params.nactive_vars > var_count ) params.nactive_vars = var_count; else if( params.nactive_vars == 0 ) params.nactive_vars = (int)sqrt((double)var_count); else if( params.nactive_vars < 0 ) CV_ERROR( CV_StsBadArg, " must be non-negative" ); params.term_crit = cvCheckTermCriteria( params.term_crit, 0.1, 1000 ); // Create mask of active variables at the tree nodes CV_CALL(active_var_mask = cvCreateMat( 1, var_count, CV_8UC1 )); if( params.calc_var_importance ) { CV_CALL(var_importance = cvCreateMat( 1, var_count, CV_32FC1 )); cvZero(var_importance); } { // initialize active variables mask CvMat submask1, submask2; cvGetCols( active_var_mask, &submask1, 0, params.nactive_vars ); cvGetCols( active_var_mask, &submask2, params.nactive_vars, var_count ); cvSet( &submask1, cvScalar(1) ); cvZero( &submask2 ); } CV_CALL(result = grow_forest( params.term_crit )); result = true; __END__; return result; } bool CvRTrees::grow_forest( const CvTermCriteria term_crit ) { bool result = false; CvMat* sample_idx_mask_for_tree = 0; CvMat* sample_idx_for_tree = 0; CvMat* oob_sample_votes = 0; CvMat* oob_responses = 0; float* oob_samples_perm_ptr= 0; float* samples_ptr = 0; uchar* missing_ptr = 0; float* true_resp_ptr = 0; CV_FUNCNAME("CvRTrees::grow_forest"); __BEGIN__; const int max_ntrees = term_crit.max_iter; const double max_oob_err = term_crit.epsilon; const int dims = data->var_count; float maximal_response = 0; // oob_predictions_sum[i] = sum of predicted values for the i-th sample // oob_num_of_predictions[i] = number of summands // (number of predictions for the i-th sample) // initialize these variable to avoid warning C4701 CvMat oob_predictions_sum = cvMat( 1, 1, CV_32FC1 ); CvMat oob_num_of_predictions = cvMat( 1, 1, CV_32FC1 ); nsamples = data->sample_count; nclasses = data->get_num_classes(); trees = (CvForestTree**)cvAlloc( sizeof(trees[0])*max_ntrees ); memset( trees, 0, sizeof(trees[0])*max_ntrees ); if( data->is_classifier ) { CV_CALL(oob_sample_votes = cvCreateMat( nsamples, nclasses, CV_32SC1 )); cvZero(oob_sample_votes); } else { // oob_responses[0,i] = oob_predictions_sum[i] // = sum of predicted values for the i-th sample // oob_responses[1,i] = oob_num_of_predictions[i] // = number of summands (number of predictions for the i-th sample) CV_CALL(oob_responses = cvCreateMat( 2, nsamples, CV_32FC1 )); cvZero(oob_responses); cvGetRow( oob_responses, &oob_predictions_sum, 0 ); cvGetRow( oob_responses, &oob_num_of_predictions, 1 ); } CV_CALL(sample_idx_mask_for_tree = cvCreateMat( 1, nsamples, CV_8UC1 )); CV_CALL(sample_idx_for_tree = cvCreateMat( 1, nsamples, CV_32SC1 )); CV_CALL(oob_samples_perm_ptr = (float*)cvAlloc( sizeof(float)*nsamples*dims )); CV_CALL(samples_ptr = (float*)cvAlloc( sizeof(float)*nsamples*dims )); CV_CALL(missing_ptr = (uchar*)cvAlloc( sizeof(uchar)*nsamples*dims )); CV_CALL(true_resp_ptr = (float*)cvAlloc( sizeof(float)*nsamples )); CV_CALL(data->get_vectors( 0, samples_ptr, missing_ptr, true_resp_ptr )); { double minval, maxval; CvMat responses = cvMat(1, nsamples, CV_32FC1, true_resp_ptr); cvMinMaxLoc( &responses, &minval, &maxval ); maximal_response = (float)MAX( MAX( fabs(minval), fabs(maxval) ), 0 ); } ntrees = 0; while( ntrees < max_ntrees ) { int i, oob_samples_count = 0; double ncorrect_responses = 0; // used for estimation of variable importance CvMat sample, missing; CvForestTree* tree = 0; cvZero( sample_idx_mask_for_tree ); for( i = 0; i < nsamples; i++ ) //form sample for creation one tree { int idx = cvRandInt( &rng ) % nsamples; sample_idx_for_tree->data.i[i] = idx; sample_idx_mask_for_tree->data.ptr[idx] = 0xFF; } trees[ntrees] = new CvForestTree(); tree = trees[ntrees]; CV_CALL(tree->train( data, sample_idx_for_tree, this )); // form array of OOB samples indices and get these samples