1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34
35 using namespace clang;
36 using namespace CodeGen;
37
38 //===--------------------------------------------------------------------===//
39 // Miscellaneous Helper Methods
40 //===--------------------------------------------------------------------===//
41
EmitCastToVoidPtr(llvm::Value * value)42 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
43 unsigned addressSpace =
44 cast<llvm::PointerType>(value->getType())->getAddressSpace();
45
46 llvm::PointerType *destType = Int8PtrTy;
47 if (addressSpace)
48 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
49
50 if (value->getType() == destType) return value;
51 return Builder.CreateBitCast(value, destType);
52 }
53
54 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
55 /// block.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name)56 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
57 const Twine &Name) {
58 if (!Builder.isNamePreserving())
59 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
60 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
61 }
62
InitTempAlloca(llvm::AllocaInst * Var,llvm::Value * Init)63 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
64 llvm::Value *Init) {
65 auto *Store = new llvm::StoreInst(Init, Var);
66 llvm::BasicBlock *Block = AllocaInsertPt->getParent();
67 Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
68 }
69
CreateIRTemp(QualType Ty,const Twine & Name)70 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
71 const Twine &Name) {
72 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
73 // FIXME: Should we prefer the preferred type alignment here?
74 CharUnits Align = getContext().getTypeAlignInChars(Ty);
75 Alloc->setAlignment(Align.getQuantity());
76 return Alloc;
77 }
78
CreateMemTemp(QualType Ty,const Twine & Name)79 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
80 const Twine &Name) {
81 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
82 // FIXME: Should we prefer the preferred type alignment here?
83 CharUnits Align = getContext().getTypeAlignInChars(Ty);
84 Alloc->setAlignment(Align.getQuantity());
85 return Alloc;
86 }
87
88 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
89 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)90 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
91 PGO.setCurrentStmt(E);
92 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
93 llvm::Value *MemPtr = EmitScalarExpr(E);
94 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
95 }
96
97 QualType BoolTy = getContext().BoolTy;
98 if (!E->getType()->isAnyComplexType())
99 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
100
101 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
102 }
103
104 /// EmitIgnoredExpr - Emit code to compute the specified expression,
105 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)106 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
107 if (E->isRValue())
108 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
109
110 // Just emit it as an l-value and drop the result.
111 EmitLValue(E);
112 }
113
114 /// EmitAnyExpr - Emit code to compute the specified expression which
115 /// can have any type. The result is returned as an RValue struct.
116 /// If this is an aggregate expression, AggSlot indicates where the
117 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)118 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
119 AggValueSlot aggSlot,
120 bool ignoreResult) {
121 switch (getEvaluationKind(E->getType())) {
122 case TEK_Scalar:
123 return RValue::get(EmitScalarExpr(E, ignoreResult));
124 case TEK_Complex:
125 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
126 case TEK_Aggregate:
127 if (!ignoreResult && aggSlot.isIgnored())
128 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
129 EmitAggExpr(E, aggSlot);
130 return aggSlot.asRValue();
131 }
132 llvm_unreachable("bad evaluation kind");
133 }
134
135 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
136 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)137 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
138 AggValueSlot AggSlot = AggValueSlot::ignored();
139
140 if (hasAggregateEvaluationKind(E->getType()))
141 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
142 return EmitAnyExpr(E, AggSlot);
143 }
144
145 /// EmitAnyExprToMem - Evaluate an expression into a given memory
146 /// location.
EmitAnyExprToMem(const Expr * E,llvm::Value * Location,Qualifiers Quals,bool IsInit)147 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
148 llvm::Value *Location,
149 Qualifiers Quals,
150 bool IsInit) {
151 // FIXME: This function should take an LValue as an argument.
152 switch (getEvaluationKind(E->getType())) {
153 case TEK_Complex:
154 EmitComplexExprIntoLValue(E,
155 MakeNaturalAlignAddrLValue(Location, E->getType()),
156 /*isInit*/ false);
157 return;
158
159 case TEK_Aggregate: {
160 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
161 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
162 AggValueSlot::IsDestructed_t(IsInit),
163 AggValueSlot::DoesNotNeedGCBarriers,
164 AggValueSlot::IsAliased_t(!IsInit)));
165 return;
166 }
167
168 case TEK_Scalar: {
169 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
170 LValue LV = MakeAddrLValue(Location, E->getType());
171 EmitStoreThroughLValue(RV, LV);
172 return;
173 }
174 }
175 llvm_unreachable("bad evaluation kind");
176 }
177
178 static void
pushTemporaryCleanup(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * E,llvm::Value * ReferenceTemporary)179 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
180 const Expr *E, llvm::Value *ReferenceTemporary) {
181 // Objective-C++ ARC:
182 // If we are binding a reference to a temporary that has ownership, we
183 // need to perform retain/release operations on the temporary.
184 //
185 // FIXME: This should be looking at E, not M.
186 if (CGF.getLangOpts().ObjCAutoRefCount &&
187 M->getType()->isObjCLifetimeType()) {
188 QualType ObjCARCReferenceLifetimeType = M->getType();
189 switch (Qualifiers::ObjCLifetime Lifetime =
190 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
191 case Qualifiers::OCL_None:
192 case Qualifiers::OCL_ExplicitNone:
193 // Carry on to normal cleanup handling.
194 break;
195
196 case Qualifiers::OCL_Autoreleasing:
197 // Nothing to do; cleaned up by an autorelease pool.
198 return;
199
200 case Qualifiers::OCL_Strong:
201 case Qualifiers::OCL_Weak:
202 switch (StorageDuration Duration = M->getStorageDuration()) {
203 case SD_Static:
204 // Note: we intentionally do not register a cleanup to release
205 // the object on program termination.
206 return;
207
208 case SD_Thread:
209 // FIXME: We should probably register a cleanup in this case.
210 return;
211
212 case SD_Automatic:
213 case SD_FullExpression:
214 CodeGenFunction::Destroyer *Destroy;
215 CleanupKind CleanupKind;
216 if (Lifetime == Qualifiers::OCL_Strong) {
217 const ValueDecl *VD = M->getExtendingDecl();
218 bool Precise =
219 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
220 CleanupKind = CGF.getARCCleanupKind();
221 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
222 : &CodeGenFunction::destroyARCStrongImprecise;
223 } else {
224 // __weak objects always get EH cleanups; otherwise, exceptions
225 // could cause really nasty crashes instead of mere leaks.
226 CleanupKind = NormalAndEHCleanup;
227 Destroy = &CodeGenFunction::destroyARCWeak;
228 }
229 if (Duration == SD_FullExpression)
230 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
231 ObjCARCReferenceLifetimeType, *Destroy,
232 CleanupKind & EHCleanup);
233 else
234 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
235 ObjCARCReferenceLifetimeType,
236 *Destroy, CleanupKind & EHCleanup);
237 return;
238
239 case SD_Dynamic:
240 llvm_unreachable("temporary cannot have dynamic storage duration");
241 }
242 llvm_unreachable("unknown storage duration");
243 }
244 }
245
246 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
247 if (const RecordType *RT =
248 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
249 // Get the destructor for the reference temporary.
250 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
251 if (!ClassDecl->hasTrivialDestructor())
252 ReferenceTemporaryDtor = ClassDecl->getDestructor();
253 }
254
255 if (!ReferenceTemporaryDtor)
256 return;
257
258 // Call the destructor for the temporary.
259 switch (M->getStorageDuration()) {
260 case SD_Static:
261 case SD_Thread: {
262 llvm::Constant *CleanupFn;
263 llvm::Constant *CleanupArg;
264 if (E->getType()->isArrayType()) {
265 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
266 cast<llvm::Constant>(ReferenceTemporary), E->getType(),
267 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
268 dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
269 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
270 } else {
271 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
272 StructorType::Complete);
273 CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
274 }
275 CGF.CGM.getCXXABI().registerGlobalDtor(
276 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
277 break;
278 }
279
280 case SD_FullExpression:
281 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
282 CodeGenFunction::destroyCXXObject,
283 CGF.getLangOpts().Exceptions);
284 break;
285
286 case SD_Automatic:
287 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
288 ReferenceTemporary, E->getType(),
289 CodeGenFunction::destroyCXXObject,
290 CGF.getLangOpts().Exceptions);
291 break;
292
293 case SD_Dynamic:
294 llvm_unreachable("temporary cannot have dynamic storage duration");
295 }
296 }
297
298 static llvm::Value *
createReferenceTemporary(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * Inner)299 createReferenceTemporary(CodeGenFunction &CGF,
300 const MaterializeTemporaryExpr *M, const Expr *Inner) {
301 switch (M->getStorageDuration()) {
302 case SD_FullExpression:
303 case SD_Automatic: {
304 // If we have a constant temporary array or record try to promote it into a
305 // constant global under the same rules a normal constant would've been
306 // promoted. This is easier on the optimizer and generally emits fewer
307 // instructions.
308 QualType Ty = Inner->getType();
309 if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
310 (Ty->isArrayType() || Ty->isRecordType()) &&
311 CGF.CGM.isTypeConstant(Ty, true))
312 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
313 auto *GV = new llvm::GlobalVariable(
314 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
315 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
316 GV->setAlignment(
317 CGF.getContext().getTypeAlignInChars(Ty).getQuantity());
318 // FIXME: Should we put the new global into a COMDAT?
319 return GV;
320 }
321 return CGF.CreateMemTemp(Ty, "ref.tmp");
322 }
323 case SD_Thread:
324 case SD_Static:
325 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
326
327 case SD_Dynamic:
328 llvm_unreachable("temporary can't have dynamic storage duration");
329 }
330 llvm_unreachable("unknown storage duration");
331 }
332
333 LValue CodeGenFunction::
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * M)334 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
335 const Expr *E = M->GetTemporaryExpr();
336
337 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
338 // as that will cause the lifetime adjustment to be lost for ARC
339 if (getLangOpts().ObjCAutoRefCount &&
340 M->getType()->isObjCLifetimeType() &&
341 M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
342 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
343 llvm::Value *Object = createReferenceTemporary(*this, M, E);
344 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
345 Object = llvm::ConstantExpr::getBitCast(
346 Var, ConvertTypeForMem(E->getType())->getPointerTo());
347 // We should not have emitted the initializer for this temporary as a
348 // constant.
349 assert(!Var->hasInitializer());
350 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
351 }
352 LValue RefTempDst = MakeAddrLValue(Object, M->getType());
353
354 switch (getEvaluationKind(E->getType())) {
355 default: llvm_unreachable("expected scalar or aggregate expression");
356 case TEK_Scalar:
357 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
358 break;
359 case TEK_Aggregate: {
360 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
361 EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment,
362 E->getType().getQualifiers(),
363 AggValueSlot::IsDestructed,
364 AggValueSlot::DoesNotNeedGCBarriers,
365 AggValueSlot::IsNotAliased));
366 break;
367 }
368 }
369
370 pushTemporaryCleanup(*this, M, E, Object);
371 return RefTempDst;
372 }
373
374 SmallVector<const Expr *, 2> CommaLHSs;
375 SmallVector<SubobjectAdjustment, 2> Adjustments;
376 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
377
378 for (const auto &Ignored : CommaLHSs)
379 EmitIgnoredExpr(Ignored);
380
381 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
382 if (opaque->getType()->isRecordType()) {
383 assert(Adjustments.empty());
384 return EmitOpaqueValueLValue(opaque);
385 }
386 }
387
388 // Create and initialize the reference temporary.
389 llvm::Value *Object = createReferenceTemporary(*this, M, E);
390 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
391 Object = llvm::ConstantExpr::getBitCast(
392 Var, ConvertTypeForMem(E->getType())->getPointerTo());
393 // If the temporary is a global and has a constant initializer or is a
394 // constant temporary that we promoted to a global, we may have already
395 // initialized it.
396 if (!Var->hasInitializer()) {
397 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
398 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
399 }
400 } else {
401 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
402 }
403 pushTemporaryCleanup(*this, M, E, Object);
404
405 // Perform derived-to-base casts and/or field accesses, to get from the
406 // temporary object we created (and, potentially, for which we extended
407 // the lifetime) to the subobject we're binding the reference to.
408 for (unsigned I = Adjustments.size(); I != 0; --I) {
409 SubobjectAdjustment &Adjustment = Adjustments[I-1];
410 switch (Adjustment.Kind) {
411 case SubobjectAdjustment::DerivedToBaseAdjustment:
412 Object =
413 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
414 Adjustment.DerivedToBase.BasePath->path_begin(),
415 Adjustment.DerivedToBase.BasePath->path_end(),
416 /*NullCheckValue=*/ false, E->getExprLoc());
417 break;
418
419 case SubobjectAdjustment::FieldAdjustment: {
420 LValue LV = MakeAddrLValue(Object, E->getType());
421 LV = EmitLValueForField(LV, Adjustment.Field);
422 assert(LV.isSimple() &&
423 "materialized temporary field is not a simple lvalue");
424 Object = LV.getAddress();
425 break;
426 }
427
428 case SubobjectAdjustment::MemberPointerAdjustment: {
429 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
430 Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
431 *this, E, Object, Ptr, Adjustment.Ptr.MPT);
432 break;
433 }
434 }
435 }
436
437 return MakeAddrLValue(Object, M->getType());
438 }
439
440 RValue
EmitReferenceBindingToExpr(const Expr * E)441 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
442 // Emit the expression as an lvalue.
443 LValue LV = EmitLValue(E);
444 assert(LV.isSimple());
445 llvm::Value *Value = LV.getAddress();
446
447 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
448 // C++11 [dcl.ref]p5 (as amended by core issue 453):
449 // If a glvalue to which a reference is directly bound designates neither
450 // an existing object or function of an appropriate type nor a region of
451 // storage of suitable size and alignment to contain an object of the
452 // reference's type, the behavior is undefined.
453 QualType Ty = E->getType();
454 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
455 }
456
457 return RValue::get(Value);
458 }
459
460
461 /// getAccessedFieldNo - Given an encoded value and a result number, return the
462 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)463 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
464 const llvm::Constant *Elts) {
465 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
466 ->getZExtValue();
467 }
468
469 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
emitHash16Bytes(CGBuilderTy & Builder,llvm::Value * Low,llvm::Value * High)470 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
471 llvm::Value *High) {
472 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
473 llvm::Value *K47 = Builder.getInt64(47);
474 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
475 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
476 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
477 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
478 return Builder.CreateMul(B1, KMul);
479 }
480
sanitizePerformTypeCheck() const481 bool CodeGenFunction::sanitizePerformTypeCheck() const {
482 return SanOpts.has(SanitizerKind::Null) |
483 SanOpts.has(SanitizerKind::Alignment) |
484 SanOpts.has(SanitizerKind::ObjectSize) |
485 SanOpts.has(SanitizerKind::Vptr);
486 }
487
EmitTypeCheck(TypeCheckKind TCK,SourceLocation Loc,llvm::Value * Address,QualType Ty,CharUnits Alignment,bool SkipNullCheck)488 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
489 llvm::Value *Address, QualType Ty,
490 CharUnits Alignment, bool SkipNullCheck) {
491 if (!sanitizePerformTypeCheck())
492 return;
493
494 // Don't check pointers outside the default address space. The null check
495 // isn't correct, the object-size check isn't supported by LLVM, and we can't
496 // communicate the addresses to the runtime handler for the vptr check.
497 if (Address->getType()->getPointerAddressSpace())
498 return;
499
500 SanitizerScope SanScope(this);
501
502 SmallVector<std::pair<llvm::Value *, SanitizerKind>, 3> Checks;
503 llvm::BasicBlock *Done = nullptr;
504
505 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
506 TCK == TCK_UpcastToVirtualBase;
507 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
508 !SkipNullCheck) {
509 // The glvalue must not be an empty glvalue.
510 llvm::Value *IsNonNull = Builder.CreateICmpNE(
511 Address, llvm::Constant::getNullValue(Address->getType()));
512
513 if (AllowNullPointers) {
514 // When performing pointer casts, it's OK if the value is null.
515 // Skip the remaining checks in that case.
516 Done = createBasicBlock("null");
517 llvm::BasicBlock *Rest = createBasicBlock("not.null");
518 Builder.CreateCondBr(IsNonNull, Rest, Done);
519 EmitBlock(Rest);
520 } else {
521 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
522 }
523 }
524
525 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
526 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
527
528 // The glvalue must refer to a large enough storage region.
529 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
530 // to check this.
531 // FIXME: Get object address space
532 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
533 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
534 llvm::Value *Min = Builder.getFalse();
535 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
536 llvm::Value *LargeEnough =
537 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
538 llvm::ConstantInt::get(IntPtrTy, Size));
539 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
540 }
541
542 uint64_t AlignVal = 0;
543
544 if (SanOpts.has(SanitizerKind::Alignment)) {
545 AlignVal = Alignment.getQuantity();
546 if (!Ty->isIncompleteType() && !AlignVal)
547 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
548
549 // The glvalue must be suitably aligned.
550 if (AlignVal) {
551 llvm::Value *Align =
552 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
553 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
554 llvm::Value *Aligned =
555 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
556 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
557 }
558 }
559
560 if (Checks.size() > 0) {
561 llvm::Constant *StaticData[] = {
562 EmitCheckSourceLocation(Loc),
563 EmitCheckTypeDescriptor(Ty),
564 llvm::ConstantInt::get(SizeTy, AlignVal),
565 llvm::ConstantInt::get(Int8Ty, TCK)
566 };
567 EmitCheck(Checks, "type_mismatch", StaticData, Address);
568 }
569
570 // If possible, check that the vptr indicates that there is a subobject of
571 // type Ty at offset zero within this object.
572 //
573 // C++11 [basic.life]p5,6:
574 // [For storage which does not refer to an object within its lifetime]
575 // The program has undefined behavior if:
576 // -- the [pointer or glvalue] is used to access a non-static data member
577 // or call a non-static member function
578 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
579 if (SanOpts.has(SanitizerKind::Vptr) &&
580 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
581 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
582 TCK == TCK_UpcastToVirtualBase) &&
583 RD && RD->hasDefinition() && RD->isDynamicClass()) {
584 // Compute a hash of the mangled name of the type.
585 //
586 // FIXME: This is not guaranteed to be deterministic! Move to a
587 // fingerprinting mechanism once LLVM provides one. For the time
588 // being the implementation happens to be deterministic.
589 SmallString<64> MangledName;
590 llvm::raw_svector_ostream Out(MangledName);
591 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
592 Out);
593
594 // Blacklist based on the mangled type.
595 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
596 Out.str())) {
597 llvm::hash_code TypeHash = hash_value(Out.str());
598
599 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
600 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
601 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
602 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
603 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
604 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
605
606 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
607 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
608
609 // Look the hash up in our cache.
610 const int CacheSize = 128;
611 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
612 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
613 "__ubsan_vptr_type_cache");
614 llvm::Value *Slot = Builder.CreateAnd(Hash,
615 llvm::ConstantInt::get(IntPtrTy,
616 CacheSize-1));
617 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
618 llvm::Value *CacheVal =
619 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
620
621 // If the hash isn't in the cache, call a runtime handler to perform the
622 // hard work of checking whether the vptr is for an object of the right
623 // type. This will either fill in the cache and return, or produce a
624 // diagnostic.
625 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
626 llvm::Constant *StaticData[] = {
627 EmitCheckSourceLocation(Loc),
628 EmitCheckTypeDescriptor(Ty),
629 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
630 llvm::ConstantInt::get(Int8Ty, TCK)
631 };
632 llvm::Value *DynamicData[] = { Address, Hash };
633 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
634 "dynamic_type_cache_miss", StaticData, DynamicData);
635 }
636 }
637
638 if (Done) {
639 Builder.CreateBr(Done);
640 EmitBlock(Done);
641 }
642 }
643
644 /// Determine whether this expression refers to a flexible array member in a
645 /// struct. We disable array bounds checks for such members.
isFlexibleArrayMemberExpr(const Expr * E)646 static bool isFlexibleArrayMemberExpr(const Expr *E) {
647 // For compatibility with existing code, we treat arrays of length 0 or
648 // 1 as flexible array members.
649 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
650 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
651 if (CAT->getSize().ugt(1))
652 return false;
653 } else if (!isa<IncompleteArrayType>(AT))
654 return false;
655
656 E = E->IgnoreParens();
657
658 // A flexible array member must be the last member in the class.
659 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
660 // FIXME: If the base type of the member expr is not FD->getParent(),
661 // this should not be treated as a flexible array member access.
662 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
663 RecordDecl::field_iterator FI(
664 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
665 return ++FI == FD->getParent()->field_end();
666 }
667 }
668
669 return false;
670 }
671
672 /// If Base is known to point to the start of an array, return the length of
673 /// that array. Return 0 if the length cannot be determined.
getArrayIndexingBound(CodeGenFunction & CGF,const Expr * Base,QualType & IndexedType)674 static llvm::Value *getArrayIndexingBound(
675 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
676 // For the vector indexing extension, the bound is the number of elements.
677 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
678 IndexedType = Base->getType();
679 return CGF.Builder.getInt32(VT->getNumElements());
680 }
681
682 Base = Base->IgnoreParens();
683
684 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
685 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
686 !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
687 IndexedType = CE->getSubExpr()->getType();
688 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
689 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
690 return CGF.Builder.getInt(CAT->getSize());
691 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
692 return CGF.getVLASize(VAT).first;
693 }
694 }
695
696 return nullptr;
697 }
698
EmitBoundsCheck(const Expr * E,const Expr * Base,llvm::Value * Index,QualType IndexType,bool Accessed)699 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
700 llvm::Value *Index, QualType IndexType,
701 bool Accessed) {
702 assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
703 "should not be called unless adding bounds checks");
704 SanitizerScope SanScope(this);
705
706 QualType IndexedType;
707 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
708 if (!Bound)
709 return;
710
711 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
712 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
713 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
714
715 llvm::Constant *StaticData[] = {
716 EmitCheckSourceLocation(E->getExprLoc()),
717 EmitCheckTypeDescriptor(IndexedType),
718 EmitCheckTypeDescriptor(IndexType)
719 };
720 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
721 : Builder.CreateICmpULE(IndexVal, BoundVal);
722 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
723 StaticData, Index);
724 }
725
726
727 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)728 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
729 bool isInc, bool isPre) {
730 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
731
732 llvm::Value *NextVal;
733 if (isa<llvm::IntegerType>(InVal.first->getType())) {
734 uint64_t AmountVal = isInc ? 1 : -1;
735 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
736
737 // Add the inc/dec to the real part.
738 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
739 } else {
740 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
741 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
742 if (!isInc)
743 FVal.changeSign();
744 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
745
746 // Add the inc/dec to the real part.
747 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
748 }
749
750 ComplexPairTy IncVal(NextVal, InVal.second);
751
752 // Store the updated result through the lvalue.
753 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
754
755 // If this is a postinc, return the value read from memory, otherwise use the
756 // updated value.
757 return isPre ? IncVal : InVal;
758 }
759
760 //===----------------------------------------------------------------------===//
761 // LValue Expression Emission
762 //===----------------------------------------------------------------------===//
763
GetUndefRValue(QualType Ty)764 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
765 if (Ty->isVoidType())
766 return RValue::get(nullptr);
767
768 switch (getEvaluationKind(Ty)) {
769 case TEK_Complex: {
770 llvm::Type *EltTy =
771 ConvertType(Ty->castAs<ComplexType>()->getElementType());
772 llvm::Value *U = llvm::UndefValue::get(EltTy);
773 return RValue::getComplex(std::make_pair(U, U));
774 }
775
776 // If this is a use of an undefined aggregate type, the aggregate must have an
777 // identifiable address. Just because the contents of the value are undefined
778 // doesn't mean that the address can't be taken and compared.
779 case TEK_Aggregate: {
780 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
781 return RValue::getAggregate(DestPtr);
782 }
783
784 case TEK_Scalar:
785 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
786 }
787 llvm_unreachable("bad evaluation kind");
788 }
789
EmitUnsupportedRValue(const Expr * E,const char * Name)790 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
791 const char *Name) {
792 ErrorUnsupported(E, Name);
793 return GetUndefRValue(E->getType());
794 }
795
EmitUnsupportedLValue(const Expr * E,const char * Name)796 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
797 const char *Name) {
798 ErrorUnsupported(E, Name);
799 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
800 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
801 }
802
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)803 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
804 LValue LV;
805 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
806 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
807 else
808 LV = EmitLValue(E);
809 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
810 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
811 E->getType(), LV.getAlignment());
812 return LV;
813 }
814
815 /// EmitLValue - Emit code to compute a designator that specifies the location
816 /// of the expression.
817 ///
818 /// This can return one of two things: a simple address or a bitfield reference.
819 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
820 /// an LLVM pointer type.
821 ///
822 /// If this returns a bitfield reference, nothing about the pointee type of the
823 /// LLVM value is known: For example, it may not be a pointer to an integer.
824 ///
825 /// If this returns a normal address, and if the lvalue's C type is fixed size,
826 /// this method guarantees that the returned pointer type will point to an LLVM
827 /// type of the same size of the lvalue's type. If the lvalue has a variable
828 /// length type, this is not possible.
829 ///
EmitLValue(const Expr * E)830 LValue CodeGenFunction::EmitLValue(const Expr *E) {
831 ApplyDebugLocation DL(*this, E);
832 switch (E->getStmtClass()) {
833 default: return EmitUnsupportedLValue(E, "l-value expression");
834
835 case Expr::ObjCPropertyRefExprClass:
836 llvm_unreachable("cannot emit a property reference directly");
837
838 case Expr::ObjCSelectorExprClass:
839 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
840 case Expr::ObjCIsaExprClass:
841 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
842 case Expr::BinaryOperatorClass:
843 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
844 case Expr::CompoundAssignOperatorClass: {
845 QualType Ty = E->getType();
846 if (const AtomicType *AT = Ty->getAs<AtomicType>())
847 Ty = AT->getValueType();
848 if (!Ty->isAnyComplexType())
849 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
850 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
851 }
852 case Expr::CallExprClass:
853 case Expr::CXXMemberCallExprClass:
854 case Expr::CXXOperatorCallExprClass:
855 case Expr::UserDefinedLiteralClass:
856 return EmitCallExprLValue(cast<CallExpr>(E));
857 case Expr::VAArgExprClass:
858 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
859 case Expr::DeclRefExprClass:
860 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
861 case Expr::ParenExprClass:
862 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
863 case Expr::GenericSelectionExprClass:
864 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
865 case Expr::PredefinedExprClass:
866 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
867 case Expr::StringLiteralClass:
868 return EmitStringLiteralLValue(cast<StringLiteral>(E));
869 case Expr::ObjCEncodeExprClass:
870 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
871 case Expr::PseudoObjectExprClass:
872 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
873 case Expr::InitListExprClass:
874 return EmitInitListLValue(cast<InitListExpr>(E));
875 case Expr::CXXTemporaryObjectExprClass:
876 case Expr::CXXConstructExprClass:
877 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
878 case Expr::CXXBindTemporaryExprClass:
879 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
880 case Expr::CXXUuidofExprClass:
881 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
882 case Expr::LambdaExprClass:
883 return EmitLambdaLValue(cast<LambdaExpr>(E));
884
885 case Expr::ExprWithCleanupsClass: {
886 const auto *cleanups = cast<ExprWithCleanups>(E);
887 enterFullExpression(cleanups);
888 RunCleanupsScope Scope(*this);
889 return EmitLValue(cleanups->getSubExpr());
890 }
891
892 case Expr::CXXDefaultArgExprClass:
893 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
894 case Expr::CXXDefaultInitExprClass: {
895 CXXDefaultInitExprScope Scope(*this);
896 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
897 }
898 case Expr::CXXTypeidExprClass:
899 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
900
901 case Expr::ObjCMessageExprClass:
902 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
903 case Expr::ObjCIvarRefExprClass:
904 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
905 case Expr::StmtExprClass:
906 return EmitStmtExprLValue(cast<StmtExpr>(E));
907 case Expr::UnaryOperatorClass:
908 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
909 case Expr::ArraySubscriptExprClass:
910 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
911 case Expr::ExtVectorElementExprClass:
912 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
913 case Expr::MemberExprClass:
914 return EmitMemberExpr(cast<MemberExpr>(E));
915 case Expr::CompoundLiteralExprClass:
916 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
917 case Expr::ConditionalOperatorClass:
918 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
919 case Expr::BinaryConditionalOperatorClass:
920 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
921 case Expr::ChooseExprClass:
922 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
923 case Expr::OpaqueValueExprClass:
924 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
925 case Expr::SubstNonTypeTemplateParmExprClass:
926 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
927 case Expr::ImplicitCastExprClass:
928 case Expr::CStyleCastExprClass:
929 case Expr::CXXFunctionalCastExprClass:
930 case Expr::CXXStaticCastExprClass:
931 case Expr::CXXDynamicCastExprClass:
932 case Expr::CXXReinterpretCastExprClass:
933 case Expr::CXXConstCastExprClass:
934 case Expr::ObjCBridgedCastExprClass:
935 return EmitCastLValue(cast<CastExpr>(E));
936
937 case Expr::MaterializeTemporaryExprClass:
938 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
939 }
940 }
941
942 /// Given an object of the given canonical type, can we safely copy a
943 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)944 static bool isConstantEmittableObjectType(QualType type) {
945 assert(type.isCanonical());
946 assert(!type->isReferenceType());
947
948 // Must be const-qualified but non-volatile.
949 Qualifiers qs = type.getLocalQualifiers();
950 if (!qs.hasConst() || qs.hasVolatile()) return false;
951
952 // Otherwise, all object types satisfy this except C++ classes with
953 // mutable subobjects or non-trivial copy/destroy behavior.
954 if (const auto *RT = dyn_cast<RecordType>(type))
955 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
956 if (RD->hasMutableFields() || !RD->isTrivial())
957 return false;
958
959 return true;
960 }
961
962 /// Can we constant-emit a load of a reference to a variable of the
963 /// given type? This is different from predicates like
964 /// Decl::isUsableInConstantExpressions because we do want it to apply
965 /// in situations that don't necessarily satisfy the language's rules
966 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
967 /// to do this with const float variables even if those variables
968 /// aren't marked 'constexpr'.
969 enum ConstantEmissionKind {
970 CEK_None,
971 CEK_AsReferenceOnly,
972 CEK_AsValueOrReference,
973 CEK_AsValueOnly
974 };
checkVarTypeForConstantEmission(QualType type)975 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
976 type = type.getCanonicalType();
977 if (const auto *ref = dyn_cast<ReferenceType>(type)) {
978 if (isConstantEmittableObjectType(ref->getPointeeType()))
979 return CEK_AsValueOrReference;
980 return CEK_AsReferenceOnly;
981 }
982 if (isConstantEmittableObjectType(type))
983 return CEK_AsValueOnly;
984 return CEK_None;
985 }
986
987 /// Try to emit a reference to the given value without producing it as
988 /// an l-value. This is actually more than an optimization: we can't
989 /// produce an l-value for variables that we never actually captured
990 /// in a block or lambda, which means const int variables or constexpr
991 /// literals or similar.
992 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)993 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
994 ValueDecl *value = refExpr->getDecl();
995
996 // The value needs to be an enum constant or a constant variable.
997 ConstantEmissionKind CEK;
998 if (isa<ParmVarDecl>(value)) {
999 CEK = CEK_None;
1000 } else if (auto *var = dyn_cast<VarDecl>(value)) {
1001 CEK = checkVarTypeForConstantEmission(var->getType());
1002 } else if (isa<EnumConstantDecl>(value)) {
1003 CEK = CEK_AsValueOnly;
1004 } else {
1005 CEK = CEK_None;
1006 }
1007 if (CEK == CEK_None) return ConstantEmission();
1008
1009 Expr::EvalResult result;
1010 bool resultIsReference;
1011 QualType resultType;
1012
1013 // It's best to evaluate all the way as an r-value if that's permitted.
1014 if (CEK != CEK_AsReferenceOnly &&
1015 refExpr->EvaluateAsRValue(result, getContext())) {
1016 resultIsReference = false;
1017 resultType = refExpr->getType();
1018
1019 // Otherwise, try to evaluate as an l-value.
1020 } else if (CEK != CEK_AsValueOnly &&
1021 refExpr->EvaluateAsLValue(result, getContext())) {
1022 resultIsReference = true;
1023 resultType = value->getType();
1024
1025 // Failure.
1026 } else {
1027 return ConstantEmission();
1028 }
1029
1030 // In any case, if the initializer has side-effects, abandon ship.
1031 if (result.HasSideEffects)
1032 return ConstantEmission();
1033
1034 // Emit as a constant.
1035 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1036
1037 // Make sure we emit a debug reference to the global variable.
1038 // This should probably fire even for
1039 if (isa<VarDecl>(value)) {
1040 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1041 EmitDeclRefExprDbgValue(refExpr, C);
1042 } else {
1043 assert(isa<EnumConstantDecl>(value));
1044 EmitDeclRefExprDbgValue(refExpr, C);
1045 }
1046
1047 // If we emitted a reference constant, we need to dereference that.
1048 if (resultIsReference)
1049 return ConstantEmission::forReference(C);
1050
1051 return ConstantEmission::forValue(C);
1052 }
1053
EmitLoadOfScalar(LValue lvalue,SourceLocation Loc)1054 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1055 SourceLocation Loc) {
1056 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1057 lvalue.getAlignment().getQuantity(),
1058 lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1059 lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1060 }
1061
hasBooleanRepresentation(QualType Ty)1062 static bool hasBooleanRepresentation(QualType Ty) {
1063 if (Ty->isBooleanType())
1064 return true;
1065
1066 if (const EnumType *ET = Ty->getAs<EnumType>())
1067 return ET->getDecl()->getIntegerType()->isBooleanType();
1068
1069 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1070 return hasBooleanRepresentation(AT->getValueType());
1071
1072 return false;
1073 }
1074
getRangeForType(CodeGenFunction & CGF,QualType Ty,llvm::APInt & Min,llvm::APInt & End,bool StrictEnums)1075 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1076 llvm::APInt &Min, llvm::APInt &End,
1077 bool StrictEnums) {
1078 const EnumType *ET = Ty->getAs<EnumType>();
1079 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1080 ET && !ET->getDecl()->isFixed();
1081 bool IsBool = hasBooleanRepresentation(Ty);
1082 if (!IsBool && !IsRegularCPlusPlusEnum)
1083 return false;
1084
1085 if (IsBool) {
1086 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1087 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1088 } else {
1089 const EnumDecl *ED = ET->getDecl();
1090 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1091 unsigned Bitwidth = LTy->getScalarSizeInBits();
1092 unsigned NumNegativeBits = ED->getNumNegativeBits();
1093 unsigned NumPositiveBits = ED->getNumPositiveBits();
1094
1095 if (NumNegativeBits) {
1096 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1097 assert(NumBits <= Bitwidth);
1098 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1099 Min = -End;
1100 } else {
1101 assert(NumPositiveBits <= Bitwidth);
1102 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1103 Min = llvm::APInt(Bitwidth, 0);
1104 }
1105 }
1106 return true;
1107 }
1108
getRangeForLoadFromType(QualType Ty)1109 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1110 llvm::APInt Min, End;
1111 if (!getRangeForType(*this, Ty, Min, End,
1112 CGM.getCodeGenOpts().StrictEnums))
1113 return nullptr;
1114
1115 llvm::MDBuilder MDHelper(getLLVMContext());
1116 return MDHelper.createRange(Min, End);
1117 }
1118
EmitLoadOfScalar(llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,SourceLocation Loc,llvm::MDNode * TBAAInfo,QualType TBAABaseType,uint64_t TBAAOffset)1119 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1120 unsigned Alignment, QualType Ty,
1121 SourceLocation Loc,
1122 llvm::MDNode *TBAAInfo,
1123 QualType TBAABaseType,
1124 uint64_t TBAAOffset) {
1125 // For better performance, handle vector loads differently.
1126 if (Ty->isVectorType()) {
1127 llvm::Value *V;
1128 const llvm::Type *EltTy =
1129 cast<llvm::PointerType>(Addr->getType())->getElementType();
1130
1131 const auto *VTy = cast<llvm::VectorType>(EltTy);
1132
1133 // Handle vectors of size 3, like size 4 for better performance.
1134 if (VTy->getNumElements() == 3) {
1135
1136 // Bitcast to vec4 type.
1137 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1138 4);
1139 llvm::PointerType *ptVec4Ty =
1140 llvm::PointerType::get(vec4Ty,
1141 (cast<llvm::PointerType>(
1142 Addr->getType()))->getAddressSpace());
1143 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1144 "castToVec4");
1145 // Now load value.
1146 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1147
1148 // Shuffle vector to get vec3.
1149 llvm::Constant *Mask[] = {
1150 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1151 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1152 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1153 };
1154
1155 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1156 V = Builder.CreateShuffleVector(LoadVal,
1157 llvm::UndefValue::get(vec4Ty),
1158 MaskV, "extractVec");
1159 return EmitFromMemory(V, Ty);
1160 }
1161 }
1162
1163 // Atomic operations have to be done on integral types.
1164 if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
1165 LValue lvalue = LValue::MakeAddr(Addr, Ty,
1166 CharUnits::fromQuantity(Alignment),
1167 getContext(), TBAAInfo);
1168 return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1169 }
1170
1171 llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1172 if (Volatile)
1173 Load->setVolatile(true);
1174 if (Alignment)
1175 Load->setAlignment(Alignment);
1176 if (TBAAInfo) {
1177 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1178 TBAAOffset);
1179 if (TBAAPath)
1180 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1181 }
1182
1183 bool NeedsBoolCheck =
1184 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1185 bool NeedsEnumCheck =
1186 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1187 if (NeedsBoolCheck || NeedsEnumCheck) {
1188 SanitizerScope SanScope(this);
1189 llvm::APInt Min, End;
1190 if (getRangeForType(*this, Ty, Min, End, true)) {
1191 --End;
1192 llvm::Value *Check;
1193 if (!Min)
1194 Check = Builder.CreateICmpULE(
1195 Load, llvm::ConstantInt::get(getLLVMContext(), End));
1196 else {
1197 llvm::Value *Upper = Builder.CreateICmpSLE(
1198 Load, llvm::ConstantInt::get(getLLVMContext(), End));
1199 llvm::Value *Lower = Builder.CreateICmpSGE(
1200 Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1201 Check = Builder.CreateAnd(Upper, Lower);
1202 }
1203 llvm::Constant *StaticArgs[] = {
1204 EmitCheckSourceLocation(Loc),
1205 EmitCheckTypeDescriptor(Ty)
1206 };
1207 SanitizerKind Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1208 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1209 EmitCheckValue(Load));
1210 }
1211 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1212 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1213 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1214
1215 return EmitFromMemory(Load, Ty);
1216 }
1217
EmitToMemory(llvm::Value * Value,QualType Ty)1218 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1219 // Bool has a different representation in memory than in registers.
1220 if (hasBooleanRepresentation(Ty)) {
1221 // This should really always be an i1, but sometimes it's already
1222 // an i8, and it's awkward to track those cases down.
1223 if (Value->getType()->isIntegerTy(1))
1224 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1225 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1226 "wrong value rep of bool");
1227 }
1228
1229 return Value;
1230 }
1231
EmitFromMemory(llvm::Value * Value,QualType Ty)1232 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1233 // Bool has a different representation in memory than in registers.
1234 if (hasBooleanRepresentation(Ty)) {
1235 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1236 "wrong value rep of bool");
1237 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1238 }
1239
1240 return Value;
1241 }
1242
EmitStoreOfScalar(llvm::Value * Value,llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo,bool isInit,QualType TBAABaseType,uint64_t TBAAOffset)1243 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1244 bool Volatile, unsigned Alignment,
1245 QualType Ty, llvm::MDNode *TBAAInfo,
1246 bool isInit, QualType TBAABaseType,
1247 uint64_t TBAAOffset) {
1248
1249 // Handle vectors differently to get better performance.
1250 if (Ty->isVectorType()) {
1251 llvm::Type *SrcTy = Value->getType();
1252 auto *VecTy = cast<llvm::VectorType>(SrcTy);
1253 // Handle vec3 special.
1254 if (VecTy->getNumElements() == 3) {
1255 llvm::LLVMContext &VMContext = getLLVMContext();
1256
1257 // Our source is a vec3, do a shuffle vector to make it a vec4.
1258 SmallVector<llvm::Constant*, 4> Mask;
1259 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1260 0));
1261 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1262 1));
1263 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1264 2));
1265 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1266
1267 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1268 Value = Builder.CreateShuffleVector(Value,
1269 llvm::UndefValue::get(VecTy),
1270 MaskV, "extractVec");
1271 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1272 }
1273 auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1274 if (DstPtr->getElementType() != SrcTy) {
1275 llvm::Type *MemTy =
1276 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1277 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1278 }
1279 }
1280
1281 Value = EmitToMemory(Value, Ty);
1282
1283 if (Ty->isAtomicType() ||
1284 (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
1285 EmitAtomicStore(RValue::get(Value),
1286 LValue::MakeAddr(Addr, Ty,
1287 CharUnits::fromQuantity(Alignment),
1288 getContext(), TBAAInfo),
1289 isInit);
1290 return;
1291 }
1292
1293 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1294 if (Alignment)
1295 Store->setAlignment(Alignment);
1296 if (TBAAInfo) {
1297 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1298 TBAAOffset);
1299 if (TBAAPath)
1300 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1301 }
1302 }
1303
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1304 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1305 bool isInit) {
1306 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1307 lvalue.getAlignment().getQuantity(), lvalue.getType(),
1308 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1309 lvalue.getTBAAOffset());
1310 }
1311
1312 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1313 /// method emits the address of the lvalue, then loads the result as an rvalue,
1314 /// returning the rvalue.
EmitLoadOfLValue(LValue LV,SourceLocation Loc)1315 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1316 if (LV.isObjCWeak()) {
1317 // load of a __weak object.
1318 llvm::Value *AddrWeakObj = LV.getAddress();
1319 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1320 AddrWeakObj));
1321 }
1322 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1323 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1324 Object = EmitObjCConsumeObject(LV.getType(), Object);
1325 return RValue::get(Object);
1326 }
1327
1328 if (LV.isSimple()) {
1329 assert(!LV.getType()->isFunctionType());
1330
1331 // Everything needs a load.
1332 return RValue::get(EmitLoadOfScalar(LV, Loc));
1333 }
1334
1335 if (LV.isVectorElt()) {
1336 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1337 LV.isVolatileQualified());
1338 Load->setAlignment(LV.getAlignment().getQuantity());
1339 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1340 "vecext"));
1341 }
1342
1343 // If this is a reference to a subset of the elements of a vector, either
1344 // shuffle the input or extract/insert them as appropriate.
1345 if (LV.isExtVectorElt())
1346 return EmitLoadOfExtVectorElementLValue(LV);
1347
1348 // Global Register variables always invoke intrinsics
1349 if (LV.isGlobalReg())
1350 return EmitLoadOfGlobalRegLValue(LV);
1351
1352 assert(LV.isBitField() && "Unknown LValue type!");
1353 return EmitLoadOfBitfieldLValue(LV);
1354 }
1355
EmitLoadOfBitfieldLValue(LValue LV)1356 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1357 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1358
1359 // Get the output type.
1360 llvm::Type *ResLTy = ConvertType(LV.getType());
1361
1362 llvm::Value *Ptr = LV.getBitFieldAddr();
1363 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1364 "bf.load");
1365 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1366
1367 if (Info.IsSigned) {
1368 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1369 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1370 if (HighBits)
1371 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1372 if (Info.Offset + HighBits)
1373 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1374 } else {
1375 if (Info.Offset)
1376 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1377 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1378 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1379 Info.Size),
1380 "bf.clear");
1381 }
1382 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1383
1384 return RValue::get(Val);
1385 }
1386
1387 // If this is a reference to a subset of the elements of a vector, create an
1388 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)1389 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1390 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1391 LV.isVolatileQualified());
1392 Load->setAlignment(LV.getAlignment().getQuantity());
1393 llvm::Value *Vec = Load;
1394
1395 const llvm::Constant *Elts = LV.getExtVectorElts();
1396
1397 // If the result of the expression is a non-vector type, we must be extracting
1398 // a single element. Just codegen as an extractelement.
1399 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1400 if (!ExprVT) {
1401 unsigned InIdx = getAccessedFieldNo(0, Elts);
1402 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1403 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1404 }
1405
1406 // Always use shuffle vector to try to retain the original program structure
1407 unsigned NumResultElts = ExprVT->getNumElements();
1408
1409 SmallVector<llvm::Constant*, 4> Mask;
1410 for (unsigned i = 0; i != NumResultElts; ++i)
1411 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1412
1413 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1414 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1415 MaskV);
1416 return RValue::get(Vec);
1417 }
1418
1419 /// @brief Generates lvalue for partial ext_vector access.
EmitExtVectorElementLValue(LValue LV)1420 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1421 llvm::Value *VectorAddress = LV.getExtVectorAddr();
1422 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1423 QualType EQT = ExprVT->getElementType();
1424 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1425 llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo();
1426
1427 llvm::Value *CastToPointerElement =
1428 Builder.CreateBitCast(VectorAddress,
1429 VectorElementPtrToTy, "conv.ptr.element");
1430
1431 const llvm::Constant *Elts = LV.getExtVectorElts();
1432 unsigned ix = getAccessedFieldNo(0, Elts);
1433
1434 llvm::Value *VectorBasePtrPlusIx =
1435 Builder.CreateInBoundsGEP(CastToPointerElement,
1436 llvm::ConstantInt::get(SizeTy, ix), "add.ptr");
1437
1438 return VectorBasePtrPlusIx;
1439 }
1440
1441 /// @brief Load of global gamed gegisters are always calls to intrinsics.
EmitLoadOfGlobalRegLValue(LValue LV)1442 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1443 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1444 "Bad type for register variable");
1445 llvm::MDNode *RegName = cast<llvm::MDNode>(
1446 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1447
1448 // We accept integer and pointer types only
1449 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1450 llvm::Type *Ty = OrigTy;
1451 if (OrigTy->isPointerTy())
1452 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1453 llvm::Type *Types[] = { Ty };
1454
1455 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1456 llvm::Value *Call = Builder.CreateCall(
1457 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1458 if (OrigTy->isPointerTy())
1459 Call = Builder.CreateIntToPtr(Call, OrigTy);
1460 return RValue::get(Call);
1461 }
1462
1463
1464 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1465 /// lvalue, where both are guaranteed to the have the same type, and that type
1466 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)1467 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1468 bool isInit) {
1469 if (!Dst.isSimple()) {
1470 if (Dst.isVectorElt()) {
1471 // Read/modify/write the vector, inserting the new element.
1472 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1473 Dst.isVolatileQualified());
1474 Load->setAlignment(Dst.getAlignment().getQuantity());
1475 llvm::Value *Vec = Load;
1476 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1477 Dst.getVectorIdx(), "vecins");
1478 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1479 Dst.isVolatileQualified());
1480 Store->setAlignment(Dst.getAlignment().getQuantity());
1481 return;
1482 }
1483
1484 // If this is an update of extended vector elements, insert them as
1485 // appropriate.
1486 if (Dst.isExtVectorElt())
1487 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1488
1489 if (Dst.isGlobalReg())
1490 return EmitStoreThroughGlobalRegLValue(Src, Dst);
1491
1492 assert(Dst.isBitField() && "Unknown LValue type");
1493 return EmitStoreThroughBitfieldLValue(Src, Dst);
1494 }
1495
1496 // There's special magic for assigning into an ARC-qualified l-value.
1497 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1498 switch (Lifetime) {
1499 case Qualifiers::OCL_None:
1500 llvm_unreachable("present but none");
1501
1502 case Qualifiers::OCL_ExplicitNone:
1503 // nothing special
1504 break;
1505
1506 case Qualifiers::OCL_Strong:
1507 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1508 return;
1509
1510 case Qualifiers::OCL_Weak:
1511 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1512 return;
1513
1514 case Qualifiers::OCL_Autoreleasing:
1515 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1516 Src.getScalarVal()));
1517 // fall into the normal path
1518 break;
1519 }
1520 }
1521
1522 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1523 // load of a __weak object.
1524 llvm::Value *LvalueDst = Dst.getAddress();
1525 llvm::Value *src = Src.getScalarVal();
1526 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1527 return;
1528 }
1529
1530 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1531 // load of a __strong object.
1532 llvm::Value *LvalueDst = Dst.getAddress();
1533 llvm::Value *src = Src.getScalarVal();
1534 if (Dst.isObjCIvar()) {
1535 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1536 llvm::Type *ResultType = ConvertType(getContext().LongTy);
1537 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1538 llvm::Value *dst = RHS;
1539 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1540 llvm::Value *LHS =
1541 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1542 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1543 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1544 BytesBetween);
1545 } else if (Dst.isGlobalObjCRef()) {
1546 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1547 Dst.isThreadLocalRef());
1548 }
1549 else
1550 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1551 return;
1552 }
1553
1554 assert(Src.isScalar() && "Can't emit an agg store with this method");
1555 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1556 }
1557
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)1558 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1559 llvm::Value **Result) {
1560 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1561 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1562 llvm::Value *Ptr = Dst.getBitFieldAddr();
1563
1564 // Get the source value, truncated to the width of the bit-field.
1565 llvm::Value *SrcVal = Src.getScalarVal();
1566
1567 // Cast the source to the storage type and shift it into place.
1568 SrcVal = Builder.CreateIntCast(SrcVal,
1569 Ptr->getType()->getPointerElementType(),
1570 /*IsSigned=*/false);
1571 llvm::Value *MaskedVal = SrcVal;
1572
1573 // See if there are other bits in the bitfield's storage we'll need to load
1574 // and mask together with source before storing.
1575 if (Info.StorageSize != Info.Size) {
1576 assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1577 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1578 "bf.load");
1579 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1580
1581 // Mask the source value as needed.
1582 if (!hasBooleanRepresentation(Dst.getType()))
1583 SrcVal = Builder.CreateAnd(SrcVal,
1584 llvm::APInt::getLowBitsSet(Info.StorageSize,
1585 Info.Size),
1586 "bf.value");
1587 MaskedVal = SrcVal;
1588 if (Info.Offset)
1589 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1590
1591 // Mask out the original value.
1592 Val = Builder.CreateAnd(Val,
1593 ~llvm::APInt::getBitsSet(Info.StorageSize,
1594 Info.Offset,
1595 Info.Offset + Info.Size),
1596 "bf.clear");
1597
1598 // Or together the unchanged values and the source value.
1599 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1600 } else {
1601 assert(Info.Offset == 0);
1602 }
1603
1604 // Write the new value back out.
1605 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1606 Dst.isVolatileQualified());
1607 Store->setAlignment(Info.StorageAlignment);
1608
1609 // Return the new value of the bit-field, if requested.
1610 if (Result) {
1611 llvm::Value *ResultVal = MaskedVal;
1612
1613 // Sign extend the value if needed.
1614 if (Info.IsSigned) {
1615 assert(Info.Size <= Info.StorageSize);
1616 unsigned HighBits = Info.StorageSize - Info.Size;
1617 if (HighBits) {
1618 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1619 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1620 }
1621 }
1622
1623 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1624 "bf.result.cast");
1625 *Result = EmitFromMemory(ResultVal, Dst.getType());
1626 }
1627 }
1628
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)1629 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1630 LValue Dst) {
1631 // This access turns into a read/modify/write of the vector. Load the input
1632 // value now.
1633 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1634 Dst.isVolatileQualified());
1635 Load->setAlignment(Dst.getAlignment().getQuantity());
1636 llvm::Value *Vec = Load;
1637 const llvm::Constant *Elts = Dst.getExtVectorElts();
1638
1639 llvm::Value *SrcVal = Src.getScalarVal();
1640
1641 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1642 unsigned NumSrcElts = VTy->getNumElements();
1643 unsigned NumDstElts =
1644 cast<llvm::VectorType>(Vec->getType())->getNumElements();
1645 if (NumDstElts == NumSrcElts) {
1646 // Use shuffle vector is the src and destination are the same number of
1647 // elements and restore the vector mask since it is on the side it will be
1648 // stored.
1649 SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1650 for (unsigned i = 0; i != NumSrcElts; ++i)
1651 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1652
1653 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1654 Vec = Builder.CreateShuffleVector(SrcVal,
1655 llvm::UndefValue::get(Vec->getType()),
1656 MaskV);
1657 } else if (NumDstElts > NumSrcElts) {
1658 // Extended the source vector to the same length and then shuffle it
1659 // into the destination.
1660 // FIXME: since we're shuffling with undef, can we just use the indices
1661 // into that? This could be simpler.
1662 SmallVector<llvm::Constant*, 4> ExtMask;
1663 for (unsigned i = 0; i != NumSrcElts; ++i)
1664 ExtMask.push_back(Builder.getInt32(i));
1665 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1666 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1667 llvm::Value *ExtSrcVal =
1668 Builder.CreateShuffleVector(SrcVal,
1669 llvm::UndefValue::get(SrcVal->getType()),
1670 ExtMaskV);
1671 // build identity
1672 SmallVector<llvm::Constant*, 4> Mask;
1673 for (unsigned i = 0; i != NumDstElts; ++i)
1674 Mask.push_back(Builder.getInt32(i));
1675
1676 // When the vector size is odd and .odd or .hi is used, the last element
1677 // of the Elts constant array will be one past the size of the vector.
1678 // Ignore the last element here, if it is greater than the mask size.
1679 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1680 NumSrcElts--;
1681
1682 // modify when what gets shuffled in
1683 for (unsigned i = 0; i != NumSrcElts; ++i)
1684 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1685 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1686 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1687 } else {
1688 // We should never shorten the vector
1689 llvm_unreachable("unexpected shorten vector length");
1690 }
1691 } else {
1692 // If the Src is a scalar (not a vector) it must be updating one element.
1693 unsigned InIdx = getAccessedFieldNo(0, Elts);
1694 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1695 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1696 }
1697
1698 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1699 Dst.isVolatileQualified());
1700 Store->setAlignment(Dst.getAlignment().getQuantity());
1701 }
1702
1703 /// @brief Store of global named registers are always calls to intrinsics.
EmitStoreThroughGlobalRegLValue(RValue Src,LValue Dst)1704 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1705 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1706 "Bad type for register variable");
1707 llvm::MDNode *RegName = cast<llvm::MDNode>(
1708 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1709 assert(RegName && "Register LValue is not metadata");
1710
1711 // We accept integer and pointer types only
1712 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1713 llvm::Type *Ty = OrigTy;
1714 if (OrigTy->isPointerTy())
1715 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1716 llvm::Type *Types[] = { Ty };
1717
1718 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1719 llvm::Value *Value = Src.getScalarVal();
1720 if (OrigTy->isPointerTy())
1721 Value = Builder.CreatePtrToInt(Value, Ty);
1722 Builder.CreateCall2(F, llvm::MetadataAsValue::get(Ty->getContext(), RegName),
1723 Value);
1724 }
1725
1726 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1727 // generating write-barries API. It is currently a global, ivar,
1728 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)1729 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1730 LValue &LV,
1731 bool IsMemberAccess=false) {
1732 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1733 return;
1734
1735 if (isa<ObjCIvarRefExpr>(E)) {
1736 QualType ExpTy = E->getType();
1737 if (IsMemberAccess && ExpTy->isPointerType()) {
1738 // If ivar is a structure pointer, assigning to field of
1739 // this struct follows gcc's behavior and makes it a non-ivar
1740 // writer-barrier conservatively.
1741 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1742 if (ExpTy->isRecordType()) {
1743 LV.setObjCIvar(false);
1744 return;
1745 }
1746 }
1747 LV.setObjCIvar(true);
1748 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1749 LV.setBaseIvarExp(Exp->getBase());
1750 LV.setObjCArray(E->getType()->isArrayType());
1751 return;
1752 }
1753
1754 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1755 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1756 if (VD->hasGlobalStorage()) {
1757 LV.setGlobalObjCRef(true);
1758 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1759 }
1760 }
1761 LV.setObjCArray(E->getType()->isArrayType());
1762 return;
1763 }
1764
1765 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1766 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1767 return;
1768 }
1769
1770 if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1771 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1772 if (LV.isObjCIvar()) {
1773 // If cast is to a structure pointer, follow gcc's behavior and make it
1774 // a non-ivar write-barrier.
1775 QualType ExpTy = E->getType();
1776 if (ExpTy->isPointerType())
1777 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1778 if (ExpTy->isRecordType())
1779 LV.setObjCIvar(false);
1780 }
1781 return;
1782 }
1783
1784 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1785 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1786 return;
1787 }
1788
1789 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1790 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1791 return;
1792 }
1793
1794 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1795 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1796 return;
1797 }
1798
1799 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1800 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1801 return;
1802 }
1803
1804 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1805 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1806 if (LV.isObjCIvar() && !LV.isObjCArray())
1807 // Using array syntax to assigning to what an ivar points to is not
1808 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1809 LV.setObjCIvar(false);
1810 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1811 // Using array syntax to assigning to what global points to is not
1812 // same as assigning to the global itself. {id *G;} G[i] = 0;
1813 LV.setGlobalObjCRef(false);
1814 return;
1815 }
1816
1817 if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1818 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1819 // We don't know if member is an 'ivar', but this flag is looked at
1820 // only in the context of LV.isObjCIvar().
1821 LV.setObjCArray(E->getType()->isArrayType());
1822 return;
1823 }
1824 }
1825
1826 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())1827 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1828 llvm::Value *V, llvm::Type *IRType,
1829 StringRef Name = StringRef()) {
1830 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1831 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1832 }
1833
EmitThreadPrivateVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType T,llvm::Value * V,llvm::Type * RealVarTy,CharUnits Alignment,SourceLocation Loc)1834 static LValue EmitThreadPrivateVarDeclLValue(
1835 CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V,
1836 llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) {
1837 V = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, V, Loc);
1838 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1839 return CGF.MakeAddrLValue(V, T, Alignment);
1840 }
1841
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)1842 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1843 const Expr *E, const VarDecl *VD) {
1844 QualType T = E->getType();
1845
1846 // If it's thread_local, emit a call to its wrapper function instead.
1847 if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1848 CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1849 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1850
1851 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1852 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1853 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1854 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1855 LValue LV;
1856 // Emit reference to the private copy of the variable if it is an OpenMP
1857 // threadprivate variable.
1858 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1859 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment,
1860 E->getExprLoc());
1861 if (VD->getType()->isReferenceType()) {
1862 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1863 LI->setAlignment(Alignment.getQuantity());
1864 V = LI;
1865 LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1866 } else {
1867 LV = CGF.MakeAddrLValue(V, T, Alignment);
1868 }
1869 setObjCGCLValueClass(CGF.getContext(), E, LV);
1870 return LV;
1871 }
1872
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,const FunctionDecl * FD)1873 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1874 const Expr *E, const FunctionDecl *FD) {
1875 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1876 if (!FD->hasPrototype()) {
1877 if (const FunctionProtoType *Proto =
1878 FD->getType()->getAs<FunctionProtoType>()) {
1879 // Ugly case: for a K&R-style definition, the type of the definition
1880 // isn't the same as the type of a use. Correct for this with a
1881 // bitcast.
1882 QualType NoProtoType =
1883 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1884 NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1885 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1886 }
1887 }
1888 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1889 return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1890 }
1891
EmitCapturedFieldLValue(CodeGenFunction & CGF,const FieldDecl * FD,llvm::Value * ThisValue)1892 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1893 llvm::Value *ThisValue) {
1894 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1895 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1896 return CGF.EmitLValueForField(LV, FD);
1897 }
1898
1899 /// Named Registers are named metadata pointing to the register name
1900 /// which will be read from/written to as an argument to the intrinsic
1901 /// @llvm.read/write_register.
1902 /// So far, only the name is being passed down, but other options such as
1903 /// register type, allocation type or even optimization options could be
1904 /// passed down via the metadata node.
EmitGlobalNamedRegister(const VarDecl * VD,CodeGenModule & CGM,CharUnits Alignment)1905 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1906 CodeGenModule &CGM,
1907 CharUnits Alignment) {
1908 SmallString<64> Name("llvm.named.register.");
1909 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1910 assert(Asm->getLabel().size() < 64-Name.size() &&
1911 "Register name too big");
1912 Name.append(Asm->getLabel());
1913 llvm::NamedMDNode *M =
1914 CGM.getModule().getOrInsertNamedMetadata(Name);
1915 if (M->getNumOperands() == 0) {
1916 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1917 Asm->getLabel());
1918 llvm::Metadata *Ops[] = {Str};
1919 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1920 }
1921 return LValue::MakeGlobalReg(
1922 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)),
1923 VD->getType(), Alignment);
1924 }
1925
EmitDeclRefLValue(const DeclRefExpr * E)1926 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1927 const NamedDecl *ND = E->getDecl();
1928 CharUnits Alignment = getContext().getDeclAlign(ND);
1929 QualType T = E->getType();
1930
1931 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1932 // Global Named registers access via intrinsics only
1933 if (VD->getStorageClass() == SC_Register &&
1934 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1935 return EmitGlobalNamedRegister(VD, CGM, Alignment);
1936
1937 // A DeclRefExpr for a reference initialized by a constant expression can
1938 // appear without being odr-used. Directly emit the constant initializer.
1939 const Expr *Init = VD->getAnyInitializer(VD);
1940 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1941 VD->isUsableInConstantExpressions(getContext()) &&
1942 VD->checkInitIsICE()) {
1943 llvm::Constant *Val =
1944 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1945 assert(Val && "failed to emit reference constant expression");
1946 // FIXME: Eventually we will want to emit vector element references.
1947 return MakeAddrLValue(Val, T, Alignment);
1948 }
1949
1950 // Check for captured variables.
1951 if (E->refersToEnclosingVariableOrCapture()) {
1952 if (auto *FD = LambdaCaptureFields.lookup(VD))
1953 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1954 else if (CapturedStmtInfo) {
1955 if (auto *V = LocalDeclMap.lookup(VD))
1956 return MakeAddrLValue(V, T, Alignment);
1957 else
1958 return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
1959 CapturedStmtInfo->getContextValue());
1960 }
1961 assert(isa<BlockDecl>(CurCodeDecl));
1962 return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()),
1963 T, Alignment);
1964 }
1965 }
1966
1967 // FIXME: We should be able to assert this for FunctionDecls as well!
1968 // FIXME: We should be able to assert this for all DeclRefExprs, not just
1969 // those with a valid source location.
1970 assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1971 !E->getLocation().isValid()) &&
1972 "Should not use decl without marking it used!");
1973
1974 if (ND->hasAttr<WeakRefAttr>()) {
1975 const auto *VD = cast<ValueDecl>(ND);
1976 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1977 return MakeAddrLValue(Aliasee, T, Alignment);
1978 }
1979
1980 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1981 // Check if this is a global variable.
1982 if (VD->hasLinkage() || VD->isStaticDataMember())
1983 return EmitGlobalVarDeclLValue(*this, E, VD);
1984
1985 bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1986
1987 llvm::Value *V = LocalDeclMap.lookup(VD);
1988 if (!V && VD->isStaticLocal())
1989 V = CGM.getOrCreateStaticVarDecl(
1990 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1991
1992 // Check if variable is threadprivate.
1993 if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1994 return EmitThreadPrivateVarDeclLValue(
1995 *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()),
1996 Alignment, E->getExprLoc());
1997
1998 assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1999
2000 if (isBlockVariable)
2001 V = BuildBlockByrefAddress(V, VD);
2002
2003 LValue LV;
2004 if (VD->getType()->isReferenceType()) {
2005 llvm::LoadInst *LI = Builder.CreateLoad(V);
2006 LI->setAlignment(Alignment.getQuantity());
2007 V = LI;
2008 LV = MakeNaturalAlignAddrLValue(V, T);
2009 } else {
2010 LV = MakeAddrLValue(V, T, Alignment);
2011 }
2012
2013 bool isLocalStorage = VD->hasLocalStorage();
2014
2015 bool NonGCable = isLocalStorage &&
2016 !VD->getType()->isReferenceType() &&
2017 !isBlockVariable;
2018 if (NonGCable) {
2019 LV.getQuals().removeObjCGCAttr();
2020 LV.setNonGC(true);
2021 }
2022
2023 bool isImpreciseLifetime =
2024 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2025 if (isImpreciseLifetime)
2026 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2027 setObjCGCLValueClass(getContext(), E, LV);
2028 return LV;
2029 }
2030
2031 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2032 return EmitFunctionDeclLValue(*this, E, FD);
2033
2034 llvm_unreachable("Unhandled DeclRefExpr");
2035 }
2036
EmitUnaryOpLValue(const UnaryOperator * E)2037 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2038 // __extension__ doesn't affect lvalue-ness.
2039 if (E->getOpcode() == UO_Extension)
2040 return EmitLValue(E->getSubExpr());
2041
2042 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2043 switch (E->getOpcode()) {
2044 default: llvm_unreachable("Unknown unary operator lvalue!");
2045 case UO_Deref: {
2046 QualType T = E->getSubExpr()->getType()->getPointeeType();
2047 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2048
2049 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
2050 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2051
2052 // We should not generate __weak write barrier on indirect reference
2053 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2054 // But, we continue to generate __strong write barrier on indirect write
2055 // into a pointer to object.
2056 if (getLangOpts().ObjC1 &&
2057 getLangOpts().getGC() != LangOptions::NonGC &&
2058 LV.isObjCWeak())
2059 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2060 return LV;
2061 }
2062 case UO_Real:
2063 case UO_Imag: {
2064 LValue LV = EmitLValue(E->getSubExpr());
2065 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2066 llvm::Value *Addr = LV.getAddress();
2067
2068 // __real is valid on scalars. This is a faster way of testing that.
2069 // __imag can only produce an rvalue on scalars.
2070 if (E->getOpcode() == UO_Real &&
2071 !cast<llvm::PointerType>(Addr->getType())
2072 ->getElementType()->isStructTy()) {
2073 assert(E->getSubExpr()->getType()->isArithmeticType());
2074 return LV;
2075 }
2076
2077 assert(E->getSubExpr()->getType()->isAnyComplexType());
2078
2079 unsigned Idx = E->getOpcode() == UO_Imag;
2080 return MakeAddrLValue(
2081 Builder.CreateStructGEP(nullptr, LV.getAddress(), Idx, "idx"), ExprTy);
2082 }
2083 case UO_PreInc:
2084 case UO_PreDec: {
2085 LValue LV = EmitLValue(E->getSubExpr());
2086 bool isInc = E->getOpcode() == UO_PreInc;
2087
2088 if (E->getType()->isAnyComplexType())
2089 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2090 else
2091 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2092 return LV;
2093 }
2094 }
2095 }
2096
EmitStringLiteralLValue(const StringLiteral * E)2097 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2098 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2099 E->getType());
2100 }
2101
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)2102 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2103 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2104 E->getType());
2105 }
2106
EmitPredefinedLValue(const PredefinedExpr * E)2107 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2108 auto SL = E->getFunctionName();
2109 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2110 StringRef FnName = CurFn->getName();
2111 if (FnName.startswith("\01"))
2112 FnName = FnName.substr(1);
2113 StringRef NameItems[] = {
2114 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2115 std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2116 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2117 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1);
2118 return MakeAddrLValue(C, E->getType());
2119 }
2120 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2121 return MakeAddrLValue(C, E->getType());
2122 }
2123
2124 /// Emit a type description suitable for use by a runtime sanitizer library. The
2125 /// format of a type descriptor is
2126 ///
2127 /// \code
2128 /// { i16 TypeKind, i16 TypeInfo }
2129 /// \endcode
2130 ///
2131 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2132 /// integer, 1 for a floating point value, and -1 for anything else.
EmitCheckTypeDescriptor(QualType T)2133 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2134 // Only emit each type's descriptor once.
2135 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2136 return C;
2137
2138 uint16_t TypeKind = -1;
2139 uint16_t TypeInfo = 0;
2140
2141 if (T->isIntegerType()) {
2142 TypeKind = 0;
2143 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2144 (T->isSignedIntegerType() ? 1 : 0);
2145 } else if (T->isFloatingType()) {
2146 TypeKind = 1;
2147 TypeInfo = getContext().getTypeSize(T);
2148 }
2149
2150 // Format the type name as if for a diagnostic, including quotes and
2151 // optionally an 'aka'.
2152 SmallString<32> Buffer;
2153 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2154 (intptr_t)T.getAsOpaquePtr(),
2155 StringRef(), StringRef(), None, Buffer,
2156 None);
2157
2158 llvm::Constant *Components[] = {
2159 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2160 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2161 };
2162 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2163
2164 auto *GV = new llvm::GlobalVariable(
2165 CGM.getModule(), Descriptor->getType(),
2166 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2167 GV->setUnnamedAddr(true);
2168 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2169
2170 // Remember the descriptor for this type.
2171 CGM.setTypeDescriptorInMap(T, GV);
2172
2173 return GV;
2174 }
2175
EmitCheckValue(llvm::Value * V)2176 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2177 llvm::Type *TargetTy = IntPtrTy;
2178
2179 // Floating-point types which fit into intptr_t are bitcast to integers
2180 // and then passed directly (after zero-extension, if necessary).
2181 if (V->getType()->isFloatingPointTy()) {
2182 unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2183 if (Bits <= TargetTy->getIntegerBitWidth())
2184 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2185 Bits));
2186 }
2187
2188 // Integers which fit in intptr_t are zero-extended and passed directly.
2189 if (V->getType()->isIntegerTy() &&
2190 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2191 return Builder.CreateZExt(V, TargetTy);
2192
2193 // Pointers are passed directly, everything else is passed by address.
2194 if (!V->getType()->isPointerTy()) {
2195 llvm::Value *Ptr = CreateTempAlloca(V->getType());
2196 Builder.CreateStore(V, Ptr);
2197 V = Ptr;
2198 }
2199 return Builder.CreatePtrToInt(V, TargetTy);
2200 }
2201
2202 /// \brief Emit a representation of a SourceLocation for passing to a handler
2203 /// in a sanitizer runtime library. The format for this data is:
2204 /// \code
2205 /// struct SourceLocation {
2206 /// const char *Filename;
2207 /// int32_t Line, Column;
2208 /// };
2209 /// \endcode
2210 /// For an invalid SourceLocation, the Filename pointer is null.
EmitCheckSourceLocation(SourceLocation Loc)2211 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2212 llvm::Constant *Filename;
2213 int Line, Column;
2214
2215 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2216 if (PLoc.isValid()) {
2217 auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2218 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV);
2219 Filename = FilenameGV;
2220 Line = PLoc.getLine();
2221 Column = PLoc.getColumn();
2222 } else {
2223 Filename = llvm::Constant::getNullValue(Int8PtrTy);
2224 Line = Column = 0;
2225 }
2226
2227 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2228 Builder.getInt32(Column)};
2229
2230 return llvm::ConstantStruct::getAnon(Data);
2231 }
2232
2233 namespace {
2234 /// \brief Specify under what conditions this check can be recovered
2235 enum class CheckRecoverableKind {
2236 /// Always terminate program execution if this check fails.
2237 Unrecoverable,
2238 /// Check supports recovering, runtime has both fatal (noreturn) and
2239 /// non-fatal handlers for this check.
2240 Recoverable,
2241 /// Runtime conditionally aborts, always need to support recovery.
2242 AlwaysRecoverable
2243 };
2244 }
2245
getRecoverableKind(SanitizerKind Kind)2246 static CheckRecoverableKind getRecoverableKind(SanitizerKind Kind) {
2247 switch (Kind) {
2248 case SanitizerKind::Vptr:
2249 return CheckRecoverableKind::AlwaysRecoverable;
2250 case SanitizerKind::Return:
2251 case SanitizerKind::Unreachable:
2252 return CheckRecoverableKind::Unrecoverable;
2253 default:
2254 return CheckRecoverableKind::Recoverable;
2255 }
2256 }
2257
emitCheckHandlerCall(CodeGenFunction & CGF,llvm::FunctionType * FnType,ArrayRef<llvm::Value * > FnArgs,StringRef CheckName,CheckRecoverableKind RecoverKind,bool IsFatal,llvm::BasicBlock * ContBB)2258 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2259 llvm::FunctionType *FnType,
2260 ArrayRef<llvm::Value *> FnArgs,
2261 StringRef CheckName,
2262 CheckRecoverableKind RecoverKind, bool IsFatal,
2263 llvm::BasicBlock *ContBB) {
2264 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2265 bool NeedsAbortSuffix =
2266 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2267 std::string FnName = ("__ubsan_handle_" + CheckName +
2268 (NeedsAbortSuffix ? "_abort" : "")).str();
2269 bool MayReturn =
2270 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2271
2272 llvm::AttrBuilder B;
2273 if (!MayReturn) {
2274 B.addAttribute(llvm::Attribute::NoReturn)
2275 .addAttribute(llvm::Attribute::NoUnwind);
2276 }
2277 B.addAttribute(llvm::Attribute::UWTable);
2278
2279 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2280 FnType, FnName,
2281 llvm::AttributeSet::get(CGF.getLLVMContext(),
2282 llvm::AttributeSet::FunctionIndex, B));
2283 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2284 if (!MayReturn) {
2285 HandlerCall->setDoesNotReturn();
2286 CGF.Builder.CreateUnreachable();
2287 } else {
2288 CGF.Builder.CreateBr(ContBB);
2289 }
2290 }
2291
EmitCheck(ArrayRef<std::pair<llvm::Value *,SanitizerKind>> Checked,StringRef CheckName,ArrayRef<llvm::Constant * > StaticArgs,ArrayRef<llvm::Value * > DynamicArgs)2292 void CodeGenFunction::EmitCheck(
2293 ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2294 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2295 ArrayRef<llvm::Value *> DynamicArgs) {
2296 assert(IsSanitizerScope);
2297 assert(Checked.size() > 0);
2298
2299 llvm::Value *FatalCond = nullptr;
2300 llvm::Value *RecoverableCond = nullptr;
2301 for (int i = 0, n = Checked.size(); i < n; ++i) {
2302 llvm::Value *Check = Checked[i].first;
2303 llvm::Value *&Cond =
2304 CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2305 ? RecoverableCond
2306 : FatalCond;
2307 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2308 }
2309
2310 llvm::Value *JointCond;
2311 if (FatalCond && RecoverableCond)
2312 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2313 else
2314 JointCond = FatalCond ? FatalCond : RecoverableCond;
2315 assert(JointCond);
2316
2317 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2318 assert(SanOpts.has(Checked[0].second));
2319 #ifndef NDEBUG
2320 for (int i = 1, n = Checked.size(); i < n; ++i) {
2321 assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2322 "All recoverable kinds in a single check must be same!");
2323 assert(SanOpts.has(Checked[i].second));
2324 }
2325 #endif
2326
2327 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2328 assert(RecoverKind != CheckRecoverableKind::AlwaysRecoverable &&
2329 "Runtime call required for AlwaysRecoverable kind!");
2330 // Assume that -fsanitize-undefined-trap-on-error overrides
2331 // -fsanitize-recover= options, as we can only print meaningful error
2332 // message and recover if we have a runtime support.
2333 return EmitTrapCheck(JointCond);
2334 }
2335
2336 llvm::BasicBlock *Cont = createBasicBlock("cont");
2337 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2338 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2339 // Give hint that we very much don't expect to execute the handler
2340 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2341 llvm::MDBuilder MDHelper(getLLVMContext());
2342 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2343 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2344 EmitBlock(Handlers);
2345
2346 // Emit handler arguments and create handler function type.
2347 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2348 auto *InfoPtr =
2349 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2350 llvm::GlobalVariable::PrivateLinkage, Info);
2351 InfoPtr->setUnnamedAddr(true);
2352 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2353
2354 SmallVector<llvm::Value *, 4> Args;
2355 SmallVector<llvm::Type *, 4> ArgTypes;
2356 Args.reserve(DynamicArgs.size() + 1);
2357 ArgTypes.reserve(DynamicArgs.size() + 1);
2358
2359 // Handler functions take an i8* pointing to the (handler-specific) static
2360 // information block, followed by a sequence of intptr_t arguments
2361 // representing operand values.
2362 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2363 ArgTypes.push_back(Int8PtrTy);
2364 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2365 Args.push_back(EmitCheckValue(DynamicArgs[i]));
2366 ArgTypes.push_back(IntPtrTy);
2367 }
2368
2369 llvm::FunctionType *FnType =
2370 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2371
2372 if (!FatalCond || !RecoverableCond) {
2373 // Simple case: we need to generate a single handler call, either
2374 // fatal, or non-fatal.
2375 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2376 (FatalCond != nullptr), Cont);
2377 } else {
2378 // Emit two handler calls: first one for set of unrecoverable checks,
2379 // another one for recoverable.
2380 llvm::BasicBlock *NonFatalHandlerBB =
2381 createBasicBlock("non_fatal." + CheckName);
2382 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2383 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2384 EmitBlock(FatalHandlerBB);
2385 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2386 NonFatalHandlerBB);
2387 EmitBlock(NonFatalHandlerBB);
2388 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2389 Cont);
2390 }
2391
2392 EmitBlock(Cont);
2393 }
2394
EmitTrapCheck(llvm::Value * Checked)2395 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2396 llvm::BasicBlock *Cont = createBasicBlock("cont");
2397
2398 // If we're optimizing, collapse all calls to trap down to just one per
2399 // function to save on code size.
2400 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2401 TrapBB = createBasicBlock("trap");
2402 Builder.CreateCondBr(Checked, Cont, TrapBB);
2403 EmitBlock(TrapBB);
2404 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2405 llvm::CallInst *TrapCall = Builder.CreateCall(F);
2406 TrapCall->setDoesNotReturn();
2407 TrapCall->setDoesNotThrow();
2408 Builder.CreateUnreachable();
2409 } else {
2410 Builder.CreateCondBr(Checked, Cont, TrapBB);
2411 }
2412
2413 EmitBlock(Cont);
2414 }
2415
2416 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2417 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)2418 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2419 // If this isn't just an array->pointer decay, bail out.
2420 const auto *CE = dyn_cast<CastExpr>(E);
2421 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2422 return nullptr;
2423
2424 // If this is a decay from variable width array, bail out.
2425 const Expr *SubExpr = CE->getSubExpr();
2426 if (SubExpr->getType()->isVariableArrayType())
2427 return nullptr;
2428
2429 return SubExpr;
2430 }
2431
EmitArraySubscriptExpr(const ArraySubscriptExpr * E,bool Accessed)2432 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2433 bool Accessed) {
2434 // The index must always be an integer, which is not an aggregate. Emit it.
2435 llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2436 QualType IdxTy = E->getIdx()->getType();
2437 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2438
2439 if (SanOpts.has(SanitizerKind::ArrayBounds))
2440 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2441
2442 // If the base is a vector type, then we are forming a vector element lvalue
2443 // with this subscript.
2444 if (E->getBase()->getType()->isVectorType() &&
2445 !isa<ExtVectorElementExpr>(E->getBase())) {
2446 // Emit the vector as an lvalue to get its address.
2447 LValue LHS = EmitLValue(E->getBase());
2448 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2449 return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2450 E->getBase()->getType(), LHS.getAlignment());
2451 }
2452
2453 // Extend or truncate the index type to 32 or 64-bits.
2454 if (Idx->getType() != IntPtrTy)
2455 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2456
2457 // We know that the pointer points to a type of the correct size, unless the
2458 // size is a VLA or Objective-C interface.
2459 llvm::Value *Address = nullptr;
2460 CharUnits ArrayAlignment;
2461 if (isa<ExtVectorElementExpr>(E->getBase())) {
2462 LValue LV = EmitLValue(E->getBase());
2463 Address = EmitExtVectorElementLValue(LV);
2464 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2465 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2466 QualType EQT = ExprVT->getElementType();
2467 return MakeAddrLValue(Address, EQT,
2468 getContext().getTypeAlignInChars(EQT));
2469 }
2470 else if (const VariableArrayType *vla =
2471 getContext().getAsVariableArrayType(E->getType())) {
2472 // The base must be a pointer, which is not an aggregate. Emit
2473 // it. It needs to be emitted first in case it's what captures
2474 // the VLA bounds.
2475 Address = EmitScalarExpr(E->getBase());
2476
2477 // The element count here is the total number of non-VLA elements.
2478 llvm::Value *numElements = getVLASize(vla).first;
2479
2480 // Effectively, the multiply by the VLA size is part of the GEP.
2481 // GEP indexes are signed, and scaling an index isn't permitted to
2482 // signed-overflow, so we use the same semantics for our explicit
2483 // multiply. We suppress this if overflow is not undefined behavior.
2484 if (getLangOpts().isSignedOverflowDefined()) {
2485 Idx = Builder.CreateMul(Idx, numElements);
2486 Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2487 } else {
2488 Idx = Builder.CreateNSWMul(Idx, numElements);
2489 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2490 }
2491 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2492 // Indexing over an interface, as in "NSString *P; P[4];"
2493 llvm::Value *InterfaceSize =
2494 llvm::ConstantInt::get(Idx->getType(),
2495 getContext().getTypeSizeInChars(OIT).getQuantity());
2496
2497 Idx = Builder.CreateMul(Idx, InterfaceSize);
2498
2499 // The base must be a pointer, which is not an aggregate. Emit it.
2500 llvm::Value *Base = EmitScalarExpr(E->getBase());
2501 Address = EmitCastToVoidPtr(Base);
2502 Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2503 Address = Builder.CreateBitCast(Address, Base->getType());
2504 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2505 // If this is A[i] where A is an array, the frontend will have decayed the
2506 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
2507 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2508 // "gep x, i" here. Emit one "gep A, 0, i".
2509 assert(Array->getType()->isArrayType() &&
2510 "Array to pointer decay must have array source type!");
2511 LValue ArrayLV;
2512 // For simple multidimensional array indexing, set the 'accessed' flag for
2513 // better bounds-checking of the base expression.
2514 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2515 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2516 else
2517 ArrayLV = EmitLValue(Array);
2518 llvm::Value *ArrayPtr = ArrayLV.getAddress();
2519 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2520 llvm::Value *Args[] = { Zero, Idx };
2521
2522 // Propagate the alignment from the array itself to the result.
2523 ArrayAlignment = ArrayLV.getAlignment();
2524
2525 if (getLangOpts().isSignedOverflowDefined())
2526 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2527 else
2528 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2529 } else {
2530 // The base must be a pointer, which is not an aggregate. Emit it.
2531 llvm::Value *Base = EmitScalarExpr(E->getBase());
2532 if (getLangOpts().isSignedOverflowDefined())
2533 Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2534 else
2535 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2536 }
2537
2538 QualType T = E->getBase()->getType()->getPointeeType();
2539 assert(!T.isNull() &&
2540 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2541
2542
2543 // Limit the alignment to that of the result type.
2544 LValue LV;
2545 if (!ArrayAlignment.isZero()) {
2546 CharUnits Align = getContext().getTypeAlignInChars(T);
2547 ArrayAlignment = std::min(Align, ArrayAlignment);
2548 LV = MakeAddrLValue(Address, T, ArrayAlignment);
2549 } else {
2550 LV = MakeNaturalAlignAddrLValue(Address, T);
2551 }
2552
2553 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2554
2555 if (getLangOpts().ObjC1 &&
2556 getLangOpts().getGC() != LangOptions::NonGC) {
2557 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2558 setObjCGCLValueClass(getContext(), E, LV);
2559 }
2560 return LV;
2561 }
2562
2563 static
GenerateConstantVector(CGBuilderTy & Builder,SmallVectorImpl<unsigned> & Elts)2564 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2565 SmallVectorImpl<unsigned> &Elts) {
2566 SmallVector<llvm::Constant*, 4> CElts;
2567 for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2568 CElts.push_back(Builder.getInt32(Elts[i]));
2569
2570 return llvm::ConstantVector::get(CElts);
2571 }
2572
2573 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)2574 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2575 // Emit the base vector as an l-value.
2576 LValue Base;
2577
2578 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2579 if (E->isArrow()) {
2580 // If it is a pointer to a vector, emit the address and form an lvalue with
2581 // it.
2582 llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2583 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2584 Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2585 Base.getQuals().removeObjCGCAttr();
2586 } else if (E->getBase()->isGLValue()) {
2587 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2588 // emit the base as an lvalue.
2589 assert(E->getBase()->getType()->isVectorType());
2590 Base = EmitLValue(E->getBase());
2591 } else {
2592 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2593 assert(E->getBase()->getType()->isVectorType() &&
2594 "Result must be a vector");
2595 llvm::Value *Vec = EmitScalarExpr(E->getBase());
2596
2597 // Store the vector to memory (because LValue wants an address).
2598 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2599 Builder.CreateStore(Vec, VecMem);
2600 Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2601 }
2602
2603 QualType type =
2604 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2605
2606 // Encode the element access list into a vector of unsigned indices.
2607 SmallVector<unsigned, 4> Indices;
2608 E->getEncodedElementAccess(Indices);
2609
2610 if (Base.isSimple()) {
2611 llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2612 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2613 Base.getAlignment());
2614 }
2615 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2616
2617 llvm::Constant *BaseElts = Base.getExtVectorElts();
2618 SmallVector<llvm::Constant *, 4> CElts;
2619
2620 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2621 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2622 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2623 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2624 Base.getAlignment());
2625 }
2626
EmitMemberExpr(const MemberExpr * E)2627 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2628 Expr *BaseExpr = E->getBase();
2629
2630 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2631 LValue BaseLV;
2632 if (E->isArrow()) {
2633 llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2634 QualType PtrTy = BaseExpr->getType()->getPointeeType();
2635 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2636 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2637 } else
2638 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2639
2640 NamedDecl *ND = E->getMemberDecl();
2641 if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2642 LValue LV = EmitLValueForField(BaseLV, Field);
2643 setObjCGCLValueClass(getContext(), E, LV);
2644 return LV;
2645 }
2646
2647 if (auto *VD = dyn_cast<VarDecl>(ND))
2648 return EmitGlobalVarDeclLValue(*this, E, VD);
2649
2650 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2651 return EmitFunctionDeclLValue(*this, E, FD);
2652
2653 llvm_unreachable("Unhandled member declaration!");
2654 }
2655
2656 /// Given that we are currently emitting a lambda, emit an l-value for
2657 /// one of its members.
EmitLValueForLambdaField(const FieldDecl * Field)2658 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2659 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2660 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2661 QualType LambdaTagType =
2662 getContext().getTagDeclType(Field->getParent());
2663 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2664 return EmitLValueForField(LambdaLV, Field);
2665 }
2666
EmitLValueForField(LValue base,const FieldDecl * field)2667 LValue CodeGenFunction::EmitLValueForField(LValue base,
2668 const FieldDecl *field) {
2669 if (field->isBitField()) {
2670 const CGRecordLayout &RL =
2671 CGM.getTypes().getCGRecordLayout(field->getParent());
2672 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2673 llvm::Value *Addr = base.getAddress();
2674 unsigned Idx = RL.getLLVMFieldNo(field);
2675 if (Idx != 0)
2676 // For structs, we GEP to the field that the record layout suggests.
2677 Addr = Builder.CreateStructGEP(nullptr, Addr, Idx, field->getName());
2678 // Get the access type.
2679 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2680 getLLVMContext(), Info.StorageSize,
2681 CGM.getContext().getTargetAddressSpace(base.getType()));
2682 if (Addr->getType() != PtrTy)
2683 Addr = Builder.CreateBitCast(Addr, PtrTy);
2684
2685 QualType fieldType =
2686 field->getType().withCVRQualifiers(base.getVRQualifiers());
2687 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2688 }
2689
2690 const RecordDecl *rec = field->getParent();
2691 QualType type = field->getType();
2692 CharUnits alignment = getContext().getDeclAlign(field);
2693
2694 // FIXME: It should be impossible to have an LValue without alignment for a
2695 // complete type.
2696 if (!base.getAlignment().isZero())
2697 alignment = std::min(alignment, base.getAlignment());
2698
2699 bool mayAlias = rec->hasAttr<MayAliasAttr>();
2700
2701 llvm::Value *addr = base.getAddress();
2702 unsigned cvr = base.getVRQualifiers();
2703 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2704 if (rec->isUnion()) {
2705 // For unions, there is no pointer adjustment.
2706 assert(!type->isReferenceType() && "union has reference member");
2707 // TODO: handle path-aware TBAA for union.
2708 TBAAPath = false;
2709 } else {
2710 // For structs, we GEP to the field that the record layout suggests.
2711 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2712 addr = Builder.CreateStructGEP(nullptr, addr, idx, field->getName());
2713
2714 // If this is a reference field, load the reference right now.
2715 if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2716 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2717 if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2718 load->setAlignment(alignment.getQuantity());
2719
2720 // Loading the reference will disable path-aware TBAA.
2721 TBAAPath = false;
2722 if (CGM.shouldUseTBAA()) {
2723 llvm::MDNode *tbaa;
2724 if (mayAlias)
2725 tbaa = CGM.getTBAAInfo(getContext().CharTy);
2726 else
2727 tbaa = CGM.getTBAAInfo(type);
2728 if (tbaa)
2729 CGM.DecorateInstruction(load, tbaa);
2730 }
2731
2732 addr = load;
2733 mayAlias = false;
2734 type = refType->getPointeeType();
2735 if (type->isIncompleteType())
2736 alignment = CharUnits();
2737 else
2738 alignment = getContext().getTypeAlignInChars(type);
2739 cvr = 0; // qualifiers don't recursively apply to referencee
2740 }
2741 }
2742
2743 // Make sure that the address is pointing to the right type. This is critical
2744 // for both unions and structs. A union needs a bitcast, a struct element
2745 // will need a bitcast if the LLVM type laid out doesn't match the desired
2746 // type.
2747 addr = EmitBitCastOfLValueToProperType(*this, addr,
2748 CGM.getTypes().ConvertTypeForMem(type),
2749 field->getName());
2750
2751 if (field->hasAttr<AnnotateAttr>())
2752 addr = EmitFieldAnnotations(field, addr);
2753
2754 LValue LV = MakeAddrLValue(addr, type, alignment);
2755 LV.getQuals().addCVRQualifiers(cvr);
2756 if (TBAAPath) {
2757 const ASTRecordLayout &Layout =
2758 getContext().getASTRecordLayout(field->getParent());
2759 // Set the base type to be the base type of the base LValue and
2760 // update offset to be relative to the base type.
