1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCUDARuntime.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenModule.h"
20 #include "CodeGenPGO.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/CodeGen/CGFunctionInfo.h"
28 #include "clang/Frontend/CodeGenOptions.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Operator.h"
33 using namespace clang;
34 using namespace CodeGen;
35
CodeGenFunction(CodeGenModule & cgm,bool suppressNewContext)36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext)
37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()),
38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(),
39 CGBuilderInserterTy(this)),
40 CurFn(nullptr), CapturedStmtInfo(nullptr),
41 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false),
42 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false),
43 IsOutlinedSEHHelper(false), BlockInfo(nullptr), BlockPointer(nullptr),
44 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr),
45 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr),
46 ExceptionSlot(nullptr), EHSelectorSlot(nullptr),
47 AbnormalTerminationSlot(nullptr), SEHPointersDecl(nullptr),
48 DebugInfo(CGM.getModuleDebugInfo()), DisableDebugInfo(false),
49 DidCallStackSave(false), IndirectBranch(nullptr), PGO(cgm),
50 SwitchInsn(nullptr), SwitchWeights(nullptr), CaseRangeBlock(nullptr),
51 UnreachableBlock(nullptr), NumReturnExprs(0), NumSimpleReturnExprs(0),
52 CXXABIThisDecl(nullptr), CXXABIThisValue(nullptr), CXXThisValue(nullptr),
53 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr),
54 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr),
55 CurLexicalScope(nullptr), TerminateLandingPad(nullptr),
56 TerminateHandler(nullptr), TrapBB(nullptr) {
57 if (!suppressNewContext)
58 CGM.getCXXABI().getMangleContext().startNewFunction();
59
60 llvm::FastMathFlags FMF;
61 if (CGM.getLangOpts().FastMath)
62 FMF.setUnsafeAlgebra();
63 if (CGM.getLangOpts().FiniteMathOnly) {
64 FMF.setNoNaNs();
65 FMF.setNoInfs();
66 }
67 if (CGM.getCodeGenOpts().NoNaNsFPMath) {
68 FMF.setNoNaNs();
69 }
70 if (CGM.getCodeGenOpts().NoSignedZeros) {
71 FMF.setNoSignedZeros();
72 }
73 if (CGM.getCodeGenOpts().ReciprocalMath) {
74 FMF.setAllowReciprocal();
75 }
76 Builder.SetFastMathFlags(FMF);
77 }
78
~CodeGenFunction()79 CodeGenFunction::~CodeGenFunction() {
80 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup");
81
82 // If there are any unclaimed block infos, go ahead and destroy them
83 // now. This can happen if IR-gen gets clever and skips evaluating
84 // something.
85 if (FirstBlockInfo)
86 destroyBlockInfos(FirstBlockInfo);
87
88 if (getLangOpts().OpenMP) {
89 CGM.getOpenMPRuntime().functionFinished(*this);
90 }
91 }
92
MakeNaturalAlignAddrLValue(llvm::Value * V,QualType T)93 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
94 CharUnits Alignment;
95 if (CGM.getCXXABI().isTypeInfoCalculable(T)) {
96 Alignment = getContext().getTypeAlignInChars(T);
97 unsigned MaxAlign = getContext().getLangOpts().MaxTypeAlign;
98 if (MaxAlign && Alignment.getQuantity() > MaxAlign &&
99 !getContext().isAlignmentRequired(T))
100 Alignment = CharUnits::fromQuantity(MaxAlign);
101 }
102 return LValue::MakeAddr(V, T, Alignment, getContext(), CGM.getTBAAInfo(T));
103 }
104
ConvertTypeForMem(QualType T)105 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
106 return CGM.getTypes().ConvertTypeForMem(T);
107 }
108
ConvertType(QualType T)109 llvm::Type *CodeGenFunction::ConvertType(QualType T) {
110 return CGM.getTypes().ConvertType(T);
111 }
112
getEvaluationKind(QualType type)113 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) {
114 type = type.getCanonicalType();
115 while (true) {
116 switch (type->getTypeClass()) {
117 #define TYPE(name, parent)
118 #define ABSTRACT_TYPE(name, parent)
119 #define NON_CANONICAL_TYPE(name, parent) case Type::name:
120 #define DEPENDENT_TYPE(name, parent) case Type::name:
121 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name:
122 #include "clang/AST/TypeNodes.def"
123 llvm_unreachable("non-canonical or dependent type in IR-generation");
124
125 case Type::Auto:
126 llvm_unreachable("undeduced auto type in IR-generation");
127
128 // Various scalar types.
129 case Type::Builtin:
130 case Type::Pointer:
131 case Type::BlockPointer:
132 case Type::LValueReference:
133 case Type::RValueReference:
134 case Type::MemberPointer:
135 case Type::Vector:
136 case Type::ExtVector:
137 case Type::FunctionProto:
138 case Type::FunctionNoProto:
139 case Type::Enum:
140 case Type::ObjCObjectPointer:
141 return TEK_Scalar;
142
143 // Complexes.
144 case Type::Complex:
145 return TEK_Complex;
146
147 // Arrays, records, and Objective-C objects.
148 case Type::ConstantArray:
149 case Type::IncompleteArray:
150 case Type::VariableArray:
151 case Type::Record:
152 case Type::ObjCObject:
153 case Type::ObjCInterface:
154 return TEK_Aggregate;
155
156 // We operate on atomic values according to their underlying type.
157 case Type::Atomic:
158 type = cast<AtomicType>(type)->getValueType();
159 continue;
160 }
161 llvm_unreachable("unknown type kind!");
162 }
163 }
164
EmitReturnBlock()165 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() {
166 // For cleanliness, we try to avoid emitting the return block for
167 // simple cases.
168 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
169
170 if (CurBB) {
171 assert(!CurBB->getTerminator() && "Unexpected terminated block.");
172
173 // We have a valid insert point, reuse it if it is empty or there are no
174 // explicit jumps to the return block.
175 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
176 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
177 delete ReturnBlock.getBlock();
178 } else
179 EmitBlock(ReturnBlock.getBlock());
180 return llvm::DebugLoc();
181 }
182
183 // Otherwise, if the return block is the target of a single direct
184 // branch then we can just put the code in that block instead. This
185 // cleans up functions which started with a unified return block.
186 if (ReturnBlock.getBlock()->hasOneUse()) {
187 llvm::BranchInst *BI =
188 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin());
189 if (BI && BI->isUnconditional() &&
190 BI->getSuccessor(0) == ReturnBlock.getBlock()) {
191 // Record/return the DebugLoc of the simple 'return' expression to be used
192 // later by the actual 'ret' instruction.
193 llvm::DebugLoc Loc = BI->getDebugLoc();
194 Builder.SetInsertPoint(BI->getParent());
195 BI->eraseFromParent();
196 delete ReturnBlock.getBlock();
197 return Loc;
198 }
199 }
200
201 // FIXME: We are at an unreachable point, there is no reason to emit the block
202 // unless it has uses. However, we still need a place to put the debug
203 // region.end for now.
204
205 EmitBlock(ReturnBlock.getBlock());
206 return llvm::DebugLoc();
207 }
208
EmitIfUsed(CodeGenFunction & CGF,llvm::BasicBlock * BB)209 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
210 if (!BB) return;
211 if (!BB->use_empty())
212 return CGF.CurFn->getBasicBlockList().push_back(BB);
213 delete BB;
214 }
215
FinishFunction(SourceLocation EndLoc)216 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
217 assert(BreakContinueStack.empty() &&
218 "mismatched push/pop in break/continue stack!");
219
220 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0
221 && NumSimpleReturnExprs == NumReturnExprs
222 && ReturnBlock.getBlock()->use_empty();
223 // Usually the return expression is evaluated before the cleanup
224 // code. If the function contains only a simple return statement,
225 // such as a constant, the location before the cleanup code becomes
226 // the last useful breakpoint in the function, because the simple
227 // return expression will be evaluated after the cleanup code. To be
228 // safe, set the debug location for cleanup code to the location of
229 // the return statement. Otherwise the cleanup code should be at the
230 // end of the function's lexical scope.
