// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. "use strict"; // This file relies on the fact that the following declarations have been made // in runtime.js: // var $Object = global.Object; // Keep reference to original values of some global properties. This // has the added benefit that the code in this file is isolated from // changes to these properties. var $floor = MathFloor; var $abs = MathAbs; // Instance class name can only be set on functions. That is the only // purpose for MathConstructor. function MathConstructor() {} var $Math = new MathConstructor(); // ------------------------------------------------------------------- // ECMA 262 - 15.8.2.1 function MathAbs(x) { if (%_IsSmi(x)) return x >= 0 ? x : -x; x = TO_NUMBER_INLINE(x); if (x === 0) return 0; // To handle -0. return x > 0 ? x : -x; } // ECMA 262 - 15.8.2.2 function MathAcosJS(x) { return %MathAcos(TO_NUMBER_INLINE(x)); } // ECMA 262 - 15.8.2.3 function MathAsinJS(x) { return %MathAsin(TO_NUMBER_INLINE(x)); } // ECMA 262 - 15.8.2.4 function MathAtanJS(x) { return %MathAtan(TO_NUMBER_INLINE(x)); } // ECMA 262 - 15.8.2.5 // The naming of y and x matches the spec, as does the order in which // ToNumber (valueOf) is called. function MathAtan2JS(y, x) { return %MathAtan2(TO_NUMBER_INLINE(y), TO_NUMBER_INLINE(x)); } // ECMA 262 - 15.8.2.6 function MathCeil(x) { return -MathFloor(-x); } // ECMA 262 - 15.8.2.8 function MathExp(x) { return %MathExpRT(TO_NUMBER_INLINE(x)); } // ECMA 262 - 15.8.2.9 function MathFloor(x) { x = TO_NUMBER_INLINE(x); // It's more common to call this with a positive number that's out // of range than negative numbers; check the upper bound first. if (x < 0x80000000 && x > 0) { // Numbers in the range [0, 2^31) can be floored by converting // them to an unsigned 32-bit value using the shift operator. // We avoid doing so for -0, because the result of Math.floor(-0) // has to be -0, which wouldn't be the case with the shift. return TO_UINT32(x); } else { return %MathFloorRT(x); } } // ECMA 262 - 15.8.2.10 function MathLog(x) { return %_MathLogRT(TO_NUMBER_INLINE(x)); } // ECMA 262 - 15.8.2.11 function MathMax(arg1, arg2) { // length == 2 var length = %_ArgumentsLength(); if (length == 2) { arg1 = TO_NUMBER_INLINE(arg1); arg2 = TO_NUMBER_INLINE(arg2); if (arg2 > arg1) return arg2; if (arg1 > arg2) return arg1; if (arg1 == arg2) { // Make sure -0 is considered less than +0. return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg2 : arg1; } // All comparisons failed, one of the arguments must be NaN. return NAN; } var r = -INFINITY; for (var i = 0; i < length; i++) { var n = %_Arguments(i); if (!IS_NUMBER(n)) n = NonNumberToNumber(n); // Make sure +0 is considered greater than -0. if (NUMBER_IS_NAN(n) || n > r || (r === 0 && n === 0 && %_IsMinusZero(r))) { r = n; } } return r; } // ECMA 262 - 15.8.2.12 function MathMin(arg1, arg2) { // length == 2 var length = %_ArgumentsLength(); if (length == 2) { arg1 = TO_NUMBER_INLINE(arg1); arg2 = TO_NUMBER_INLINE(arg2); if (arg2 > arg1) return arg1; if (arg1 > arg2) return arg2; if (arg1 == arg2) { // Make sure -0 is considered less than +0. return (arg1 === 0 && %_IsMinusZero(arg1)) ? arg1 : arg2; } // All comparisons failed, one of the arguments must be NaN. return NAN; } var r = INFINITY; for (var i = 0; i < length; i++) { var n = %_Arguments(i); if (!IS_NUMBER(n)) n = NonNumberToNumber(n); // Make sure -0 is considered less than +0. if (NUMBER_IS_NAN(n) || n < r || (r === 0 && n === 0 && %_IsMinusZero(n))) { r = n; } } return r; } // ECMA 262 - 15.8.2.13 function MathPow(x, y) { return %_MathPow(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y)); } // ECMA 262 - 15.8.2.14 var rngstate; // Initialized to a Uint32Array during genesis. function MathRandom() { var r0 = (MathImul(18273, rngstate[0] & 0xFFFF) + (rngstate[0] >>> 16)) | 0; rngstate[0] = r0; var r1 = (MathImul(36969, rngstate[1] & 0xFFFF) + (rngstate[1] >>> 16)) | 0; rngstate[1] = r1; var x = ((r0 << 16) + (r1 & 0xFFFF)) | 0; // Division by 0x100000000 through multiplication by reciprocal. return (x < 0 ? (x + 0x100000000) : x) * 2.3283064365386962890625e-10; } // ECMA 262 - 15.8.2.15 function MathRound(x) { return %RoundNumber(TO_NUMBER_INLINE(x)); } // ECMA 262 - 15.8.2.17 function MathSqrt(x) { return %_MathSqrtRT(TO_NUMBER_INLINE(x)); } // Non-standard extension. function MathImul(x, y) { return %NumberImul(TO_NUMBER_INLINE(x), TO_NUMBER_INLINE(y)); } // ES6 draft 09-27-13, section 20.2.2.28. function MathSign(x) { x = TO_NUMBER_INLINE(x); if (x > 0) return 1; if (x < 0) return -1; // -0, 0 or NaN. return x; } // ES6 draft 09-27-13, section 20.2.2.34. function MathTrunc(x) { x = TO_NUMBER_INLINE(x); if (x > 0) return MathFloor(x); if (x < 0) return MathCeil(x); // -0, 0 or NaN. return x; } // ES6 draft 09-27-13, section 20.2.2.33. function MathTanh(x) { if (!IS_NUMBER(x)) x = NonNumberToNumber(x); // Idempotent for +/-0. if (x === 0) return x; // Returns +/-1 for +/-Infinity. if (!NUMBER_IS_FINITE(x)) return MathSign(x); var exp1 = MathExp(x); var exp2 = MathExp(-x); return (exp1 - exp2) / (exp1 + exp2); } // ES6 draft 09-27-13, section 20.2.2.5. function MathAsinh(x) { if (!IS_NUMBER(x)) x = NonNumberToNumber(x); // Idempotent for NaN, +/-0 and +/-Infinity. if (x === 0 || !NUMBER_IS_FINITE(x)) return x; if (x > 0) return MathLog(x + MathSqrt(x * x + 1)); // This is to prevent numerical errors caused by large negative x. return -MathLog(-x + MathSqrt(x * x + 1)); } // ES6 draft 09-27-13, section 20.2.2.3. function MathAcosh(x) { if (!IS_NUMBER(x)) x = NonNumberToNumber(x); if (x < 1) return NAN; // Idempotent for NaN and +Infinity. if (!NUMBER_IS_FINITE(x)) return x; return MathLog(x + MathSqrt(x + 1) * MathSqrt(x - 1)); } // ES6 draft 09-27-13, section 20.2.2.7. function MathAtanh(x) { if (!IS_NUMBER(x)) x = NonNumberToNumber(x); // Idempotent for +/-0. if (x === 0) return x; // Returns NaN for NaN and +/- Infinity. if (!NUMBER_IS_FINITE(x)) return NAN; return 0.5 * MathLog((1 + x) / (1 - x)); } // ES6 draft 09-27-13, section 20.2.2.21. function MathLog10(x) { return MathLog(x) * 0.434294481903251828; // log10(x) = log(x)/log(10). } // ES6 draft 09-27-13, section 20.2.2.22. function MathLog2(x) { return MathLog(x) * 1.442695040888963407; // log2(x) = log(x)/log(2). } // ES6 draft 09-27-13, section 20.2.2.17. function MathHypot(x, y) { // Function length is 2. // We may want to introduce fast paths for two arguments and when // normalization to avoid overflow is not necessary. For now, we // simply assume the general case. var length = %_ArgumentsLength(); var args = new InternalArray(length); var max = 0; for (var i = 0; i < length; i++) { var n = %_Arguments(i); if (!IS_NUMBER(n)) n = NonNumberToNumber(n); if (n === INFINITY || n === -INFINITY) return INFINITY; n = MathAbs(n); if (n > max) max = n; args[i] = n; } // Kahan summation to avoid rounding errors. // Normalize the numbers to the largest one to avoid overflow. if (max === 0) max = 1; var sum = 0; var compensation = 0; for (var i = 0; i < length; i++) { var n = args[i] / max; var summand = n * n - compensation; var preliminary = sum + summand; compensation = (preliminary - sum) - summand; sum = preliminary; } return MathSqrt(sum) * max; } // ES6 draft 09-27-13, section 20.2.2.16. function MathFroundJS(x) { return %MathFround(TO_NUMBER_INLINE(x)); } // ES6 draft 07-18-14, section 20.2.2.11 function MathClz32(x) { x = ToUint32(TO_NUMBER_INLINE(x)); if (x == 0) return 32; var result = 0; // Binary search. if ((x & 0xFFFF0000) === 0) { x <<= 16; result += 16; }; if ((x & 0xFF000000) === 0) { x <<= 8; result += 8; }; if ((x & 0xF0000000) === 0) { x <<= 4; result += 4; }; if ((x & 0xC0000000) === 0) { x <<= 2; result += 2; }; if ((x & 0x80000000) === 0) { x <<= 1; result += 1; }; return result; } // ES6 draft 09-27-13, section 20.2.2.9. // Cube root approximation, refer to: http://metamerist.com/cbrt/cbrt.htm // Using initial approximation adapted from Kahan's cbrt and 4 iterations // of Newton's method. function MathCbrt(x) { if (!IS_NUMBER(x)) x = NonNumberToNumber(x); if (x == 0 || !NUMBER_IS_FINITE(x)) return x; return x >= 0 ? CubeRoot(x) : -CubeRoot(-x); } macro NEWTON_ITERATION_CBRT(x, approx) (1.0 / 3.0) * (x / (approx * approx) + 2 * approx); endmacro function CubeRoot(x) { var approx_hi = MathFloor(%_DoubleHi(x) / 3) + 0x2A9F7893; var approx = %_ConstructDouble(approx_hi, 0); approx = NEWTON_ITERATION_CBRT(x, approx); approx = NEWTON_ITERATION_CBRT(x, approx); approx = NEWTON_ITERATION_CBRT(x, approx); return NEWTON_ITERATION_CBRT(x, approx); } // ------------------------------------------------------------------- function SetUpMath() { %CheckIsBootstrapping(); %InternalSetPrototype($Math, $Object.prototype); %AddNamedProperty(global, "Math", $Math, DONT_ENUM); %FunctionSetInstanceClassName(MathConstructor, 'Math'); // Set up math constants. InstallConstants($Math, $Array( // ECMA-262, section 15.8.1.1. "E", 2.7182818284590452354, // ECMA-262, section 15.8.1.2. "LN10", 2.302585092994046, // ECMA-262, section 15.8.1.3. "LN2", 0.6931471805599453, // ECMA-262, section 15.8.1.4. "LOG2E", 1.4426950408889634, "LOG10E", 0.4342944819032518, "PI", 3.1415926535897932, "SQRT1_2", 0.7071067811865476, "SQRT2", 1.4142135623730951 )); // Set up non-enumerable functions of the Math object and // set their names. InstallFunctions($Math, DONT_ENUM, $Array( "random", MathRandom, "abs", MathAbs, "acos", MathAcosJS, "asin", MathAsinJS, "atan", MathAtanJS, "ceil", MathCeil, "cos", MathCos, // implemented by third_party/fdlibm "exp", MathExp, "floor", MathFloor, "log", MathLog, "round", MathRound, "sin", MathSin, // implemented by third_party/fdlibm "sqrt", MathSqrt, "tan", MathTan, // implemented by third_party/fdlibm "atan2", MathAtan2JS, "pow", MathPow, "max", MathMax, "min", MathMin, "imul", MathImul, "sign", MathSign, "trunc", MathTrunc, "sinh", MathSinh, // implemented by third_party/fdlibm "cosh", MathCosh, // implemented by third_party/fdlibm "tanh", MathTanh, "asinh", MathAsinh, "acosh", MathAcosh, "atanh", MathAtanh, "log10", MathLog10, "log2", MathLog2, "hypot", MathHypot, "fround", MathFroundJS, "clz32", MathClz32, "cbrt", MathCbrt, "log1p", MathLog1p, // implemented by third_party/fdlibm "expm1", MathExpm1 // implemented by third_party/fdlibm )); %SetInlineBuiltinFlag(MathCeil); %SetInlineBuiltinFlag(MathRandom); %SetInlineBuiltinFlag(MathSin); %SetInlineBuiltinFlag(MathCos); } SetUpMath();