sample = cvMat( 1, dims, CV_32FC1, samples_ptr ); missing = cvMat( 1, dims, CV_8UC1, missing_ptr ); oob_error = 0; for( i = 0; i < nsamples; i++, sample.data.fl += dims, missing.data.ptr += dims ) { CvDTreeNode* predicted_node = 0; // check if the sample is OOB if( sample_idx_mask_for_tree->data.ptr[i] ) continue; // predict oob samples if( !predicted_node ) CV_CALL(predicted_node = tree->predict(&sample, &missing, true)); if( !data->is_classifier ) //regression { double avg_resp, resp = predicted_node->value; oob_predictions_sum.data.fl[i] += (float)resp; oob_num_of_predictions.data.fl[i] += 1; // compute oob error avg_resp = oob_predictions_sum.data.fl[i]/oob_num_of_predictions.data.fl[i]; avg_resp -= true_resp_ptr[i]; oob_error += avg_resp*avg_resp; resp = (resp - true_resp_ptr[i])/maximal_response; ncorrect_responses += exp( -resp*resp ); } else //classification { double prdct_resp; CvPoint max_loc; CvMat votes; cvGetRow(oob_sample_votes, &votes, i); votes.data.i[predicted_node->class_idx]++; // compute oob error cvMinMaxLoc( &votes, 0, 0, 0, &max_loc ); prdct_resp = data->cat_map->data.i[max_loc.x]; oob_error += (fabs(prdct_resp - true_resp_ptr[i]) < FLT_EPSILON) ? 0 : 1; ncorrect_responses += cvRound(predicted_node->value - true_resp_ptr[i]) == 0; } oob_samples_count++; } if( oob_samples_count > 0 ) oob_error /= (double)oob_samples_count; // estimate variable importance if( var_importance && oob_samples_count > 0 ) { int m; memcpy( oob_samples_perm_ptr, samples_ptr, dims*nsamples*sizeof(float)); for( m = 0; m < dims; m++ ) { double ncorrect_responses_permuted = 0; // randomly permute values of the m-th variable in the oob samples float* mth_var_ptr = oob_samples_perm_ptr + m; for( i = 0; i < nsamples; i++ ) { int i1, i2; float temp; if( sample_idx_mask_for_tree->data.ptr[i] ) //the sample is not OOB continue; i1 = cvRandInt( &rng ) % nsamples; i2 = cvRandInt( &rng ) % nsamples; CV_SWAP( mth_var_ptr[i1*dims], mth_var_ptr[i2*dims], temp ); // turn values of (m-1)-th variable, that were permuted // at the previous iteration, untouched if( m > 1 ) oob_samples_perm_ptr[i*dims+m-1] = samples_ptr[i*dims+m-1]; } // predict "permuted" cases and calculate the number of votes for the // correct class in the variable-m-permuted oob data sample = cvMat( 1, dims, CV_32FC1, oob_samples_perm_ptr ); missing = cvMat( 1, dims, CV_8UC1, missing_ptr ); for( i = 0; i < nsamples; i++, sample.data.fl += dims, missing.data.ptr += dims ) { double predct_resp, true_resp; if( sample_idx_mask_for_tree->data.ptr[i] ) //the sample is not OOB continue; predct_resp = tree->predict(&sample, &missing, true)->value; true_resp = true_resp_ptr[i]; if( data->is_classifier ) ncorrect_responses_permuted += cvRound(true_resp - predct_resp) == 0; else { true_resp = (true_resp - predct_resp)/maximal_response; ncorrect_responses_permuted += exp( -true_resp*true_resp ); } } var_importance->data.fl[m] += (float)(ncorrect_responses - ncorrect_responses_permuted); } } ntrees++; if( term_crit.type != CV_TERMCRIT_ITER && oob_error < max_oob_err ) break; } if( var_importance ) CV_CALL(cvConvertScale( var_importance, var_importance, 1./ntrees/nsamples )); result = true; __END__; cvReleaseMat( &sample_idx_mask_for_tree ); cvReleaseMat( &sample_idx_for_tree ); cvReleaseMat( &oob_sample_votes ); cvReleaseMat( &oob_responses ); cvFree( &oob_samples_perm_ptr ); cvFree( &samples_ptr ); cvFree( &missing_ptr ); cvFree( &true_resp_ptr ); return result; } const CvMat* CvRTrees::get_var_importance() { return var_importance; } float CvRTrees::get_proximity( const CvMat* sample1, const CvMat* sample2, const CvMat* missing1, const CvMat* missing2 ) const { float result = 0; CV_FUNCNAME( "CvRTrees::get_proximity" ); __BEGIN__; int i; for( i = 0; i < ntrees; i++ ) result += trees[i]->predict( sample1, missing1 ) == trees[i]->predict( sample2, missing2 ) ? 