// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/codegen.h" #include "src/deoptimizer.h" #include "src/full-codegen.h" #include "src/safepoint-table.h" namespace v8 { namespace internal { int Deoptimizer::patch_size() { const int kCallInstructionSizeInWords = 4; return kCallInstructionSizeInWords * Assembler::kInstrSize; } void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) { Address code_start_address = code->instruction_start(); // Invalidate the relocation information, as it will become invalid by the // code patching below, and is not needed any more. code->InvalidateRelocation(); if (FLAG_zap_code_space) { // Fail hard and early if we enter this code object again. byte* pointer = code->FindCodeAgeSequence(); if (pointer != NULL) { pointer += kNoCodeAgeSequenceLength; } else { pointer = code->instruction_start(); } CodePatcher patcher(pointer, 1); patcher.masm()->break_(0xCC); DeoptimizationInputData* data = DeoptimizationInputData::cast(code->deoptimization_data()); int osr_offset = data->OsrPcOffset()->value(); if (osr_offset > 0) { CodePatcher osr_patcher(code->instruction_start() + osr_offset, 1); osr_patcher.masm()->break_(0xCC); } } DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); #ifdef DEBUG Address prev_call_address = NULL; #endif // For each LLazyBailout instruction insert a call to the corresponding // deoptimization entry. for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; Address call_address = code_start_address + deopt_data->Pc(i)->value(); Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY); int call_size_in_bytes = MacroAssembler::CallSize(deopt_entry, RelocInfo::NONE32); int call_size_in_words = call_size_in_bytes / Assembler::kInstrSize; DCHECK(call_size_in_bytes % Assembler::kInstrSize == 0); DCHECK(call_size_in_bytes <= patch_size()); CodePatcher patcher(call_address, call_size_in_words); patcher.masm()->Call(deopt_entry, RelocInfo::NONE32); DCHECK(prev_call_address == NULL || call_address >= prev_call_address + patch_size()); DCHECK(call_address + patch_size() <= code->instruction_end()); #ifdef DEBUG prev_call_address = call_address; #endif } } void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) { // Set the register values. The values are not important as there are no // callee saved registers in JavaScript frames, so all registers are // spilled. Registers fp and sp are set to the correct values though. for (int i = 0; i < Register::kNumRegisters; i++) { input_->SetRegister(i, i * 4); } input_->SetRegister(sp.code(), reinterpret_cast(frame->sp())); input_->SetRegister(fp.code(), reinterpret_cast(frame->fp())); for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); i++) { input_->SetDoubleRegister(i, 0.0); } // Fill the frame content from the actual data on the frame. for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) { input_->SetFrameSlot(i, Memory::uint32_at(tos + i)); } } void Deoptimizer::SetPlatformCompiledStubRegisters( FrameDescription* output_frame, CodeStubDescriptor* descriptor) { ApiFunction function(descriptor->deoptimization_handler()); ExternalReference xref(&function, ExternalReference::BUILTIN_CALL, isolate_); intptr_t handler = reinterpret_cast(xref.address()); int params = descriptor->GetHandlerParameterCount(); output_frame->SetRegister(s0.code(), params); output_frame->SetRegister(s1.code(), (params - 1) * kPointerSize); output_frame->SetRegister(s2.code(), handler); } void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) { for (int i = 0; i < DoubleRegister::kMaxNumRegisters; ++i) { double double_value = input_->GetDoubleRegister(i); output_frame->SetDoubleRegister(i, double_value); } } bool Deoptimizer::HasAlignmentPadding(JSFunction* function) { // There is no dynamic alignment padding on MIPS in the input frame. return false; } #define __ masm()-> // This code tries to be close to ia32 code so that any changes can be // easily ported. void Deoptimizer::EntryGenerator::Generate() { GeneratePrologue(); // Unlike on ARM we don't save all the registers, just the useful ones. // For the rest, there are gaps on the stack, so the offsets remain the same. const int kNumberOfRegisters = Register::kNumRegisters; RegList restored_regs = kJSCallerSaved | kCalleeSaved; RegList saved_regs = restored_regs | sp.bit() | ra.bit(); const