• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "image_writer.h"
18 
19 #include <sys/stat.h>
20 
21 #include <memory>
22 #include <numeric>
23 #include <vector>
24 
25 #include "art_field-inl.h"
26 #include "art_method-inl.h"
27 #include "base/logging.h"
28 #include "base/unix_file/fd_file.h"
29 #include "class_linker-inl.h"
30 #include "compiled_method.h"
31 #include "dex_file-inl.h"
32 #include "driver/compiler_driver.h"
33 #include "elf_file.h"
34 #include "elf_utils.h"
35 #include "elf_writer.h"
36 #include "gc/accounting/card_table-inl.h"
37 #include "gc/accounting/heap_bitmap.h"
38 #include "gc/accounting/space_bitmap-inl.h"
39 #include "gc/heap.h"
40 #include "gc/space/large_object_space.h"
41 #include "gc/space/space-inl.h"
42 #include "globals.h"
43 #include "image.h"
44 #include "intern_table.h"
45 #include "linear_alloc.h"
46 #include "lock_word.h"
47 #include "mirror/abstract_method.h"
48 #include "mirror/array-inl.h"
49 #include "mirror/class-inl.h"
50 #include "mirror/class_loader.h"
51 #include "mirror/dex_cache-inl.h"
52 #include "mirror/method.h"
53 #include "mirror/object-inl.h"
54 #include "mirror/object_array-inl.h"
55 #include "mirror/string-inl.h"
56 #include "oat.h"
57 #include "oat_file.h"
58 #include "runtime.h"
59 #include "scoped_thread_state_change.h"
60 #include "handle_scope-inl.h"
61 #include "utils/dex_cache_arrays_layout-inl.h"
62 
63 using ::art::mirror::Class;
64 using ::art::mirror::DexCache;
65 using ::art::mirror::Object;
66 using ::art::mirror::ObjectArray;
67 using ::art::mirror::String;
68 
69 namespace art {
70 
71 // Separate objects into multiple bins to optimize dirty memory use.
72 static constexpr bool kBinObjects = true;
73 static constexpr bool kComputeEagerResolvedStrings = false;
74 
CheckNoDexObjectsCallback(Object * obj,void * arg ATTRIBUTE_UNUSED)75 static void CheckNoDexObjectsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED)
76     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
77   Class* klass = obj->GetClass();
78   CHECK_NE(PrettyClass(klass), "com.android.dex.Dex");
79 }
80 
CheckNoDexObjects()81 static void CheckNoDexObjects() {
82   ScopedObjectAccess soa(Thread::Current());
83   Runtime::Current()->GetHeap()->VisitObjects(CheckNoDexObjectsCallback, nullptr);
84 }
85 
PrepareImageAddressSpace()86 bool ImageWriter::PrepareImageAddressSpace() {
87   target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
88   {
89     Thread::Current()->TransitionFromSuspendedToRunnable();
90     PruneNonImageClasses();  // Remove junk
91     ComputeLazyFieldsForImageClasses();  // Add useful information
92 
93     // Calling this can in theory fill in some resolved strings. However, in practice it seems to
94     // never resolve any.
95     if (kComputeEagerResolvedStrings) {
96       ComputeEagerResolvedStrings();
97     }
98     Thread::Current()->TransitionFromRunnableToSuspended(kNative);
99   }
100   gc::Heap* heap = Runtime::Current()->GetHeap();
101   heap->CollectGarbage(false);  // Remove garbage.
102 
103   // Dex caches must not have their dex fields set in the image. These are memory buffers of mapped
104   // dex files.
105   //
106   // We may open them in the unstarted-runtime code for class metadata. Their fields should all be
107   // reset in PruneNonImageClasses and the objects reclaimed in the GC. Make sure that's actually
108   // true.
109   if (kIsDebugBuild) {
110     CheckNoDexObjects();
111   }
112 
113   if (kIsDebugBuild) {
114     ScopedObjectAccess soa(Thread::Current());
115     CheckNonImageClassesRemoved();
116   }
117 
118   Thread::Current()->TransitionFromSuspendedToRunnable();
119   CalculateNewObjectOffsets();
120   Thread::Current()->TransitionFromRunnableToSuspended(kNative);
121 
122   // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
123   // bin size sums being calculated.
124   if (!AllocMemory()) {
125     return false;
126   }
127 
128   return true;
129 }
130 
Write(const std::string & image_filename,const std::string & oat_filename,const std::string & oat_location)131 bool ImageWriter::Write(const std::string& image_filename,
132                         const std::string& oat_filename,
133                         const std::string& oat_location) {
134   CHECK(!image_filename.empty());
135 
136   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
137 
138   std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename.c_str()));
139   if (oat_file.get() == nullptr) {
140     PLOG(ERROR) << "Failed to open oat file " << oat_filename << " for " << oat_location;
141     return false;
142   }
143   std::string error_msg;
144   oat_file_ = OatFile::OpenReadable(oat_file.get(), oat_location, nullptr, &error_msg);
145   if (oat_file_ == nullptr) {
146     PLOG(ERROR) << "Failed to open writable oat file " << oat_filename << " for " << oat_location
147         << ": " << error_msg;
148     oat_file->Erase();
149     return false;
150   }
151   CHECK_EQ(class_linker->RegisterOatFile(oat_file_), oat_file_);
152 
153   interpreter_to_interpreter_bridge_offset_ =
154       oat_file_->GetOatHeader().GetInterpreterToInterpreterBridgeOffset();
155   interpreter_to_compiled_code_bridge_offset_ =
156       oat_file_->GetOatHeader().GetInterpreterToCompiledCodeBridgeOffset();
157 
158   jni_dlsym_lookup_offset_ = oat_file_->GetOatHeader().GetJniDlsymLookupOffset();
159 
160   quick_generic_jni_trampoline_offset_ =
161       oat_file_->GetOatHeader().GetQuickGenericJniTrampolineOffset();
162   quick_imt_conflict_trampoline_offset_ =
163       oat_file_->GetOatHeader().GetQuickImtConflictTrampolineOffset();
164   quick_resolution_trampoline_offset_ =
165       oat_file_->GetOatHeader().GetQuickResolutionTrampolineOffset();
166   quick_to_interpreter_bridge_offset_ =
167       oat_file_->GetOatHeader().GetQuickToInterpreterBridgeOffset();
168 
169   size_t oat_loaded_size = 0;
170   size_t oat_data_offset = 0;
171   ElfWriter::GetOatElfInformation(oat_file.get(), &oat_loaded_size, &oat_data_offset);
172 
173   Thread::Current()->TransitionFromSuspendedToRunnable();
174 
175   CreateHeader(oat_loaded_size, oat_data_offset);
176   CopyAndFixupNativeData();
177   // TODO: heap validation can't handle these fix up passes.
178   Runtime::Current()->GetHeap()->DisableObjectValidation();
179   CopyAndFixupObjects();
180   Thread::Current()->TransitionFromRunnableToSuspended(kNative);
181 
182   SetOatChecksumFromElfFile(oat_file.get());
183 
184   if (oat_file->FlushCloseOrErase() != 0) {
185     LOG(ERROR) << "Failed to flush and close oat file " << oat_filename << " for " << oat_location;
186     return false;
187   }
188 
189   std::unique_ptr<File> image_file(OS::CreateEmptyFile(image_filename.c_str()));
190   ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
191   if (image_file.get() == nullptr) {
192     LOG(ERROR) << "Failed to open image file " << image_filename;
193     return false;
194   }
195   if (fchmod(image_file->Fd(), 0644) != 0) {
196     PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
197     image_file->Erase();
198     return EXIT_FAILURE;
199   }
200 
201   // Write out the image + fields + methods.
202   const auto write_count = image_header->GetImageSize();
203   if (!image_file->WriteFully(image_->Begin(), write_count)) {
204     PLOG(ERROR) << "Failed to write image file " << image_filename;
205     image_file->Erase();
206     return false;
207   }
208 
209   // Write out the image bitmap at the page aligned start of the image end.