231 //
232 // If there are multiple branches to the return block, the branch
233 // instructions will get the location of the return statements and
234 // all will be fine.
235 if (CGDebugInfo *DI = getDebugInfo()) {
236 if (OnlySimpleReturnStmts)
237 DI->EmitLocation(Builder, LastStopPoint);
238 else
239 DI->EmitLocation(Builder, EndLoc);
240 }
241
242 // Pop any cleanups that might have been associated with the
243 // parameters. Do this in whatever block we're currently in; it's
244 // important to do this before we enter the return block or return
245 // edges will be *really* confused.
246 bool EmitRetDbgLoc = true;
247 if (EHStack.stable_begin() != PrologueCleanupDepth) {
248 // Make sure the line table doesn't jump back into the body for
249 // the ret after it's been at EndLoc.
250 EmitRetDbgLoc = false;
251
252 if (CGDebugInfo *DI = getDebugInfo())
253 if (OnlySimpleReturnStmts)
254 DI->EmitLocation(Builder, EndLoc);
255
256 PopCleanupBlocks(PrologueCleanupDepth);
257 }
258
259 // Emit function epilog (to return).
260 llvm::DebugLoc Loc = EmitReturnBlock();
261
262 if (ShouldInstrumentFunction())
263 EmitFunctionInstrumentation("__cyg_profile_func_exit");
264
265 // Emit debug descriptor for function end.
266 if (CGDebugInfo *DI = getDebugInfo())
267 DI->EmitFunctionEnd(Builder);
268
269 // Reset the debug location to that of the simple 'return' expression, if any
270 // rather than that of the end of the function's scope '}'.
271 ApplyDebugLocation AL(*this, Loc);
272 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc);
273 EmitEndEHSpec(CurCodeDecl);
274
275 assert(EHStack.empty() &&
276 "did not remove all scopes from cleanup stack!");
277
278 // If someone did an indirect goto, emit the indirect goto block at the end of
279 // the function.
280 if (IndirectBranch) {
281 EmitBlock(IndirectBranch->getParent());
282 Builder.ClearInsertionPoint();
283 }
284
285 // If some of our locals escaped, insert a call to llvm.frameescape in the
286 // entry block.
287 if (!EscapedLocals.empty()) {
288 // Invert the map from local to index into a simple vector. There should be
289 // no holes.
290 SmallVector<llvm::Value *, 4> EscapeArgs;
291 EscapeArgs.resize(EscapedLocals.size());
292 for (auto &Pair : EscapedLocals)
293 EscapeArgs[Pair.second] = Pair.first;
294 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration(
295 &CGM.getModule(), llvm::Intrinsic::frameescape);
296 CGBuilderTy(AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs);
297 }
298
299 // Remove the AllocaInsertPt instruction, which is just a convenience for us.
300 llvm::Instruction *Ptr = AllocaInsertPt;
301 AllocaInsertPt = nullptr;
302 Ptr->eraseFromParent();
303
304 // If someone took the address of a label but never did an indirect goto, we
305 // made a zero entry PHI node, which is illegal, zap it now.
306 if (IndirectBranch) {
307 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
308 if (PN->getNumIncomingValues() == 0) {
309 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
310 PN->eraseFromParent();
311 }
312 }
313
314 EmitIfUsed(*this, EHResumeBlock);
315 EmitIfUsed(*this, TerminateLandingPad);
316 EmitIfUsed(*this, TerminateHandler);
317 EmitIfUsed(*this, UnreachableBlock);
318
319 if (CGM.getCodeGenOpts().EmitDeclMetadata)
320 EmitDeclMetadata();
321
322 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator
323 I = DeferredReplacements.begin(),
324 E = DeferredReplacements.end();
325 I != E; ++I) {
326 I->first->replaceAllUsesWith(I->second);
327 I->first->eraseFromParent();
328 }
329 }
330
331 /// ShouldInstrumentFunction - Return true if the current function should be
332 /// instrumented with __cyg_profile_func_* calls
ShouldInstrumentFunction()333 bool CodeGenFunction::ShouldInstrumentFunction() {
334 if (!CGM.getCodeGenOpts().InstrumentFunctions)
335 return false;
336 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
337 return false;
338 return true;
339 }
340
341 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
342 /// instrumentation function with the current function and the call site, if
343 /// function instrumentation is enabled.
EmitFunctionInstrumentation(const char * Fn)344 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
345 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
346 llvm::PointerType *PointerTy = Int8PtrTy;
347 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy };
348 llvm::FunctionType *FunctionTy =
349 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false);
350
351 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
352 llvm::CallInst *CallSite = Builder.CreateCall(
353 CGM.getIntrinsic(llvm::Intrinsic::returnaddress),
354 llvm::ConstantInt::get(Int32Ty, 0),
355 "callsite");
356
357 llvm::Value *args[] = {
358 llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
359 CallSite
360 };
361
362 EmitNounwindRuntimeCall(F, args);
363 }
364
EmitMCountInstrumentation()365 void CodeGenFunction::EmitMCountInstrumentation() {
366 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
367
368 llvm::Constant *MCountFn =
369 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName());
370 EmitNounwindRuntimeCall(MCountFn);
371 }
372
373 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument
374 // information in the program executable. The argument information stored
375 // includes the argument name, its type, the address and access qualifiers used.
GenOpenCLArgMetadata(const FunctionDecl * FD,llvm::Function * Fn,CodeGenModule & CGM,llvm::LLVMContext & Context,SmallVector<llvm::Metadata *,5> & kernelMDArgs,CGBuilderTy & Builder,ASTContext & ASTCtx)376 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn,
377 CodeGenModule &CGM, llvm::LLVMContext &Context,
378 SmallVector<llvm::Metadata *, 5> &kernelMDArgs,
379 CGBuilderTy &Builder, ASTContext &ASTCtx) {
380 // Create MDNodes that represent the kernel arg metadata.
381 // Each MDNode is a list in the form of "key", N number of values which is
382 // the same number of values as their are kernel arguments.
383
384 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy();
385
386 // MDNode for the kernel argument address space qualifiers.
387 SmallVector<llvm::Metadata *, 8> addressQuals;
388 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space"));
389
390 // MDNode for the kernel argument access qualifiers (images only).
391 SmallVector<llvm::Metadata *, 8> accessQuals;
392 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual"));
393
394 // MDNode for the kernel argument type names.
395 SmallVector<llvm::Metadata *, 8> argTypeNames;
396 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type"));
397
398 // MDNode for the kernel argument base type names.
399 SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
400 argBaseTypeNames.push_back(
401 llvm::MDString::get(Context, "kernel_arg_base_type"));
402
403 // MDNode for the kernel argument type qualifiers.
404 SmallVector<llvm::Metadata *, 8> argTypeQuals;
405 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual"));
406
407 // MDNode for the kernel argument names.
408 SmallVector<llvm::Metadata *, 8> argNames;
409 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name"));
410
411 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
412 const ParmVarDecl *parm = FD->getParamDecl(i);
413 QualType ty = parm->getType();
414 std::string typeQuals;
415
416 if (ty->isPointerType()) {
417 QualType pointeeTy = ty->getPointeeType();
418
419 // Get address qualifier.
420 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(
421 ASTCtx.getTargetAddressSpace(pointeeTy.getAddressSpace()))));
422
423 // Get argument type name.