int kDoubleRegsSize = kDoubleSize * FPURegister::kMaxNumAllocatableRegisters; // Save all FPU registers before messing with them. __ Subu(sp, sp, Operand(kDoubleRegsSize)); for (int i = 0; i < FPURegister::kMaxNumAllocatableRegisters; ++i) { FPURegister fpu_reg = FPURegister::FromAllocationIndex(i); int offset = i * kDoubleSize; __ sdc1(fpu_reg, MemOperand(sp, offset)); } // Push saved_regs (needed to populate FrameDescription::registers_). // Leave gaps for other registers. __ Subu(sp, sp, kNumberOfRegisters * kPointerSize); for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) { if ((saved_regs & (1 << i)) != 0) { __ sw(ToRegister(i), MemOperand(sp, kPointerSize * i)); } } const int kSavedRegistersAreaSize = (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize; // Get the bailout id from the stack. __ lw(a2, MemOperand(sp, kSavedRegistersAreaSize)); // Get the address of the location in the code object (a3) (return // address for lazy deoptimization) and compute the fp-to-sp delta in // register t0. __ mov(a3, ra); // Correct one word for bailout id. __ Addu(t0, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); __ Subu(t0, fp, t0); // Allocate a new deoptimizer object. // Pass four arguments in a0 to a3 and fifth & sixth arguments on stack. __ PrepareCallCFunction(6, t1); __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ li(a1, Operand(type())); // bailout type, // a2: bailout id already loaded. // a3: code address or 0 already loaded. __ sw(t0, CFunctionArgumentOperand(5)); // Fp-to-sp delta. __ li(t1, Operand(ExternalReference::isolate_address(isolate()))); __ sw(t1, CFunctionArgumentOperand(6)); // Isolate. // Call Deoptimizer::New(). { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6); } // Preserve "deoptimizer" object in register v0 and get the input // frame descriptor pointer to a1 (deoptimizer->input_); // Move deopt-obj to a0 for call to Deoptimizer::ComputeOutputFrames() below. __ mov(a0, v0); __ lw(a1, MemOperand(v0, Deoptimizer::input_offset())); // Copy core registers into FrameDescription::registers_[kNumRegisters]. DCHECK(Register::kNumRegisters == kNumberOfRegisters); for (int i = 0; i < kNumberOfRegisters; i++) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); if ((saved_regs & (1 << i)) != 0) { __ lw(a2, MemOperand(sp, i * kPointerSize)); __ sw(a2, MemOperand(a1, offset)); } else if (FLAG_debug_code) { __ li(a2, kDebugZapValue); __ sw(a2, MemOperand(a1, offset)); } } int double_regs_offset = FrameDescription::double_registers_offset(); // Copy FPU registers to // double_registers_[DoubleRegister::kNumAllocatableRegisters] for (int i = 0; i < FPURegister::NumAllocatableRegisters(); ++i) { int dst_offset = i * kDoubleSize + double_regs_offset; int src_offset = i * kDoubleSize + kNumberOfRegisters * kPointerSize; __ ldc1(f0, MemOperand(sp, src_offset)); __ sdc1(f0, MemOperand(a1, dst_offset)); } // Remove the bailout id and the saved registers from the stack. __ Addu(sp, sp, Operand(kSavedRegistersAreaSize + (1 * kPointerSize))); // Compute a pointer to the unwinding limit in register a2; that is // the first stack slot not part of the input frame. __ lw(a2, MemOperand(a1, FrameDescription::frame_size_offset())); __ Addu(a2, a2, sp); // Unwind the stack down to - but not including - the unwinding // limit and copy the contents of the activation frame to the input // frame description. __ Addu(a3, a1, Operand(FrameDescription::frame_content_offset())); Label pop_loop; Label pop_loop_header; __ BranchShort(&pop_loop_header); __ bind(&pop_loop); __ pop(t0); __ sw(t0, MemOperand(a3, 0)); __ addiu(a3, a3, sizeof(uint32_t)); __ bind(&pop_loop_header); __ BranchShort(&pop_loop, ne, a2, Operand(sp)); // Compute the output frame in the deoptimizer. __ push(a0); // Preserve deoptimizer object across call. // a0: deoptimizer object; a1: scratch. __ PrepareCallCFunction(1, a1); // Call Deoptimizer::ComputeOutputFrames(). { AllowExternalCallThatCantCauseGC scope(masm()); __ CallCFunction( ExternalReference::compute_output_frames_function(isolate()), 1); } __ pop(a0); // Restore deoptimizer object (class Deoptimizer). // Replace the current (input) frame with the output frames. Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header; // Outer loop state: t0 = current "FrameDescription** output_", // a1 = one past the last FrameDescription**. __ lw(a1, MemOperand(a0, Deoptimizer::output_count_offset())); __ lw(t0, MemOperand(a0, Deoptimizer::output_offset())); // t0 is output_. __ sll(a1, a1, kPointerSizeLog2); // Count to offset. __ addu(a1, t0, a1); // a1 = one past the last FrameDescription**. __ jmp(&outer_loop_header); __ bind(&outer_push_loop); // Inner loop state: a2 = current FrameDescription*, a3 = loop index. __ lw(a2, MemOperand(t0, 0)); // output_[ix] __ lw(a3, MemOperand(a2, FrameDescription::frame_size_offset())); __ jmp(&inner_loop_header); __ bind(&inner_push_loop); __ Subu(a3, a3, Operand(sizeof(uint32_t))); __ Addu(t2, a2, Operand(a3)); __ lw(t3, MemOperand(t2, FrameDescription::frame_content_offset())); __ push(t3); __ bind(&inner_loop_header); __ BranchShort(&inner_push_loop, ne, a3, Operand(zero_reg)); __ Addu(t0, t0, Operand(kPointerSize)); __ bind(&outer_loop_header); __ BranchShort(&outer_push_loop, lt, t0, Operand(a1)); __ lw(a1, MemOperand(a0, Deoptimizer::input_offset())); for (int i = 0; i < FPURegister::kMaxNumAllocatableRegisters; ++i) { const FPURegister fpu_reg = FPURegister::FromAllocationIndex(i); int src_offset = i * kDoubleSize + double_regs_offset; __ ldc1(fpu_reg, MemOperand(a1, src_offset)); } // Push state, pc, and continuation from the last output frame. __ lw(t2, MemOperand(a2, FrameDescription::state_offset())); __ push(t2); __ lw(t2, MemOperand(a2, FrameDescription::pc_offset())); __ push(t2); __ lw(t2, MemOperand(a2, FrameDescription::continuation_offset())); __ push(t2); // Technically restoring 'at' should work unless zero_reg is also restored // but it's safer to check for this. DCHECK(!(at.bit() & restored_regs)); // Restore the registers from the last output frame. __ mov(at, a2); for (int i = kNumberOfRegisters - 1; i >= 0; i--) { int offset = (i * kPointerSize) + FrameDescription::registers_offset(); if ((restored_regs & (1 << i)) != 0) { __ lw(ToRegister(i), MemOperand(at, offset)); } } __ InitializeRootRegister(); __ pop(at); // Get continuation, leave pc on stack. __ pop(ra); __ Jump(at); __ stop("Unreachable."); } // Maximum size of a table entry generated below. const int Deoptimizer::table_entry_size_ = 2 * Assembler::kInstrSize; void Deoptimizer::TableEntryGenerator::GeneratePrologue() { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm()); // Create a sequence of deoptimization entries. // Note that registers are still live when jumping to an entry. Label table_start, done, done_special, trampoline_jump; __ bind(&table_start); int kMaxEntriesBranchReach = (1 << (kImm16Bits - 2))/ (table_entry_size_ / Assembler::kInstrSize); if (count() <= kMaxEntriesBranchReach) { // Common case. for (int i = 0; i < count(); i++) { Label start; __ bind(&start); DCHECK(is_int16(i)); __ Branch(USE_DELAY_SLOT, &done); // Expose delay slot. __ li(at, i); // In the delay slot. DCHECK_EQ(table_entry_size_, masm()->SizeOfCodeGeneratedSince(&start)); } DCHECK_EQ(masm()->SizeOfCodeGeneratedSince(&table_start), count() * table_entry_size_); __ bind(&done); __ Push(at); } else { // Uncommon case, the branch cannot reach. // Create mini trampoline and adjust id constants to get proper value at // the end of table. for (int i = kMaxEntriesBranchReach; i > 1; i--) { Label start; __ bind(&start); DCHECK(is_int16(i)); __ Branch(USE_DELAY_SLOT, &trampoline_jump); // Expose delay slot. __ li(at, - i); // In the delay slot. DCHECK_EQ(table_entry_size_, masm()->SizeOfCodeGeneratedSince(&start)); } // Entry with id == kMaxEntriesBranchReach - 1. __ bind(&trampoline_jump); __ Branch(USE_DELAY_SLOT, &done_special); __ li(at, -1); for (int i = kMaxEntriesBranchReach ; i < count(); i++) { Label start; __ bind(&start); DCHECK(is_int16(i)); __ Branch(USE_DELAY_SLOT, &done); // Expose delay slot. __ li(at, i); // In the delay slot. } DCHECK_EQ(masm()->SizeOfCodeGeneratedSince(&table_start), count() * table_entry_size_); __ bind(&done_special); __ addiu(at, at, kMaxEntriesBranchReach); __ bind(&done); __ Push(at); } } void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) { SetFrameSlot(offset, value); } void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) { // No out-of-line constant pool support. UNREACHABLE(); } #undef __ } } // namespace v8::internal