// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_ARM #include "src/ic/call-optimization.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void NamedLoadHandlerCompiler::GenerateLoadViaGetter( MacroAssembler* masm, Handle type, Register receiver, Handle getter) { // ----------- S t a t e ------------- // -- r0 : receiver // -- r2 : name // -- lr : return address // ----------------------------------- { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); if (!getter.is_null()) { // Call the JavaScript getter with the receiver on the stack. if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ ldr(receiver, FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); } __ push(receiver); ParameterCount actual(0); ParameterCount expected(getter); __ InvokeFunction(getter, expected, actual, CALL_FUNCTION, NullCallWrapper()); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset()); } // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } __ Ret(); } void NamedStoreHandlerCompiler::GenerateStoreViaSetter( MacroAssembler* masm, Handle type, Register receiver, Handle setter) { // ----------- S t a t e ------------- // -- lr : return address // ----------------------------------- { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Save value register, so we can restore it later. __ push(value()); if (!setter.is_null()) { // Call the JavaScript setter with receiver and value on the stack. if (IC::TypeToMap(*type, masm->isolate())->IsJSGlobalObjectMap()) { // Swap in the global receiver. __ ldr(receiver, FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset)); } __ Push(receiver, value()); ParameterCount actual(1); ParameterCount expected(setter); __ InvokeFunction(setter, expected, actual, CALL_FUNCTION, NullCallWrapper()); } else { // If we generate a global code snippet for deoptimization only, remember // the place to continue after deoptimization. masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset()); } // We have to return the passed value, not the return value of the setter. __ pop(r0); // Restore context register. __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } __ Ret(); } void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup( MacroAssembler* masm, Label* miss_label, Register receiver, Handle name, Register scratch0, Register scratch1) { DCHECK(name->IsUniqueName()); DCHECK(!receiver.is(scratch0)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1); __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); Label done; const int kInterceptorOrAccessCheckNeededMask = (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded); // Bail out if the receiver has a named interceptor or requires access checks. Register map = scratch1; __ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ ldrb(scratch0, FieldMemOperand(map, Map::kBitFieldOffset)); __ tst(scratch0, Operand(kInterceptorOrAccessCheckNeededMask)); __ b(ne, miss_label); // Check that receiver is a JSObject. __ ldrb(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ cmp(scratch0, Operand(FIRST_SPEC_OBJECT_TYPE)); __ b(lt, miss_label); // Load properties array. Register properties = scratch0; __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); // Check that the properties array is a dictionary. __ ldr(map, FieldMemOperand(properties, HeapObject::kMapOffset)); Register tmp = properties; __ LoadRoot(tmp, Heap::kHashTableMapRootIndex); __ cmp(map, tmp); __ b(ne, miss_label); // Restore the temporarily used register. __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); NameDictionaryLookupStub::GenerateNegativeLookup( masm, miss_label, &done, receiver, properties, name, scratch1); __ bind(&done); __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1); } void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype( MacroAssembler* masm, int index, Register prototype, Label* miss) { Isolate* isolate = masm->isolate(); // Get the global function with the given index. Handle function( JSFunction::cast(isolate->native_context()->get(index))); // Check we're still in the same context. Register scratch = prototype; const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX); __ ldr(scratch, MemOperand(cp, offset)); __ ldr(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); __ ldr(scratch, MemOperand(scratch, Context::SlotOffset(index))); __ Move(ip, function); __ cmp(ip, scratch); __ b(ne, miss); // Load its initial map. The global functions all have initial maps. __ Move(prototype, Handle(function->initial_map())); // Load the prototype from the initial map. __ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset)); } void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype( MacroAssembler* masm, Register receiver, Register scratch1, Register scratch2, Label* miss_label) { __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label); __ mov(r0, scratch1); __ Ret(); } // Generate code to check that a global property cell is empty. Create // the property cell at compilation time if no cell exists for the // property. void PropertyHandlerCompiler::GenerateCheckPropertyCell( MacroAssembler* masm, Handle