424 std::string typeName =
425 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*";
426
427 // Turn "unsigned type" to "utype"
428 std::string::size_type pos = typeName.find("unsigned");
429 if (pointeeTy.isCanonical() && pos != std::string::npos)
430 typeName.erase(pos+1, 8);
431
432 argTypeNames.push_back(llvm::MDString::get(Context, typeName));
433
434 std::string baseTypeName =
435 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString(
436 Policy) +
437 "*";
438
439 // Turn "unsigned type" to "utype"
440 pos = baseTypeName.find("unsigned");
441 if (pos != std::string::npos)
442 baseTypeName.erase(pos+1, 8);
443
444 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
445
446 // Get argument type qualifiers:
447 if (ty.isRestrictQualified())
448 typeQuals = "restrict";
449 if (pointeeTy.isConstQualified() ||
450 (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
451 typeQuals += typeQuals.empty() ? "const" : " const";
452 if (pointeeTy.isVolatileQualified())
453 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
454 } else {
455 uint32_t AddrSpc = 0;
456 if (ty->isImageType())
457 AddrSpc =
458 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
459
460 addressQuals.push_back(
461 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc)));
462
463 // Get argument type name.
464 std::string typeName = ty.getUnqualifiedType().getAsString(Policy);
465
466 // Turn "unsigned type" to "utype"
467 std::string::size_type pos = typeName.find("unsigned");
468 if (ty.isCanonical() && pos != std::string::npos)
469 typeName.erase(pos+1, 8);
470
471 argTypeNames.push_back(llvm::MDString::get(Context, typeName));
472
473 std::string baseTypeName =
474 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy);
475
476 // Turn "unsigned type" to "utype"
477 pos = baseTypeName.find("unsigned");
478 if (pos != std::string::npos)
479 baseTypeName.erase(pos+1, 8);
480
481 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName));
482
483 // Get argument type qualifiers:
484 if (ty.isConstQualified())
485 typeQuals = "const";
486 if (ty.isVolatileQualified())
487 typeQuals += typeQuals.empty() ? "volatile" : " volatile";
488 }
489
490 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals));
491
492 // Get image access qualifier:
493 if (ty->isImageType()) {
494 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>();
495 if (A && A->isWriteOnly())
496 accessQuals.push_back(llvm::MDString::get(Context, "write_only"));
497 else
498 accessQuals.push_back(llvm::MDString::get(Context, "read_only"));
499 // FIXME: what about read_write?
500 } else
501 accessQuals.push_back(llvm::MDString::get(Context, "none"));
502
503 // Get argument name.
504 argNames.push_back(llvm::MDString::get(Context, parm->getName()));
505 }
506
507 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals));
508 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals));
509 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames));
510 kernelMDArgs.push_back(llvm::MDNode::get(Context, argBaseTypeNames));
511 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals));
512 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
513 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames));
514 }
515
EmitOpenCLKernelMetadata(const FunctionDecl * FD,llvm::Function * Fn)516 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD,
517 llvm::Function *Fn)
518 {
519 if (!FD->hasAttr<OpenCLKernelAttr>())
520 return;
521
522 llvm::LLVMContext &Context = getLLVMContext();
523
524 SmallVector<llvm::Metadata *, 5> kernelMDArgs;
525 kernelMDArgs.push_back(llvm::ConstantAsMetadata::get(Fn));
526
527 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, Builder,
528 getContext());
529
530 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) {
531 QualType hintQTy = A->getTypeHint();
532 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>();
533 bool isSignedInteger =
534 hintQTy->isSignedIntegerType() ||
535 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType());
536 llvm::Metadata *attrMDArgs[] = {
537 llvm::MDString::get(Context, "vec_type_hint"),
538 llvm::ConstantAsMetadata::get(llvm::UndefValue::get(
539 CGM.getTypes().ConvertType(A->getTypeHint()))),
540 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
541 llvm::IntegerType::get(Context, 32),
542 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))};
543 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
544 }
545
546 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) {
547 llvm::Metadata *attrMDArgs[] = {
548 llvm::MDString::get(Context, "work_group_size_hint"),
549 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
550 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
551 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
552 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
553 }
554
555 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) {
556 llvm::Metadata *attrMDArgs[] = {
557 llvm::MDString::get(Context, "reqd_work_group_size"),
558 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())),
559 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())),
560 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))};
561 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs));
562 }
563
564 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs);
565 llvm::NamedMDNode *OpenCLKernelMetadata =
566 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels");
567 OpenCLKernelMetadata->addOperand(kernelMDNode);
568 }
569
570 /// Determine whether the function F ends with a return stmt.
endsWithReturn(const Decl * F)571 static bool endsWithReturn(const Decl* F) {
572 const Stmt *Body = nullptr;
573 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F))
574 Body = FD->getBody();
575 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F))
576 Body = OMD->getBody();
577
578 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) {
579 auto LastStmt = CS->body_rbegin();
580 if (LastStmt != CS->body_rend())
581 return isa<ReturnStmt>(*LastStmt);
582 }
583 return false;
584 }
585
StartFunction(GlobalDecl GD,QualType RetTy,llvm::Function * Fn,const CGFunctionInfo & FnInfo,const FunctionArgList & Args,SourceLocation Loc,SourceLocation StartLoc)586 void CodeGenFunction::StartFunction(GlobalDecl GD,
587 QualType RetTy,
588 llvm::Function *Fn,
589 const CGFunctionInfo &FnInfo,
590 const FunctionArgList &Args,
591 SourceLocation Loc,
592 SourceLocation StartLoc) {
593 assert(!CurFn &&
594 "Do not use a CodeGenFunction object for more than one function");
595
596 const Decl *D = GD.getDecl();
597
598 DidCallStackSave = false;
599 CurCodeDecl = D;
600 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr);
601 FnRetTy = RetTy;
602 CurFn = Fn;
603 CurFnInfo = &FnInfo;
604 assert(CurFn->isDeclaration() && "Function already has body?");
605
606 if (CGM.isInSanitizerBlacklist(Fn, Loc))
607 SanOpts.clear();
608
609 // Pass inline keyword to optimizer if it appears explicitly on any
610 // declaration. Also, in the case of -fno-inline attach NoInline
611 // attribute to all function that are not marked AlwaysInline.
612 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
613 if (!CGM.getCodeGenOpts().NoInline) {
614 for (auto RI : FD->redecls())
615 if (RI->isInlineSpecified()) {
616 Fn->addFnAttr(llvm::Attribute::InlineHint);
617 break;
618 }
619 } else if (!FD->hasAttr<AlwaysInlineAttr>())
620 Fn->addFnAttr(llvm::Attribute::NoInline);
621 }
622
623 if (getLangOpts().OpenCL) {
624 // Add metadata for a kernel function.
625 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
626 EmitOpenCLKernelMetadata(FD, Fn);
627 }
628
629 // If we are checking function types, emit a function type signature as
630 // prologue data.
631 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) {
632 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
633 if (llvm::Constant *PrologueSig =
634 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
635 llvm::Constant *FTRTTIConst =
636 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true);
637 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst };
638 llvm::Constant *PrologueStructConst =
639 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true);
640 Fn->setPrologueData(PrologueStructConst);
641 }
642 }
643 }
644
645 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
646
647 // Create a marker to make it easy to insert allocas into the entryblock
648 // later. Don't create this with the builder, because we don't want it
649 // folded.
650 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
651 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
652 if (Builder.isNamePreserving())
653 AllocaInsertPt->setName("allocapt");
654
655 ReturnBlock = getJumpDestInCurrentScope("return");
656
657 Builder.SetInsertPoint(EntryBB);
658
659 // Emit subprogram debug descriptor.
660 if (CGDebugInfo *DI = getDebugInfo()) {
661 SmallVector<QualType, 16> ArgTypes;
662 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
663 i != e; ++i) {
664 ArgTypes.push_back((*i)->getType());
665 }
666
667 QualType FnType =
668 getContext().getFunctionType(RetTy, ArgTypes,
669 FunctionProtoType::ExtProtoInfo());
670 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder);
671 }
672
673 if (ShouldInstrumentFunction())
674 EmitFunctionInstrumentation("__cyg_profile_func_enter");
675
676 if (CGM.getCodeGenOpts().InstrumentForProfiling)
677 EmitMCountInstrumentation();
678
679 if (RetTy->isVoidType()) {
680 // Void type; nothing to return.
