• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/InlineAsm.h - Class to represent inline asm strings-*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This class represents the inline asm strings, which are Value*'s that are
11 // used as the callee operand of call instructions.  InlineAsm's are uniqued
12 // like constants, and created via InlineAsm::get(...).
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_IR_INLINEASM_H
17 #define LLVM_IR_INLINEASM_H
18 
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Value.h"
21 #include <vector>
22 
23 namespace llvm {
24 
25 class PointerType;
26 class FunctionType;
27 class Module;
28 
29 struct InlineAsmKeyType;
30 template <class ConstantClass> class ConstantUniqueMap;
31 
32 class InlineAsm : public Value {
33 public:
34   enum AsmDialect {
35     AD_ATT,
36     AD_Intel
37   };
38 
39 private:
40   friend struct InlineAsmKeyType;
41   friend class ConstantUniqueMap<InlineAsm>;
42 
43   InlineAsm(const InlineAsm &) = delete;
44   void operator=(const InlineAsm&) = delete;
45 
46   std::string AsmString, Constraints;
47   bool HasSideEffects;
48   bool IsAlignStack;
49   AsmDialect Dialect;
50 
51   InlineAsm(PointerType *Ty, const std::string &AsmString,
52             const std::string &Constraints, bool hasSideEffects,
53             bool isAlignStack, AsmDialect asmDialect);
54   ~InlineAsm() override;
55 
56   /// When the ConstantUniqueMap merges two types and makes two InlineAsms
57   /// identical, it destroys one of them with this method.
58   void destroyConstant();
59 public:
60 
61   /// InlineAsm::get - Return the specified uniqued inline asm string.
62   ///
63   static InlineAsm *get(FunctionType *Ty, StringRef AsmString,
64                         StringRef Constraints, bool hasSideEffects,
65                         bool isAlignStack = false,
66                         AsmDialect asmDialect = AD_ATT);
67 
hasSideEffects()68   bool hasSideEffects() const { return HasSideEffects; }
isAlignStack()69   bool isAlignStack() const { return IsAlignStack; }
getDialect()70   AsmDialect getDialect() const { return Dialect; }
71 
72   /// getType - InlineAsm's are always pointers.
73   ///
getType()74   PointerType *getType() const {
75     return reinterpret_cast<PointerType*>(Value::getType());
76   }
77 
78   /// getFunctionType - InlineAsm's are always pointers to functions.
79   ///
80   FunctionType *getFunctionType() const;
81 
getAsmString()82   const std::string &getAsmString() const { return AsmString; }
getConstraintString()83   const std::string &getConstraintString() const { return Constraints; }
84 
85   /// Verify - This static method can be used by the parser to check to see if
86   /// the specified constraint string is legal for the type.  This returns true
87   /// if legal, false if not.
88   ///
89   static bool Verify(FunctionType *Ty, StringRef Constraints);
90 
91   // Constraint String Parsing
92   enum ConstraintPrefix {
93     isInput,            // 'x'
94     isOutput,           // '=x'
95     isClobber           // '~x'
96   };
97 
98   typedef std::vector<std::string> ConstraintCodeVector;
99 
100   struct SubConstraintInfo {
101     /// MatchingInput - If this is not -1, this is an output constraint where an
102     /// input constraint is required to match it (e.g. "0").  The value is the
103     /// constraint number that matches this one (for example, if this is
104     /// constraint #0 and constraint #4 has the value "0", this will be 4).
105     signed char MatchingInput;
106     /// Code - The constraint code, either the register name (in braces) or the
107     /// constraint letter/number.
108     ConstraintCodeVector Codes;
109     /// Default constructor.
SubConstraintInfoSubConstraintInfo110     SubConstraintInfo() : MatchingInput(-1) {}
111   };
112 
113   typedef std::vector<SubConstraintInfo> SubConstraintInfoVector;
114   struct ConstraintInfo;
115   typedef std::vector<ConstraintInfo> ConstraintInfoVector;
116 
117   struct ConstraintInfo {
118     /// Type - The basic type of the constraint: input/output/clobber
119     ///
120     ConstraintPrefix Type;
121 
122     /// isEarlyClobber - "&": output operand writes result before inputs are all
123     /// read.  This is only ever set for an output operand.
124     bool isEarlyClobber;
125 
126     /// MatchingInput - If this is not -1, this is an output constraint where an
127     /// input constraint is required to match it (e.g. "0").  The value is the
128     /// constraint number that matches this one (for example, if this is
129     /// constraint #0 and constraint #4 has the value "0", this will be 4).
130     signed char MatchingInput;
131 
132     /// hasMatchingInput - Return true if this is an output constraint that has
133     /// a matching input constraint.
hasMatchingInputConstraintInfo134     bool hasMatchingInput() const { return MatchingInput != -1; }
135 
136     /// isCommutative - This is set to true for a constraint that is commutative
137     /// with the next operand.
138     bool isCommutative;
139 
140     /// isIndirect - True if this operand is an indirect operand.  This means
141     /// that the address of the source or destination is present in the call
142     /// instruction, instead of it being returned or passed in explicitly.  This
143     /// is represented with a '*' in the asm string.