210   const ImageSection& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
211   CHECK_ALIGNED(bitmap_section.Offset(), kPageSize);
212   if (!image_file->Write(reinterpret_cast<char*>(image_bitmap_->Begin()),
213                          bitmap_section.Size(), bitmap_section.Offset())) {
214     PLOG(ERROR) << "Failed to write image file " << image_filename;
215     image_file->Erase();
216     return false;
217   }
218 
219   CHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()));
220   if (image_file->FlushCloseOrErase() != 0) {
221     PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
222     return false;
223   }
224   return true;
225 }
226 
SetImageOffset(mirror::Object * object,size_t offset)227 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
228   DCHECK(object != nullptr);
229   DCHECK_NE(offset, 0U);
230 
231   // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
232   object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
233   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
234   DCHECK(IsImageOffsetAssigned(object));
235 }
236 
UpdateImageOffset(mirror::Object * obj,uintptr_t offset)237 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
238   DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
239   obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
240   DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
241 }
242 
AssignImageOffset(mirror::Object * object,ImageWriter::BinSlot bin_slot)243 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
244   DCHECK(object != nullptr);
245   DCHECK_NE(image_objects_offset_begin_, 0u);
246 
247   size_t previous_bin_sizes = bin_slot_previous_sizes_[bin_slot.GetBin()];
248   size_t new_offset = image_objects_offset_begin_ + previous_bin_sizes + bin_slot.GetIndex();
249   DCHECK_ALIGNED(new_offset, kObjectAlignment);
250 
251   SetImageOffset(object, new_offset);
252   DCHECK_LT(new_offset, image_end_);
253 }
254 
IsImageOffsetAssigned(mirror::Object * object) const255 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
256   // Will also return true if the bin slot was assigned since we are reusing the lock word.
257   DCHECK(object != nullptr);
258   return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
259 }
260 
GetImageOffset(mirror::Object * object) const261 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
262   DCHECK(object != nullptr);
263   DCHECK(IsImageOffsetAssigned(object));
264   LockWord lock_word = object->GetLockWord(false);
265   size_t offset = lock_word.ForwardingAddress();
266   DCHECK_LT(offset, image_end_);
267   return offset;
268 }
269 
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)270 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
271   DCHECK(object != nullptr);
272   DCHECK(!IsImageOffsetAssigned(object));
273   DCHECK(!IsImageBinSlotAssigned(object));
274 
275   // Before we stomp over the lock word, save the hash code for later.
276   Monitor::Deflate(Thread::Current(), object);;
277   LockWord lw(object->GetLockWord(false));
278   switch (lw.GetState()) {
279     case LockWord::kFatLocked: {
280       LOG(FATAL) << "Fat locked object " << object << " found during object copy";
281       break;
282     }
283     case LockWord::kThinLocked: {
284       LOG(FATAL) << "Thin locked object " << object << " found during object copy";
285       break;
286     }
287     case LockWord::kUnlocked:
288       // No hash, don't need to save it.
289       break;
290     case LockWord::kHashCode:
291       DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
292       saved_hashcode_map_.emplace(object, lw.GetHashCode());
293       break;
294     default:
295       LOG(FATAL) << "Unreachable.";
296       UNREACHABLE();
297   }
298   object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
299   DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
300   DCHECK(IsImageBinSlotAssigned(object));
301 }
302 
PrepareDexCacheArraySlots()303 void ImageWriter::PrepareDexCacheArraySlots() {
304   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
305   ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock());
306   size_t dex_cache_count = class_linker->GetDexCacheCount();
307   uint32_t size = 0u;
308   for (size_t idx = 0; idx < dex_cache_count; ++idx) {
309     DexCache* dex_cache = class_linker->GetDexCache(idx);
310     const DexFile* dex_file = dex_cache->GetDexFile();
311     dex_cache_array_starts_.Put(dex_file, size);
312     DexCacheArraysLayout layout(target_ptr_size_, dex_file);
313     DCHECK(layout.Valid());
314     auto types_size = layout.TypesSize(dex_file->NumTypeIds());
315     auto methods_size = layout.MethodsSize(dex_file->NumMethodIds());
316     auto fields_size = layout.FieldsSize(dex_file->NumFieldIds());
317     auto strings_size = layout.StringsSize(dex_file->NumStringIds());
318     dex_cache_array_indexes_.Put(
319         dex_cache->GetResolvedTypes(),
320         DexCacheArrayLocation {size + layout.TypesOffset(), types_size, kBinRegular});
321     dex_cache_array_indexes_.Put(
322         dex_cache->GetResolvedMethods(),
323         DexCacheArrayLocation {size + layout.MethodsOffset(), methods_size, kBinArtMethodClean});
324     AddMethodPointerArray(dex_cache->GetResolvedMethods());
325     dex_cache_array_indexes_.Put(
326         dex_cache->GetResolvedFields(),
327         DexCacheArrayLocation {size + layout.FieldsOffset(), fields_size, kBinArtField});
328     pointer_arrays_.emplace(dex_cache->GetResolvedFields(), kBinArtField);
329     dex_cache_array_indexes_.Put(
330         dex_cache->GetStrings(),
331         DexCacheArrayLocation {size + layout.StringsOffset(), strings_size, kBinRegular});
332     size += layout.Size();
333     CHECK_EQ(layout.Size(), types_size + methods_size + fields_size + strings_size);
334   }
335   // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
336   // when AssignImageBinSlot() assigns their indexes out or order.
337   bin_slot_sizes_[kBinDexCacheArray] = size;
338 }
339 
AddMethodPointerArray(mirror::PointerArray * arr)340 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
341   DCHECK(arr != nullptr);
342   if (kIsDebugBuild) {
343     for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
344       auto* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
345       if (method != nullptr && !method->IsRuntimeMethod()) {
346         auto* klass = method->GetDeclaringClass();
347         CHECK(klass == nullptr || IsImageClass(klass)) << PrettyClass(klass)
348             << " should be an image class";
349       }
350     }
351   }
352   // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
353   // ArtMethods.
354   pointer_arrays_.emplace(arr, kBinArtMethodClean);
355 }
356 
AssignImageBinSlot(mirror::Object * object)357 void ImageWriter::AssignImageBinSlot(mirror::Object* object) {
358   DCHECK(object != nullptr);
359   size_t object_size = object->SizeOf();
360 
361   // The magic happens here. We segregate objects into different bins based
362   // on how likely they are to get dirty at runtime.
363   //
364   // Likely-to-dirty objects get packed together into the same bin so that
365   // at runtime their page dirtiness ratio (how many dirty objects a page has) is
366   // maximized.
367   //
368   // This means more pages will stay either clean or shared dirty (with zygote) and
369   // the app will use less of its own (private) memory.
370   Bin bin = kBinRegular;
371   size_t current_offset = 0u;
372 
373   if (kBinObjects) {
374     //
375     // Changing the bin of an object is purely a memory-use tuning.
376     // It has no change on runtime correctness.
377     //
378     // Memory analysis has determined that the following types of objects get dirtied
379     // the most:
380     //
381     // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
382     //   a fixed layout which helps improve generated code (using PC-relative addressing),
383     //   so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
384     //   Since these arrays are huge, most pages do not overlap other objects and it's not
385     //   really important where they are for the clean/dirty separation. Due to their
386     //   special PC-relative addressing, we arbitrarily keep them at the beginning.
387     // * Class'es which are verified [their clinit runs only at runtime]
388     //   - classes in general [because their static fields get overwritten]
389     //   - initialized classes with all-final statics are unlikely to be ever dirty,
390     //     so bin them separately
391     // * Art Methods that are:
392     //   - native [their native entry point is not looked up until runtime]
393     //   - have declaring classes that aren't initialized
394     //            [their interpreter/quick entry points are trampolines until the class
395     //             becomes initialized]
396     //
397     // We also assume the following objects get dirtied either never or extremely rarely:
398     //  * Strings (they are immutable)
399     //  * Art methods that aren't native and have initialized declared classes
400     //
401     // We assume that "regular" bin objects are highly unlikely to become dirtied,
402     // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
403     //
404     if (object->IsClass()) {
405       bin = kBinClassVerified;
406       mirror::Class* klass = object->AsClass();
407 
408       // Add non-embedded vtable to the pointer array table if there is one.
409       auto* vtable = klass->GetVTable();
410       if (vtable != nullptr) {
411         AddMethodPointerArray(vtable);
412       }
413       auto* iftable = klass->GetIfTable();
414       if (iftable != nullptr) {
415         for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
416           if (iftable->GetMethodArrayCount(i) > 0) {
417             AddMethodPointerArray(iftable->GetMethodArray(i));
418           }
419         }
420       }
421 
422       if (klass->GetStatus() == Class::kStatusInitialized) {
423         bin = kBinClassInitialized;
424 
425         // If the class's static fields are all final, put it into a separate bin
426         // since it's very likely it will stay clean.
427         uint32_t num_static_fields = klass->NumStaticFields();
428         if (num_static_fields == 0) {
429           bin = kBinClassInitializedFinalStatics;
430         } else {
431           // Maybe all the statics are final?
432           bool all_final = true;
433           for (uint32_t i = 0; i < num_static_fields; ++i) {
434             ArtField* field = klass->GetStaticField(i);
435             if (!field->IsFinal()) {
436               all_final = false;
437               break;
438             }
439           }
440 
441           if (all_final) {
442             bin = kBinClassInitializedFinalStatics;
443           }
444         }
445       }
446     } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
447       bin = kBinString;  // Strings are almost always immutable (except for object header).
448     } else if (object->IsArrayInstance()) {
449       mirror::Class* klass = object->GetClass<kVerifyNone>();
450       if (klass->IsObjectArrayClass() || klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
451         auto it = dex_cache_array_indexes_.find(object);
452         if (it != dex_cache_array_indexes_.end()) {
453           bin = kBinDexCacheArray;
454           // Use prepared offset defined by the DexCacheLayout.
455           current_offset = it->second.offset_;
456           // Override incase of cross compilation.
457           object_size = it->second.length_;
458         }  // else bin = kBinRegular
459       }
460     }  // else bin = kBinRegular
461   }
462 
463   size_t offset_delta = RoundUp(object_size, kObjectAlignment);  // 64-bit alignment
464   if (bin != kBinDexCacheArray) {
465     DCHECK(dex_cache_array_indexes_.find(object) == dex_cache_array_indexes_.end()) << object;
466     current_offset = bin_slot_sizes_[bin];  // How many bytes the current bin is at (aligned).
467     // Move the current bin size up to accomodate the object we just assigned a bin slot.
468     bin_slot_sizes_[bin] += offset_delta;
469   }
470 
471   BinSlot new_bin_slot(bin, current_offset);
472   SetImageBinSlot(object, new_bin_slot);
473 
474   ++bin_slot_count_[bin];
475 
476   // Grow the image closer to the end by the object we just assigned.
477   image_end_ += offset_delta;
478 }
479 
WillMethodBeDirty(ArtMethod * m) const480 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
481   if (m->IsNative()) {
482     return true;
483   }
484   mirror::Class* declaring_class = m->GetDeclaringClass();
485   // Initialized is highly unlikely to dirty since there's no entry points to mutate.
486   return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
487 }
488 
IsImageBinSlotAssigned(mirror::Object * object) const489 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
490   DCHECK(object != nullptr);
491 
492   // We always stash the bin slot into a lockword, in the 'forwarding address' state.
493   // If it's in some other state, then we haven't yet assigned an image bin slot.
494   if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
495     return false;
496   } else if (kIsDebugBuild) {
497     LockWord lock_word = object->GetLockWord(false);
498     size_t offset = lock_word.ForwardingAddress();
499     BinSlot bin_slot(offset);
500     DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()])
501       << "bin slot offset should not exceed the size of that bin";
502   }
503   return true;
504 }
505 
GetImageBinSlot(mirror::Object * object) const506 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
507   DCHECK(object != nullptr);
508   DCHECK(IsImageBinSlotAssigned(object));
509 
510   LockWord lock_word = object->GetLockWord(false);
511   size_t offset = lock_word.ForwardingAddress();  // TODO: ForwardingAddress should be uint32_t
512   DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
513 
514   BinSlot bin_slot(static_cast<uint32_t>(offset));
515   DCHECK_LT(bin_slot.GetIndex(), bin_slot_sizes_[bin_slot.GetBin()]);
516 
517   return bin_slot;
518 }
519 
AllocMemory()520 bool ImageWriter::AllocMemory() {
521   const size_t length = RoundUp(image_objects_offset_begin_ + GetBinSizeSum() + intern_table_bytes_,
522                                 kPageSize);
523   std::string error_msg;
524   image_.reset(MemMap::MapAnonymous("image writer image", nullptr, length, PROT_READ | PROT_WRITE,
525                                     false, false, &error_msg));
526   if (UNLIKELY(image_.get() == nullptr)) {
527     LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
528     return false;
529   }
530 
531   // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
532   CHECK_LE(image_end_, length);
533   image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
534       "image bitmap", image_->Begin(), RoundUp(image_end_, kPageSize)));
535   if (image_bitmap_.get() == nullptr) {
536     LOG(ERROR) << "Failed to allocate memory for image bitmap";
537     return false;
538   }
539   return true;
540 }
541 
ComputeLazyFieldsForImageClasses()542 void ImageWriter::ComputeLazyFieldsForImageClasses() {
543   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
544   class_linker->VisitClassesWithoutClassesLock(ComputeLazyFieldsForClassesVisitor, nullptr);
545 }
546 
ComputeLazyFieldsForClassesVisitor(Class * c,void *)547 bool ImageWriter::ComputeLazyFieldsForClassesVisitor(Class* c, void* /*arg*/) {
548   Thread* self = Thread::Current();
549   StackHandleScope<1> hs(self);
550   mirror::Class::ComputeName(hs.NewHandle(c));
551   return true;
552 }
553 
ComputeEagerResolvedStringsCallback(Object * obj,void * arg ATTRIBUTE_UNUSED)554 void ImageWriter::ComputeEagerResolvedStringsCallback(Object* obj, void* arg ATTRIBUTE_UNUSED) {
555   if (!obj->GetClass()->IsStringClass()) {
556     return;
557   }
558   mirror::String* string = obj->AsString();
559   const uint16_t* utf16_string = string->GetValue();
560   size_t utf16_length = static_cast<size_t>(string->GetLength());
561   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
562   ReaderMutexLock mu(Thread::Current(), *class_linker->DexLock());
563   size_t dex_cache_count = class_linker->GetDexCacheCount();
564   for (size_t i = 0; i < dex_cache_count; ++i) {
565     DexCache* dex_cache = class_linker->GetDexCache(i);
566     const DexFile& dex_file = *dex_cache->GetDexFile();
567     const DexFile::StringId* string_id;
568     if (UNLIKELY(utf16_length == 0)) {
569       string_id = dex_file.FindStringId("");
570     } else {
571       string_id = dex_file.FindStringId(utf16_string, utf16_length);
572     }
573     if (string_id != nullptr) {
574       // This string occurs in this dex file, assign the dex cache entry.
575       uint32_t string_idx = dex_file.GetIndexForStringId(*string_id);
576       if (dex_cache->GetResolvedString(string_idx) == nullptr) {
577         dex_cache->SetResolvedString(string_idx, string);
578       }
579     }
580   }
581 }
582 
ComputeEagerResolvedStrings()583 void ImageWriter::ComputeEagerResolvedStrings() {
584   Runtime::Current()->GetHeap()->VisitObjects(ComputeEagerResolvedStringsCallback, this);
585 }
586 
IsImageClass(Class * klass)587 bool ImageWriter::IsImageClass(Class* klass) {
588   if (klass == nullptr) {
589     return false;
590   }
591   std::string temp;
592   return compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
593 }
594 
595 struct NonImageClasses {
596   ImageWriter* image_writer;
597   std::set<std::string>* non_image_classes;
598 };
599 
PruneNonImageClasses()600 void ImageWriter::PruneNonImageClasses() {
601   if (compiler_driver_.GetImageClasses() == nullptr) {
602     return;
603   }
604   Runtime* runtime = Runtime::Current();
605   ClassLinker* class_linker = runtime->GetClassLinker();
606   Thread* self = Thread::Current();
607 
608   // Make a list of classes we would like to prune.
609   std::set<std::string> non_image_classes;
610   NonImageClasses context;
611   context.image_writer = this;
612   context.non_image_classes = &non_image_classes;
613   class_linker->VisitClasses(NonImageClassesVisitor, &context);
614 
615   // Remove the undesired classes from the class roots.
616   for (const std::string& it : non_image_classes) {
617     bool result = class_linker->RemoveClass(it.c_str(), nullptr);
618     DCHECK(result);
619   }
620 
621   // Clear references to removed classes from the DexCaches.
622   const ArtMethod* resolution_method = runtime->GetResolutionMethod();
623   size_t dex_cache_count;
624   {
625     ReaderMutexLock mu(self, *class_linker->DexLock());
626     dex_cache_count = class_linker->GetDexCacheCount();
627   }
628   for (size_t idx = 0; idx < dex_cache_count; ++idx) {
629     DexCache* dex_cache;
630     {
631       ReaderMutexLock mu(self, *class_linker->DexLock());
632       dex_cache = class_linker->GetDexCache(idx);
633     }
634     for (size_t i = 0; i < dex_cache->NumResolvedTypes(); i++) {
635       Class* klass = dex_cache->GetResolvedType(i);
636       if (klass != nullptr && !IsImageClass(klass)) {
637         dex_cache->SetResolvedType(i, nullptr);
638       }
639     }
640     auto* resolved_methods = down_cast<mirror::PointerArray*>(dex_cache->GetResolvedMethods());
641     for (size_t i = 0, len = resolved_methods->GetLength(); i < len; i++) {
642       auto* method = resolved_methods->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
643       if (method != nullptr) {
644         auto* declaring_class = method->GetDeclaringClass();
645         // Miranda methods may be held live by a class which was not an image class but have a
646         // declaring class which is an image class. Set it to the resolution method to be safe and
647         // prevent dangling pointers.
648         if (method->IsMiranda() || !IsImageClass(declaring_class)) {
649           resolved_methods->SetElementPtrSize(i, resolution_method, target_ptr_size_);
650         } else {
651           // Check that the class is still in the classes table.
652           DCHECK(class_linker->ClassInClassTable(declaring_class)) << "Class "
653               << PrettyClass(declaring_class) << " not in class linker table";
654         }
655       }
656     }
657     for (size_t i = 0; i < dex_cache->NumResolvedFields(); i++) {
658       ArtField* field = dex_cache->GetResolvedField(i, target_ptr_size_);
659       if (field != nullptr && !IsImageClass(field->GetDeclaringClass())) {
660         dex_cache->SetResolvedField(i, nullptr, target_ptr_size_);
661       }
662     }
663     // Clean the dex field. It might have been populated during the initialization phase, but
664     // contains data only valid during a real run.
665     dex_cache->SetFieldObject<false>(mirror::DexCache::DexOffset(), nullptr);
666   }
667 
668   // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
669   class_linker->DropFindArrayClassCache();
670 }
671 
NonImageClassesVisitor(Class * klass,void * arg)672 bool ImageWriter::NonImageClassesVisitor(Class* klass, void* arg) {
673   NonImageClasses* context = reinterpret_cast<NonImageClasses*>(arg);
674   if (!context->image_writer->IsImageClass(klass)) {
675     std::string temp;
676     context->non_image_classes->insert(klass->GetDescriptor(&temp));
677   }
678   return true;
679 }
680 
CheckNonImageClassesRemoved()681 void ImageWriter::CheckNonImageClassesRemoved() {
682   if (compiler_driver_.GetImageClasses() != nullptr) {
683     gc::Heap* heap = Runtime::Current()->GetHeap();
684     heap->VisitObjects(CheckNonImageClassesRemovedCallback, this);
685   }
686 }
687 
CheckNonImageClassesRemovedCallback(Object * obj,void * arg)688 void ImageWriter::CheckNonImageClassesRemovedCallback(Object* obj, void* arg) {
689   ImageWriter* image_writer = reinterpret_cast<ImageWriter*>(arg);
690   if (obj->IsClass()) {
691     Class* klass = obj->AsClass();
692     if (!image_writer->IsImageClass(klass)) {
693       image_writer->DumpImageClasses();
694       std::string temp;
695       CHECK(image_writer->IsImageClass(klass)) << klass->GetDescriptor(&temp)
696                                                << " " << PrettyDescriptor(klass);
697     }
698   }
699 }
700 
DumpImageClasses()701 void ImageWriter::DumpImageClasses() {
702   auto image_classes = compiler_driver_.GetImageClasses();
703   CHECK(image_classes != nullptr);
704   for (const std::string& image_class : *image_classes) {
705     LOG(INFO) << " " << image_class;
706   }
707 }
708 
CalculateObjectBinSlots(Object * obj)709 void ImageWriter::CalculateObjectBinSlots(Object* obj) {
710   DCHECK(obj != nullptr);
711   // if it is a string, we want to intern it if its not interned.
712   if (obj->GetClass()->IsStringClass()) {
713     // we must be an interned string that was forward referenced and already assigned
714     if (IsImageBinSlotAssigned(obj)) {
715       DCHECK_EQ(obj, obj->AsString()->Intern());
716       return;
717     }
718     mirror::String* const interned = Runtime::Current()->GetInternTable()->InternStrong(
719         obj->AsString()->Intern());
720     if (obj != interned) {
721       if (!IsImageBinSlotAssigned(interned)) {
722         // interned obj is after us, allocate its location early
723         AssignImageBinSlot(interned);
724       }
725       // point those looking for this object to the interned version.
726       SetImageBinSlot(obj, GetImageBinSlot(interned));
727       return;
728     }
729     // else (obj == interned), nothing to do but fall through to the normal case
730   }
731 
732   AssignImageBinSlot(obj);
733 }
734 
CreateImageRoots() const735 ObjectArray<Object>* ImageWriter::CreateImageRoots() const {
736   Runtime* runtime = Runtime::Current();
737   ClassLinker* class_linker = runtime->GetClassLinker();
738   Thread* self = Thread::Current();
739   StackHandleScope<3> hs(self);
740   Handle<Class> object_array_class(hs.NewHandle(
741       class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
742 
743   // build an Object[] of all the DexCaches used in the source_space_.
744   // Since we can't hold the dex lock when allocating the dex_caches
745   // ObjectArray, we lock the dex lock twice, first to get the number
746   // of dex caches first and then lock it again to copy the dex
747   // caches. We check that the number of dex caches does not change.
748   size_t dex_cache_count;
749   {
750     ReaderMutexLock mu(self, *class_linker->DexLock());
751     dex_cache_count = class_linker->GetDexCacheCount();
752   }
753   Handle<ObjectArray<Object>> dex_caches(
754       hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(),
755                                               dex_cache_count)));
756   CHECK(dex_caches.Get() != nullptr) << "Failed to allocate a dex cache array.";
757   {
758     ReaderMutexLock mu(self, *class_linker->DexLock());
759     CHECK_EQ(dex_cache_count, class_linker->GetDexCacheCount())
760         << "The number of dex caches changed.";
761     for (size_t i = 0; i < dex_cache_count; ++i) {
762       dex_caches->Set<false>(i, class_linker->GetDexCache(i));
763     }
764   }
765 
766   // build an Object[] of the roots needed to restore the runtime
767   auto image_roots(hs.NewHandle(
768       ObjectArray<Object>::Alloc(self, object_array_class.Get(), ImageHeader::kImageRootsMax)));
769   image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
770   image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
771   for (int i = 0; i < ImageHeader::kImageRootsMax; i++) {
772     CHECK(image_roots->Get(i) != nullptr);
773   }
774   return image_roots.Get();
775 }
776 
777 // Walk instance fields of the given Class. Separate function to allow recursion on the super
778 // class.
WalkInstanceFields(mirror::Object * obj,mirror::Class * klass)779 void ImageWriter::WalkInstanceFields(mirror::Object* obj, mirror::Class* klass) {
780   // Visit fields of parent classes first.
781   StackHandleScope<1> hs(Thread::Current());
782   Handle<mirror::Class> h_class(hs.NewHandle(klass));
783   mirror::Class* super = h_class->GetSuperClass();
784   if (super != nullptr) {
785     WalkInstanceFields(obj, super);
786   }
787   //
788   size_t num_reference_fields = h_class->NumReferenceInstanceFields();
789   MemberOffset field_offset = h_class->GetFirstReferenceInstanceFieldOffset();
790   for (size_t i = 0; i < num_reference_fields; ++i) {
791     mirror::Object* value = obj->GetFieldObject<mirror::Object>(field_offset);
792     if (value != nullptr) {
793       WalkFieldsInOrder(value);
794     }
795     field_offset = MemberOffset(field_offset.Uint32Value() +
796                                 sizeof(mirror::HeapReference<mirror::Object>));
797   }
798 }
799 
800 // For an unvisited object, visit it then all its children found via fields.
WalkFieldsInOrder(mirror::Object * obj)801 void ImageWriter::WalkFieldsInOrder(mirror::Object* obj) {
802   // Use our own visitor routine (instead of GC visitor) to get better locality between
803   // an object and its fields
804   if (!IsImageBinSlotAssigned(obj)) {
805     // Walk instance fields of all objects
806     StackHandleScope<2> hs(Thread::Current());
807     Handle<mirror::Object> h_obj(hs.NewHandle(obj));
808     Handle<mirror::Class> klass(hs.NewHandle(obj->GetClass()));
809     // visit the object itself.
810     CalculateObjectBinSlots(h_obj.Get());
811     WalkInstanceFields(h_obj.Get(), klass.Get());
812     // Walk static fields of a Class.
813     if (h_obj->IsClass()) {
814       size_t num_reference_static_fields = klass->NumReferenceStaticFields();
815       MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(target_ptr_size_);
816       for (size_t i = 0; i < num_reference_static_fields; ++i) {
817         mirror::Object* value = h_obj->GetFieldObject<mirror::Object>(field_offset);
818         if (value != nullptr) {
819           WalkFieldsInOrder(value);
820         }
821         field_offset = MemberOffset(field_offset.Uint32Value() +
822                                     sizeof(mirror::HeapReference<mirror::Object>));
823       }
824       // Visit and assign offsets for fields.
825       auto* as_klass = h_obj->AsClass();
826       ArtField* fields[] = { as_klass->GetSFields(), as_klass->GetIFields() };
827       size_t num_fields[] = { as_klass->NumStaticFields(), as_klass->NumInstanceFields() };
828       for (size_t i = 0; i < 2; ++i) {
829         for (size_t j = 0; j < num_fields[i]; ++j) {
830           auto* field = fields[i] + j;
831           auto it = native_object_reloc_.find(field);
832           CHECK(it == native_object_reloc_.end()) << "Field at index " << i << ":" << j
833               << " already assigned " << PrettyField(field);
834           native_object_reloc_.emplace(
835               field, NativeObjectReloc { bin_slot_sizes_[kBinArtField], kBinArtField });
836           bin_slot_sizes_[kBinArtField] += sizeof(ArtField);
837         }
838       }
839       // Visit and assign offsets for methods.
840       IterationRange<StrideIterator<ArtMethod>> method_arrays[] = {
841           as_klass->GetDirectMethods(target_ptr_size_),
842           as_klass->GetVirtualMethods(target_ptr_size_)
843       };
844       for (auto& array : method_arrays) {
845         bool any_dirty = false;
846         size_t count = 0;
847         for (auto& m : array) {
848           any_dirty = any_dirty || WillMethodBeDirty(&m);
849           ++count;
850         }
851         for (auto& m : array) {
852           AssignMethodOffset(&m, any_dirty ? kBinArtMethodDirty : kBinArtMethodClean);
853         }
854         (any_dirty ? dirty_methods_ : clean_methods_) += count;
855       }
856     } else if (h_obj->IsObjectArray()) {
857       // Walk elements of an object array.
858       int32_t length = h_obj->AsObjectArray<mirror::Object>()->GetLength();
859       for (int32_t i = 0; i < length; i++) {
860         mirror::ObjectArray<mirror::Object>* obj_array = h_obj->AsObjectArray<mirror::Object>();
861         mirror::Object* value = obj_array->Get(i);
862         if (value != nullptr) {
863           WalkFieldsInOrder(value);
864         }
865       }
866     }
867   }
868 }
869 
AssignMethodOffset(ArtMethod * method,Bin bin)870 void ImageWriter::AssignMethodOffset(ArtMethod* method, Bin bin) {
871   auto it = native_object_reloc_.find(method);
872   CHECK(it == native_object_reloc_.end()) << "Method " << method << " already assigned "
873       << PrettyMethod(method);
874   native_object_reloc_.emplace(method, NativeObjectReloc { bin_slot_sizes_[bin], bin });
875   bin_slot_sizes_[bin] += ArtMethod::ObjectSize(target_ptr_size_);
876 }
877 
WalkFieldsCallback(mirror::Object * obj,void * arg)878 void ImageWriter::WalkFieldsCallback(mirror::Object* obj, void* arg) {
879   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
880   DCHECK(writer != nullptr);
881   writer->WalkFieldsInOrder(obj);
882 }
883 
UnbinObjectsIntoOffsetCallback(mirror::Object * obj,void * arg)884 void ImageWriter::UnbinObjectsIntoOffsetCallback(mirror::Object* obj, void* arg) {
885   ImageWriter* writer = reinterpret_cast<ImageWriter*>(arg);
886   DCHECK(writer != nullptr);
887   writer->UnbinObjectsIntoOffset(obj);
888 }
889 
UnbinObjectsIntoOffset(mirror::Object * obj)890 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
891   CHECK(obj != nullptr);
892 
893   // We know the bin slot, and the total bin sizes for all objects by now,
894   // so calculate the object's final image offset.
895 
896   DCHECK(IsImageBinSlotAssigned(obj));
897   BinSlot bin_slot = GetImageBinSlot(obj);
898   // Change the lockword from a bin slot into an offset
899   AssignImageOffset(obj, bin_slot);
900 }
901 
CalculateNewObjectOffsets()902 void ImageWriter::CalculateNewObjectOffsets() {
903   Thread* const self = Thread::Current();
904   StackHandleScope<1> hs(self);
905   Handle<ObjectArray<Object>> image_roots(hs.NewHandle(CreateImageRoots()));
906 
907   auto* runtime = Runtime::Current();
908   auto* heap = runtime->GetHeap();
909   DCHECK_EQ(0U, image_end_);
910 
911   // Leave space for the header, but do not write it yet, we need to
912   // know where image_roots is going to end up
913   image_end_ += RoundUp(sizeof(ImageHeader), kObjectAlignment);  // 64-bit-alignment
914 
915   image_objects_offset_begin_ = image_end_;
916   // Prepare bin slots for dex cache arrays.
917   PrepareDexCacheArraySlots();
918   // Clear any pre-existing monitors which may have been in the monitor words, assign bin slots.
919   heap->VisitObjects(WalkFieldsCallback, this);
920   // Write the image runtime methods.
921   image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
922   image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
923   image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
924   image_methods_[ImageHeader::kCalleeSaveMethod] = runtime->GetCalleeSaveMethod(Runtime::kSaveAll);
925   image_methods_[ImageHeader::kRefsOnlySaveMethod] =
926       runtime->GetCalleeSaveMethod(Runtime::kRefsOnly);
927   image_methods_[ImageHeader::kRefsAndArgsSaveMethod] =
928       runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs);
929   for (auto* m : image_methods_) {
930     CHECK(m != nullptr);
931     CHECK(m->IsRuntimeMethod());
932     AssignMethodOffset(m, kBinArtMethodDirty);
933   }
934 
935   // Calculate cumulative bin slot sizes.
936   size_t previous_sizes = 0u;
937   for (size_t i = 0; i != kBinSize; ++i) {
938     bin_slot_previous_sizes_[i] = previous_sizes;
939     previous_sizes += bin_slot_sizes_[i];
940   }
941   DCHECK_EQ(previous_sizes, GetBinSizeSum());
942   DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
943 
944   // Transform each object's bin slot into an offset which will be used to do the final copy.
945   heap->VisitObjects(UnbinObjectsIntoOffsetCallback, this);
946 
947   DCHECK_EQ(image_end_, GetBinSizeSum(kBinMirrorCount) + image_objects_offset_begin_);
948 
949   image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots.Get()));
950 
951   // Update the native relocations by adding their bin sums.
952   for (auto& pair : native_object_reloc_) {
953     auto& native_reloc = pair.second;
954     native_reloc.offset += image_objects_offset_begin_ +
955         bin_slot_previous_sizes_[native_reloc.bin_type];
956   }
957 
958   // Calculate how big the intern table will be after being serialized.
959   auto* const intern_table = Runtime::Current()->GetInternTable();
960   CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
961   intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
962 
963   // Note that image_end_ is left at end of used mirror object section.
964 }
965 
CreateHeader(size_t oat_loaded_size,size_t oat_data_offset)966 void ImageWriter::CreateHeader(size_t oat_loaded_size, size_t oat_data_offset) {
967   CHECK_NE(0U, oat_loaded_size);
968   const uint8_t* oat_file_begin = GetOatFileBegin();
969   const uint8_t* oat_file_end = oat_file_begin + oat_loaded_size;
970   oat_data_begin_ = oat_file_begin + oat_data_offset;
971   const uint8_t* oat_data_end = oat_data_begin_ + oat_file_->Size();
972 
973   // Create the image sections.
974   ImageSection sections[ImageHeader::kSectionCount];
975   // Objects section
976   auto* objects_section = &sections[ImageHeader::kSectionObjects];
977   *objects_section = ImageSection(0u, image_end_);
978   size_t cur_pos = objects_section->End();
979   // Add field section.
980   auto* field_section = &sections[ImageHeader::kSectionArtFields];
981   *field_section = ImageSection(cur_pos, bin_slot_sizes_[kBinArtField]);
982   CHECK_EQ(image_objects_offset_begin_ + bin_slot_previous_sizes_[kBinArtField],
983            field_section->Offset());
984   cur_pos = field_section->End();
985   // Add method section.
986   auto* methods_section = &sections[ImageHeader::kSectionArtMethods];
987   *methods_section = ImageSection(cur_pos, bin_slot_sizes_[kBinArtMethodClean] +
988                                   bin_slot_sizes_[kBinArtMethodDirty]);
989   CHECK_EQ(image_objects_offset_begin_ + bin_slot_previous_sizes_[kBinArtMethodClean],
990            methods_section->Offset());
991   cur_pos = methods_section->End();
992   // Calculate the size of the interned strings.
993   auto* interned_strings_section = &sections[ImageHeader::kSectionInternedStrings];
994   *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
995   cur_pos = interned_strings_section->End();
996   // Finally bitmap section.
997   const size_t bitmap_bytes = image_bitmap_->Size();
998   auto* bitmap_section = &sections[ImageHeader::kSectionImageBitmap];
999   *bitmap_section = ImageSection(RoundUp(cur_pos, kPageSize), RoundUp(bitmap_bytes, kPageSize));
1000   cur_pos = bitmap_section->End();
1001   if (kIsDebugBuild) {
1002     size_t idx = 0;
1003     for (const ImageSection& section : sections) {
1004       LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
1005       ++idx;
1006     }
1007     LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
1008   }
1009   const size_t image_end = static_cast<uint32_t>(interned_strings_section->End());
1010   CHECK_EQ(AlignUp(image_begin_ + image_end, kPageSize), oat_file_begin) <<
1011       "Oat file should be right after the image.";
1012   // Create the header.
1013   new (image_->Begin()) ImageHeader(
1014       PointerToLowMemUInt32(image_begin_), image_end,
1015       sections, image_roots_address_, oat_file_->GetOatHeader().GetChecksum(),
1016       PointerToLowMemUInt32(oat_file_begin), PointerToLowMemUInt32(oat_data_begin_),
1017       PointerToLowMemUInt32(oat_data_end), PointerToLowMemUInt32(oat_file_end), target_ptr_size_,
1018       compile_pic_);
1019 }
1020 
GetImageMethodAddress(ArtMethod * method)1021 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
1022   auto it = native_object_reloc_.find(method);
1023   CHECK(it != native_object_reloc_.end()) << PrettyMethod(method) << " @ " << method;
1024   CHECK_GE(it->second.offset, image_end_) << "ArtMethods should be after Objects";
1025   return reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset);
1026 }
1027 
1028 class FixupRootVisitor : public RootVisitor {
1029  public:
FixupRootVisitor(ImageWriter * image_writer)1030   explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
1031   }
1032 
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1033   void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
1034       OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1035     for (size_t i = 0; i < count; ++i) {
1036       *roots[i] = ImageAddress(*roots[i]);
1037     }
1038   }
1039 
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1040   void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
1041                   const RootInfo& info ATTRIBUTE_UNUSED)
1042       OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1043     for (size_t i = 0; i < count; ++i) {
1044       roots[i]->Assign(ImageAddress(roots[i]->AsMirrorPtr()));
1045     }
1046   }
1047 
1048  private:
1049   ImageWriter* const image_writer_;
1050 
ImageAddress(mirror::Object * obj)1051   mirror::Object* ImageAddress(mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1052     const size_t offset = image_writer_->GetImageOffset(obj);
1053     auto* const dest = reinterpret_cast<Object*>(image_writer_->image_begin_ + offset);
1054     VLOG(compiler) << "Update root from " << obj << " to " << dest;
1055     return dest;
1056   }
1057 };
1058 
CopyAndFixupNativeData()1059 void ImageWriter::CopyAndFixupNativeData() {
1060   // Copy ArtFields and methods to their locations and update the array for convenience.
1061   for (auto& pair : native_object_reloc_) {
1062     auto& native_reloc = pair.second;
1063     if (native_reloc.bin_type == kBinArtField) {
1064       auto* dest = image_->Begin() + native_reloc.offset;
1065       DCHECK_GE(dest, image_->Begin() + image_end_);
1066       memcpy(dest, pair.first, sizeof(ArtField));
1067       reinterpret_cast<ArtField*>(dest)->SetDeclaringClass(
1068           GetImageAddress(reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass()));
1069     } else {
1070       CHECK(IsArtMethodBin(native_reloc.bin_type)) << native_reloc.bin_type;
1071       auto* dest = image_->Begin() + native_reloc.offset;
1072       DCHECK_GE(dest, image_->Begin() + image_end_);
1073       CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
1074                          reinterpret_cast<ArtMethod*>(dest));
1075     }
1076   }
1077   // Fixup the image method roots.
1078   auto* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
1079   const ImageSection& methods_section = image_header->GetMethodsSection();
1080   for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
1081     auto* m = image_methods_[i];
1082     CHECK(m != nullptr);
1083     auto it = native_object_reloc_.find(m);
1084     CHECK(it != native_object_reloc_.end()) << "No fowarding for " << PrettyMethod(m);
1085     auto& native_reloc = it->second;
1086     CHECK(methods_section.Contains(native_reloc.offset)) << native_reloc.offset << " not in "
1087         << methods_section;
1088     CHECK(IsArtMethodBin(native_reloc.bin_type)) << native_reloc.bin_type;
1089     auto* dest = reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset);
1090     image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), dest);
1091   }
1092   // Write the intern table into the image.
1093   const ImageSection& intern_table_section = image_header->GetImageSection(
1094       ImageHeader::kSectionInternedStrings);
1095   InternTable* const intern_table = Runtime::Current()->GetInternTable();
1096   uint8_t* const memory_ptr = image_->Begin() + intern_table_section.Offset();
1097   const size_t intern_table_bytes = intern_table->WriteToMemory(memory_ptr);
1098   // Fixup the pointers in the newly written intern table to contain image addresses.
1099   InternTable temp_table;
1100   // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
1101   // the VisitRoots() will update the memory directly rather than the copies.
1102   // This also relies on visit roots not doing any verification which could fail after we update
1103   // the roots to be the image addresses.
1104   temp_table.ReadFromMemory(memory_ptr);
1105   CHECK_EQ(temp_table.Size(), intern_table->Size());
1106   FixupRootVisitor visitor(this);
1107   temp_table.VisitRoots(&visitor, kVisitRootFlagAllRoots);
1108   CHECK_EQ(intern_table_bytes, intern_table_bytes_);
1109 }
1110 
CopyAndFixupObjects()1111 void ImageWriter::CopyAndFixupObjects() {
1112   gc::Heap* heap = Runtime::Current()->GetHeap();
1113   heap->VisitObjects(CopyAndFixupObjectsCallback, this);
1114   // Fix up the object previously had hash codes.
1115   for (const auto& hash_pair : saved_hashcode_map_) {
1116     Object* const obj = hash_pair.first;
1117     DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0U);
1118     obj->SetLockWord(LockWord::FromHashCode(hash_pair.second, 0U), false);
1119   }
1120   saved_hashcode_map_.clear();
1121 }
1122 
CopyAndFixupObjectsCallback(Object * obj,void * arg)1123 void ImageWriter::CopyAndFixupObjectsCallback(Object* obj, void* arg) {
1124   DCHECK(obj != nullptr);
1125   DCHECK(arg != nullptr);
1126   reinterpret_cast<ImageWriter*>(arg)->CopyAndFixupObject(obj);
1127 }
1128 
FixupPointerArray(mirror::Object * dst,mirror::PointerArray * arr,mirror::Class * klass,Bin array_type)1129 void ImageWriter::FixupPointerArray(mirror::Object* dst, mirror::PointerArray* arr,
1130                                     mirror::Class* klass, Bin array_type) {
1131   CHECK(klass->IsArrayClass());
1132   CHECK(arr->IsIntArray() || arr->IsLongArray()) << PrettyClass(klass) << " " << arr;
1133   // Fixup int and long pointers for the ArtMethod or ArtField arrays.
1134   const size_t num_elements = arr->GetLength();
1135   dst->SetClass(GetImageAddress(arr->GetClass()));
1136   auto* dest_array = down_cast<mirror::PointerArray*>(dst);
1137   for (size_t i = 0, count = num_elements; i < count; ++i) {
1138     auto* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
1139     if (elem != nullptr) {
1140       auto it = native_object_reloc_.find(elem);
1141       if (it == native_object_reloc_.end()) {
1142         if (IsArtMethodBin(array_type)) {
1143           auto* method = reinterpret_cast<ArtMethod*>(elem);
1144           LOG(FATAL) << "No relocation entry for ArtMethod " << PrettyMethod(method) << " @ "
1145               << method << " idx=" << i << "/" << num_elements << " with declaring class "
1146               << PrettyClass(method->GetDeclaringClass());
1147         } else {
1148           CHECK_EQ(array_type, kBinArtField);
1149           auto* field = reinterpret_cast<ArtField*>(elem);
1150           LOG(FATAL) << "No relocation entry for ArtField " << PrettyField(field) << " @ "
1151               << field << " idx=" << i << "/" << num_elements << " with declaring class "
1152               << PrettyClass(field->GetDeclaringClass());
1153         }
1154       } else {
1155         elem = image_begin_ + it->second.offset;
1156       }
1157     }
1158     dest_array->SetElementPtrSize<false, true>(i, elem, target_ptr_size_);
1159   }
1160 }
1161 
CopyAndFixupObject(Object * obj)1162 void ImageWriter::CopyAndFixupObject(Object* obj) {
1163   size_t offset = GetImageOffset(obj);
1164   auto* dst = reinterpret_cast<Object*>(image_->Begin() + offset);
1165   DCHECK_LT(offset, image_end_);
1166   const auto* src = reinterpret_cast<const uint8_t*>(obj);
1167 
1168   image_bitmap_->Set(dst);  // Mark the obj as live.
1169 
1170   const size_t n = obj->SizeOf();
1171   DCHECK_LE(offset + n, image_->Size());
1172   memcpy(dst, src, n);
1173 
1174   // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
1175   // word.
1176   const auto it = saved_hashcode_map_.find(obj);
1177   dst->SetLockWord(it != saved_hashcode_map_.end() ?
1178       LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
1179   FixupObject(obj, dst);
1180 }
1181 
1182 // Rewrite all the references in the copied object to point to their image address equivalent
1183 class FixupVisitor {
1184  public:
FixupVisitor(ImageWriter * image_writer,Object * copy)1185   FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
1186   }
1187 
operator ()(Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1188   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1189       EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1190     Object* ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
1191     // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1192     // image.
1193     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1194         offset, image_writer_->GetImageAddress(ref));
1195   }
1196 
1197   // java.lang.ref.Reference visitor.
operator ()(mirror::Class * klass ATTRIBUTE_UNUSED,mirror::Reference * ref) const1198   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
1199       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1200       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1201     copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
1202         mirror::Reference::ReferentOffset(), image_writer_->GetImageAddress(ref->GetReferent()));
1203   }
1204 
1205  protected:
1206   ImageWriter* const image_writer_;
1207   mirror::Object* const copy_;
1208 };
1209 
1210 class FixupClassVisitor FINAL : public FixupVisitor {
1211  public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)1212   FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
1213   }
1214 
operator ()(Object * obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1215   void operator()(Object* obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
1216       EXCLUSIVE_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1217     DCHECK(obj->IsClass());
1218     FixupVisitor::operator()(obj, offset, /*is_static*/false);
1219   }
1220 
operator ()(mirror::Class * klass ATTRIBUTE_UNUSED,mirror::Reference * ref ATTRIBUTE_UNUSED) const1221   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED,
1222                   mirror::Reference* ref ATTRIBUTE_UNUSED) const
1223       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1224       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_) {
1225     LOG(FATAL) << "Reference not expected here.";
1226   }
1227 };
1228 
FixupClass(mirror::Class * orig,mirror::Class * copy)1229 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
1230   // Copy and fix up ArtFields in the class.
1231   ArtField* fields[2] = { orig->GetSFields(), orig->GetIFields() };
1232   size_t num_fields[2] = { orig->NumStaticFields(), orig->NumInstanceFields() };
1233   // Update the field arrays.
1234   for (size_t i = 0; i < 2; ++i) {
1235     if (num_fields[i] == 0) {
1236       CHECK(fields[i] == nullptr);
1237       continue;
1238     }
1239     auto it = native_object_reloc_.find(fields[i]);
1240     CHECK(it != native_object_reloc_.end()) << PrettyClass(orig) << " : " << PrettyField(fields[i]);
1241     auto* image_fields = reinterpret_cast<ArtField*>(image_begin_ + it->second.offset);
1242     if (i == 0) {
1243       copy->SetSFieldsUnchecked(image_fields);
1244     } else {
1245       copy->SetIFieldsUnchecked(image_fields);
1246     }
1247   }
1248   // Update direct / virtual method arrays.
1249   auto* direct_methods = orig->GetDirectMethodsPtr();
1250   if (direct_methods != nullptr) {
1251     auto it = native_object_reloc_.find(direct_methods);
1252     CHECK(it != native_object_reloc_.end()) << PrettyClass(orig);
1253     copy->SetDirectMethodsPtrUnchecked(
1254         reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset));
1255   }
1256   auto* virtual_methods = orig->GetVirtualMethodsPtr();
1257   if (virtual_methods != nullptr) {
1258     auto it = native_object_reloc_.find(virtual_methods);
1259     CHECK(it != native_object_reloc_.end()) << PrettyClass(orig);
1260     copy->SetVirtualMethodsPtr(
1261         reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset));
1262   }
1263   // Fix up embedded tables.
1264   if (orig->ShouldHaveEmbeddedImtAndVTable()) {
1265     for (int32_t i = 0; i < orig->GetEmbeddedVTableLength(); ++i) {
1266       auto it = native_object_reloc_.find(orig->GetEmbeddedVTableEntry(i, target_ptr_size_));
1267       CHECK(it != native_object_reloc_.end()) << PrettyClass(orig);
1268       copy->SetEmbeddedVTableEntryUnchecked(
1269           i, reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset), target_ptr_size_);
1270     }
1271     for (size_t i = 0; i < mirror::Class::kImtSize; ++i) {
1272       auto it = native_object_reloc_.find(orig->GetEmbeddedImTableEntry(i, target_ptr_size_));
1273       CHECK(it != native_object_reloc_.end()) << PrettyClass(orig);
1274       copy->SetEmbeddedImTableEntry(
1275           i, reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset), target_ptr_size_);
1276     }
1277   }
1278   FixupClassVisitor visitor(this, copy);
1279   static_cast<mirror::Object*>(orig)->VisitReferences<true /*visit class*/>(visitor, visitor);
1280 }
1281 
FixupObject(Object * orig,Object * copy)1282 void ImageWriter::FixupObject(Object* orig, Object* copy) {
1283   DCHECK(orig != nullptr);
1284   DCHECK(copy != nullptr);
1285   if (kUseBakerOrBrooksReadBarrier) {
1286     orig->AssertReadBarrierPointer();
1287     if (kUseBrooksReadBarrier) {
1288       // Note the address 'copy' isn't the same as the image address of 'orig'.
1289       copy->SetReadBarrierPointer(GetImageAddress(orig));
1290       DCHECK_EQ(copy->GetReadBarrierPointer(), GetImageAddress(orig));
1291     }
1292   }
1293   auto* klass = orig->GetClass();
1294   if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
1295     // Is this a native dex cache array?
1296     auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
1297     if (it != pointer_arrays_.end()) {
1298       // Should only need to fixup every pointer array exactly once.
1299       FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
1300       pointer_arrays_.erase(it);
1301       return;
1302     }
1303     CHECK(dex_cache_array_indexes_.find(orig) == dex_cache_array_indexes_.end())
1304         << "Should have been pointer array.";
1305   }
1306   if (orig->IsClass()) {
1307     FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
1308   } else {
1309     if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
1310       // Need to go update the ArtMethod.
1311       auto* dest = down_cast<mirror::AbstractMethod*>(copy);
1312       auto* src = down_cast<mirror::AbstractMethod*>(orig);
1313       ArtMethod* src_method = src->GetArtMethod();
1314       auto it = native_object_reloc_.find(src_method);
1315       CHECK(it != native_object_reloc_.end()) << "Missing relocation for AbstractMethod.artMethod "
1316           << PrettyMethod(src_method);
1317       dest->SetArtMethod(
1318           reinterpret_cast<ArtMethod*>(image_begin_ + it->second.offset));
1319     }
1320     FixupVisitor visitor(this, copy);
1321     orig->VisitReferences<true /*visit class*/>(visitor, visitor);
1322   }
1323 }
1324 
GetQuickCode(ArtMethod * method,bool * quick_is_interpreted)1325 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method, bool* quick_is_interpreted) {
1326   DCHECK(!method->IsResolutionMethod() && !method->IsImtConflictMethod() &&
1327          !method->IsImtUnimplementedMethod() && !method->IsAbstract()) << PrettyMethod(method);
1328 
1329   // Use original code if it exists. Otherwise, set the code pointer to the resolution
1330   // trampoline.
1331 
1332   // Quick entrypoint:
1333   uint32_t quick_oat_code_offset = PointerToLowMemUInt32(
1334       method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_));
1335   const uint8_t* quick_code = GetOatAddress(quick_oat_code_offset);
1336   *quick_is_interpreted = false;
1337   if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
1338       method->GetDeclaringClass()->IsInitialized())) {
1339     // We have code for a non-static or initialized method, just use the code.
1340     DCHECK_GE(quick_code, oat_data_begin_);
1341   } else if (quick_code == nullptr && method->IsNative() &&
1342       (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
1343     // Non-static or initialized native method missing compiled code, use generic JNI version.
1344     quick_code = GetOatAddress(quick_generic_jni_trampoline_offset_);
1345     DCHECK_GE(quick_code, oat_data_begin_);
1346   } else if (quick_code == nullptr && !method->IsNative()) {
1347     // We don't have code at all for a non-native method, use the interpreter.
1348     quick_code = GetOatAddress(quick_to_interpreter_bridge_offset_);
1349     *quick_is_interpreted = true;
1350     DCHECK_GE(quick_code, oat_data_begin_);
1351   } else {
1352     CHECK(!method->GetDeclaringClass()->IsInitialized());
1353     // We have code for a static method, but need to go through the resolution stub for class
1354     // initialization.
1355     quick_code = GetOatAddress(quick_resolution_trampoline_offset_);
1356     DCHECK_GE(quick_code, oat_data_begin_);
1357   }
1358   return quick_code;
1359 }
1360 
GetQuickEntryPoint(ArtMethod * method)1361 const uint8_t* ImageWriter::GetQuickEntryPoint(ArtMethod* method) {
1362   // Calculate the quick entry point following the same logic as FixupMethod() below.
1363   // The resolution method has a special trampoline to call.
1364   Runtime* runtime = Runtime::Current();
1365   if (UNLIKELY(method == runtime->GetResolutionMethod())) {
1366     return GetOatAddress(quick_resolution_trampoline_offset_);
1367   } else if (UNLIKELY(method == runtime->GetImtConflictMethod() ||
1368                       method == runtime->GetImtUnimplementedMethod())) {
1369     return GetOatAddress(quick_imt_conflict_trampoline_offset_);
1370   } else {
1371     // We assume all methods have code. If they don't currently then we set them to the use the
1372     // resolution trampoline. Abstract methods never have code and so we need to make sure their
1373     // use results in an AbstractMethodError. We use the interpreter to achieve this.
1374     if (UNLIKELY(method->IsAbstract())) {
1375       return GetOatAddress(quick_to_interpreter_bridge_offset_);
1376     } else {
1377       bool quick_is_interpreted;
1378       return GetQuickCode(method, &quick_is_interpreted);
1379     }
1380   }
1381 }
1382 
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy)1383 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig, ArtMethod* copy) {
1384   memcpy(copy, orig, ArtMethod::ObjectSize(target_ptr_size_));
1385 
1386   copy->SetDeclaringClass(GetImageAddress(orig->GetDeclaringClassUnchecked()));
1387   copy->SetDexCacheResolvedMethods(GetImageAddress(orig->GetDexCacheResolvedMethods()));
1388   copy->SetDexCacheResolvedTypes(GetImageAddress(orig->GetDexCacheResolvedTypes()));
1389 
1390   // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
1391   // oat_begin_
1392 
1393   // The resolution method has a special trampoline to call.
1394   Runtime* runtime = Runtime::Current();
1395   if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
1396     copy->SetEntryPointFromQuickCompiledCodePtrSize(
1397         GetOatAddress(quick_resolution_trampoline_offset_), target_ptr_size_);
1398   } else if (UNLIKELY(orig == runtime->GetImtConflictMethod() ||
1399                       orig == runtime->GetImtUnimplementedMethod())) {
1400     copy->SetEntryPointFromQuickCompiledCodePtrSize(
1401         GetOatAddress(quick_imt_conflict_trampoline_offset_), target_ptr_size_);
1402   } else if (UNLIKELY(orig->IsRuntimeMethod())) {
1403     bool found_one = false;
1404     for (size_t i = 0; i < static_cast<size_t>(Runtime::kLastCalleeSaveType); ++i) {
1405       auto idx = static_cast<Runtime::CalleeSaveType>(i);
1406       if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
1407         found_one = true;
1408         break;
1409       }
1410     }
1411     CHECK(found_one) << "Expected to find callee save method but got " << PrettyMethod(orig);
1412     CHECK(copy->IsRuntimeMethod());
1413   } else {
1414     // We assume all methods have code. If they don't currently then we set them to the use the
1415     // resolution trampoline. Abstract methods never have code and so we need to make sure their
1416     // use results in an AbstractMethodError. We use the interpreter to achieve this.
1417     if (UNLIKELY(orig->IsAbstract())) {
1418       copy->SetEntryPointFromQuickCompiledCodePtrSize(
1419           GetOatAddress(quick_to_interpreter_bridge_offset_), target_ptr_size_);
1420       copy->SetEntryPointFromInterpreterPtrSize(
1421           reinterpret_cast<EntryPointFromInterpreter*>(const_cast<uint8_t*>(
1422                   GetOatAddress(interpreter_to_interpreter_bridge_offset_))), target_ptr_size_);
1423     } else {
1424       bool quick_is_interpreted;
1425       const uint8_t* quick_code = GetQuickCode(orig, &quick_is_interpreted);
1426       copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
1427 
1428       // JNI entrypoint:
1429       if (orig->IsNative()) {
1430         // The native method's pointer is set to a stub to lookup via dlsym.
1431         // Note this is not the code_ pointer, that is handled above.
1432         copy->SetEntryPointFromJniPtrSize(
1433             GetOatAddress(jni_dlsym_lookup_offset_), target_ptr_size_);
1434       }
1435 
1436       // Interpreter entrypoint:
1437       // Set the interpreter entrypoint depending on whether there is compiled code or not.
1438       uint32_t interpreter_code = (quick_is_interpreted)
1439           ? interpreter_to_interpreter_bridge_offset_
1440           : interpreter_to_compiled_code_bridge_offset_;
1441       EntryPointFromInterpreter* interpreter_entrypoint =
1442           reinterpret_cast<EntryPointFromInterpreter*>(
1443               const_cast<uint8_t*>(GetOatAddress(interpreter_code)));
1444       copy->SetEntryPointFromInterpreterPtrSize(interpreter_entrypoint, target_ptr_size_);
1445     }
1446   }
1447 }
1448 
GetOatHeaderFromElf(ElfFile * elf)1449 static OatHeader* GetOatHeaderFromElf(ElfFile* elf) {
1450   uint64_t data_sec_offset;
1451   bool has_data_sec = elf->GetSectionOffsetAndSize(".rodata", &data_sec_offset, nullptr);
1452   if (!has_data_sec) {
1453     return nullptr;
1454   }
1455   return reinterpret_cast<OatHeader*>(elf->Begin() + data_sec_offset);
1456 }
1457 
SetOatChecksumFromElfFile(File * elf_file)1458 void ImageWriter::SetOatChecksumFromElfFile(File* elf_file) {
1459   std::string error_msg;
1460   std::unique_ptr<ElfFile> elf(ElfFile::Open(elf_file, PROT_READ|PROT_WRITE,
1461                                              MAP_SHARED, &error_msg));
1462   if (elf.get() == nullptr) {
1463     LOG(FATAL) << "Unable open oat file: " << error_msg;
1464     return;
1465   }
1466   OatHeader* oat_header = GetOatHeaderFromElf(elf.get());
1467   CHECK(oat_header != nullptr);
1468   CHECK(oat_header->IsValid());
1469 
1470   ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
1471   image_header->SetOatChecksum(oat_header->GetChecksum());
1472 }
1473 
GetBinSizeSum(ImageWriter::Bin up_to) const1474 size_t ImageWriter::GetBinSizeSum(ImageWriter::Bin up_to) const {
1475   DCHECK_LE(up_to, kBinSize);
1476   return std::accumulate(&bin_slot_sizes_[0], &bin_slot_sizes_[up_to], /*init*/0);
1477 }
1478 
BinSlot(uint32_t lockword)1479 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
1480   // These values may need to get updated if more bins are added to the enum Bin
1481   static_assert(kBinBits == 3, "wrong number of bin bits");
1482   static_assert(kBinShift == 27, "wrong number of shift");
1483   static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
1484 
1485   DCHECK_LT(GetBin(), kBinSize);
1486   DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
1487 }
1488 
BinSlot(Bin bin,uint32_t index)1489 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
1490     : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
1491   DCHECK_EQ(index, GetIndex());
1492 }
1493 
GetBin() const1494 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
1495   return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
1496 }
1497 
GetIndex() const1498 uint32_t ImageWriter::BinSlot::GetIndex() const {
1499   return lockword_ & ~kBinMask;
1500 }
1501 
GetOatFileBegin() const1502 uint8_t* ImageWriter::GetOatFileBegin() const {
1503   DCHECK_GT(intern_table_bytes_, 0u);
1504   return image_begin_ + RoundUp(
1505       image_end_ + bin_slot_sizes_[kBinArtField] + bin_slot_sizes_[kBinArtMethodDirty] +
1506       bin_slot_sizes_[kBinArtMethodClean] + intern_table_bytes_, kPageSize);
1507 }
1508 
1509 }  // namespace art
1510