681 ReturnValue = nullptr;
682
683 // Count the implicit return.
684 if (!endsWithReturn(D))
685 ++NumReturnExprs;
686 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
687 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
688 // Indirect aggregate return; emit returned value directly into sret slot.
689 // This reduces code size, and affects correctness in C++.
690 auto AI = CurFn->arg_begin();
691 if (CurFnInfo->getReturnInfo().isSRetAfterThis())
692 ++AI;
693 ReturnValue = AI;
694 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca &&
695 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) {
696 // Load the sret pointer from the argument struct and return into that.
697 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex();
698 llvm::Function::arg_iterator EI = CurFn->arg_end();
699 --EI;
700 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, EI, Idx);
701 ReturnValue = Builder.CreateLoad(Addr, "agg.result");
702 } else {
703 ReturnValue = CreateIRTemp(RetTy, "retval");
704
705 // Tell the epilog emitter to autorelease the result. We do this
706 // now so that various specialized functions can suppress it
707 // during their IR-generation.
708 if (getLangOpts().ObjCAutoRefCount &&
709 !CurFnInfo->isReturnsRetained() &&
710 RetTy->isObjCRetainableType())
711 AutoreleaseResult = true;
712 }
713
714 EmitStartEHSpec(CurCodeDecl);
715
716 PrologueCleanupDepth = EHStack.stable_begin();
717 EmitFunctionProlog(*CurFnInfo, CurFn, Args);
718
719 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
720 CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
721 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
722 if (MD->getParent()->isLambda() &&
723 MD->getOverloadedOperator() == OO_Call) {
724 // We're in a lambda; figure out the captures.
725 MD->getParent()->getCaptureFields(LambdaCaptureFields,
726 LambdaThisCaptureField);
727 if (LambdaThisCaptureField) {
728 // If this lambda captures this, load it.
729 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField);
730 CXXThisValue = EmitLoadOfLValue(ThisLValue,
731 SourceLocation()).getScalarVal();
732 }
733 for (auto *FD : MD->getParent()->fields()) {
734 if (FD->hasCapturedVLAType()) {
735 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD),
736 SourceLocation()).getScalarVal();
737 auto VAT = FD->getCapturedVLAType();
738 VLASizeMap[VAT->getSizeExpr()] = ExprArg;
739 }
740 }
741 } else {
742 // Not in a lambda; just use 'this' from the method.
743 // FIXME: Should we generate a new load for each use of 'this'? The
744 // fast register allocator would be happier...
745 CXXThisValue = CXXABIThisValue;
746 }
747 }
748
749 // If any of the arguments have a variably modified type, make sure to
750 // emit the type size.
751 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
752 i != e; ++i) {
753 const VarDecl *VD = *i;
754
755 // Dig out the type as written from ParmVarDecls; it's unclear whether
756 // the standard (C99 6.9.1p10) requires this, but we're following the
757 // precedent set by gcc.
758 QualType Ty;
759 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD))
760 Ty = PVD->getOriginalType();
761 else
762 Ty = VD->getType();
763
764 if (Ty->isVariablyModifiedType())
765 EmitVariablyModifiedType(Ty);
766 }
767 // Emit a location at the end of the prologue.
768 if (CGDebugInfo *DI = getDebugInfo())
769 DI->EmitLocation(Builder, StartLoc);
770 }
771
EmitFunctionBody(FunctionArgList & Args,const Stmt * Body)772 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args,
773 const Stmt *Body) {
774 RegionCounter Cnt = getPGORegionCounter(Body);
775 Cnt.beginRegion(Builder);
776 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body))
777 EmitCompoundStmtWithoutScope(*S);
778 else
779 EmitStmt(Body);
780 }
781
782 /// When instrumenting to collect profile data, the counts for some blocks
783 /// such as switch cases need to not include the fall-through counts, so
784 /// emit a branch around the instrumentation code. When not instrumenting,
785 /// this just calls EmitBlock().
EmitBlockWithFallThrough(llvm::BasicBlock * BB,RegionCounter & Cnt)786 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB,
787 RegionCounter &Cnt) {
788 llvm::BasicBlock *SkipCountBB = nullptr;
789 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) {
790 // When instrumenting for profiling, the fallthrough to certain
791 // statements needs to skip over the instrumentation code so that we
792 // get an accurate count.
793 SkipCountBB = createBasicBlock("skipcount");
794 EmitBranch(SkipCountBB);
795 }
796 EmitBlock(BB);
797 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true);
798 if (SkipCountBB)
799 EmitBlock(SkipCountBB);
800 }
801
802 /// Tries to mark the given function nounwind based on the
803 /// non-existence of any throwing calls within it. We believe this is
804 /// lightweight enough to do at -O0.
TryMarkNoThrow(llvm::Function * F)805 static void TryMarkNoThrow(llvm::Function *F) {
806 // LLVM treats 'nounwind' on a function as part of the type, so we
807 // can't do this on functions that can be overwritten.
808 if (F->mayBeOverridden()) return;
809
810 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
811 for (llvm::BasicBlock::iterator
812 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
813 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) {
814 if (!Call->doesNotThrow())
815 return;
816 } else if (isa<llvm::ResumeInst>(&*BI)) {
817 return;
818 }
819 F->setDoesNotThrow();
820 }
821
GenerateCode(GlobalDecl GD,llvm::Function * Fn,const CGFunctionInfo & FnInfo)822 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn,
823 const CGFunctionInfo &FnInfo) {
824 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
825
826 // Check if we should generate debug info for this function.
827 if (FD->hasAttr<NoDebugAttr>())
828 DebugInfo = nullptr; // disable debug info indefinitely for this function
829
830 FunctionArgList Args;
831 QualType ResTy = FD->getReturnType();
832
833 CurGD = GD;
834 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
835 if (MD && MD->isInstance()) {
836 if (CGM.getCXXABI().HasThisReturn(GD))
837 ResTy = MD->getThisType(getContext());
838 else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
839 ResTy = CGM.getContext().VoidPtrTy;
840 CGM.getCXXABI().buildThisParam(*this, Args);
841 }
842
843 Args.append(FD->param_begin(), FD->param_end());
844
845 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)))
846 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args);
847
848 SourceRange BodyRange;
849 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
850 CurEHLocation = BodyRange.getEnd();
851
852 // Use the location of the start of the function to determine where
853 // the function definition is located. By default use the location
854 // of the declaration as the location for the subprogram. A function
855 // may lack a declaration in the source code if it is created by code
856 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk).
857 SourceLocation Loc = FD->getLocation();
858
859 // If this is a function specialization then use the pattern body
860 // as the location for the function.
861 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern())
862 if (SpecDecl->hasBody(SpecDecl))
863 Loc = SpecDecl->getLocation();
864
865 // Emit the standard function prologue.
866 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin());
867
868 // Generate the body of the function.
869 PGO.checkGlobalDecl(GD);
870 PGO.assignRegionCounters(GD.getDecl(), CurFn);
871 if (isa<CXXDestructorDecl>(FD))
872 EmitDestructorBody(Args);
873 else if (isa<CXXConstructorDecl>(FD))
874 EmitConstructorBody(Args);
875 else if (getLangOpts().CUDA &&
876 !getLangOpts().CUDAIsDevice &&
877 FD->hasAttr<CUDAGlobalAttr>())
878 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args);
879 else if (isa<CXXConversionDecl>(FD) &&
880 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) {
881 // The lambda conversion to block pointer is special; the semantics can't be
882 // expressed in the AST, so IRGen needs to special-case it.