global, Handle name, Register scratch, Label* miss) { Handle cell = JSGlobalObject::EnsurePropertyCell(global, name); DCHECK(cell->value()->IsTheHole()); __ mov(scratch, Operand(cell)); __ ldr(scratch, FieldMemOperand(scratch, Cell::kValueOffset)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(scratch, ip); __ b(ne, miss); } static void PushInterceptorArguments(MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj) { STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsInfoIndex == 1); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 2); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 3); STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 4); __ push(name); Handle interceptor(holder_obj->GetNamedInterceptor()); DCHECK(!masm->isolate()->heap()->InNewSpace(*interceptor)); Register scratch = name; __ mov(scratch, Operand(interceptor)); __ push(scratch); __ push(receiver); __ push(holder); } static void CompileCallLoadPropertyWithInterceptor( MacroAssembler* masm, Register receiver, Register holder, Register name, Handle holder_obj, IC::UtilityId id) { PushInterceptorArguments(masm, receiver, holder, name, holder_obj); __ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()), NamedLoadHandlerCompiler::kInterceptorArgsLength); } // Generate call to api function. void PropertyHandlerCompiler::GenerateFastApiCall( MacroAssembler* masm, const CallOptimization& optimization, Handle receiver_map, Register receiver, Register scratch_in, bool is_store, int argc, Register* values) { DCHECK(!receiver.is(scratch_in)); __ push(receiver); // Write the arguments to stack frame. for (int i = 0; i < argc; i++) { Register arg = values[argc - 1 - i]; DCHECK(!receiver.is(arg)); DCHECK(!scratch_in.is(arg)); __ push(arg); } DCHECK(optimization.is_simple_api_call()); // Abi for CallApiFunctionStub. Register callee = r0; Register call_data = r4; Register holder = r2; Register api_function_address = r1; // Put holder in place. CallOptimization::HolderLookup holder_lookup; Handle api_holder = optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup); switch (holder_lookup) { case CallOptimization::kHolderIsReceiver: __ Move(holder, receiver); break; case CallOptimization::kHolderFound: __ Move(holder, api_holder); break; case CallOptimization::kHolderNotFound: UNREACHABLE(); break; } Isolate* isolate = masm->isolate(); Handle function = optimization.constant_function(); Handle api_call_info = optimization.api_call_info(); Handle call_data_obj(api_call_info->data(), isolate); // Put callee in place. __ Move(callee, function); bool call_data_undefined = false; // Put call_data in place. if (isolate->heap()->InNewSpace(*call_data_obj)) { __ Move(call_data, api_call_info); __ ldr(call_data, FieldMemOperand(call_data, CallHandlerInfo::kDataOffset)); } else if (call_data_obj->IsUndefined()) { call_data_undefined = true; __ LoadRoot(call_data, Heap::kUndefinedValueRootIndex); } else { __ Move(call_data, call_data_obj); } // Put api_function_address in place. Address function_address = v8::ToCData
(api_call_info->callback()); ApiFunction fun(function_address); ExternalReference::Type type = ExternalReference::DIRECT_API_CALL; ExternalReference ref = ExternalReference(&fun, type, masm->isolate()); __ mov(api_function_address, Operand(ref)); // Jump to stub. CallApiFunctionStub stub(isolate, is_store, call_data_undefined, argc); __ TailCallStub(&stub); } void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) { // Push receiver, key and value for runtime call. __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(), StoreDescriptor::ValueRegister()); // The slow case calls into the runtime to complete the store without causing // an IC miss that would otherwise cause a transition to the generic stub. ExternalReference ref = ExternalReference(IC_Utility(IC::kStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) { // Push receiver, key and value for runtime call. __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(), StoreDescriptor::ValueRegister()); // The slow case calls into the runtime to complete the store without causing // an IC miss that would otherwise cause a transition to the generic stub. ExternalReference ref = ExternalReference(IC_Utility(IC::kKeyedStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } #undef __ #define __ ACCESS_MASM(masm()) void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label, Handle name) { if (!label->is_unused()) { __ bind(label); __ mov(this->name(), Operand(name)); } } // Generate StoreTransition code, value is passed in r0 register. // When leaving generated code after success, the receiver_reg and name_reg // may be clobbered. Upon branch to miss_label, the receiver and name // registers have their original values. void NamedStoreHandlerCompiler::GenerateStoreTransition( Handle transition, Handle name, Register receiver_reg, Register storage_reg, Register value_reg, Register scratch1, Register scratch2, Register scratch3, Label* miss_label, Label* slow) { // r0 : value Label exit; int descriptor = transition->LastAdded(); DescriptorArray* descriptors = transition->instance_descriptors(); PropertyDetails details = descriptors->GetDetails(descriptor); Representation representation = details.representation(); DCHECK(!representation.IsNone()); if (details.type() == CONSTANT) { Handle constant(descriptors->GetValue(descriptor), isolate()); __ Move(scratch1, constant); __ cmp(value_reg, scratch1); __ b(ne, miss_label); } else if (representation.IsSmi()) { __ JumpIfNotSmi(value_reg, miss_label); } else if (representation.IsHeapObject()) { __ JumpIfSmi(value_reg, miss_label); HeapType* field_type = descriptors->GetFieldType(descriptor); HeapType::Iterator it = field_type->Classes(); if (!it.Done()) { __ ldr(scratch1, FieldMemOperand(value_reg, HeapObject::kMapOffset)); Label do_store; while (true) { __ CompareMap(scratch1, it.Current(), &do_store); it.Advance(); if (it.Done()) { __ b(ne, miss_label); break; } __ b(eq, &do_store); } __ bind(&do_store); } } else if (representation.IsDouble()) { Label do_store, heap_number; __ LoadRoot(scratch3, Heap::kMutableHeapNumberMapRootIndex); __ AllocateHeapNumber(storage_reg, scratch1, scratch2, scratch3, slow, TAG_RESULT, MUTABLE); __ JumpIfNotSmi(value_reg, &heap_number); __ SmiUntag(scratch1, value_reg); __ vmov(s0, scratch1); __ vcvt_f64_s32(d0, s0); __ jmp(&do_store); __ bind(&heap_number); __ CheckMap(value_reg, scratch1, Heap::kHeapNumberMapRootIndex, miss_label, DONT_DO_SMI_CHECK); __ vldr(d0, FieldMemOperand(value_reg, HeapNumber::kValueOffset)); __ bind(&do_store); __ vstr(d0, FieldMemOperand(storage_reg, HeapNumber::kValueOffset)); } // Stub never generated for objects that require access checks. DCHECK(!transition->is_access_check_needed()); // Perform map transition for the receiver if necessary. if (details.type() == FIELD && Map::cast(transition->GetBackPointer())->unused_property_fields() == 0) { // The properties must be extended before we can store the value. // We jump to a runtime call that extends the properties array. __ push(receiver_reg); __ mov(r2, Operand(transition)); __ Push(r2, r0); __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage), isolate()), 3, 1); return; } // Update the map of the object. __ mov(scratch1, Operand(transition)); __ str(scratch1, FieldMemOperand(receiver_reg, HeapObject::kMapOffset)); // Update the write barrier for the map field. __ RecordWriteField(receiver_reg, HeapObject::kMapOffset, scratch1, scratch2, kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); if (details.type() == CONSTANT) { DCHECK(value_reg.is(r0)); __ Ret(); return; } int index = transition->instance_descriptors()->GetFieldIndex( transition->LastAdded()); // Adjust for the number of properties stored in the object. Even in the // face of a transition we can use the old map here because the size of the // object and the number of in-object properties is not going to change. index -= transition->inobject_properties(); // TODO(verwaest): Share this code as a code stub. SmiCheck smi_check = representation.IsTagged() ? INLINE_SMI_CHECK : OMIT_SMI_CHECK; if (index < 0) { // Set the property straight into the object. int offset = transition->instance_size() + (index * kPointerSize); if (representation.IsDouble()) { __ str(storage_reg, FieldMemOperand(receiver_reg, offset)); } else { __ str(value_reg, FieldMemOperand(receiver_reg, offset)); } if (!representation.IsSmi()) { // Update the write barrier for the array address. if (!representation.IsDouble()) { __ mov(storage_reg, value_reg); } __ RecordWriteField(receiver_reg, offset, storage_reg, scratch1, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } else { // Write to the properties array. int offset = index * kPointerSize + FixedArray::kHeaderSize; // Get the properties array __ ldr(scratch1, FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset)); if (representation.IsDouble()) { __ str(storage_reg, FieldMemOperand(scratch1, offset)); } else { __ str(value_reg, FieldMemOperand(scratch1, offset)); } if (!representation.IsSmi()) { // Update the write barrier for the array address. if (!representation.IsDouble()) { __ mov(storage_reg, value_reg); } __ RecordWriteField(scratch1, offset, storage_reg, receiver_reg, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, smi_check); } } // Return the value (register r0). DCHECK(value_reg.is(r0)); __ bind(&exit); __ Ret(); } void NamedStoreHandlerCompiler::GenerateStoreField(LookupIterator* lookup, Register value_reg, Label* miss_label) { DCHECK(lookup->representation().IsHeapObject()); __ JumpIfSmi(value_reg, miss_label); HeapType::Iterator it = lookup->GetFieldType()->Classes(); __ ldr(scratch1(), FieldMemOperand(value_reg, HeapObject::kMapOffset)); Label do_store; while (true) { __ CompareMap(scratch1(), it.Current(), &do_store); it.Advance(); if (it.Done()) { __ b(ne, miss_label); break; } __ b(eq, &do_store); } __ bind(&do_store); StoreFieldStub stub(isolate(), lookup->GetFieldIndex(), lookup->representation()); GenerateTailCall(masm(), stub.GetCode()); } Register PropertyHandlerCompiler::CheckPrototypes( Register object_reg, Register