// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_X87 #include "src/codegen.h" #include "src/heap/heap.h" #include "src/macro-assembler.h" namespace v8 { namespace internal { // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterFrame(StackFrame::INTERNAL); DCHECK(!masm->has_frame()); masm->set_has_frame(true); } void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { masm->LeaveFrame(StackFrame::INTERNAL); DCHECK(masm->has_frame()); masm->set_has_frame(false); } #define __ masm. UnaryMathFunction CreateExpFunction() { // No SSE2 support return &std::exp; } UnaryMathFunction CreateSqrtFunction() { // No SSE2 support return &std::sqrt; } // Helper functions for CreateMemMoveFunction. #undef __ #define __ ACCESS_MASM(masm) enum Direction { FORWARD, BACKWARD }; enum Alignment { MOVE_ALIGNED, MOVE_UNALIGNED }; void MemMoveEmitPopAndReturn(MacroAssembler* masm) { __ pop(esi); __ pop(edi); __ ret(0); } #undef __ #define __ masm. class LabelConverter { public: explicit LabelConverter(byte* buffer) : buffer_(buffer) {} int32_t address(Label* l) const { return reinterpret_cast(buffer_) + l->pos(); } private: byte* buffer_; }; MemMoveFunction CreateMemMoveFunction() { size_t actual_size; // Allocate buffer in executable space. byte* buffer = static_cast(base::OS::Allocate(1 * KB, &actual_size, true)); if (buffer == NULL) return NULL; MacroAssembler masm(NULL, buffer, static_cast(actual_size)); LabelConverter conv(buffer); // Generated code is put into a fixed, unmovable buffer, and not into // the V8 heap. We can't, and don't, refer to any relocatable addresses // (e.g. the JavaScript nan-object). // 32-bit C declaration function calls pass arguments on stack. // Stack layout: // esp[12]: Third argument, size. // esp[8]: Second argument, source pointer. // esp[4]: First argument, destination pointer. // esp[0]: return address const int kDestinationOffset = 1 * kPointerSize; const int kSourceOffset = 2 * kPointerSize; const int kSizeOffset = 3 * kPointerSize; int stack_offset = 0; // Update if we change the stack height. Label backward, backward_much_overlap; Label forward_much_overlap, small_size, medium_size, pop_and_return; __ push(edi); __ push(esi); stack_offset += 2 * kPointerSize; Register dst = edi; Register src = esi; Register count = ecx; __ mov(dst, Operand(esp, stack_offset + kDestinationOffset)); __ mov(src, Operand(esp, stack_offset + kSourceOffset)); __ mov(count, Operand(esp, stack_offset + kSizeOffset)); __ cmp(dst, src); __ j(equal, &pop_and_return); // No SSE2. Label forward; __ cmp(count, 0); __ j(equal, &pop_and_return); __ cmp(dst, src); __ j(above, &backward); __ jmp(&forward); { // Simple forward copier. Label forward_loop_1byte, forward_loop_4byte; __ bind(&forward_loop_4byte); __ mov(eax, Operand(src, 0)); __ sub(count, Immediate(4)); __ add(src, Immediate(4)); __ mov(Operand(dst, 0), eax); __ add(dst, Immediate(4)); __ bind(&forward); // Entry point. __ cmp(count, 3); __ j(above, &forward_loop_4byte); __ bind(&forward_loop_1byte); __ cmp(count, 0); __ j(below_equal, &pop_and_return); __ mov_b(eax, Operand(src, 0)); __ dec(count); __ inc(src); __ mov_b(Operand(dst, 0), eax); __ inc(dst); __ jmp(&forward_loop_1byte); } { // Simple backward copier. Label backward_loop_1byte, backward_loop_4byte, entry_shortcut; __ bind(&backward); __ add(src, count); __ add(dst, count); __ cmp(count, 3); __ j(below_equal, &entry_shortcut); __ bind(&backward_loop_4byte); __ sub(src, Immediate(4)); __ sub(count, Immediate(4)); __ mov(eax, Operand(src, 0)); __ sub(dst, Immediate(4)); __ mov(Operand(dst, 0), eax); __ cmp(count, 3); __ j(above, &backward_loop_4byte); __ bind(&backward_loop_1byte); __ cmp(count, 0); __ j(below_equal, &pop_and_return); __ bind(&entry_shortcut); __ dec(src); __ dec(count); __ mov_b(eax, Operand(src, 0)); __ dec(dst); __ mov_b(Operand(dst, 0), eax); __ jmp(&backward_loop_1byte); } __ bind(&pop_and_return); MemMoveEmitPopAndReturn(&masm); CodeDesc desc; masm.GetCode(&desc); DCHECK(!RelocInfo::RequiresRelocation(desc)); CpuFeatures::FlushICache(buffer, actual_size); base::OS::ProtectCode(buffer, actual_size); // TODO(jkummerow): It