883 EmitLambdaToBlockPointerBody(Args);
884 } else if (isa<CXXMethodDecl>(FD) &&
885 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) {
886 // The lambda static invoker function is special, because it forwards or
887 // clones the body of the function call operator (but is actually static).
888 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD));
889 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) &&
890 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() ||
891 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) {
892 // Implicit copy-assignment gets the same special treatment as implicit
893 // copy-constructors.
894 emitImplicitAssignmentOperatorBody(Args);
895 } else if (Stmt *Body = FD->getBody()) {
896 EmitFunctionBody(Args, Body);
897 } else
898 llvm_unreachable("no definition for emitted function");
899
900 // C++11 [stmt.return]p2:
901 // Flowing off the end of a function [...] results in undefined behavior in
902 // a value-returning function.
903 // C11 6.9.1p12:
904 // If the '}' that terminates a function is reached, and the value of the
905 // function call is used by the caller, the behavior is undefined.
906 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock &&
907 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) {
908 if (SanOpts.has(SanitizerKind::Return)) {
909 SanitizerScope SanScope(this);
910 llvm::Value *IsFalse = Builder.getFalse();
911 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return),
912 "missing_return", EmitCheckSourceLocation(FD->getLocation()),
913 None);
914 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0)
915 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap));
916 Builder.CreateUnreachable();
917 Builder.ClearInsertionPoint();
918 }
919
920 // Emit the standard function epilogue.
921 FinishFunction(BodyRange.getEnd());
922
923 // If we haven't marked the function nothrow through other means, do
924 // a quick pass now to see if we can.
925 if (!CurFn->doesNotThrow())
926 TryMarkNoThrow(CurFn);
927 }
928
929 /// ContainsLabel - Return true if the statement contains a label in it. If
930 /// this statement is not executed normally, it not containing a label means
931 /// that we can just remove the code.
ContainsLabel(const Stmt * S,bool IgnoreCaseStmts)932 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
933 // Null statement, not a label!
934 if (!S) return false;
935
936 // If this is a label, we have to emit the code, consider something like:
937 // if (0) { ... foo: bar(); } goto foo;
938 //
939 // TODO: If anyone cared, we could track __label__'s, since we know that you
940 // can't jump to one from outside their declared region.
941 if (isa<LabelStmt>(S))
942 return true;
943
944 // If this is a case/default statement, and we haven't seen a switch, we have
945 // to emit the code.
946 if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
947 return true;
948
949 // If this is a switch statement, we want to ignore cases below it.
950 if (isa<SwitchStmt>(S))
951 IgnoreCaseStmts = true;
952
953 // Scan subexpressions for verboten labels.
954 for (Stmt::const_child_range I = S->children(); I; ++I)
955 if (ContainsLabel(*I, IgnoreCaseStmts))
956 return true;
957
958 return false;
959 }
960
961 /// containsBreak - Return true if the statement contains a break out of it.
962 /// If the statement (recursively) contains a switch or loop with a break
963 /// inside of it, this is fine.
containsBreak(const Stmt * S)964 bool CodeGenFunction::containsBreak(const Stmt *S) {
965 // Null statement, not a label!
966 if (!S) return false;
967
968 // If this is a switch or loop that defines its own break scope, then we can
969 // include it and anything inside of it.
970 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) ||
971 isa<ForStmt>(S))
972 return false;
973
974 if (isa<BreakStmt>(S))
975 return true;
976
977 // Scan subexpressions for verboten breaks.
978 for (Stmt::const_child_range I = S->children(); I; ++I)
979 if (containsBreak(*I))
980 return true;
981
982 return false;
983 }
984
985
986 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
987 /// to a constant, or if it does but contains a label, return false. If it
988 /// constant folds return true and set the boolean result in Result.
ConstantFoldsToSimpleInteger(const Expr * Cond,bool & ResultBool)989 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond,
990 bool &ResultBool) {
991 llvm::APSInt ResultInt;
992 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt))
993 return false;
994
995 ResultBool = ResultInt.getBoolValue();
996 return true;
997 }
998
999 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
1000 /// to a constant, or if it does but contains a label, return false. If it
1001 /// constant folds return true and set the folded value.
1002 bool CodeGenFunction::
ConstantFoldsToSimpleInteger(const Expr * Cond,llvm::APSInt & ResultInt)1003 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) {
1004 // FIXME: Rename and handle conversion of other evaluatable things
1005 // to bool.
1006 llvm::APSInt Int;
1007 if (!Cond->EvaluateAsInt(Int, getContext()))
1008 return false; // Not foldable, not integer or not fully evaluatable.
1009
1010 if (CodeGenFunction::ContainsLabel(Cond))
1011 return false; // Contains a label.
1012
1013 ResultInt = Int;
1014 return true;
1015 }
1016
1017
1018
1019 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
1020 /// statement) to the specified blocks. Based on the condition, this might try
1021 /// to simplify the codegen of the conditional based on the branch.
1022 ///
EmitBranchOnBoolExpr(const Expr * Cond,llvm::BasicBlock * TrueBlock,llvm::BasicBlock * FalseBlock,uint64_t TrueCount)1023 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
1024 llvm::BasicBlock *TrueBlock,
1025 llvm::BasicBlock *FalseBlock,
1026 uint64_t TrueCount) {
1027 Cond = Cond->IgnoreParens();
1028
1029 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
1030
1031 // Handle X && Y in a condition.
1032 if (CondBOp->getOpcode() == BO_LAnd) {
1033 RegionCounter Cnt = getPGORegionCounter(CondBOp);
1034
1035 // If we have "1 && X", simplify the code. "0 && X" would have constant
1036 // folded if the case was simple enough.
1037 bool ConstantBool = false;
1038 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1039 ConstantBool) {
1040 // br(1 && X) -> br(X).
1041 Cnt.beginRegion(Builder);
1042 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1043 TrueCount);
1044 }
1045
1046 // If we have "X && 1", simplify the code to use an uncond branch.
1047 // "X && 0" would have been constant folded to 0.
1048 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1049 ConstantBool) {
1050 // br(X && 1) -> br(X).
1051 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1052 TrueCount);
1053 }
1054
1055 // Emit the LHS as a conditional. If the LHS conditional is false, we
1056 // want to jump to the FalseBlock.
1057 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
1058 // The counter tells us how often we evaluate RHS, and all of TrueCount
1059 // can be propagated to that branch.
1060 uint64_t RHSCount = Cnt.getCount();
1061
1062 ConditionalEvaluation eval(*this);
1063 {
1064 ApplyDebugLocation DL(*this, Cond);
1065 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount);
1066 EmitBlock(LHSTrue);
1067 }
1068
1069 // Any temporaries created here are conditional.
1070 Cnt.beginRegion(Builder);
1071 eval.begin(*this);
1072 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount);
1073 eval.end(*this);
1074
1075 return;
1076 }
1077
1078 if (CondBOp->getOpcode() == BO_LOr) {
1079 RegionCounter Cnt = getPGORegionCounter(CondBOp);
1080
1081 // If we have "0 || X", simplify the code. "1 || X" would have constant
1082 // folded if the case was simple enough.
1083 bool ConstantBool = false;
1084 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) &&
1085 !ConstantBool) {
1086 // br(0 || X) -> br(X).
1087 Cnt.beginRegion(Builder);
1088 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock,
1089 TrueCount);
1090 }
1091
1092 // If we have "X || 0", simplify the code to use an uncond branch.
1093 // "X || 1" would have been constant folded to 1.
1094 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) &&
1095 !ConstantBool) {
1096 // br(X || 0) -> br(X).
1097 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock,
1098 TrueCount);
1099 }
1100
1101 // Emit the LHS as a conditional. If the LHS conditional is true, we
1102 // want to jump to the TrueBlock.
1103 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
1104 // We have the count for entry to the RHS and for the whole expression
1105 // being true, so we can divy up True count between the short circuit and
1106 // the RHS.