1 : 0; result = result/(float)ntrees; __END__; return result; } float CvRTrees::predict( const CvMat* sample, const CvMat* missing ) const { double result = -1; CV_FUNCNAME("CvRTrees::predict"); __BEGIN__; int k; if( nclasses > 0 ) //classification { int max_nvotes = 0; int* votes = (int*)alloca( sizeof(int)*nclasses ); memset( votes, 0, sizeof(*votes)*nclasses ); for( k = 0; k < ntrees; k++ ) { CvDTreeNode* predicted_node = trees[k]->predict( sample, missing ); int nvotes; int class_idx = predicted_node->class_idx; CV_ASSERT( 0 <= class_idx && class_idx < nclasses ); nvotes = ++votes[class_idx]; if( nvotes > max_nvotes ) { max_nvotes = nvotes; result = predicted_node->value; } } } else // regression { result = 0; for( k = 0; k < ntrees; k++ ) result += trees[k]->predict( sample, missing )->value; result /= (double)ntrees; } __END__; return (float)result; } void CvRTrees::write( CvFileStorage* fs, const char* name ) { CV_FUNCNAME( "CvRTrees::write" ); __BEGIN__; int k; if( ntrees < 1 || !trees || nsamples < 1 ) CV_ERROR( CV_StsBadArg, "Invalid CvRTrees object" ); cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_RTREES ); cvWriteInt( fs, "nclasses", nclasses ); cvWriteInt( fs, "nsamples", nsamples ); cvWriteInt( fs, "nactive_vars", (int)cvSum(active_var_mask).val[0] ); cvWriteReal( fs, "oob_error", oob_error ); if( var_importance ) cvWrite( fs, "var_importance", var_importance ); cvWriteInt( fs, "ntrees", ntrees ); CV_CALL(data->write_params( fs )); cvStartWriteStruct( fs, "trees", CV_NODE_SEQ ); for( k = 0; k < ntrees; k++ ) { cvStartWriteStruct( fs, 0, CV_NODE_MAP ); CV_CALL( trees[k]->write( fs )); cvEndWriteStruct( fs ); } cvEndWriteStruct( fs ); //trees cvEndWriteStruct( fs ); //CV_TYPE_NAME_ML_RTREES __END__; } void CvRTrees::read( CvFileStorage* fs, CvFileNode* fnode ) { CV_FUNCNAME( "CvRTrees::read" ); __BEGIN__; int nactive_vars, var_count, k; CvSeqReader reader; CvFileNode* trees_fnode = 0; clear(); nclasses = cvReadIntByName( fs, fnode, "nclasses", -1 ); nsamples = cvReadIntByName( fs, fnode, "nsamples" ); nactive_vars = cvReadIntByName( fs, fnode, "nactive_vars", -1 ); oob_error = cvReadRealByName(fs, fnode, "oob_error", -1 ); ntrees = cvReadIntByName( fs, fnode, "ntrees", -1 ); var_importance = (CvMat*)cvReadByName( fs, fnode, "var_importance" ); if( nclasses < 0 || nsamples <= 0 || nactive_vars < 0 || oob_error < 0 || ntrees <= 0) CV_ERROR( CV_StsParseError, "Some , , , " ", , of tags are missing" ); rng = CvRNG( -1 ); trees = (CvForestTree**)cvAlloc( sizeof(trees[0])*ntrees ); memset( trees, 0, sizeof(trees[0])*ntrees ); data = new CvDTreeTrainData(); data->read_params( fs, fnode ); data->shared = true; trees_fnode = cvGetFileNodeByName( fs, fnode, "trees" ); if( !trees_fnode || !CV_NODE_IS_SEQ(trees_fnode->tag) ) CV_ERROR( CV_StsParseError, " tag is missing" ); cvStartReadSeq( trees_fnode->data.seq, &reader ); if( reader.seq->total != ntrees ) CV_ERROR( CV_StsParseError, " is not equal to the number of trees saved in file" ); for( k = 0; k < ntrees; k++ ) { trees[k] = new CvForestTree(); CV_CALL(trees[k]->read( fs, (CvFileNode*)reader.ptr, this, data )); CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); } var_count = data->var_count; CV_CALL(active_var_mask = cvCreateMat( 1, var_count, CV_8UC1 )); { // initialize active variables mask CvMat submask1, submask2; cvGetCols( active_var_mask, &submask1, 0, nactive_vars ); cvGetCols( active_var_mask, &submask2, nactive_vars, var_count ); cvSet( &submask1, cvScalar(1) ); cvZero( &submask2 ); } __END__; } int CvRTrees::get_tree_count() const { return ntrees; } CvForestTree* CvRTrees::get_tree(int i) const { return (unsigned)i < (unsigned)ntrees ? trees[i] : 0; } // End of file.