144     bool isIndirect;
145 
146     /// Code - The constraint code, either the register name (in braces) or the
147     /// constraint letter/number.
148     ConstraintCodeVector Codes;
149 
150     /// isMultipleAlternative - '|': has multiple-alternative constraints.
151     bool isMultipleAlternative;
152 
153     /// multipleAlternatives - If there are multiple alternative constraints,
154     /// this array will contain them.  Otherwise it will be empty.
155     SubConstraintInfoVector multipleAlternatives;
156 
157     /// The currently selected alternative constraint index.
158     unsigned currentAlternativeIndex;
159 
160     ///Default constructor.
161     ConstraintInfo();
162 
163     /// Parse - Analyze the specified string (e.g. "=*&{eax}") and fill in the
164     /// fields in this structure.  If the constraint string is not understood,
165     /// return true, otherwise return false.
166     bool Parse(StringRef Str, ConstraintInfoVector &ConstraintsSoFar);
167 
168     /// selectAlternative - Point this constraint to the alternative constraint
169     /// indicated by the index.
170     void selectAlternative(unsigned index);
171   };
172 
173   /// ParseConstraints - Split up the constraint string into the specific
174   /// constraints and their prefixes.  If this returns an empty vector, and if
175   /// the constraint string itself isn't empty, there was an error parsing.
176   static ConstraintInfoVector ParseConstraints(StringRef ConstraintString);
177 
178   /// ParseConstraints - Parse the constraints of this inlineasm object,
179   /// returning them the same way that ParseConstraints(str) does.
ParseConstraints()180   ConstraintInfoVector ParseConstraints() const {
181     return ParseConstraints(Constraints);
182   }
183 
184   // Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Value * V)185   static inline bool classof(const Value *V) {
186     return V->getValueID() == Value::InlineAsmVal;
187   }
188 
189 
190   // These are helper methods for dealing with flags in the INLINEASM SDNode
191   // in the backend.
192   //
193   // The encoding of the flag word is currently:
194   //   Bits 2-0 - A Kind_* value indicating the kind of the operand.
195   //   Bits 15-3 - The number of SDNode operands associated with this inline
196   //               assembly operand.
197   //   If bit 31 is set:
198   //     Bit 30-16 - The operand number that this operand must match.
199   //                 When bits 2-0 are Kind_Mem, the Constraint_* value must be
200   //                 obtained from the flags for this operand number.
201   //   Else if bits 2-0 are Kind_Mem:
202   //     Bit 30-16 - A Constraint_* value indicating the original constraint
203   //                 code.
204   //   Else:
205   //     Bit 30-16 - The register class ID to use for the operand.
206 
207   enum : uint32_t {
208     // Fixed operands on an INLINEASM SDNode.
209     Op_InputChain = 0,
210     Op_AsmString = 1,
211     Op_MDNode = 2,
212     Op_ExtraInfo = 3,    // HasSideEffects, IsAlignStack, AsmDialect.
213     Op_FirstOperand = 4,
214 
215     // Fixed operands on an INLINEASM MachineInstr.
216     MIOp_AsmString = 0,
217     MIOp_ExtraInfo = 1,    // HasSideEffects, IsAlignStack, AsmDialect.
218     MIOp_FirstOperand = 2,
219 
220     // Interpretation of the MIOp_ExtraInfo bit field.
221     Extra_HasSideEffects = 1,
222     Extra_IsAlignStack = 2,
223     Extra_AsmDialect = 4,
224     Extra_MayLoad = 8,
225     Extra_MayStore = 16,
226 
227     // Inline asm operands map to multiple SDNode / MachineInstr operands.
228     // The first operand is an immediate describing the asm operand, the low
229     // bits is the kind:
230     Kind_RegUse = 1,             // Input register, "r".
231     Kind_RegDef = 2,             // Output register, "=r".
232     Kind_RegDefEarlyClobber = 3, // Early-clobber output register, "=&r".
233     Kind_Clobber = 4,            // Clobbered register, "~r".
234     Kind_Imm = 5,                // Immediate.
235     Kind_Mem = 6,                // Memory operand, "m".
236 
237     // Memory constraint codes.
238     // These could be tablegenerated but there's little need to do that since
239     // there's plenty of space in the encoding to support the union of all
240     // constraint codes for all targets.