1107 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount();
1108 uint64_t RHSCount = TrueCount - LHSCount;
1109
1110 ConditionalEvaluation eval(*this);
1111 {
1112 ApplyDebugLocation DL(*this, Cond);
1113 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount);
1114 EmitBlock(LHSFalse);
1115 }
1116
1117 // Any temporaries created here are conditional.
1118 Cnt.beginRegion(Builder);
1119 eval.begin(*this);
1120 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount);
1121
1122 eval.end(*this);
1123
1124 return;
1125 }
1126 }
1127
1128 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
1129 // br(!x, t, f) -> br(x, f, t)
1130 if (CondUOp->getOpcode() == UO_LNot) {
1131 // Negate the count.
1132 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount;
1133 // Negate the condition and swap the destination blocks.
1134 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock,
1135 FalseCount);
1136 }
1137 }
1138
1139 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
1140 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
1141 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
1142 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
1143
1144 RegionCounter Cnt = getPGORegionCounter(CondOp);
1145 ConditionalEvaluation cond(*this);
1146 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount());
1147
1148 // When computing PGO branch weights, we only know the overall count for
1149 // the true block. This code is essentially doing tail duplication of the
1150 // naive code-gen, introducing new edges for which counts are not
1151 // available. Divide the counts proportionally between the LHS and RHS of
1152 // the conditional operator.
1153 uint64_t LHSScaledTrueCount = 0;
1154 if (TrueCount) {
1155 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount();
1156 LHSScaledTrueCount = TrueCount * LHSRatio;
1157 }
1158
1159 cond.begin(*this);
1160 EmitBlock(LHSBlock);
1161 Cnt.beginRegion(Builder);
1162 {
1163 ApplyDebugLocation DL(*this, Cond);
1164 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock,
1165 LHSScaledTrueCount);
1166 }
1167 cond.end(*this);
1168
1169 cond.begin(*this);
1170 EmitBlock(RHSBlock);
1171 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock,
1172 TrueCount - LHSScaledTrueCount);
1173 cond.end(*this);
1174
1175 return;
1176 }
1177
1178 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) {
1179 // Conditional operator handling can give us a throw expression as a
1180 // condition for a case like:
1181 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f)
1182 // Fold this to:
1183 // br(c, throw x, br(y, t, f))
1184 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false);
1185 return;
1186 }
1187
1188 // Create branch weights based on the number of times we get here and the
1189 // number of times the condition should be true.
1190 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount);
1191 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount,
1192 CurrentCount - TrueCount);
1193
1194 // Emit the code with the fully general case.
1195 llvm::Value *CondV;
1196 {
1197 ApplyDebugLocation DL(*this, Cond);
1198 CondV = EvaluateExprAsBool(Cond);
1199 }
1200 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights);
1201 }
1202
1203 /// ErrorUnsupported - Print out an error that codegen doesn't support the
1204 /// specified stmt yet.
ErrorUnsupported(const Stmt * S,const char * Type)1205 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) {
1206 CGM.ErrorUnsupported(S, Type);
1207 }
1208
1209 /// emitNonZeroVLAInit - Emit the "zero" initialization of a
1210 /// variable-length array whose elements have a non-zero bit-pattern.
1211 ///
1212 /// \param baseType the inner-most element type of the array
1213 /// \param src - a char* pointing to the bit-pattern for a single
1214 /// base element of the array
1215 /// \param sizeInChars - the total size of the VLA, in chars
emitNonZeroVLAInit(CodeGenFunction & CGF,QualType baseType,llvm::Value * dest,llvm::Value * src,llvm::Value * sizeInChars)1216 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType,
1217 llvm::Value *dest, llvm::Value *src,
1218 llvm::Value *sizeInChars) {
1219 std::pair<CharUnits,CharUnits> baseSizeAndAlign
1220 = CGF.getContext().getTypeInfoInChars(baseType);
1221
1222 CGBuilderTy &Builder = CGF.Builder;
1223
1224 llvm::Value *baseSizeInChars
1225 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity());
1226
1227 llvm::Type *i8p = Builder.getInt8PtrTy();
1228
1229 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin");
1230 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end");
1231
1232 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock();
1233 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop");
1234 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont");
1235
1236 // Make a loop over the VLA. C99 guarantees that the VLA element
1237 // count must be nonzero.
1238 CGF.EmitBlock(loopBB);
1239
1240 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur");
1241 cur->addIncoming(begin, originBB);
1242
1243 // memcpy the individual element bit-pattern.
1244 Builder.CreateMemCpy(cur, src, baseSizeInChars,
1245 baseSizeAndAlign.second.getQuantity(),
1246 /*volatile*/ false);
1247
1248 // Go to the next element.
1249 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(),
1250 cur, 1, "vla.next");
1251
1252 // Leave if that's the end of the VLA.
1253 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone");
1254 Builder.CreateCondBr(done, contBB, loopBB);
1255 cur->addIncoming(next, loopBB);
1256
1257 CGF.EmitBlock(contBB);
1258 }
1259
1260 void
EmitNullInitialization(llvm::Value * DestPtr,QualType Ty)1261 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
1262 // Ignore empty classes in C++.
1263 if (getLangOpts().CPlusPlus) {
1264 if (const RecordType *RT = Ty->getAs<RecordType>()) {
1265 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
1266 return;
1267 }
1268 }
1269
1270 // Cast the dest ptr to the appropriate i8 pointer type.
1271 unsigned DestAS =
1272 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
1273 llvm::Type *BP = Builder.getInt8PtrTy(DestAS);
1274 if (DestPtr->getType() != BP)
1275 DestPtr = Builder.CreateBitCast(DestPtr, BP);
1276
1277 // Get size and alignment info for this aggregate.
1278 std::pair<CharUnits, CharUnits> TypeInfo =
1279 getContext().getTypeInfoInChars(Ty);
1280 CharUnits Size = TypeInfo.first;
1281 CharUnits Align = TypeInfo.second;
1282
1283 llvm::Value *SizeVal;
1284 const VariableArrayType *vla;
1285
1286 // Don't bother emitting a zero-byte memset.
1287 if (Size.isZero()) {
1288 // But note that getTypeInfo returns 0 for a VLA.
1289 if (const VariableArrayType *vlaType =
1290 dyn_cast_or_null<VariableArrayType>(
1291 getContext().getAsArrayType(Ty))) {
1292 QualType eltType;
1293 llvm::Value *numElts;
1294 std::tie(numElts, eltType) = getVLASize(vlaType);
1295
1296 SizeVal = numElts;
1297 CharUnits eltSize = getContext().getTypeSizeInChars(eltType);
1298 if (!eltSize.isOne())
1299 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize));
1300 vla = vlaType;
1301 } else {
1302 return;
1303 }
1304 } else {
1305 SizeVal = CGM.getSize(Size);
1306 vla = nullptr;
1307 }
1308
1309 // If the type contains a pointer to data member we can't memset it to zero.
1310 // Instead, create a null constant and copy it to the destination.
1311 // TODO: there are other patterns besides zero that we can usefully memset,
1312 // like -1, which happens to be the pattern used by member-pointers.
1313 if (!CGM.getTypes().isZeroInitializable(Ty)) {
1314 // For a VLA, emit a single element, then splat that over the VLA.
1315 if (vla) Ty = getContext().getBaseElementType(vla);
1316
1317 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
1318
1319 llvm::GlobalVariable *NullVariable =
1320 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
1321 /*isConstant=*/true,
1322 llvm::GlobalVariable::PrivateLinkage,
1323 NullConstant, Twine());
1324 llvm::Value *SrcPtr =
1325 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
1326
1327 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal);
1328
1329 // Get and call the appropriate llvm.memcpy overload.
