• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "base/bit_vector-inl.h"
18 #include "base/logging.h"
19 #include "base/scoped_arena_containers.h"
20 #include "compiler_ir.h"
21 #include "dataflow_iterator-inl.h"
22 
23 #define NOTVISITED (-1)
24 
25 namespace art {
26 
ClearAllVisitedFlags()27 void MIRGraph::ClearAllVisitedFlags() {
28   AllNodesIterator iter(this);
29   for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
30     bb->visited = false;
31   }
32 }
33 
NeedsVisit(BasicBlock * bb)34 BasicBlock* MIRGraph::NeedsVisit(BasicBlock* bb) {
35   if (bb != nullptr) {
36     if (bb->visited || bb->hidden) {
37       bb = nullptr;
38     }
39   }
40   return bb;
41 }
42 
NextUnvisitedSuccessor(BasicBlock * bb)43 BasicBlock* MIRGraph::NextUnvisitedSuccessor(BasicBlock* bb) {
44   BasicBlock* res = NeedsVisit(GetBasicBlock(bb->fall_through));
45   if (res == nullptr) {
46     res = NeedsVisit(GetBasicBlock(bb->taken));
47     if (res == nullptr) {
48       if (bb->successor_block_list_type != kNotUsed) {
49         for (SuccessorBlockInfo* sbi : bb->successor_blocks) {
50           res = NeedsVisit(GetBasicBlock(sbi->block));
51           if (res != nullptr) {
52             break;
53           }
54         }
55       }
56     }
57   }
58   return res;
59 }
60 
MarkPreOrder(BasicBlock * block)61 void MIRGraph::MarkPreOrder(BasicBlock* block) {
62   block->visited = true;
63   /* Enqueue the pre_order block id */
64   if (block->id != NullBasicBlockId) {
65     dfs_order_.push_back(block->id);
66   }
67 }
68 
RecordDFSOrders(BasicBlock * block)69 void MIRGraph::RecordDFSOrders(BasicBlock* block) {
70   ScopedArenaAllocator allocator(&cu_->arena_stack);
71   ScopedArenaVector<BasicBlock*> succ(allocator.Adapter());
72   succ.reserve(GetNumBlocks());
73   MarkPreOrder(block);
74   succ.push_back(block);
75   while (!succ.empty()) {
76     BasicBlock* curr = succ.back();
77     BasicBlock* next_successor = NextUnvisitedSuccessor(curr);
78     if (next_successor != nullptr) {
79       MarkPreOrder(next_successor);
80       succ.push_back(next_successor);
81       continue;
82     }
83     curr->dfs_id = dfs_post_order_.size();
84     if (curr->id != NullBasicBlockId) {
85       dfs_post_order_.push_back(curr->id);
86     }
87     succ.pop_back();
88   }
89 }
90 
91 /* Sort the blocks by the Depth-First-Search */
ComputeDFSOrders()92 void MIRGraph::ComputeDFSOrders() {
93   /* Clear the DFS pre-order and post-order lists. */
94   dfs_order_.clear();
95   dfs_order_.reserve(GetNumBlocks());
96   dfs_post_order_.clear();
97   dfs_post_order_.reserve(GetNumBlocks());
98 
99   // Reset visited flags from all nodes
100   ClearAllVisitedFlags();
101 
102   // Record dfs orders
103   RecordDFSOrders(GetEntryBlock());
104 
105   num_reachable_blocks_ = dfs_order_.size();
106 
107   if (num_reachable_blocks_ != GetNumBlocks()) {
108     // Kill all unreachable blocks.
109     AllNodesIterator iter(this);
110     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
111       if (!bb->visited) {
112         bb->Kill(this);
113       }
114     }
115   }
116   dfs_orders_up_to_date_ = true;
117 }
118 
119 /*
120  * Mark block bit on the per-Dalvik register vector to denote that Dalvik
121  * register idx is defined in BasicBlock bb.
122  */
FillDefBlockMatrix(BasicBlock * bb)123 bool MIRGraph::FillDefBlockMatrix(BasicBlock* bb) {
124   if (bb->data_flow_info == nullptr) {
125     return false;
126   }
127 
128   for (uint32_t idx : bb->data_flow_info->def_v->Indexes()) {
129     /* Block bb defines register idx */
130     temp_.ssa.def_block_matrix[idx]->SetBit(bb->id);
131   }
132   return true;
133 }
134 
ComputeDefBlockMatrix()135 void MIRGraph::ComputeDefBlockMatrix() {
136   int num_registers = GetNumOfCodeAndTempVRs();
137   /* Allocate num_registers bit vector pointers */
138   DCHECK(temp_scoped_alloc_ != nullptr);
139   DCHECK(temp_.ssa.def_block_matrix == nullptr);
140   temp_.ssa.def_block_matrix =
141       temp_scoped_alloc_->AllocArray<ArenaBitVector*>(num_registers, kArenaAllocDFInfo);
142   int i;
143 
144   /* Initialize num_register vectors with num_blocks bits each */
145   for (i = 0; i < num_registers; i++) {
146     temp_.ssa.def_block_matrix[i] = new (temp_scoped_alloc_.get()) ArenaBitVector(
147         arena_, GetNumBlocks(), false, kBitMapBMatrix);
148     temp_.ssa.def_block_matrix[i]->ClearAllBits();
149   }
150 
151   AllNodesIterator iter(this);
152   for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
153     FindLocalLiveIn(bb);
154   }
155   AllNodesIterator iter2(this);
156   for (BasicBlock* bb = iter2.Next(); bb != nullptr; bb = iter2.Next()) {
157     FillDefBlockMatrix(bb);
158   }
159 
160   /*
161    * Also set the incoming parameters as defs in the entry block.
162    * Only need to handle the parameters for the outer method.
163    */
164   int num_regs = GetNumOfCodeVRs();
165   int in_reg = GetFirstInVR();
166   for (; in_reg < num_regs; in_reg++) {
167     temp_.ssa.def_block_matrix[in_reg]->SetBit(GetEntryBlock()->id);
168   }
169 }
170 
ComputeDomPostOrderTraversal(BasicBlock * bb)171 void MIRGraph::ComputeDomPostOrderTraversal(BasicBlock* bb) {
172   // Clear the dominator post-order list.
173   dom_post_order_traversal_.clear();
174   dom_post_order_traversal_.reserve(num_reachable_blocks_);
175 
176   ClearAllVisitedFlags();
177   ScopedArenaAllocator allocator(&cu_->arena_stack);
178   ScopedArenaVector<std::pair<BasicBlock*, ArenaBitVector::IndexIterator>> work_stack(
179       allocator.Adapter());
180   bb->visited = true;
181   work_stack.push_back(std::make_pair(bb, bb->i_dominated->Indexes().begin()));
182   while (!work_stack.empty()) {
183     std::pair<BasicBlock*, ArenaBitVector::IndexIterator>* curr = &work_stack.back();
184     BasicBlock* curr_bb = curr->first;
185     ArenaBitVector::IndexIterator* curr_idom_iter = &curr->second;
186     while (!curr_idom_iter->Done() && (NeedsVisit(GetBasicBlock(**curr_idom_iter)) == nullptr)) {
187       ++*curr_idom_iter;
188     }
189     // NOTE: work_stack.push_back()/pop_back() invalidate curr and curr_idom_iter.
190     if (!curr_idom_iter->Done()) {
191       BasicBlock* new_bb = GetBasicBlock(**curr_idom_iter);
192       ++*curr_idom_iter;
193       new_bb->visited = true;
194       work_stack.push_back(std::make_pair(new_bb, new_bb->i_dominated->Indexes().begin()));
195     } else {
196       // no successor/next
197       if (curr_bb->id != NullBasicBlockId) {
198         dom_post_order_traversal_.push_back(curr_bb->id);
199       }
200       work_stack.pop_back();
201     }
202   }
203 }
204 
CheckForDominanceFrontier(BasicBlock * dom_bb,const BasicBlock * succ_bb)205 void MIRGraph::CheckForDominanceFrontier(BasicBlock* dom_bb,
206                                          const BasicBlock* succ_bb) {
207   /*
208    * TODO - evaluate whether phi will ever need to be inserted into exit
209    * blocks.
210    */
211   if (succ_bb->i_dom != dom_bb->id &&
212     succ_bb->block_type == kDalvikByteCode &&
213     succ_bb->hidden == false) {
214     dom_bb->dom_frontier->SetBit(succ_bb->id);
215   }
216 }
217 
218 /* Worker function to compute the dominance frontier */
ComputeDominanceFrontier(BasicBlock * bb)219 bool MIRGraph::ComputeDominanceFrontier(BasicBlock* bb) {
220   /* Calculate DF_local */
221   if (bb->taken != NullBasicBlockId) {
222     CheckForDominanceFrontier(bb, GetBasicBlock(bb->taken));
223   }
224   if (bb->fall_through != NullBasicBlockId) {
225     CheckForDominanceFrontier(bb, GetBasicBlock(bb->fall_through));
226   }
227   if (bb->successor_block_list_type != kNotUsed) {
228     for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
229       BasicBlock* succ_bb = GetBasicBlock(successor_block_info->block);
230       CheckForDominanceFrontier(bb, succ_bb);
231     }
232   }
233 
234   /* Calculate DF_up */
235   for (uint32_t dominated_idx : bb->i_dominated->Indexes()) {
236     BasicBlock* dominated_bb = GetBasicBlock(dominated_idx);
237     for (uint32_t df_up_block_idx : dominated_bb->dom_frontier->Indexes()) {
238       BasicBlock* df_up_block = GetBasicBlock(df_up_block_idx);
239       CheckForDominanceFrontier(bb, df_up_block);
240     }
241   }
242 
243   return true;
244 }
245 
246 /* Worker function for initializing domination-related data structures */
InitializeDominationInfo(BasicBlock * bb)247 void MIRGraph::InitializeDominationInfo(BasicBlock* bb) {
248   int num_total_blocks = GetBasicBlockListCount();
249 
250   if (bb->dominators == nullptr) {
251     bb->dominators = new (arena_) ArenaBitVector(arena_, num_total_blocks,
252                                                  true /* expandable */, kBitMapDominators);
253     bb->i_dominated = new (arena_) ArenaBitVector(arena_, num_total_blocks,
254                                                   true /* expandable */, kBitMapIDominated);
255     bb->dom_frontier = new (arena_) ArenaBitVector(arena_, num_total_blocks,
256                                                    true /* expandable */, kBitMapDomFrontier);
257   } else {
258     bb->dominators->ClearAllBits();
259     bb->i_dominated->ClearAllBits();
260     bb->dom_frontier->ClearAllBits();
261   }
262   /* Set all bits in the dominator vector */
263   bb->dominators->SetInitialBits(num_total_blocks);
264 
265   return;
266 }
267 
268 /*
269  * Walk through the ordered i_dom list until we reach common parent.
270  * Given the ordering of i_dom_list, this common parent represents the
271  * last element of the intersection of block1 and block2 dominators.
272   */
FindCommonParent(int block1,int block2)273 int MIRGraph::FindCommonParent(int block1, int block2) {
274   while (block1 != block2) {
275     while (block1 < block2) {
276       block1 = i_dom_list_[block1];
277       DCHECK_NE(block1, NOTVISITED);
278     }
279     while (block2 < block1) {
280       block2 = i_dom_list_[block2];
281       DCHECK_NE(block2, NOTVISITED);
282     }
283   }
284   return block1;
285 }
286 
287 /* Worker function to compute each block's immediate dominator */
ComputeblockIDom(BasicBlock * bb)288 bool MIRGraph::ComputeblockIDom(BasicBlock* bb) {
289   /* Special-case entry block */
290   if ((bb->id == NullBasicBlockId) || (bb == GetEntryBlock())) {
291     return false;
292   }
293 
294   /* Iterate through the predecessors */
295   auto it = bb->predecessors.begin(), end = bb->predecessors.end();
296 
297   /* Find the first processed predecessor */
298   int idom = -1;
299   for ( ; ; ++it) {
300     CHECK(it != end);
301     BasicBlock* pred_bb = GetBasicBlock(*it);
302     DCHECK(pred_bb != nullptr);
303     if (i_dom_list_[pred_bb->dfs_id] != NOTVISITED) {
304       idom = pred_bb->dfs_id;
305       break;
306     }
307   }
308 
309   /* Scan the rest of the predecessors */
310   for ( ; it != end; ++it) {
311       BasicBlock* pred_bb = GetBasicBlock(*it);
312       DCHECK(pred_bb != nullptr);
313       if (i_dom_list_[pred_bb->dfs_id] == NOTVISITED) {
314         continue;
315       } else {
316         idom = FindCommonParent(pred_bb->dfs_id, idom);
317       }
318   }
319 
320   DCHECK_NE(idom, NOTVISITED);
321 
322   /* Did something change? */
323   if (i_dom_list_[bb->dfs_id] != idom) {
324     i_dom_list_[bb->dfs_id] = idom;
325     return true;
326   }
327   return false;
328 }
329 
330 /* Worker function to compute each block's domintors */
ComputeBlockDominators(BasicBlock * bb)331 bool MIRGraph::ComputeBlockDominators(BasicBlock* bb) {
332   if (bb == GetEntryBlock()) {
333     bb->dominators->ClearAllBits();
334   } else {
335     bb->dominators->Copy(GetBasicBlock(bb->i_dom)->dominators);
336   }
337   bb->dominators->SetBit(bb->id);
338   return false;
339 }
340 
SetDominators(BasicBlock * bb)341 bool MIRGraph::SetDominators(BasicBlock* bb) {
342   if (bb != GetEntryBlock()) {
343     int idom_dfs_idx = i_dom_list_[bb->dfs_id];
344     DCHECK_NE(idom_dfs_idx, NOTVISITED);
345     int i_dom_idx = dfs_post_order_[idom_dfs_idx];
346     BasicBlock* i_dom = GetBasicBlock(i_dom_idx);
347     bb->i_dom = i_dom->id;
348     /* Add bb to the i_dominated set of the immediate dominator block */
349     i_dom->i_dominated->SetBit(bb->id);
350   }
351   return false;
352 }
353 
354 /* Compute dominators, immediate dominator, and dominance fronter */
ComputeDominators()355 void MIRGraph::ComputeDominators() {
356   int num_reachable_blocks = num_reachable_blocks_;
357 
358   /* Initialize domination-related data structures */
359   PreOrderDfsIterator iter(this);
360   for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
361     InitializeDominationInfo(bb);
362   }
363 
364   /* Initialize & Clear i_dom_list */
365   if (max_num_reachable_blocks_ < num_reachable_blocks_) {
366     i_dom_list_ = arena_->AllocArray<int>(num_reachable_blocks, kArenaAllocDFInfo);
367   }
368   for (int i = 0; i < num_reachable_blocks; i++) {
369     i_dom_list_[i] = NOTVISITED;
370   }
371 
372   /* For post-order, last block is entry block.  Set its i_dom to istelf */
373   DCHECK_EQ(GetEntryBlock()->dfs_id, num_reachable_blocks-1);
374   i_dom_list_[GetEntryBlock()->dfs_id] = GetEntryBlock()->dfs_id;
375 
376   /* Compute the immediate dominators */
377   RepeatingReversePostOrderDfsIterator iter2(this);
378   bool change = false;
379   for (BasicBlock* bb = iter2.Next(false); bb != nullptr; bb = iter2.Next(change)) {
380     change = ComputeblockIDom(bb);
381   }
382 
383   /* Set the dominator for the root node */
384   GetEntryBlock()->dominators->ClearAllBits();
385   GetEntryBlock()->dominators->SetBit(GetEntryBlock()->id);
386 
387   GetEntryBlock()->i_dom = 0;
388 
389   PreOrderDfsIterator iter3(this);
390   for (BasicBlock* bb = iter3.Next(); bb != nullptr; bb = iter3.Next()) {
391     SetDominators(bb);
392   }
393 
394   ReversePostOrderDfsIterator iter4(this);
395   for (BasicBlock* bb = iter4.Next(); bb != nullptr; bb = iter4.Next()) {
396     ComputeBlockDominators(bb);
397   }
398 
399   // Compute the dominance frontier for each block.
400   ComputeDomPostOrderTraversal(GetEntryBlock());
401   PostOrderDOMIterator iter5(this);
402   for (BasicBlock* bb = iter5.Next(); bb != nullptr; bb = iter5.Next()) {
403     ComputeDominanceFrontier(bb);
404   }
405 
406   domination_up_to_date_ = true;
407 }
408 
409 /*
410  * Perform dest U= src1 ^ ~src2
411  * This is probably not general enough to be placed in BitVector.[ch].
412  */
ComputeSuccLineIn(ArenaBitVector * dest,const ArenaBitVector * src1,const ArenaBitVector * src2)413 void MIRGraph::ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
414                                  const ArenaBitVector* src2) {
415   if (dest->GetStorageSize() != src1->GetStorageSize() ||
416       dest->GetStorageSize() != src2->GetStorageSize() ||
417       dest->IsExpandable() != src1->IsExpandable() ||
418       dest->IsExpandable() != src2->IsExpandable()) {
419     LOG(FATAL) << "Incompatible set properties";
420   }
421 
422   unsigned int idx;
423   for (idx = 0; idx < dest->GetStorageSize(); idx++) {
424     dest->GetRawStorage()[idx] |= src1->GetRawStorageWord(idx) & ~(src2->GetRawStorageWord(idx));
425   }
426 }
427 
428 /*
429  * Iterate through all successor blocks and propagate up the live-in sets.
430  * The calculated result is used for phi-node pruning - where we only need to
431  * insert a phi node if the variable is live-in to the block.
432  */
ComputeBlockLiveIns(BasicBlock * bb)433 bool MIRGraph::ComputeBlockLiveIns(BasicBlock* bb) {
434   DCHECK_EQ(temp_.ssa.num_vregs, cu_->mir_graph.get()->GetNumOfCodeAndTempVRs());
435   ArenaBitVector* temp_live_vregs = temp_.ssa.work_live_vregs;
436 
437   if (bb->data_flow_info == nullptr) {
438     return false;
439   }
440   temp_live_vregs->Copy(bb->data_flow_info->live_in_v);
441   BasicBlock* bb_taken = GetBasicBlock(bb->taken);
442   BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
443   if (bb_taken && bb_taken->data_flow_info)
444     ComputeSuccLineIn(temp_live_vregs, bb_taken->data_flow_info->live_in_v,
445                       bb->data_flow_info->def_v);
446   if (bb_fall_through && bb_fall_through->data_flow_info)
447     ComputeSuccLineIn(temp_live_vregs, bb_fall_through->data_flow_info->live_in_v,
448                       bb->data_flow_info->def_v);
449   if (bb->successor_block_list_type != kNotUsed) {
450     for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
451       BasicBlock* succ_bb = GetBasicBlock(successor_block_info->block);
452       if (succ_bb->data_flow_info) {
453         ComputeSuccLineIn(temp_live_vregs, succ_bb->data_flow_info->live_in_v,
454                           bb->data_flow_info->def_v);
455       }
456     }
457   }
458   if (!temp_live_vregs->Equal(bb->data_flow_info->live_in_v)) {
459     bb->data_flow_info->live_in_v->Copy(temp_live_vregs);
460     return true;
461   }
462   return false;
463 }
464 
465 /* For each dalvik reg, find blocks that need phi nodes according to the dominance frontiers. */
FindPhiNodeBlocks()466 void MIRGraph::FindPhiNodeBlocks() {
467   RepeatingPostOrderDfsIterator iter(this);
468   bool change = false;
469   for (BasicBlock* bb = iter.Next(false); bb != nullptr; bb = iter.Next(change)) {
470     change = ComputeBlockLiveIns(bb);
471   }
472 
473   ArenaBitVector* phi_blocks = new (temp_scoped_alloc_.get()) ArenaBitVector(
474       temp_scoped_alloc_.get(), GetNumBlocks(), false, kBitMapBMatrix);
475 
476   // Reuse the def_block_matrix storage for phi_node_blocks.
477   ArenaBitVector** def_block_matrix = temp_.ssa.def_block_matrix;
478   ArenaBitVector** phi_node_blocks = def_block_matrix;
479   DCHECK(temp_.ssa.phi_node_blocks == nullptr);
480   temp_.ssa.phi_node_blocks = phi_node_blocks;
481   temp_.ssa.def_block_matrix = nullptr;
482 
483   /* Iterate through each Dalvik register */
484   for (int dalvik_reg = GetNumOfCodeAndTempVRs() - 1; dalvik_reg >= 0; dalvik_reg--) {
485     phi_blocks->ClearAllBits();
486     ArenaBitVector* input_blocks = def_block_matrix[dalvik_reg];
487     do {
488       // TUNING: When we repeat this, we could skip indexes from the previous pass.
489       for (uint32_t idx : input_blocks->Indexes()) {
490         BasicBlock* def_bb = GetBasicBlock(idx);
491         if (def_bb->dom_frontier != nullptr) {
492           phi_blocks->Union(def_bb->dom_frontier);
493         }
494       }
495     } while (input_blocks->Union(phi_blocks));
496 
497     def_block_matrix[dalvik_reg] = phi_blocks;
498     phi_blocks = input_blocks;  // Reuse the bit vector in next iteration.
499   }
500 }
501 
502 /*
503  * Worker function to insert phi-operands with latest SSA names from
504  * predecessor blocks
505  */
InsertPhiNodeOperands(BasicBlock * bb)506 bool MIRGraph::InsertPhiNodeOperands(BasicBlock* bb) {
507   /* Phi nodes are at the beginning of each block */
508   for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
509     if (mir->dalvikInsn.opcode != static_cast<Instruction::Code>(kMirOpPhi))
510       return true;
511     int ssa_reg = mir->ssa_rep->defs[0];
512     DCHECK_GE(ssa_reg, 0);   // Shouldn't see compiler temps here
513     int v_reg = SRegToVReg(ssa_reg);
514 
515     /* Iterate through the predecessors */
516     size_t num_uses = bb->predecessors.size();
517     AllocateSSAUseData(mir, num_uses);
518     int* uses = mir->ssa_rep->uses;
519     BasicBlockId* incoming = arena_->AllocArray<BasicBlockId>(num_uses, kArenaAllocDFInfo);
520     mir->meta.phi_incoming = incoming;
521     int idx = 0;
522     for (BasicBlockId pred_id : bb->predecessors) {
523       BasicBlock* pred_bb = GetBasicBlock(pred_id);
524       DCHECK(pred_bb != nullptr);
525       uses[idx] = pred_bb->data_flow_info->vreg_to_ssa_map_exit[v_reg];
526       incoming[idx] = pred_id;
527       idx++;
528     }
529   }
530 
531   return true;
532 }
533 
DoDFSPreOrderSSARename(BasicBlock * block)534 void MIRGraph::DoDFSPreOrderSSARename(BasicBlock* block) {
535   if (block->visited || block->hidden) {
536     return;
537   }
538   block->visited = true;
539 
540   /* Process this block */
541   DoSSAConversion(block);
542 
543   /* Save SSA map snapshot */
544   ScopedArenaAllocator allocator(&cu_->arena_stack);
545   uint32_t num_vregs = GetNumOfCodeAndTempVRs();
546   int32_t* saved_ssa_map = allocator.AllocArray<int32_t>(num_vregs, kArenaAllocDalvikToSSAMap);
547   size_t map_size = sizeof(saved_ssa_map[0]) * num_vregs;
548   memcpy(saved_ssa_map, vreg_to_ssa_map_, map_size);
549 
550   if (block->fall_through != NullBasicBlockId) {
551     DoDFSPreOrderSSARename(GetBasicBlock(block->fall_through));
552     /* Restore SSA map snapshot */
553     memcpy(vreg_to_ssa_map_, saved_ssa_map, map_size);
554   }
555   if (block->taken != NullBasicBlockId) {
556     DoDFSPreOrderSSARename(GetBasicBlock(block->taken));
557     /* Restore SSA map snapshot */
558     memcpy(vreg_to_ssa_map_, saved_ssa_map, map_size);
559   }
560   if (block->successor_block_list_type != kNotUsed) {
561     for (SuccessorBlockInfo* successor_block_info : block->successor_blocks) {
562       BasicBlock* succ_bb = GetBasicBlock(successor_block_info->block);
563       DoDFSPreOrderSSARename(succ_bb);
564       /* Restore SSA map snapshot */
565       memcpy(vreg_to_ssa_map_, saved_ssa_map, map_size);
566     }
567   }
568   return;
569 }
570 
571 }  // namespace art
572