241     Constraint_Unknown = 0,
242     Constraint_es,
243     Constraint_i,
244     Constraint_m,
245     Constraint_o,
246     Constraint_v,
247     Constraint_Q,
248     Constraint_R,
249     Constraint_S,
250     Constraint_T,
251     Constraint_Z,
252     Constraint_ZC,
253     Constraint_Zy,
254     Constraints_Max = Constraint_Zy,
255     Constraints_ShiftAmount = 16,
256 
257     Flag_MatchingOperand = 0x80000000
258   };
259 
getFlagWord(unsigned Kind,unsigned NumOps)260   static unsigned getFlagWord(unsigned Kind, unsigned NumOps) {
261     assert(((NumOps << 3) & ~0xffff) == 0 && "Too many inline asm operands!");
262     assert(Kind >= Kind_RegUse && Kind <= Kind_Mem && "Invalid Kind");
263     return Kind | (NumOps << 3);
264   }
265 
266   /// getFlagWordForMatchingOp - Augment an existing flag word returned by
267   /// getFlagWord with information indicating that this input operand is tied
268   /// to a previous output operand.
getFlagWordForMatchingOp(unsigned InputFlag,unsigned MatchedOperandNo)269   static unsigned getFlagWordForMatchingOp(unsigned InputFlag,
270                                            unsigned MatchedOperandNo) {
271     assert(MatchedOperandNo <= 0x7fff && "Too big matched operand");
272     assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
273     return InputFlag | Flag_MatchingOperand | (MatchedOperandNo << 16);
274   }
275 
276   /// getFlagWordForRegClass - Augment an existing flag word returned by
277   /// getFlagWord with the required register class for the following register
278   /// operands.
279   /// A tied use operand cannot have a register class, use the register class
280   /// from the def operand instead.
getFlagWordForRegClass(unsigned InputFlag,unsigned RC)281   static unsigned getFlagWordForRegClass(unsigned InputFlag, unsigned RC) {
282     // Store RC + 1, reserve the value 0 to mean 'no register class'.
283     ++RC;
284     assert(RC <= 0x7fff && "Too large register class ID");
285     assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
286     return InputFlag | (RC << 16);
287   }
288 
289   /// Augment an existing flag word returned by getFlagWord with the constraint
290   /// code for a memory constraint.
getFlagWordForMem(unsigned InputFlag,unsigned Constraint)291   static unsigned getFlagWordForMem(unsigned InputFlag, unsigned Constraint) {
292     assert(Constraint <= 0x7fff && "Too large a memory constraint ID");
293     assert(Constraint <= Constraints_Max && "Unknown constraint ID");
294     assert((InputFlag & ~0xffff) == 0 && "High bits already contain data");
295     return InputFlag | (Constraint << Constraints_ShiftAmount);
296   }
297 
convertMemFlagWordToMatchingFlagWord(unsigned InputFlag)298   static unsigned convertMemFlagWordToMatchingFlagWord(unsigned InputFlag) {
299     assert(isMemKind(InputFlag));
300     return InputFlag & ~(0x7fff << Constraints_ShiftAmount);
301   }
302 
getKind(unsigned Flags)303   static unsigned getKind(unsigned Flags) {
304     return Flags & 7;
305   }
306 
isRegDefKind(unsigned Flag)307   static bool isRegDefKind(unsigned Flag){ return getKind(Flag) == Kind_RegDef;}
isImmKind(unsigned Flag)308   static bool isImmKind(unsigned Flag) { return getKind(Flag) == Kind_Imm; }
isMemKind(unsigned Flag)309   static bool isMemKind(unsigned Flag) { return getKind(Flag) == Kind_Mem; }
isRegDefEarlyClobberKind(unsigned Flag)310   static bool isRegDefEarlyClobberKind(unsigned Flag) {
311     return getKind(Flag) == Kind_RegDefEarlyClobber;
312   }
isClobberKind(unsigned Flag)313   static bool isClobberKind(unsigned Flag) {
314     return getKind(Flag) == Kind_Clobber;
315   }
316 
getMemoryConstraintID(unsigned Flag)317   static unsigned getMemoryConstraintID(unsigned Flag) {
318     assert(isMemKind(Flag));
319     return (Flag >> Constraints_ShiftAmount) & 0x7fff;
320   }
321 
322   /// getNumOperandRegisters - Extract the number of registers field from the
323   /// inline asm operand flag.
getNumOperandRegisters(unsigned Flag)324   static unsigned getNumOperandRegisters(unsigned Flag) {
325     return (Flag & 0xffff) >> 3;
326   }
327 
328   /// isUseOperandTiedToDef - Return true if the flag of the inline asm
329   /// operand indicates it is an use operand that's matched to a def operand.
isUseOperandTiedToDef(unsigned Flag,unsigned & Idx)330   static bool isUseOperandTiedToDef(unsigned Flag, unsigned &Idx) {
331     if ((Flag & Flag_MatchingOperand) == 0)
332       return false;
333     Idx = (Flag & ~Flag_MatchingOperand) >> 16;
334     return true;
335   }
336 
337   /// hasRegClassConstraint - Returns true if the flag contains a register
338   /// class constraint.  Sets RC to the register class ID.
hasRegClassConstraint(unsigned Flag,unsigned & RC)339   static bool hasRegClassConstraint(unsigned Flag, unsigned &RC) {
340     if (Flag & Flag_MatchingOperand)
341       return false;
342     unsigned High = Flag >> 16;
343     // getFlagWordForRegClass() uses 0 to mean no register class, and otherwise
344     // stores RC + 1.
345     if (!High)
346       return false;
347     RC = High - 1;
348     return true;
349   }
350 
351 };
352 
353 } // End llvm namespace
354 
355 #endif
356