holder_reg, Register scratch1, Register scratch2, Handle name, Label* miss, PrototypeCheckType check) { Handle receiver_map(IC::TypeToMap(*type(), isolate())); // Make sure there's no overlap between holder and object registers. DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg)); DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) && !scratch2.is(scratch1)); // Keep track of the current object in register reg. Register reg = object_reg; int depth = 0; Handle current = Handle::null(); if (type()->IsConstant()) { current = Handle::cast(type()->AsConstant()->Value()); } Handle prototype = Handle::null(); Handle current_map = receiver_map; Handle holder_map(holder()->map()); // Traverse the prototype chain and check the maps in the prototype chain for // fast and global objects or do negative lookup for normal objects. while (!current_map.is_identical_to(holder_map)) { ++depth; // Only global objects and objects that do not require access // checks are allowed in stubs. DCHECK(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); prototype = handle(JSObject::cast(current_map->prototype())); if (current_map->is_dictionary_map() && !current_map->IsJSGlobalObjectMap()) { DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast. if (!name->IsUniqueName()) { DCHECK(name->IsString()); name = factory()->InternalizeString(Handle::cast(name)); } DCHECK(current.is_null() || current->property_dictionary()->FindEntry(name) == NameDictionary::kNotFound); GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1, scratch2); __ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset)); reg = holder_reg; // From now on the object will be in holder_reg. __ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset)); } else { Register map_reg = scratch1; if (depth != 1 || check == CHECK_ALL_MAPS) { // CheckMap implicitly loads the map of |reg| into |map_reg|. __ CheckMap(reg, map_reg, current_map, miss, DONT_DO_SMI_CHECK); } else { __ ldr(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset)); } // Check access rights to the global object. This has to happen after // the map check so that we know that the object is actually a global // object. // This allows us to install generated handlers for accesses to the // global proxy (as opposed to using slow ICs). See corresponding code // in LookupForRead(). if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch2, miss); } else if (current_map->IsJSGlobalObjectMap()) { GenerateCheckPropertyCell(masm(), Handle::cast(current), name, scratch2, miss); } reg = holder_reg; // From now on the object will be in holder_reg. // Two possible reasons for loading the prototype from the map: // (1) Can't store references to new space in code. // (2) Handler is shared for all receivers with the same prototype // map (but not necessarily the same prototype instance). bool load_prototype_from_map = heap()->InNewSpace(*prototype) || depth == 1; if (load_prototype_from_map) { __ ldr(reg, FieldMemOperand(map_reg, Map::kPrototypeOffset)); } else { __ mov(reg, Operand(prototype)); } } // Go to the next object in the prototype chain. current = prototype; current_map = handle(current->map()); } // Log the check depth. LOG(isolate(), IntEvent("check-maps-depth", depth + 1)); if (depth != 0 || check == CHECK_ALL_MAPS) { // Check the holder map. __ CheckMap(reg, scratch1, current_map, miss, DONT_DO_SMI_CHECK); } // Perform security check for access to the global object. DCHECK(current_map->IsJSGlobalProxyMap() || !current_map->is_access_check_needed()); if (current_map->IsJSGlobalProxyMap()) { __ CheckAccessGlobalProxy(reg, scratch1, miss); } // Return the register containing the holder. return reg; } void NamedLoadHandlerCompiler::FrontendFooter(Handle name, Label* miss) { if (!miss->is_unused()) { Label success; __ b(&success); __ bind(miss); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void NamedStoreHandlerCompiler::FrontendFooter(Handle name, Label* miss) { if (!miss->is_unused()) { Label success; __ b(&success); GenerateRestoreName(miss, name); TailCallBuiltin(masm(), MissBuiltin(kind())); __ bind(&success); } } void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle value) { // Return the constant value. __ Move(r0, value); __ Ret(); } void NamedLoadHandlerCompiler::GenerateLoadCallback( Register reg, Handle callback) { // Build AccessorInfo::args_ list on the stack and push property name below // the exit frame to make GC aware of them and store pointers to them. STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0); STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3); STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4); STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5); STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6); DCHECK(!scratch2().is(reg)); DCHECK(!scratch3().is(reg)); DCHECK(!scratch4().is(reg)); __ push(receiver()); if (heap()->InNewSpace(callback->data())) { __ Move(scratch3(), callback); __ ldr(scratch3(), FieldMemOperand(scratch3(), ExecutableAccessorInfo::kDataOffset)); } else { __ Move(scratch3(), Handle(callback->data(), isolate())); } __ push(scratch3()); __ LoadRoot(scratch3(), Heap::kUndefinedValueRootIndex); __ mov(scratch4(), scratch3()); __ Push(scratch3(), scratch4()); __ mov(scratch4(), Operand(ExternalReference::isolate_address(isolate()))); __ Push(scratch4(), reg); __ mov(scratch2(), sp); // scratch2 = PropertyAccessorInfo::args_ __ push(name()); // Abi for CallApiGetter Register getter_address_reg = ApiGetterDescriptor::function_address(); Address getter_address = v8::ToCData