would be nice to register this code creation event // with the PROFILE / GDBJIT system. return FUNCTION_CAST(buffer); } #undef __ // ------------------------------------------------------------------------- // Code generators #define __ ACCESS_MASM(masm) void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( MacroAssembler* masm, Register receiver, Register key, Register value, Register target_map, AllocationSiteMode mode, Label* allocation_memento_found) { Register scratch = edi; DCHECK(!AreAliased(receiver, key, value, target_map, scratch)); if (mode == TRACK_ALLOCATION_SITE) { DCHECK(allocation_memento_found != NULL); __ JumpIfJSArrayHasAllocationMemento( receiver, scratch, allocation_memento_found); } // Set transitioned map. __ mov(FieldOperand(receiver, HeapObject::kMapOffset), target_map); __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void ElementsTransitionGenerator::GenerateSmiToDouble( MacroAssembler* masm, Register receiver, Register key, Register value, Register target_map, AllocationSiteMode mode, Label* fail) { // Return address is on the stack. DCHECK(receiver.is(edx)); DCHECK(key.is(ecx)); DCHECK(value.is(eax)); DCHECK(target_map.is(ebx)); Label loop, entry, convert_hole, gc_required, only_change_map; if (mode == TRACK_ALLOCATION_SITE) { __ JumpIfJSArrayHasAllocationMemento(edx, edi, fail); } // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ mov(edi, FieldOperand(edx, JSObject::kElementsOffset)); __ cmp(edi, Immediate(masm->isolate()->factory()->empty_fixed_array())); __ j(equal, &only_change_map); __ push(eax); __ push(ebx); __ mov(edi, FieldOperand(edi, FixedArray::kLengthOffset)); // Allocate new FixedDoubleArray. // edx: receiver // edi: length of source FixedArray (smi-tagged) AllocationFlags flags = static_cast(TAG_OBJECT | DOUBLE_ALIGNMENT); __ Allocate(FixedDoubleArray::kHeaderSize, times_8, edi, REGISTER_VALUE_IS_SMI, eax, ebx, no_reg, &gc_required, flags); // eax: destination FixedDoubleArray // edi: number of elements // edx: receiver __ mov(FieldOperand(eax, HeapObject::kMapOffset), Immediate(masm->isolate()->factory()->fixed_double_array_map())); __ mov(FieldOperand(eax, FixedDoubleArray::kLengthOffset), edi); __ mov(esi, FieldOperand(edx, JSObject::kElementsOffset)); // Replace receiver's backing store with newly created FixedDoubleArray. __ mov(FieldOperand(edx, JSObject::kElementsOffset), eax); __ mov(ebx, eax); __ RecordWriteField(edx, JSObject::kElementsOffset, ebx, edi, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ mov(edi, FieldOperand(esi, FixedArray::kLengthOffset)); // Prepare for conversion loop. ExternalReference canonical_the_hole_nan_reference = ExternalReference::address_of_the_hole_nan(); __ jmp(&entry); // Call into runtime if GC is required. __ bind(&gc_required); // Restore registers before jumping into runtime. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ pop(ebx); __ pop(eax); __ jmp(fail); // Convert and copy elements // esi: source FixedArray __ bind(&loop); __ mov(ebx, FieldOperand(esi, edi, times_2, FixedArray::kHeaderSize)); // ebx: current element from source // edi: index of current element __ JumpIfNotSmi(ebx, &convert_hole); // Normal smi, convert it to double and store. __ SmiUntag(ebx); __ push(ebx); __ fild_s(Operand(esp, 0)); __ pop(ebx); __ fstp_d(FieldOperand(eax, edi, times_4, FixedDoubleArray::kHeaderSize)); __ jmp(&entry); // Found hole, store hole_nan_as_double instead. __ bind(&convert_hole); if (FLAG_debug_code) { __ cmp(ebx, masm->isolate()->factory()->the_hole_value()); __ Assert(equal, kObjectFoundInSmiOnlyArray); } __ fld_d(Operand::StaticVariable(canonical_the_hole_nan_reference)); __ fstp_d(FieldOperand(eax, edi, times_4, FixedDoubleArray::kHeaderSize)); __ bind(&entry); __ sub(edi, Immediate(Smi::FromInt(1))); __ j(not_sign, &loop); __ pop(ebx); __ pop(eax); // Restore esi. __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ bind(&only_change_map); // eax: value // ebx: target map // Set transitioned map. __ mov(FieldOperand(edx, HeapObject::kMapOffset), ebx); __ RecordWriteField(edx, HeapObject::kMapOffset, ebx, edi, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void ElementsTransitionGenerator::GenerateDoubleToObject( MacroAssembler* masm, Register receiver, Register key, Register value, Register target_map, AllocationSiteMode mode, Label* fail) { // Return address is on the stack. DCHECK(receiver.is(edx)); DCHECK(key.is(ecx)); DCHECK(value.is(eax)); DCHECK(target_map.is(ebx)); Label loop, entry, convert_hole, gc_required, only_change_map, success; if (mode == TRACK_ALLOCATION_SITE) { __ JumpIfJSArrayHasAllocationMemento(edx, edi, fail); } // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ mov(edi, FieldOperand(edx, JSObject::kElementsOffset)); __ cmp(edi, Immediate(masm->isolate()->factory()->empty_fixed_array())); __ j(equal, &only_change_map); __ push(eax); __ push(edx); __ push(ebx); __ mov(ebx, FieldOperand(edi, FixedDoubleArray::kLengthOffset)); // Allocate new FixedArray. // ebx: length of source FixedDoubleArray (smi-tagged) __ lea(edi, Operand(ebx, times_2, FixedArray::kHeaderSize)); __ Allocate(edi, eax, esi, no_reg, &gc_required, TAG_OBJECT); // eax: destination FixedArray // ebx: number of elements __ mov(FieldOperand(eax, HeapObject::kMapOffset), Immediate(masm->isolate()->factory()->fixed_array_map())); __ mov(FieldOperand(eax, FixedArray::kLengthOffset), ebx); __ mov(edi, FieldOperand(edx, JSObject::kElementsOffset)); __ jmp(&entry); // ebx: target map // edx: receiver // Set transitioned map. __ bind(&only_change_map); __ mov(FieldOperand(edx, HeapObject::kMapOffset), ebx); __ RecordWriteField(edx, HeapObject::kMapOffset, ebx, edi, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ jmp(&success); // Call into runtime if GC is required. __ bind(&gc_required); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ pop(ebx); __ pop(edx); __ pop(eax); __ jmp(fail); // Box doubles into heap numbers. // edi: source FixedDoubleArray // eax: destination FixedArray __ bind(&loop); // ebx: index of current element (smi-tagged) uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32); __ cmp(FieldOperand(edi, ebx, times_4, offset), Immediate(kHoleNanUpper32)); __ j(equal, &convert_hole); // Non-hole double, copy value into a heap number. __ AllocateHeapNumber(edx, esi, no_reg, &gc_required); // edx: new heap number __ mov(esi, FieldOperand(edi, ebx, times_4, FixedDoubleArray::kHeaderSize)); __ mov(FieldOperand(edx, HeapNumber::kValueOffset), esi); __ mov(esi, FieldOperand(edi, ebx, times_4, offset)); __ mov(FieldOperand(edx, HeapNumber::kValueOffset + kPointerSize), esi); __ mov(FieldOperand(eax, ebx, times_2, FixedArray::kHeaderSize), edx); __ mov(esi, ebx); __ RecordWriteArray(eax, edx, esi, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ jmp(&entry, Label::kNear); // Replace the-hole NaN with the-hole pointer. __ bind(&convert_hole); __ mov(FieldOperand(eax, ebx, times_2, FixedArray::kHeaderSize), masm->isolate()->factory()->the_hole_value()); __ bind(&entry); __ sub(ebx, Immediate(Smi::FromInt(1))); __ j(not_sign, &loop); __ pop(ebx); __ pop(edx); // ebx: target map // edx: receiver // Set transitioned map. __ mov(FieldOperand(edx, HeapObject::kMapOffset), ebx); __ RecordWriteField(edx, HeapObject::kMapOffset, ebx, edi, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Replace receiver's backing store with newly created and filled FixedArray. __ mov(FieldOperand(edx, JSObject::kElementsOffset), eax); __ RecordWriteField(edx, JSObject::kElementsOffset, eax, edi, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Restore registers. __ pop(eax); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ bind(&success); } void StringCharLoadGenerator::Generate(MacroAssembler* masm, Factory* factory, Register string, Register index, Register result, Label* call_runtime) { // Fetch the instance type of the receiver into result register. __ mov(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset)); // We need special handling for indirect strings. Label check_sequential; __ test(result, Immediate(kIsIndirectStringMask)); __ j(zero, &check_sequential, Label::kNear); // Dispatch on the indirect string shape: slice or cons. Label cons_string; __ test(result, Immediate(kSlicedNotConsMask)); __ j(zero, &cons_string, Label::kNear); // Handle slices. Label indirect_string_loaded; __ mov(result, FieldOperand(string, SlicedString::kOffsetOffset)); __ SmiUntag(result); __ add(index, result); __ mov(string, FieldOperand(string, SlicedString::kParentOffset)); __ jmp(&indirect_string_loaded, Label::kNear); // Handle cons strings. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ bind(&cons_string); __ cmp(FieldOperand(string, ConsString::kSecondOffset), Immediate(factory->empty_string())); __ j(not_equal, call_runtime); __ mov(string, FieldOperand(string, ConsString::kFirstOffset)); __ bind(&indirect_string_loaded); __ mov(result, FieldOperand(string, HeapObject::kMapOffset)); __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset)); // Distinguish sequential and external strings. Only these two string // representations can reach here (slices and flat cons strings have been // reduced to the underlying sequential or external string). Label seq_string; __ bind(&check_sequential); STATIC_ASSERT(kSeqStringTag == 0); __ test(result, Immediate(kStringRepresentationMask)); __ j(zero, &seq_string, Label::kNear); // Handle external strings. Label one_byte_external, done; if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ test(result, Immediate(kIsIndirectStringMask)); __ Assert(zero, kExternalStringExpectedButNotFound); } // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); __ test_b(result, kShortExternalStringMask); __ j(not_zero, call_runtime); // Check encoding. STATIC_ASSERT(kTwoByteStringTag == 0); __ test_b(result, kStringEncodingMask); __ mov(result, FieldOperand(string, ExternalString::kResourceDataOffset)); __ j(not_equal, &one_byte_external, Label::kNear); // Two-byte string. __ movzx_w(result, Operand(result, index, times_2, 0)); __ jmp(&done, Label::kNear); __ bind(&one_byte_external); // One-byte string. __ movzx_b(result, Operand(result, index, times_1, 0)); __ jmp(&done, Label::kNear); // Dispatch on the encoding: one-byte or two-byte. Label one_byte; __ bind(&seq_string); STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ test(result, Immediate(kStringEncodingMask)); __ j(not_zero, &one_byte, Label::kNear); // Two-byte string. // Load the two-byte character code into the result register. __ movzx_w(result, FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize)); __ jmp(&done, Label::kNear); // One-byte string. // Load the byte into the result register. __ bind(&one_byte); __ movzx_b(result, FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize)); __ bind(&done); } #undef __ CodeAgingHelper::CodeAgingHelper() { DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength); CodePatcher patcher(young_sequence_.start(), young_sequence_.length()); patcher.masm()->push(ebp); patcher.masm()->mov(ebp, esp); patcher.masm()->push(esi); patcher.masm()->push(edi); } #ifdef DEBUG bool CodeAgingHelper::IsOld(byte* candidate) const { return *candidate == kCallOpcode; } #endif bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { bool result = isolate->code_aging_helper()->IsYoung(sequence); DCHECK(result || isolate->code_aging_helper()->IsOld(sequence)); return result; } void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age, MarkingParity* parity) { if (IsYoungSequence(isolate, sequence)) { *age = kNoAgeCodeAge; *parity = NO_MARKING_PARITY; } else { sequence++; // Skip the kCallOpcode byte Address target_address = sequence + *reinterpret_cast(sequence) + Assembler::kCallTargetAddressOffset; Code* stub = GetCodeFromTargetAddress(target_address); GetCodeAgeAndParity(stub, age, parity); } } void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age, MarkingParity parity) { uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); if (age == kNoAgeCodeAge) { isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); CpuFeatures::FlushICache(sequence, young_length); } else { Code* stub = GetCodeAgeStub(isolate, age, parity); CodePatcher patcher(sequence, young_length); patcher.masm()->call(stub->instruction_start(), RelocInfo::NONE32); } } } } // namespace v8::internal #endif // V8_TARGET_ARCH_X87