/****************************************************************************** * * Copyright (C) 2014 Google, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at: * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * ******************************************************************************/ #define LOG_TAG "bt_osi_alarm" #include #include #include #include #include #include #include #include #include "osi/include/alarm.h" #include "osi/include/allocator.h" #include "osi/include/list.h" #include "osi/include/log.h" #include "osi/include/osi.h" #include "osi/include/semaphore.h" #include "osi/include/thread.h" // Make callbacks run at high thread priority. Some callbacks are used for audio // related timer tasks as well as re-transmissions etc. Since we at this point // cannot differentiate what callback we are dealing with, assume high priority // for now. // TODO(eisenbach): Determine correct thread priority (from parent?/per alarm?) static const int CALLBACK_THREAD_PRIORITY_HIGH = -19; struct alarm_t { // The lock is held while the callback for this alarm is being executed. // It allows us to release the coarse-grained monitor lock while a potentially // long-running callback is executing. |alarm_cancel| uses this lock to provide // a guarantee to its caller that the callback will not be in progress when it // returns. pthread_mutex_t callback_lock; period_ms_t created; period_ms_t period; period_ms_t deadline; bool is_periodic; alarm_callback_t callback; void *data; }; extern bt_os_callouts_t *bt_os_callouts; // If the next wakeup time is less than this threshold, we should acquire // a wakelock instead of setting a wake alarm so we're not bouncing in // and out of suspend frequently. This value is externally visible to allow // unit tests to run faster. It should not be modified by production code. int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000; static const clockid_t CLOCK_ID = CLOCK_BOOTTIME; static const char *WAKE_LOCK_ID = "bluedroid_timer"; // This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback // functions execute serially and not concurrently. As a result, this mutex also // protects the |alarms| list. static pthread_mutex_t monitor; static list_t *alarms; static timer_t timer; static bool timer_set; // All alarm callbacks are dispatched from |callback_thread| static thread_t *callback_thread; static bool callback_thread_active; static semaphore_t *alarm_expired; static bool lazy_initialize(void); static period_ms_t now(void); static void alarm_set_internal(alarm_t *alarm, period_ms_t deadline, alarm_callback_t cb, void *data, bool is_periodic); static void schedule_next_instance(alarm_t *alarm, bool force_reschedule); static void reschedule_root_alarm(void); static void timer_callback(void *data); static void callback_dispatch(void *context); alarm_t *alarm_new(void) { // Make sure we have a list we can insert alarms into. if (!alarms && !lazy_initialize()) return NULL; pthread_mutexattr_t attr; pthread_mutexattr_init(&attr); alarm_t *ret = osi_calloc(sizeof(alarm_t)); if (!ret) { LOG_ERROR("%s unable to allocate memory for alarm.", __func__); goto error; } // Make this a recursive mutex to make it safe to call |alarm_cancel| from // within the callback function of the alarm. int error = pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); if (error) { LOG_ERROR("%s unable to create a recursive mutex: %s", __func__, strerror(error)); goto error; } error = pthread_mutex_init(&ret->callback_lock, &attr); if (error) { LOG_ERROR("%s unable to initialize mutex: %s", __func__, strerror(error)); goto error; } pthread_mutexattr_destroy(&attr); return ret; error:; pthread_mutexattr_destroy(&attr); osi_free(ret); return NULL; } void alarm_free(alarm_t *alarm) { if (!alarm) return; alarm_cancel(alarm); pthread_mutex_destroy(&alarm->callback_lock); osi_free(alarm); } period_ms_t alarm_get_remaining_ms(const alarm_t *alarm) { assert(alarm != NULL); period_ms_t remaining_ms = 0; pthread_mutex_lock(&monitor); if (alarm->deadline) remaining_ms = alarm->deadline - now(); pthread_mutex_unlock(&monitor); return remaining_ms; } void alarm_set(alarm_t *alarm, period_ms_t deadline, alarm_callback_t cb, void *data) { alarm_set_internal(alarm, deadline, cb, data, false); } void alarm_set_periodic(alarm_t *alarm, period_ms_t period, alarm_callback_t cb, void *data) { alarm_set_internal(alarm, period, cb, data, true); } // Runs in exclusion with alarm_cancel and timer_callback. static void alarm_set_internal(alarm_t *alarm, period_ms_t period, alarm_callback_t cb, void *data, bool is_periodic) { assert(alarms != NULL); assert(alarm != NULL); assert(cb != NULL); pthread_mutex_lock(&monitor); alarm->created = now(); alarm->is_periodic = is_periodic; alarm->period = period; alarm->callback = cb; alarm->data = data; schedule_next_instance(alarm, false); pthread_mutex_unlock(&monitor); } void alarm_cancel(alarm_t *alarm) { assert(alarms != NULL); assert(alarm != NULL); pthread_mutex_lock(&monitor); bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm); list_remove(alarms, alarm); alarm->deadline = 0; alarm->callback = NULL; alarm->data = NULL; if (needs_reschedule) reschedule_root_alarm(); pthread_mutex_unlock(&monitor); // If the callback for |alarm| is in progress, wait here until it completes. pthread_mutex_lock(&alarm->callback_lock); pthread_mutex_unlock(&alarm->callback_lock); } void alarm_cleanup(void) { // If lazy_initialize never ran there is nothing to do if (!alarms) return; callback_thread_active = false; semaphore_post(alarm_expired); thread_free(callback_thread); callback_thread = NULL; semaphore_free(alarm_expired); alarm_expired = NULL; timer_delete(&timer); list_free(alarms); alarms = NULL; pthread_mutex_destroy(&monitor); } static bool lazy_initialize(void) { assert(alarms == NULL); pthread_mutex_init(&monitor, NULL); alarms = list_new(NULL); if (!alarms) { LOG_ERROR("%s unable to allocate alarm list.", __func__); return false; } struct sigevent sigevent; memset(&sigevent, 0, sizeof(sigevent)); sigevent.sigev_notify = SIGEV_THREAD; sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback; if (timer_create(CLOCK_ID, &sigevent, &timer) == -1) { LOG_ERROR("%s unable to create timer: %s", __func__, strerror(errno)); return false; } alarm_expired = semaphore_new(0); if (!alarm_expired) { LOG_ERROR("%s unable to create alarm expired semaphore", __func__); return false; } callback_thread_active = true; callback_thread = thread_new("alarm_callbacks"); if (!callback_thread) { LOG_ERROR("%s unable to create alarm callback thread.", __func__); return false; } thread_set_priority(callback_thread, CALLBACK_THREAD_PRIORITY_HIGH); thread_post(callback_thread, callback_dispatch, NULL); return true; } static period_ms_t now(void) { assert(alarms != NULL); struct timespec ts; if (clock_gettime(CLOCK_ID, &ts) == -1) { LOG_ERROR("%s unable to get current time: %s", __func__, strerror(errno)); return 0; } return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL); } // Must be called with monitor held static void schedule_next_instance(alarm_t *alarm, bool force_reschedule) { // If the alarm is currently set and it's at the start of the list, // we'll need to re-schedule since we've adjusted the earliest deadline. bool needs_reschedule = (!list_is_empty(alarms) && list_front(alarms) == alarm); if (alarm->callback) list_remove(alarms, alarm); // Calculate the next deadline for this alarm period_ms_t just_now = now(); period_ms_t ms_into_period = alarm->is_periodic ? ((just_now - alarm->created) % alarm->period) : 0; alarm->deadline = just_now + (alarm->period - ms_into_period); // Add it into the timer list sorted by deadline (earliest deadline first). if (list_is_empty(alarms) || ((alarm_t *)list_front(alarms))->deadline >= alarm->deadline) list_prepend(alarms, alarm); else for (list_node_t *node = list_begin(alarms); node != list_end(alarms); node = list_next(node)) { list_node_t *next = list_next(node); if (next == list_end(alarms) || ((alarm_t *)list_node(next))->deadline >= alarm->deadline) { list_insert_after(alarms, node, alarm); break; } } // If the new alarm has the earliest deadline, we need to re-evaluate our schedule. if (force_reschedule || needs_reschedule || (!list_is_empty(alarms) && list_front(alarms) == alarm)) reschedule_root_alarm(); } // NOTE: must be called with monitor lock. static void reschedule_root_alarm(void) { bool timer_was_set = timer_set; assert(alarms != NULL); // If used in a zeroed state, disarms the timer struct itimerspec wakeup_time; memset(&wakeup_time, 0, sizeof(wakeup_time)); if (list_is_empty(alarms)) goto done; alarm_t *next = list_front(alarms); int64_t next_expiration = next->deadline - now(); if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) { if (!timer_set) { int status = bt_os_callouts->acquire_wake_lock(WAKE_LOCK_ID); if (status != BT_STATUS_SUCCESS) { LOG_ERROR("%s unable to acquire wake lock: %d", __func__, status); goto done; } } wakeup_time.it_value.tv_sec = (next->deadline / 1000); wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL; } else { if (!bt_os_callouts->set_wake_alarm(next_expiration, true, timer_callback, NULL)) LOG_ERROR("%s unable to set wake alarm for %" PRId64 "ms.", __func__, next_expiration); } done: timer_set = wakeup_time.it_value.tv_sec != 0 || wakeup_time.it_value.tv_nsec != 0; if (timer_was_set && !timer_set) { bt_os_callouts->release_wake_lock(WAKE_LOCK_ID); } if (timer_settime(timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1) LOG_ERROR("%s unable to set timer: %s", __func__, strerror(errno)); // If next expiration was in the past (e.g. short timer that got context switched) // then the timer might have diarmed itself. Detect this case and work around it // by manually signalling the |alarm_expired| semaphore. // // It is possible that the timer was actually super short (a few milliseconds) // and the timer expired normally before we called |timer_gettime|. Worst case, // |alarm_expired| is signaled twice for that alarm. Nothing bad should happen in // that case though since the callback dispatch function checks to make sure the // timer at the head of the list actually expired. if (timer_set) { struct itimerspec time_to_expire; timer_gettime(timer, &time_to_expire); if (time_to_expire.it_value.tv_sec == 0 && time_to_expire.it_value.tv_nsec == 0) { LOG_ERROR("%s alarm expiration too close for posix timers, switching to guns", __func__); semaphore_post(alarm_expired); } } } // Callback function for wake alarms and our posix timer static void timer_callback(UNUSED_ATTR void *ptr) { semaphore_post(alarm_expired); } // Function running on |callback_thread| that dispatches alarm callbacks upon // alarm expiration, which is signaled using |alarm_expired|. static void callback_dispatch(UNUSED_ATTR void *context) { while (true) { semaphore_wait(alarm_expired); if (!callback_thread_active) break; pthread_mutex_lock(&monitor); alarm_t *alarm; // Take into account that the alarm may get cancelled before we get to it. // We're done here if there are no alarms or the alarm at the front is in // the future. Release the monitor lock and exit right away since there's // nothing left to do. if (list_is_empty(alarms) || (alarm = list_front(alarms))->deadline > now()) { reschedule_root_alarm(); pthread_mutex_unlock(&monitor); continue; } list_remove(alarms, alarm); alarm_callback_t callback = alarm->callback; void *data = alarm->data; if (alarm->is_periodic) { schedule_next_instance(alarm, true); } else { reschedule_root_alarm(); alarm->deadline = 0; alarm->callback = NULL; alarm->data = NULL; } // Downgrade lock. pthread_mutex_lock(&alarm->callback_lock); pthread_mutex_unlock(&monitor); callback(data); pthread_mutex_unlock(&alarm->callback_lock); } LOG_DEBUG("%s Callback thread exited", __func__); }