(callback->getter()); ApiFunction fun(getter_address); ExternalReference::Type type = ExternalReference::DIRECT_GETTER_CALL; ExternalReference ref = ExternalReference(&fun, type, isolate()); __ mov(getter_address_reg, Operand(ref)); CallApiGetterStub stub(isolate()); __ TailCallStub(&stub); } void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup( LookupIterator* it, Register holder_reg) { DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined()); // Compile the interceptor call, followed by inline code to load the // property from further up the prototype chain if the call fails. // Check that the maps haven't changed. DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1())); // Preserve the receiver register explicitly whenever it is different from the // holder and it is needed should the interceptor return without any result. // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD // case might cause a miss during the prototype check. bool must_perform_prototype_check = !holder().is_identical_to(it->GetHolder()); bool must_preserve_receiver_reg = !receiver().is(holder_reg) && (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check); // Save necessary data before invoking an interceptor. // Requires a frame to make GC aware of pushed pointers. { FrameAndConstantPoolScope frame_scope(masm(), StackFrame::INTERNAL); if (must_preserve_receiver_reg) { __ Push(receiver(), holder_reg, this->name()); } else { __ Push(holder_reg, this->name()); } // Invoke an interceptor. Note: map checks from receiver to // interceptor's holder has been compiled before (see a caller // of this method.) CompileCallLoadPropertyWithInterceptor( masm(), receiver(), holder_reg, this->name(), holder(), IC::kLoadPropertyWithInterceptorOnly); // Check if interceptor provided a value for property. If it's // the case, return immediately. Label interceptor_failed; __ LoadRoot(scratch1(), Heap::kNoInterceptorResultSentinelRootIndex); __ cmp(r0, scratch1()); __ b(eq, &interceptor_failed); frame_scope.GenerateLeaveFrame(); __ Ret(); __ bind(&interceptor_failed); __ pop(this->name()); __ pop(holder_reg); if (must_preserve_receiver_reg) { __ pop(receiver()); } // Leave the internal frame. } GenerateLoadPostInterceptor(it, holder_reg); } void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) { // Call the runtime system to load the interceptor. DCHECK(holder()->HasNamedInterceptor()); DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined()); PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(), holder()); ExternalReference ref = ExternalReference( IC_Utility(IC::kLoadPropertyWithInterceptor), isolate()); __ TailCallExternalReference( ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1); } Handle NamedStoreHandlerCompiler::CompileStoreCallback( Handle object, Handle name, Handle callback) { Register holder_reg = Frontend(receiver(), name); __ push(receiver()); // receiver __ push(holder_reg); __ mov(ip, Operand(callback)); // callback info __ push(ip); __ mov(ip, Operand(name)); __ Push(ip, value()); // Do tail-call to the runtime system. ExternalReference store_callback_property = ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate()); __ TailCallExternalReference(store_callback_property, 5, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Handle NamedStoreHandlerCompiler::CompileStoreInterceptor( Handle name) { __ Push(receiver(), this->name(), value()); // Do tail-call to the runtime system. ExternalReference store_ic_property = ExternalReference( IC_Utility(IC::kStorePropertyWithInterceptor), isolate()); __ TailCallExternalReference(store_ic_property, 3, 1); // Return the generated code. return GetCode(kind(), Code::FAST, name); } Register NamedStoreHandlerCompiler::value() { return StoreDescriptor::ValueRegister(); } Handle NamedLoadHandlerCompiler::CompileLoadGlobal( Handle cell, Handle name, bool is_configurable) { Label miss; FrontendHeader(receiver(), name, &miss); // Get the value from the cell. Register result = StoreDescriptor::ValueRegister(); __ mov(result, Operand(cell)); __ ldr(result, FieldMemOperand(result, Cell::kValueOffset)); // Check for deleted property if property can actually be deleted. if (is_configurable) { __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(result, ip); __ b(eq, &miss); } Counters* counters = isolate()->counters(); __ IncrementCounter(counters->named_load_global_stub(), 1, r1, r3); __ Ret(); FrontendFooter(name, &miss); // Return the generated code. return GetCode(kind(), Code::NORMAL, name); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM