• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #include <openssl/bn.h>
110 
111 #include <openssl/err.h>
112 #include <openssl/mem.h>
113 
114 #include "internal.h"
115 
116 /* number of Miller-Rabin iterations for an error rate  of less than 2^-80
117  * for random 'b'-bit input, b >= 100 (taken from table 4.4 in the Handbook
118  * of Applied Cryptography [Menezes, van Oorschot, Vanstone; CRC Press 1996];
119  * original paper: Damgaard, Landrock, Pomerance: Average case error estimates
120  * for the strong probable prime test. -- Math. Comp. 61 (1993) 177-194) */
121 #define BN_prime_checks_for_size(b) ((b) >= 1300 ?  2 : \
122                                 (b) >=  850 ?  3 : \
123                                 (b) >=  650 ?  4 : \
124                                 (b) >=  550 ?  5 : \
125                                 (b) >=  450 ?  6 : \
126                                 (b) >=  400 ?  7 : \
127                                 (b) >=  350 ?  8 : \
128                                 (b) >=  300 ?  9 : \
129                                 (b) >=  250 ? 12 : \
130                                 (b) >=  200 ? 15 : \
131                                 (b) >=  150 ? 18 : \
132                                 /* b >= 100 */ 27)
133 
134 /* The quick sieve algorithm approach to weeding out primes is Philip
135  * Zimmermann's, as implemented in PGP.  I have had a read of his comments and
136  * implemented my own version. */
137 
138 /* NUMPRIMES is the number of primes that fit into a uint16_t. */
139 #define NUMPRIMES 2048
140 
141 /* primes contains all the primes that fit into a uint16_t. */
142 static const uint16_t primes[NUMPRIMES] = {
143     2,     3,     5,     7,     11,    13,    17,    19,    23,    29,    31,
144     37,    41,    43,    47,    53,    59,    61,    67,    71,    73,    79,
145     83,    89,    97,    101,   103,   107,   109,   113,   127,   131,   137,
146     139,   149,   151,   157,   163,   167,   173,   179,   181,   191,   193,
147     197,   199,   211,   223,   227,   229,   233,   239,   241,   251,   257,
148     263,   269,   271,   277,   281,   283,   293,   307,   311,   313,   317,
149     331,   337,   347,   349,   353,   359,   367,   373,   379,   383,   389,
150     397,   401,   409,   419,   421,   431,   433,   439,   443,   449,   457,
151     461,   463,   467,   479,   487,   491,   499,   503,   509,   521,   523,
152     541,   547,   557,   563,   569,   571,   577,   587,   593,   599,   601,
153     607,   613,   617,   619,   631,   641,   643,   647,   653,   659,   661,
154     673,   677,   683,   691,   701,   709,   719,   727,   733,   739,   743,
155     751,   757,   761,   769,   773,   787,   797,   809,   811,   821,   823,
156     827,   829,   839,   853,   857,   859,   863,   877,   881,   883,   887,
157     907,   911,   919,   929,   937,   941,   947,   953,   967,   971,   977,
158     983,   991,   997,   1009,  1013,  1019,  1021,  1031,  1033,  1039,  1049,
159     1051,  1061,  1063,  1069,  1087,  1091,  1093,  1097,  1103,  1109,  1117,
160     1123,  1129,  1151,  1153,  1163,  1171,  1181,  1187,  1193,  1201,  1213,
161     1217,  1223,  1229,  1231,  1237,  1249,  1259,  1277,  1279,  1283,  1289,
162     1291,  1297,  1301,  1303,  1307,  1319,  1321,  1327,  1361,  1367,  1373,
163     1381,  1399,  1409,  1423,  1427,  1429,  1433,  1439,  1447,  1451,  1453,
164     1459,  1471,  1481,  1483,  1487,  1489,  1493,  1499,  1511,  1523,  1531,
165     1543,  1549,  1553,  1559,  1567,  1571,  1579,  1583,  1597,  1601,  1607,
166     1609,  1613,  1619,  1621,  1627,  1637,  1657,  1663,  1667,  1669,  1693,
167     1697,  1699,  1709,  1721,  1723,  1733,  1741,  1747,  1753,  1759,  1777,
168     1783,  1787,  1789,  1801,  1811,  1823,  1831,  1847,  1861,  1867,  1871,
169     1873,  1877,  1879,  1889,  1901,  1907,  1913,  1931,  1933,  1949,  1951,
170     1973,  1979,  1987,  1993,  1997,  1999,  2003,  2011,  2017,  2027,  2029,
171     2039,  2053,  2063,  2069,  2081,  2083,  2087,  2089,  2099,  2111,  2113,
172     2129,  2131,  2137,  2141,  2143,  2153,  2161,  2179,  2203,  2207,  2213,
173     2221,  2237,  2239,  2243,  2251,  2267,  2269,  2273,  2281,  2287,  2293,
174     2297,  2309,  2311,  2333,  2339,  2341,  2347,  2351,  2357,  2371,  2377,
175     2381,  2383,  2389,  2393,  2399,  2411,  2417,  2423,  2437,  2441,  2447,
176     2459,  2467,  2473,  2477,  2503,  2521,  2531,  2539,  2543,  2549,  2551,
177     2557,  2579,  2591,  2593,  2609,  2617,  2621,  2633,  2647,  2657,  2659,
178     2663,  2671,  2677,  2683,  2687,  2689,  2693,  2699,  2707,  2711,  2713,
179     2719,  2729,  2731,  2741,  2749,  2753,  2767,  2777,  2789,  2791,  2797,
180     2801,  2803,  2819,  2833,  2837,  2843,  2851,  2857,  2861,  2879,  2887,
181     2897,  2903,  2909,  2917,  2927,  2939,  2953,  2957,  2963,  2969,  2971,
182     2999,  3001,  3011,  3019,  3023,  3037,  3041,  3049,  3061,  3067,  3079,
183     3083,  3089,  3109,  3119,  3121,  3137,  3163,  3167,  3169,  3181,  3187,
184     3191,  3203,  3209,  3217,  3221,  3229,  3251,  3253,  3257,  3259,  3271,
185     3299,  3301,  3307,  3313,  3319,  3323,  3329,  3331,  3343,  3347,  3359,
186     3361,  3371,  3373,  3389,  3391,  3407,  3413,  3433,  3449,  3457,  3461,
187     3463,  3467,  3469,  3491,  3499,  3511,  3517,  3527,  3529,  3533,  3539,
188     3541,  3547,  3557,  3559,  3571,  3581,  3583,  3593,  3607,  3613,  3617,
189     3623,  3631,  3637,  3643,  3659,  3671,  3673,  3677,  3691,  3697,  3701,
190     3709,  3719,  3727,  3733,  3739,  3761,  3767,  3769,  3779,  3793,  3797,
191     3803,  3821,  3823,  3833,  3847,  3851,  3853,  3863,  3877,  3881,  3889,
192     3907,  3911,  3917,  3919,  3923,  3929,  3931,  3943,  3947,  3967,  3989,
193     4001,  4003,  4007,  4013,  4019,  4021,  4027,  4049,  4051,  4057,  4073,
194     4079,  4091,  4093,  4099,  4111,  4127,  4129,  4133,  4139,  4153,  4157,
195     4159,  4177,  4201,  4211,  4217,  4219,  4229,  4231,  4241,  4243,  4253,
196     4259,  4261,  4271,  4273,  4283,  4289,  4297,  4327,  4337,  4339,  4349,
197     4357,  4363,  4373,  4391,  4397,  4409,  4421,  4423,  4441,  4447,  4451,
198     4457,  4463,  4481,  4483,  4493,  4507,  4513,  4517,  4519,  4523,  4547,
199     4549,  4561,  4567,  4583,  4591,  4597,  4603,  4621,  4637,  4639,  4643,
200     4649,  4651,  4657,  4663,  4673,  4679,  4691,  4703,  4721,  4723,  4729,
201     4733,  4751,  4759,  4783,  4787,  4789,  4793,  4799,  4801,  4813,  4817,
202     4831,  4861,  4871,  4877,  4889,  4903,  4909,  4919,  4931,  4933,  4937,
203     4943,  4951,  4957,  4967,  4969,  4973,  4987,  4993,  4999,  5003,  5009,
204     5011,  5021,  5023,  5039,  5051,  5059,  5077,  5081,  5087,  5099,  5101,
205     5107,  5113,  5119,  5147,  5153,  5167,  5171,  5179,  5189,  5197,  5209,
206     5227,  5231,  5233,  5237,  5261,  5273,  5279,  5281,  5297,  5303,  5309,
207     5323,  5333,  5347,  5351,  5381,  5387,  5393,  5399,  5407,  5413,  5417,
208     5419,  5431,  5437,  5441,  5443,  5449,  5471,  5477,  5479,  5483,  5501,
209     5503,  5507,  5519,  5521,  5527,  5531,  5557,  5563,  5569,  5573,  5581,
210     5591,  5623,  5639,  5641,  5647,  5651,  5653,  5657,  5659,  5669,  5683,
211     5689,  5693,  5701,  5711,  5717,  5737,  5741,  5743,  5749,  5779,  5783,
212     5791,  5801,  5807,  5813,  5821,  5827,  5839,  5843,  5849,  5851,  5857,
213     5861,  5867,  5869,  5879,  5881,  5897,  5903,  5923,  5927,  5939,  5953,
214     5981,  5987,  6007,  6011,  6029,  6037,  6043,  6047,  6053,  6067,  6073,
215     6079,  6089,  6091,  6101,  6113,  6121,  6131,  6133,  6143,  6151,  6163,
216     6173,  6197,  6199,  6203,  6211,  6217,  6221,  6229,  6247,  6257,  6263,
217     6269,  6271,  6277,  6287,  6299,  6301,  6311,  6317,  6323,  6329,  6337,
218     6343,  6353,  6359,  6361,  6367,  6373,  6379,  6389,  6397,  6421,  6427,
219     6449,  6451,  6469,  6473,  6481,  6491,  6521,  6529,  6547,  6551,  6553,
220     6563,  6569,  6571,  6577,  6581,  6599,  6607,  6619,  6637,  6653,  6659,
221     6661,  6673,  6679,  6689,  6691,  6701,  6703,  6709,  6719,  6733,  6737,
222     6761,  6763,  6779,  6781,  6791,  6793,  6803,  6823,  6827,  6829,  6833,
223     6841,  6857,  6863,  6869,  6871,  6883,  6899,  6907,  6911,  6917,  6947,
224     6949,  6959,  6961,  6967,  6971,  6977,  6983,  6991,  6997,  7001,  7013,
225     7019,  7027,  7039,  7043,  7057,  7069,  7079,  7103,  7109,  7121,  7127,
226     7129,  7151,  7159,  7177,  7187,  7193,  7207,  7211,  7213,  7219,  7229,
227     7237,  7243,  7247,  7253,  7283,  7297,  7307,  7309,  7321,  7331,  7333,
228     7349,  7351,  7369,  7393,  7411,  7417,  7433,  7451,  7457,  7459,  7477,
229     7481,  7487,  7489,  7499,  7507,  7517,  7523,  7529,  7537,  7541,  7547,
230     7549,  7559,  7561,  7573,  7577,  7583,  7589,  7591,  7603,  7607,  7621,
231     7639,  7643,  7649,  7669,  7673,  7681,  7687,  7691,  7699,  7703,  7717,
232     7723,  7727,  7741,  7753,  7757,  7759,  7789,  7793,  7817,  7823,  7829,
233     7841,  7853,  7867,  7873,  7877,  7879,  7883,  7901,  7907,  7919,  7927,
234     7933,  7937,  7949,  7951,  7963,  7993,  8009,  8011,  8017,  8039,  8053,
235     8059,  8069,  8081,  8087,  8089,  8093,  8101,  8111,  8117,  8123,  8147,
236     8161,  8167,  8171,  8179,  8191,  8209,  8219,  8221,  8231,  8233,  8237,
237     8243,  8263,  8269,  8273,  8287,  8291,  8293,  8297,  8311,  8317,  8329,
238     8353,  8363,  8369,  8377,  8387,  8389,  8419,  8423,  8429,  8431,  8443,
239     8447,  8461,  8467,  8501,  8513,  8521,  8527,  8537,  8539,  8543,  8563,
240     8573,  8581,  8597,  8599,  8609,  8623,  8627,  8629,  8641,  8647,  8663,
241     8669,  8677,  8681,  8689,  8693,  8699,  8707,  8713,  8719,  8731,  8737,
242     8741,  8747,  8753,  8761,  8779,  8783,  8803,  8807,  8819,  8821,  8831,
243     8837,  8839,  8849,  8861,  8863,  8867,  8887,  8893,  8923,  8929,  8933,
244     8941,  8951,  8963,  8969,  8971,  8999,  9001,  9007,  9011,  9013,  9029,
245     9041,  9043,  9049,  9059,  9067,  9091,  9103,  9109,  9127,  9133,  9137,
246     9151,  9157,  9161,  9173,  9181,  9187,  9199,  9203,  9209,  9221,  9227,
247     9239,  9241,  9257,  9277,  9281,  9283,  9293,  9311,  9319,  9323,  9337,
248     9341,  9343,  9349,  9371,  9377,  9391,  9397,  9403,  9413,  9419,  9421,
249     9431,  9433,  9437,  9439,  9461,  9463,  9467,  9473,  9479,  9491,  9497,
250     9511,  9521,  9533,  9539,  9547,  9551,  9587,  9601,  9613,  9619,  9623,
251     9629,  9631,  9643,  9649,  9661,  9677,  9679,  9689,  9697,  9719,  9721,
252     9733,  9739,  9743,  9749,  9767,  9769,  9781,  9787,  9791,  9803,  9811,
253     9817,  9829,  9833,  9839,  9851,  9857,  9859,  9871,  9883,  9887,  9901,
254     9907,  9923,  9929,  9931,  9941,  9949,  9967,  9973,  10007, 10009, 10037,
255     10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111, 10133,
256     10139, 10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223,
257     10243, 10247, 10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313,
258     10321, 10331, 10333, 10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429,
259     10433, 10453, 10457, 10459, 10463, 10477, 10487, 10499, 10501, 10513, 10529,
260     10531, 10559, 10567, 10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639,
261     10651, 10657, 10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733,
262     10739, 10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859,
263     10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, 10957,
264     10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, 11069, 11071,
265     11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, 11159, 11161, 11171,
266     11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261, 11273, 11279,
267     11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383, 11393,
268     11399, 11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491,
269     11497, 11503, 11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617,
270     11621, 11633, 11657, 11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731,
271     11743, 11777, 11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831,
272     11833, 11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933,
273     11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, 12037,
274     12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, 12113, 12119,
275     12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, 12227, 12239, 12241,
276     12251, 12253, 12263, 12269, 12277, 12281, 12289, 12301, 12323, 12329, 12343,
277     12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413, 12421, 12433, 12437,
278     12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511, 12517, 12527,
279     12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611, 12613,
280     12619, 12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713,
281     12721, 12739, 12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823,
282     12829, 12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923,
283     12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003, 13007, 13009,
284     13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, 13121, 13127,
285     13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, 13217, 13219, 13229,
286     13241, 13249, 13259, 13267, 13291, 13297, 13309, 13313, 13327, 13331, 13337,
287     13339, 13367, 13381, 13397, 13399, 13411, 13417, 13421, 13441, 13451, 13457,
288     13463, 13469, 13477, 13487, 13499, 13513, 13523, 13537, 13553, 13567, 13577,
289     13591, 13597, 13613, 13619, 13627, 13633, 13649, 13669, 13679, 13681, 13687,
290     13691, 13693, 13697, 13709, 13711, 13721, 13723, 13729, 13751, 13757, 13759,
291     13763, 13781, 13789, 13799, 13807, 13829, 13831, 13841, 13859, 13873, 13877,
292     13879, 13883, 13901, 13903, 13907, 13913, 13921, 13931, 13933, 13963, 13967,
293     13997, 13999, 14009, 14011, 14029, 14033, 14051, 14057, 14071, 14081, 14083,
294     14087, 14107, 14143, 14149, 14153, 14159, 14173, 14177, 14197, 14207, 14221,
295     14243, 14249, 14251, 14281, 14293, 14303, 14321, 14323, 14327, 14341, 14347,
296     14369, 14387, 14389, 14401, 14407, 14411, 14419, 14423, 14431, 14437, 14447,
297     14449, 14461, 14479, 14489, 14503, 14519, 14533, 14537, 14543, 14549, 14551,
298     14557, 14561, 14563, 14591, 14593, 14621, 14627, 14629, 14633, 14639, 14653,
299     14657, 14669, 14683, 14699, 14713, 14717, 14723, 14731, 14737, 14741, 14747,
300     14753, 14759, 14767, 14771, 14779, 14783, 14797, 14813, 14821, 14827, 14831,
301     14843, 14851, 14867, 14869, 14879, 14887, 14891, 14897, 14923, 14929, 14939,
302     14947, 14951, 14957, 14969, 14983, 15013, 15017, 15031, 15053, 15061, 15073,
303     15077, 15083, 15091, 15101, 15107, 15121, 15131, 15137, 15139, 15149, 15161,
304     15173, 15187, 15193, 15199, 15217, 15227, 15233, 15241, 15259, 15263, 15269,
305     15271, 15277, 15287, 15289, 15299, 15307, 15313, 15319, 15329, 15331, 15349,
306     15359, 15361, 15373, 15377, 15383, 15391, 15401, 15413, 15427, 15439, 15443,
307     15451, 15461, 15467, 15473, 15493, 15497, 15511, 15527, 15541, 15551, 15559,
308     15569, 15581, 15583, 15601, 15607, 15619, 15629, 15641, 15643, 15647, 15649,
309     15661, 15667, 15671, 15679, 15683, 15727, 15731, 15733, 15737, 15739, 15749,
310     15761, 15767, 15773, 15787, 15791, 15797, 15803, 15809, 15817, 15823, 15859,
311     15877, 15881, 15887, 15889, 15901, 15907, 15913, 15919, 15923, 15937, 15959,
312     15971, 15973, 15991, 16001, 16007, 16033, 16057, 16061, 16063, 16067, 16069,
313     16073, 16087, 16091, 16097, 16103, 16111, 16127, 16139, 16141, 16183, 16187,
314     16189, 16193, 16217, 16223, 16229, 16231, 16249, 16253, 16267, 16273, 16301,
315     16319, 16333, 16339, 16349, 16361, 16363, 16369, 16381, 16411, 16417, 16421,
316     16427, 16433, 16447, 16451, 16453, 16477, 16481, 16487, 16493, 16519, 16529,
317     16547, 16553, 16561, 16567, 16573, 16603, 16607, 16619, 16631, 16633, 16649,
318     16651, 16657, 16661, 16673, 16691, 16693, 16699, 16703, 16729, 16741, 16747,
319     16759, 16763, 16787, 16811, 16823, 16829, 16831, 16843, 16871, 16879, 16883,
320     16889, 16901, 16903, 16921, 16927, 16931, 16937, 16943, 16963, 16979, 16981,
321     16987, 16993, 17011, 17021, 17027, 17029, 17033, 17041, 17047, 17053, 17077,
322     17093, 17099, 17107, 17117, 17123, 17137, 17159, 17167, 17183, 17189, 17191,
323     17203, 17207, 17209, 17231, 17239, 17257, 17291, 17293, 17299, 17317, 17321,
324     17327, 17333, 17341, 17351, 17359, 17377, 17383, 17387, 17389, 17393, 17401,
325     17417, 17419, 17431, 17443, 17449, 17467, 17471, 17477, 17483, 17489, 17491,
326     17497, 17509, 17519, 17539, 17551, 17569, 17573, 17579, 17581, 17597, 17599,
327     17609, 17623, 17627, 17657, 17659, 17669, 17681, 17683, 17707, 17713, 17729,
328     17737, 17747, 17749, 17761, 17783, 17789, 17791, 17807, 17827, 17837, 17839,
329     17851, 17863,
330 };
331 
332 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
333                    const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
334 static int probable_prime(BIGNUM *rnd, int bits);
335 static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
336                              const BIGNUM *rem, BN_CTX *ctx);
337 static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add,
338                                   const BIGNUM *rem, BN_CTX *ctx);
339 
BN_GENCB_set(BN_GENCB * callback,int (* f)(int event,int n,struct bn_gencb_st *),void * arg)340 void BN_GENCB_set(BN_GENCB *callback,
341                   int (*f)(int event, int n, struct bn_gencb_st *),
342                   void *arg) {
343   callback->callback = f;
344   callback->arg = arg;
345 }
346 
BN_GENCB_call(BN_GENCB * callback,int event,int n)347 int BN_GENCB_call(BN_GENCB *callback, int event, int n) {
348   if (!callback) {
349     return 1;
350   }
351 
352   return callback->callback(event, n, callback);
353 }
354 
BN_generate_prime_ex(BIGNUM * ret,int bits,int safe,const BIGNUM * add,const BIGNUM * rem,BN_GENCB * cb)355 int BN_generate_prime_ex(BIGNUM *ret, int bits, int safe, const BIGNUM *add,
356                          const BIGNUM *rem, BN_GENCB *cb) {
357   BIGNUM *t;
358   int found = 0;
359   int i, j, c1 = 0;
360   BN_CTX *ctx;
361   int checks = BN_prime_checks_for_size(bits);
362 
363   if (bits < 2) {
364     /* There are no prime numbers this small. */
365     OPENSSL_PUT_ERROR(BN, BN_generate_prime_ex, BN_R_BITS_TOO_SMALL);
366     return 0;
367   } else if (bits == 2 && safe) {
368     /* The smallest safe prime (7) is three bits. */
369     OPENSSL_PUT_ERROR(BN, BN_generate_prime_ex, BN_R_BITS_TOO_SMALL);
370     return 0;
371   }
372 
373   ctx = BN_CTX_new();
374   if (ctx == NULL) {
375     goto err;
376   }
377   BN_CTX_start(ctx);
378   t = BN_CTX_get(ctx);
379   if (!t) {
380     goto err;
381   }
382 
383 loop:
384   /* make a random number and set the top and bottom bits */
385   if (add == NULL) {
386     if (!probable_prime(ret, bits)) {
387       goto err;
388     }
389   } else {
390     if (safe) {
391       if (!probable_prime_dh_safe(ret, bits, add, rem, ctx)) {
392         goto err;
393       }
394     } else {
395       if (!probable_prime_dh(ret, bits, add, rem, ctx)) {
396         goto err;
397       }
398     }
399   }
400 
401   if (!BN_GENCB_call(cb, BN_GENCB_GENERATED, c1++)) {
402     /* aborted */
403     goto err;
404   }
405 
406   if (!safe) {
407     i = BN_is_prime_fasttest_ex(ret, checks, ctx, 0, cb);
408     if (i == -1) {
409       goto err;
410     } else if (i == 0) {
411       goto loop;
412     }
413   } else {
414     /* for "safe prime" generation, check that (p-1)/2 is prime. Since a prime
415      * is odd, We just need to divide by 2 */
416     if (!BN_rshift1(t, ret)) {
417       goto err;
418     }
419 
420     for (i = 0; i < checks; i++) {
421       j = BN_is_prime_fasttest_ex(ret, 1, ctx, 0, NULL);
422       if (j == -1) {
423         goto err;
424       } else if (j == 0) {
425         goto loop;
426       }
427 
428       j = BN_is_prime_fasttest_ex(t, 1, ctx, 0, NULL);
429       if (j == -1) {
430         goto err;
431       } else if (j == 0) {
432         goto loop;
433       }
434 
435       if (!BN_GENCB_call(cb, i, c1 - 1)) {
436         goto err;
437       }
438       /* We have a safe prime test pass */
439     }
440   }
441 
442   /* we have a prime :-) */
443   found = 1;
444 
445 err:
446   if (ctx != NULL) {
447     BN_CTX_end(ctx);
448     BN_CTX_free(ctx);
449   }
450 
451   return found;
452 }
453 
BN_primality_test(int * is_probably_prime,const BIGNUM * candidate,int checks,BN_CTX * ctx,int do_trial_division,BN_GENCB * cb)454 int BN_primality_test(int *is_probably_prime, const BIGNUM *candidate,
455                       int checks, BN_CTX *ctx, int do_trial_division,
456                       BN_GENCB *cb) {
457   switch (BN_is_prime_fasttest_ex(candidate, checks, ctx, do_trial_division, cb)) {
458     case 1:
459       *is_probably_prime = 1;
460       return 1;
461     case 0:
462       *is_probably_prime = 0;
463       return 1;
464     default:
465       *is_probably_prime = 0;
466       return 0;
467   }
468 }
469 
BN_is_prime_ex(const BIGNUM * candidate,int checks,BN_CTX * ctx,BN_GENCB * cb)470 int BN_is_prime_ex(const BIGNUM *candidate, int checks, BN_CTX *ctx, BN_GENCB *cb) {
471   return BN_is_prime_fasttest_ex(candidate, checks, ctx, 0, cb);
472 }
473 
BN_is_prime_fasttest_ex(const BIGNUM * a,int checks,BN_CTX * ctx_passed,int do_trial_division,BN_GENCB * cb)474 int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
475                             int do_trial_division, BN_GENCB *cb) {
476   int i, j, ret = -1;
477   int k;
478   BN_CTX *ctx = NULL;
479   BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
480   BN_MONT_CTX *mont = NULL;
481   const BIGNUM *A = NULL;
482 
483   if (BN_cmp(a, BN_value_one()) <= 0) {
484     return 0;
485   }
486 
487   if (checks == BN_prime_checks) {
488     checks = BN_prime_checks_for_size(BN_num_bits(a));
489   }
490 
491   /* first look for small factors */
492   if (!BN_is_odd(a)) {
493     /* a is even => a is prime if and only if a == 2 */
494     return BN_is_word(a, 2);
495   }
496 
497   if (do_trial_division) {
498     for (i = 1; i < NUMPRIMES; i++) {
499       if (BN_mod_word(a, primes[i]) == 0) {
500         return 0;
501       }
502     }
503 
504     if (!BN_GENCB_call(cb, 1, -1)) {
505       goto err;
506     }
507   }
508 
509   if (ctx_passed != NULL) {
510     ctx = ctx_passed;
511   } else if ((ctx = BN_CTX_new()) == NULL) {
512     goto err;
513   }
514   BN_CTX_start(ctx);
515 
516   /* A := abs(a) */
517   if (a->neg) {
518     BIGNUM *t;
519     if ((t = BN_CTX_get(ctx)) == NULL) {
520       goto err;
521     }
522     BN_copy(t, a);
523     t->neg = 0;
524     A = t;
525   } else {
526     A = a;
527   }
528 
529   A1 = BN_CTX_get(ctx);
530   A1_odd = BN_CTX_get(ctx);
531   check = BN_CTX_get(ctx);
532   if (check == NULL) {
533     goto err;
534   }
535 
536   /* compute A1 := A - 1 */
537   if (!BN_copy(A1, A)) {
538     goto err;
539   }
540   if (!BN_sub_word(A1, 1)) {
541     goto err;
542   }
543   if (BN_is_zero(A1)) {
544     ret = 0;
545     goto err;
546   }
547 
548   /* write  A1  as  A1_odd * 2^k */
549   k = 1;
550   while (!BN_is_bit_set(A1, k)) {
551     k++;
552   }
553   if (!BN_rshift(A1_odd, A1, k)) {
554     goto err;
555   }
556 
557   /* Montgomery setup for computations mod A */
558   mont = BN_MONT_CTX_new();
559   if (mont == NULL) {
560     goto err;
561   }
562   if (!BN_MONT_CTX_set(mont, A, ctx)) {
563     goto err;
564   }
565 
566   for (i = 0; i < checks; i++) {
567     if (!BN_pseudo_rand_range(check, A1)) {
568       goto err;
569     }
570     if (!BN_add_word(check, 1)) {
571       goto err;
572     }
573     /* now 1 <= check < A */
574 
575     j = witness(check, A, A1, A1_odd, k, ctx, mont);
576     if (j == -1) {
577       goto err;
578     }
579     if (j) {
580       ret = 0;
581       goto err;
582     }
583     if (!BN_GENCB_call(cb, 1, i)) {
584       goto err;
585     }
586   }
587   ret = 1;
588 
589 err:
590   if (ctx != NULL) {
591     BN_CTX_end(ctx);
592     if (ctx_passed == NULL) {
593       BN_CTX_free(ctx);
594     }
595   }
596   if (mont != NULL) {
597     BN_MONT_CTX_free(mont);
598   }
599 
600   return ret;
601 }
602 
witness(BIGNUM * w,const BIGNUM * a,const BIGNUM * a1,const BIGNUM * a1_odd,int k,BN_CTX * ctx,BN_MONT_CTX * mont)603 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
604                    const BIGNUM *a1_odd, int k, BN_CTX *ctx,
605                    BN_MONT_CTX *mont) {
606   if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) { /* w := w^a1_odd mod a */
607     return -1;
608   }
609   if (BN_is_one(w)) {
610     return 0; /* probably prime */
611   }
612   if (BN_cmp(w, a1) == 0) {
613     return 0; /* w == -1 (mod a),  'a' is probably prime */
614   }
615 
616   while (--k) {
617     if (!BN_mod_mul(w, w, w, a, ctx)) { /* w := w^2 mod a */
618       return -1;
619     }
620 
621     if (BN_is_one(w)) {
622       return 1; /* 'a' is composite, otherwise a previous 'w' would
623                  * have been == -1 (mod 'a') */
624     }
625 
626     if (BN_cmp(w, a1) == 0) {
627       return 0; /* w == -1 (mod a), 'a' is probably prime */
628     }
629   }
630 
631   /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
632    * and it is neither -1 nor +1 -- so 'a' cannot be prime */
633   return 1;
634 }
635 
get_word(const BIGNUM * bn)636 static BN_ULONG get_word(const BIGNUM *bn) {
637   if (bn->top == 1) {
638     return bn->d[0];
639   }
640   return 0;
641 }
642 
probable_prime(BIGNUM * rnd,int bits)643 static int probable_prime(BIGNUM *rnd, int bits) {
644   int i;
645   uint16_t mods[NUMPRIMES];
646   BN_ULONG delta;
647   BN_ULONG maxdelta = BN_MASK2 - primes[NUMPRIMES - 1];
648   char is_single_word = bits <= BN_BITS2;
649 
650 again:
651   if (!BN_rand(rnd, bits, 1, 1)) {
652     return 0;
653   }
654 
655   /* we now have a random number 'rnd' to test. */
656   for (i = 1; i < NUMPRIMES; i++) {
657     mods[i] = (uint16_t)BN_mod_word(rnd, (BN_ULONG)primes[i]);
658   }
659   /* If bits is so small that it fits into a single word then we
660    * additionally don't want to exceed that many bits. */
661   if (is_single_word) {
662     BN_ULONG size_limit;
663     if (bits == BN_BITS2) {
664       /* Avoid undefined behavior. */
665       size_limit = ~((BN_ULONG)0) - get_word(rnd);
666     } else {
667       size_limit = (((BN_ULONG)1) << bits) - get_word(rnd) - 1;
668     }
669     if (size_limit < maxdelta) {
670       maxdelta = size_limit;
671     }
672   }
673   delta = 0;
674 
675 loop:
676   if (is_single_word) {
677     BN_ULONG rnd_word = get_word(rnd);
678 
679     /* In the case that the candidate prime is a single word then
680      * we check that:
681      *   1) It's greater than primes[i] because we shouldn't reject
682      *      3 as being a prime number because it's a multiple of
683      *      three.
684      *   2) That it's not a multiple of a known prime. We don't
685      *      check that rnd-1 is also coprime to all the known
686      *      primes because there aren't many small primes where
687      *      that's true. */
688     for (i = 1; i < NUMPRIMES && primes[i] < rnd_word; i++) {
689       if ((mods[i] + delta) % primes[i] == 0) {
690         delta += 2;
691         if (delta > maxdelta) {
692           goto again;
693         }
694         goto loop;
695       }
696     }
697   } else {
698     for (i = 1; i < NUMPRIMES; i++) {
699       /* check that rnd is not a prime and also
700        * that gcd(rnd-1,primes) == 1 (except for 2) */
701       if (((mods[i] + delta) % primes[i]) <= 1) {
702         delta += 2;
703         if (delta > maxdelta) {
704           goto again;
705         }
706         goto loop;
707       }
708     }
709   }
710 
711   if (!BN_add_word(rnd, delta)) {
712     return 0;
713   }
714   if (BN_num_bits(rnd) != bits) {
715     goto again;
716   }
717 
718   return 1;
719 }
720 
probable_prime_dh(BIGNUM * rnd,int bits,const BIGNUM * add,const BIGNUM * rem,BN_CTX * ctx)721 static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
722                              const BIGNUM *rem, BN_CTX *ctx) {
723   int i, ret = 0;
724   BIGNUM *t1;
725 
726   BN_CTX_start(ctx);
727   if ((t1 = BN_CTX_get(ctx)) == NULL) {
728     goto err;
729   }
730 
731   if (!BN_rand(rnd, bits, 0, 1)) {
732     goto err;
733   }
734 
735   /* we need ((rnd-rem) % add) == 0 */
736 
737   if (!BN_mod(t1, rnd, add, ctx)) {
738     goto err;
739   }
740   if (!BN_sub(rnd, rnd, t1)) {
741     goto err;
742   }
743   if (rem == NULL) {
744     if (!BN_add_word(rnd, 1)) {
745       goto err;
746     }
747   } else {
748     if (!BN_add(rnd, rnd, rem)) {
749       goto err;
750     }
751   }
752   /* we now have a random number 'rand' to test. */
753 
754 loop:
755   for (i = 1; i < NUMPRIMES; i++) {
756     /* check that rnd is a prime */
757     if (BN_mod_word(rnd, (BN_ULONG)primes[i]) <= 1) {
758       if (!BN_add(rnd, rnd, add)) {
759         goto err;
760       }
761       goto loop;
762     }
763   }
764 
765   ret = 1;
766 
767 err:
768   BN_CTX_end(ctx);
769   return ret;
770 }
771 
probable_prime_dh_safe(BIGNUM * p,int bits,const BIGNUM * padd,const BIGNUM * rem,BN_CTX * ctx)772 static int probable_prime_dh_safe(BIGNUM *p, int bits, const BIGNUM *padd,
773                                   const BIGNUM *rem, BN_CTX *ctx) {
774   int i, ret = 0;
775   BIGNUM *t1, *qadd, *q;
776 
777   bits--;
778   BN_CTX_start(ctx);
779   t1 = BN_CTX_get(ctx);
780   q = BN_CTX_get(ctx);
781   qadd = BN_CTX_get(ctx);
782   if (qadd == NULL) {
783     goto err;
784   }
785 
786   if (!BN_rshift1(qadd, padd)) {
787     goto err;
788   }
789 
790   if (!BN_rand(q, bits, 0, 1)) {
791     goto err;
792   }
793 
794   /* we need ((rnd-rem) % add) == 0 */
795   if (!BN_mod(t1, q, qadd, ctx)) {
796     goto err;
797   }
798 
799   if (!BN_sub(q, q, t1)) {
800     goto err;
801   }
802 
803   if (rem == NULL) {
804     if (!BN_add_word(q, 1)) {
805       goto err;
806     }
807   } else {
808     if (!BN_rshift1(t1, rem)) {
809       goto err;
810     }
811     if (!BN_add(q, q, t1)) {
812       goto err;
813     }
814   }
815 
816   /* we now have a random number 'rand' to test. */
817   if (!BN_lshift1(p, q)) {
818     goto err;
819   }
820   if (!BN_add_word(p, 1)) {
821     goto err;
822   }
823 
824 loop:
825   for (i = 1; i < NUMPRIMES; i++) {
826     /* check that p and q are prime */
827     /* check that for p and q
828      * gcd(p-1,primes) == 1 (except for 2) */
829     if ((BN_mod_word(p, (BN_ULONG)primes[i]) == 0) ||
830         (BN_mod_word(q, (BN_ULONG)primes[i]) == 0)) {
831       if (!BN_add(p, p, padd)) {
832         goto err;
833       }
834       if (!BN_add(q, q, qadd)) {
835         goto err;
836       }
837       goto loop;
838     }
839   }
840 
841   ret = 1;
842 
843 err:
844   BN_CTX_end(ctx);
845   return ret;
846 }
847