1330 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false);
1331 return;
1332 }
1333
1334 // Otherwise, just memset the whole thing to zero. This is legal
1335 // because in LLVM, all default initializers (other than the ones we just
1336 // handled above) are guaranteed to have a bit pattern of all zeros.
1337 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal,
1338 Align.getQuantity(), false);
1339 }
1340
GetAddrOfLabel(const LabelDecl * L)1341 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) {
1342 // Make sure that there is a block for the indirect goto.
1343 if (!IndirectBranch)
1344 GetIndirectGotoBlock();
1345
1346 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
1347
1348 // Make sure the indirect branch includes all of the address-taken blocks.
1349 IndirectBranch->addDestination(BB);
1350 return llvm::BlockAddress::get(CurFn, BB);
1351 }
1352
GetIndirectGotoBlock()1353 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
1354 // If we already made the indirect branch for indirect goto, return its block.
1355 if (IndirectBranch) return IndirectBranch->getParent();
1356
1357 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
1358
1359 // Create the PHI node that indirect gotos will add entries to.
1360 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0,
1361 "indirect.goto.dest");
1362
1363 // Create the indirect branch instruction.
1364 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
1365 return IndirectBranch->getParent();
1366 }
1367
1368 /// Computes the length of an array in elements, as well as the base
1369 /// element type and a properly-typed first element pointer.
emitArrayLength(const ArrayType * origArrayType,QualType & baseType,llvm::Value * & addr)1370 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType,
1371 QualType &baseType,
1372 llvm::Value *&addr) {
1373 const ArrayType *arrayType = origArrayType;
1374
1375 // If it's a VLA, we have to load the stored size. Note that
1376 // this is the size of the VLA in bytes, not its size in elements.
1377 llvm::Value *numVLAElements = nullptr;
1378 if (isa<VariableArrayType>(arrayType)) {
1379 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first;
1380
1381 // Walk into all VLAs. This doesn't require changes to addr,
1382 // which has type T* where T is the first non-VLA element type.
1383 do {
1384 QualType elementType = arrayType->getElementType();
1385 arrayType = getContext().getAsArrayType(elementType);
1386
1387 // If we only have VLA components, 'addr' requires no adjustment.
1388 if (!arrayType) {
1389 baseType = elementType;
1390 return numVLAElements;
1391 }
1392 } while (isa<VariableArrayType>(arrayType));
1393
1394 // We get out here only if we find a constant array type
1395 // inside the VLA.
1396 }
1397
1398 // We have some number of constant-length arrays, so addr should
1399 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks
1400 // down to the first element of addr.
1401 SmallVector<llvm::Value*, 8> gepIndices;
1402
1403 // GEP down to the array type.
1404 llvm::ConstantInt *zero = Builder.getInt32(0);
1405 gepIndices.push_back(zero);
1406
1407 uint64_t countFromCLAs = 1;
1408 QualType eltType;
1409
1410 llvm::ArrayType *llvmArrayType =
1411 dyn_cast<llvm::ArrayType>(
1412 cast<llvm::PointerType>(addr->getType())->getElementType());
1413 while (llvmArrayType) {
1414 assert(isa<ConstantArrayType>(arrayType));
1415 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue()
1416 == llvmArrayType->getNumElements());
1417
1418 gepIndices.push_back(zero);
1419 countFromCLAs *= llvmArrayType->getNumElements();
1420 eltType = arrayType->getElementType();
1421
1422 llvmArrayType =
1423 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType());
1424 arrayType = getContext().getAsArrayType(arrayType->getElementType());
1425 assert((!llvmArrayType || arrayType) &&
1426 "LLVM and Clang types are out-of-synch");
1427 }
1428
1429 if (arrayType) {
1430 // From this point onwards, the Clang array type has been emitted
1431 // as some other type (probably a packed struct). Compute the array
1432 // size, and just emit the 'begin' expression as a bitcast.
1433 while (arrayType) {
1434 countFromCLAs *=
1435 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue();
1436 eltType = arrayType->getElementType();
1437 arrayType = getContext().getAsArrayType(eltType);
1438 }
1439
1440 unsigned AddressSpace = addr->getType()->getPointerAddressSpace();
1441 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace);
1442 addr = Builder.CreateBitCast(addr, BaseType, "array.begin");
1443 } else {
1444 // Create the actual GEP.
1445 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin");
1446 }
1447
1448 baseType = eltType;
1449
1450 llvm::Value *numElements
1451 = llvm::ConstantInt::get(SizeTy, countFromCLAs);
1452
1453 // If we had any VLA dimensions, factor them in.
1454 if (numVLAElements)
1455 numElements = Builder.CreateNUWMul(numVLAElements, numElements);
1456
1457 return numElements;
1458 }
1459
1460 std::pair<llvm::Value*, QualType>
getVLASize(QualType type)1461 CodeGenFunction::getVLASize(QualType type) {
1462 const VariableArrayType *vla = getContext().getAsVariableArrayType(type);
1463 assert(vla && "type was not a variable array type!");
1464 return getVLASize(vla);
1465 }
1466
1467 std::pair<llvm::Value*, QualType>
getVLASize(const VariableArrayType * type)1468 CodeGenFunction::getVLASize(const VariableArrayType *type) {
1469 // The number of elements so far; always size_t.
1470 llvm::Value *numElements = nullptr;
1471
1472 QualType elementType;
1473 do {
1474 elementType = type->getElementType();
1475 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()];
1476 assert(vlaSize && "no size for VLA!");
1477 assert(vlaSize->getType() == SizeTy);
1478
1479 if (!numElements) {
1480 numElements = vlaSize;
1481 } else {
1482 // It's undefined behavior if this wraps around, so mark it that way.
1483 // FIXME: Teach -fsanitize=undefined to trap this.
1484 numElements = Builder.CreateNUWMul(numElements, vlaSize);
1485 }
1486 } while ((type = getContext().getAsVariableArrayType(elementType)));
1487
1488 return std::pair<llvm::Value*,QualType>(numElements, elementType);
1489 }
1490
EmitVariablyModifiedType(QualType type)1491 void CodeGenFunction::EmitVariablyModifiedType(QualType type) {
1492 assert(type->isVariablyModifiedType() &&
1493 "Must pass variably modified type to EmitVLASizes!");
1494
1495 EnsureInsertPoint();
1496
1497 // We're going to walk down into the type and look for VLA
1498 // expressions.
1499 do {
1500 assert(type->isVariablyModifiedType());
1501
1502 const Type *ty = type.getTypePtr();
1503 switch (ty->getTypeClass()) {
1504
1505 #define TYPE(Class, Base)
1506 #define ABSTRACT_TYPE(Class, Base)
1507 #define NON_CANONICAL_TYPE(Class, Base)
1508 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
1509 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
1510 #include "clang/AST/TypeNodes.def"
1511 llvm_unreachable("unexpected dependent type!");
1512
1513 // These types are never variably-modified.
1514 case Type::Builtin:
1515 case Type::Complex:
1516 case Type::Vector:
1517 case Type::ExtVector:
1518 case Type::Record:
1519 case Type::Enum:
1520 case Type::Elaborated:
1521 case Type::TemplateSpecialization:
1522 case Type::ObjCObject:
1523 case Type::ObjCInterface:
1524 case Type::ObjCObjectPointer:
1525 llvm_unreachable("type class is never variably-modified!");
1526
1527 case Type::Adjusted:
1528 type = cast<AdjustedType>(ty)->getAdjustedType();
1529 break;
1530
1531 case Type::Decayed:
1532 type = cast<DecayedType>(ty)->getPointeeType();
1533 break;
1534
1535 case Type::Pointer:
1536 type = cast<PointerType>(ty)->getPointeeType();
1537 break;
1538
1539 case Type::BlockPointer:
1540 type = cast<BlockPointerType>(ty)->getPointeeType();
1541 break;
1542
1543 case Type::LValueReference:
1544 case Type::RValueReference:
1545 type = cast<ReferenceType>(ty)->getPointeeType();
1546 break;
1547
1548 case Type::MemberPointer:
1549 type = cast<MemberPointerType>(ty)->getPointeeType();
1550 break;
1551
1552 case Type::ConstantArray:
1553 case Type::IncompleteArray:
1554 // Losing element qualification here is fine.
1555 type = cast<ArrayType>(ty)->getElementType();
1556 break;
1557
1558 case Type::VariableArray: {
1559 // Losing element qualification here is fine.
1560 const VariableArrayType *vat = cast<VariableArrayType>(ty);
1561
1562 // Unknown size indication requires no size computation.
1563 // Otherwise, evaluate and record it.
1564 if (const Expr *size = vat->getSizeExpr()) {
1565 // It's possible that we might have emitted this already,
1566 // e.g. with a typedef and a pointer to it.
1567 llvm::Value *&entry = VLASizeMap[size];
1568 if (!entry) {
1569 llvm::Value *Size = EmitScalarExpr(size);
1570
1571 // C11 6.7.6.2p5:
1572 // If the size is an expression that is not an integer constant
1573 // expression [...] each time it is evaluated it shall have a value
1574 // greater than zero.
1575 if (SanOpts.has(SanitizerKind::VLABound) &&
1576 size->getType()->isSignedIntegerType()) {
1577 SanitizerScope SanScope(this);
1578 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType());
1579 llvm::Constant *StaticArgs[] = {
1580 EmitCheckSourceLocation(size->getLocStart()),
1581 EmitCheckTypeDescriptor(size->getType())
1582 };
1583 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero),
1584 SanitizerKind::VLABound),
1585 "vla_bound_not_positive", StaticArgs, Size);
1586 }
1587
1588 // Always zexting here would be wrong if it weren't
1589 // undefined behavior to have a negative bound.
1590 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false);
1591 }
1592 }
1593 type = vat->getElementType();
1594 break;
1595 }
1596
1597 case Type::FunctionProto:
1598 case Type::FunctionNoProto:
1599 type = cast<FunctionType>(ty)->getReturnType();
1600 break;
1601
1602 case Type::Paren:
1603 case Type::TypeOf:
1604 case Type::UnaryTransform:
1605 case Type::Attributed:
1606 case Type::SubstTemplateTypeParm:
1607 case Type::PackExpansion:
1608 // Keep walking after single level desugaring.
1609 type = type.getSingleStepDesugaredType(getContext());
1610 break;
1611
1612 case Type::Typedef:
1613 case Type::Decltype:
1614 case Type::Auto:
1615 // Stop walking: nothing to do.
1616 return;
1617
1618 case Type::TypeOfExpr:
1619 // Stop walking: emit typeof expression.
1620 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr());
1621 return;
1622
1623 case Type::Atomic:
1624 type = cast<AtomicType>(ty)->getValueType();
1625 break;
1626 }
1627 } while (type->isVariablyModifiedType());
1628 }
1629
EmitVAListRef(const Expr * E)1630 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
1631 if (getContext().getBuiltinVaListType()->isArrayType())
1632 return EmitScalarExpr(E);
1633 return EmitLValue(E).getAddress();
1634 }
1635
EmitDeclRefExprDbgValue(const DeclRefExpr * E,llvm::Constant * Init)1636 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1637 llvm::Constant *Init) {
1638 assert (Init && "Invalid DeclRefExpr initializer!");
1639 if (CGDebugInfo *Dbg = getDebugInfo())
1640 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1641 Dbg->EmitGlobalVariable(E->getDecl(), Init);
1642 }
1643
1644 CodeGenFunction::PeepholeProtection
protectFromPeepholes(RValue rvalue)1645 CodeGenFunction::protectFromPeepholes(RValue rvalue) {
1646 // At the moment, the only aggressive peephole we do in IR gen
1647 // is trunc(zext) folding, but if we add more, we can easily
1648 // extend this protection.
1649
1650 if (!rvalue.isScalar()) return PeepholeProtection();
1651 llvm::Value *value = rvalue.getScalarVal();
1652 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection();
1653
1654 // Just make an extra bitcast.
1655 assert(HaveInsertPoint());
1656 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "",
1657 Builder.GetInsertBlock());
1658
1659 PeepholeProtection protection;
1660 protection.Inst = inst;
1661 return protection;
1662 }
1663
unprotectFromPeepholes(PeepholeProtection protection)1664 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) {
1665 if (!protection.Inst) return;
1666
1667 // In theory, we could try to duplicate the peepholes now, but whatever.
1668 protection.Inst->eraseFromParent();
1669 }
1670
EmitAnnotationCall(llvm::Value * AnnotationFn,llvm::Value * AnnotatedVal,StringRef AnnotationStr,SourceLocation Location)1671 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn,
1672 llvm::Value *AnnotatedVal,
1673 StringRef AnnotationStr,
1674 SourceLocation Location) {
1675 llvm::Value *Args[4] = {
1676 AnnotatedVal,
1677 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy),
1678 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy),
1679 CGM.EmitAnnotationLineNo(Location)
1680 };
1681 return Builder.CreateCall(AnnotationFn, Args);
1682 }
1683
EmitVarAnnotations(const VarDecl * D,llvm::Value * V)1684 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) {
1685 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1686 // FIXME We create a new bitcast for every annotation because that's what
1687 // llvm-gcc was doing.
1688 for (const auto *I : D->specific_attrs<AnnotateAttr>())
1689 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation),
1690 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()),
1691 I->getAnnotation(), D->getLocation());
1692 }
1693
EmitFieldAnnotations(const FieldDecl * D,llvm::Value * V)1694 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D,
1695 llvm::Value *V) {
1696 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1697 llvm::Type *VTy = V->getType();
1698 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation,
1699 CGM.Int8PtrTy);
1700
1701 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
1702 // FIXME Always emit the cast inst so we can differentiate between
1703 // annotation on the first field of a struct and annotation on the struct
1704 // itself.
1705 if (VTy != CGM.Int8PtrTy)
1706 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy));
1707 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation());
1708 V = Builder.CreateBitCast(V, VTy);
1709 }
1710
1711 return V;
1712 }
1713
~CGCapturedStmtInfo()1714 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { }
1715
SanitizerScope(CodeGenFunction * CGF)1716 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF)
1717 : CGF(CGF) {
1718 assert(!CGF->IsSanitizerScope);
1719 CGF->IsSanitizerScope = true;
1720 }
1721
~SanitizerScope()1722 CodeGenFunction::SanitizerScope::~SanitizerScope() {
1723 CGF->IsSanitizerScope = false;
1724 }
1725
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const1726 void CodeGenFunction::InsertHelper(llvm::Instruction *I,
1727 const llvm::Twine &Name,
1728 llvm::BasicBlock *BB,
1729 llvm::BasicBlock::iterator InsertPt) const {
1730 LoopStack.InsertHelper(I);
1731 if (IsSanitizerScope)
1732 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I);
1733 }
1734
1735 template <bool PreserveNames>
InsertHelper(llvm::Instruction * I,const llvm::Twine & Name,llvm::BasicBlock * BB,llvm::BasicBlock::iterator InsertPt) const1736 void CGBuilderInserter<PreserveNames>::InsertHelper(
1737 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1738 llvm::BasicBlock::iterator InsertPt) const {
1739 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB,
1740 InsertPt);
1741 if (CGF)
1742 CGF->InsertHelper(I, Name, BB, InsertPt);
1743 }
1744
1745 #ifdef NDEBUG
1746 #define PreserveNames false
1747 #else
1748 #define PreserveNames true
1749 #endif
1750 template void CGBuilderInserter<PreserveNames>::InsertHelper(
1751 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB,
1752 llvm::BasicBlock::iterator InsertPt) const;
1753 #undef PreserveNames
1754