2761 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2762 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2763 Layout.getFieldOffset(field->getFieldIndex()) /
2764 getContext().getCharWidth());
2765 }
2766
2767 // __weak attribute on a field is ignored.
2768 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2769 LV.getQuals().removeObjCGCAttr();
2770
2771 // Fields of may_alias structs act like 'char' for TBAA purposes.
2772 // FIXME: this should get propagated down through anonymous structs
2773 // and unions.
2774 if (mayAlias && LV.getTBAAInfo())
2775 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2776
2777 return LV;
2778 }
2779
2780 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)2781 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2782 const FieldDecl *Field) {
2783 QualType FieldType = Field->getType();
2784
2785 if (!FieldType->isReferenceType())
2786 return EmitLValueForField(Base, Field);
2787
2788 const CGRecordLayout &RL =
2789 CGM.getTypes().getCGRecordLayout(Field->getParent());
2790 unsigned idx = RL.getLLVMFieldNo(Field);
2791 llvm::Value *V = Builder.CreateStructGEP(nullptr, Base.getAddress(), idx);
2792 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2793
2794 // Make sure that the address is pointing to the right type. This is critical
2795 // for both unions and structs. A union needs a bitcast, a struct element
2796 // will need a bitcast if the LLVM type laid out doesn't match the desired
2797 // type.
2798 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2799 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2800
2801 CharUnits Alignment = getContext().getDeclAlign(Field);
2802
2803 // FIXME: It should be impossible to have an LValue without alignment for a
2804 // complete type.
2805 if (!Base.getAlignment().isZero())
2806 Alignment = std::min(Alignment, Base.getAlignment());
2807
2808 return MakeAddrLValue(V, FieldType, Alignment);
2809 }
2810
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)2811 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2812 if (E->isFileScope()) {
2813 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2814 return MakeAddrLValue(GlobalPtr, E->getType());
2815 }
2816 if (E->getType()->isVariablyModifiedType())
2817 // make sure to emit the VLA size.
2818 EmitVariablyModifiedType(E->getType());
2819
2820 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2821 const Expr *InitExpr = E->getInitializer();
2822 LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2823
2824 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2825 /*Init*/ true);
2826
2827 return Result;
2828 }
2829
EmitInitListLValue(const InitListExpr * E)2830 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2831 if (!E->isGLValue())
2832 // Initializing an aggregate temporary in C++11: T{...}.
2833 return EmitAggExprToLValue(E);
2834
2835 // An lvalue initializer list must be initializing a reference.
2836 assert(E->getNumInits() == 1 && "reference init with multiple values");
2837 return EmitLValue(E->getInit(0));
2838 }
2839
2840 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2841 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2842 /// LValue is returned and the current block has been terminated.
EmitLValueOrThrowExpression(CodeGenFunction & CGF,const Expr * Operand)2843 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2844 const Expr *Operand) {
2845 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2846 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2847 return None;
2848 }
2849
2850 return CGF.EmitLValue(Operand);
2851 }
2852
2853 LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)2854 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2855 if (!expr->isGLValue()) {
2856 // ?: here should be an aggregate.
2857 assert(hasAggregateEvaluationKind(expr->getType()) &&
2858 "Unexpected conditional operator!");
2859 return EmitAggExprToLValue(expr);
2860 }
2861
2862 OpaqueValueMapping binding(*this, expr);
2863 RegionCounter Cnt = getPGORegionCounter(expr);
2864
2865 const Expr *condExpr = expr->getCond();
2866 bool CondExprBool;
2867 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2868 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2869 if (!CondExprBool) std::swap(live, dead);
2870
2871 if (!ContainsLabel(dead)) {
2872 // If the true case is live, we need to track its region.
2873 if (CondExprBool)
2874 Cnt.beginRegion(Builder);
2875 return EmitLValue(live);
2876 }
2877 }
2878
2879 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2880 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2881 llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2882
2883 ConditionalEvaluation eval(*this);
2884 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2885
2886 // Any temporaries created here are conditional.
2887 EmitBlock(lhsBlock);
2888 Cnt.beginRegion(Builder);
2889 eval.begin(*this);
2890 Optional<LValue> lhs =
2891 EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2892 eval.end(*this);
2893
2894 if (lhs && !lhs->isSimple())
2895 return EmitUnsupportedLValue(expr, "conditional operator");
2896
2897 lhsBlock = Builder.GetInsertBlock();
2898 if (lhs)
2899 Builder.CreateBr(contBlock);
2900
2901 // Any temporaries created here are conditional.
2902 EmitBlock(rhsBlock);
2903 eval.begin(*this);
2904 Optional<LValue> rhs =
2905 EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2906 eval.end(*this);
2907 if (rhs && !rhs->isSimple())
2908 return EmitUnsupportedLValue(expr, "conditional operator");
2909 rhsBlock = Builder.GetInsertBlock();
2910
2911 EmitBlock(contBlock);
2912
2913 if (lhs && rhs) {
2914 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2915 2, "cond-lvalue");
2916 phi->addIncoming(lhs->getAddress(), lhsBlock);
2917 phi->addIncoming(rhs->getAddress(), rhsBlock);
2918 return MakeAddrLValue(phi, expr->getType());
2919 } else {
2920 assert((lhs || rhs) &&
2921 "both operands of glvalue conditional are throw-expressions?");
2922 return lhs ? *lhs : *rhs;
2923 }
2924 }
2925
2926 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2927 /// type. If the cast is to a reference, we can have the usual lvalue result,
2928 /// otherwise if a cast is needed by the code generator in an lvalue context,
2929 /// then it must mean that we need the address of an aggregate in order to
2930 /// access one of its members. This can happen for all the reasons that casts
2931 /// are permitted with aggregate result, including noop aggregate casts, and
2932 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)2933 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2934 switch (E->getCastKind()) {
2935 case CK_ToVoid:
2936 case CK_BitCast:
2937 case CK_ArrayToPointerDecay:
2938 case CK_FunctionToPointerDecay:
2939 case CK_NullToMemberPointer:
2940 case CK_NullToPointer:
2941 case CK_IntegralToPointer:
2942 case CK_PointerToIntegral:
2943 case CK_PointerToBoolean:
2944 case CK_VectorSplat:
2945 case CK_IntegralCast:
2946 case CK_IntegralToBoolean:
2947 case CK_IntegralToFloating:
2948 case CK_FloatingToIntegral:
2949 case CK_FloatingToBoolean:
2950 case CK_FloatingCast:
2951 case CK_FloatingRealToComplex:
2952 case CK_FloatingComplexToReal:
2953 case CK_FloatingComplexToBoolean:
2954 case CK_FloatingComplexCast:
2955 case CK_FloatingComplexToIntegralComplex:
2956 case CK_IntegralRealToComplex:
2957 case CK_IntegralComplexToReal:
2958 case CK_IntegralComplexToBoolean:
2959 case CK_IntegralComplexCast:
2960 case CK_IntegralComplexToFloatingComplex:
2961 case CK_DerivedToBaseMemberPointer:
2962 case CK_BaseToDerivedMemberPointer:
2963 case CK_MemberPointerToBoolean:
2964 case CK_ReinterpretMemberPointer:
2965 case CK_AnyPointerToBlockPointerCast:
2966 case CK_ARCProduceObject:
2967 case CK_ARCConsumeObject:
2968 case CK_ARCReclaimReturnedObject:
2969 case CK_ARCExtendBlockObject:
2970 case CK_CopyAndAutoreleaseBlockObject:
2971 case CK_AddressSpaceConversion:
2972 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2973
2974 case CK_Dependent:
2975 llvm_unreachable("dependent cast kind in IR gen!");
2976
2977 case CK_BuiltinFnToFnPtr:
2978 llvm_unreachable("builtin functions are handled elsewhere");
2979
2980 // These are never l-values; just use the aggregate emission code.
2981 case CK_NonAtomicToAtomic:
2982 case CK_AtomicToNonAtomic:
2983 return EmitAggExprToLValue(E);
2984
2985 case CK_Dynamic: {
2986 LValue LV = EmitLValue(E->getSubExpr());
2987 llvm::Value *V = LV.getAddress();
2988 const auto *DCE = cast<CXXDynamicCastExpr>(E);
2989 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2990 }
2991
2992 case CK_ConstructorConversion:
2993 case CK_UserDefinedConversion:
2994 case CK_CPointerToObjCPointerCast:
2995 case CK_BlockPointerToObjCPointerCast:
2996 case CK_NoOp:
2997 case CK_LValueToRValue:
2998 return EmitLValue(E->getSubExpr());
2999
3000 case CK_UncheckedDerivedToBase:
3001 case CK_DerivedToBase: {
3002 const RecordType *DerivedClassTy =
3003 E->getSubExpr()->getType()->getAs<RecordType>();
3004 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3005
3006 LValue LV = EmitLValue(E->getSubExpr());
3007 llvm::Value *This = LV.getAddress();
3008
3009 // Perform the derived-to-base conversion
3010 llvm::Value *Base = GetAddressOfBaseClass(
3011 This, DerivedClassDecl, E->path_begin(), E->path_end(),
3012 /*NullCheckValue=*/false, E->getExprLoc());
3013
3014 return MakeAddrLValue(Base, E->getType());
3015 }
3016 case CK_ToUnion:
3017 return EmitAggExprToLValue(E);
3018 case CK_BaseToDerived: {
3019 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3020 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3021
3022 LValue LV = EmitLValue(E->getSubExpr());
3023
3024 // Perform the base-to-derived conversion
3025 llvm::Value *Derived =
3026 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3027 E->path_begin(), E->path_end(),
3028 /*NullCheckValue=*/false);
3029
3030 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3031 // performed and the object is not of the derived type.
3032 if (sanitizePerformTypeCheck())
3033 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3034 Derived, E->getType());
3035
3036 if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3037 EmitVTablePtrCheckForCast(E->getType(), Derived, /*MayBeNull=*/false);
3038
3039 return MakeAddrLValue(Derived, E->getType());
3040 }
3041 case CK_LValueBitCast: {
3042 // This must be a reinterpret_cast (or c-style equivalent).
3043 const auto *CE = cast<ExplicitCastExpr>(E);
3044
3045 LValue LV = EmitLValue(E->getSubExpr());
3046 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3047 ConvertType(CE->getTypeAsWritten()));
3048
3049 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3050 EmitVTablePtrCheckForCast(E->getType(), V, /*MayBeNull=*/false);
3051
3052 return MakeAddrLValue(V, E->getType());
3053 }
3054 case CK_ObjCObjectLValueCast: {
3055 LValue LV = EmitLValue(E->getSubExpr());
3056 QualType ToType = getContext().getLValueReferenceType(E->getType());
3057 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3058 ConvertType(ToType));
3059 return MakeAddrLValue(V, E->getType());
3060 }
3061 case CK_ZeroToOCLEvent:
3062 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3063 }
3064
3065 llvm_unreachable("Unhandled lvalue cast kind?");
3066 }
3067
EmitOpaqueValueLValue(const OpaqueValueExpr * e)3068 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3069 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3070 return getOpaqueLValueMapping(e);
3071 }
3072
EmitRValueForField(LValue LV,const FieldDecl * FD,SourceLocation Loc)3073 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3074 const FieldDecl *FD,
3075 SourceLocation Loc) {
3076 QualType FT = FD->getType();
3077 LValue FieldLV = EmitLValueForField(LV, FD);
3078 switch (getEvaluationKind(FT)) {
3079 case TEK_Complex:
3080 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3081 case TEK_Aggregate:
3082 return FieldLV.asAggregateRValue();
3083 case TEK_Scalar:
3084 return EmitLoadOfLValue(FieldLV, Loc);
3085 }
3086 llvm_unreachable("bad evaluation kind");
3087 }
3088
3089 //===--------------------------------------------------------------------===//
3090 // Expression Emission
3091 //===--------------------------------------------------------------------===//
3092
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)3093 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3094 ReturnValueSlot ReturnValue) {
3095 // Builtins never have block type.
3096 if (E->getCallee()->getType()->isBlockPointerType())
3097 return EmitBlockCallExpr(E, ReturnValue);
3098
3099 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3100 return EmitCXXMemberCallExpr(CE, ReturnValue);
3101
3102 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3103 return EmitCUDAKernelCallExpr(CE, ReturnValue);
3104
3105 const Decl *TargetDecl = E->getCalleeDecl();
3106 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3107 if (unsigned builtinID = FD->getBuiltinID())
3108 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3109 }
3110
3111 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3112 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3113 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3114
3115 if (const auto *PseudoDtor =
3116 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3117 QualType DestroyedType = PseudoDtor->getDestroyedType();
3118 if (getLangOpts().ObjCAutoRefCount &&
3119 DestroyedType->isObjCLifetimeType() &&
3120 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3121 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3122 // Automatic Reference Counting:
3123 // If the pseudo-expression names a retainable object with weak or
3124 // strong lifetime, the object shall be released.
3125 Expr *BaseExpr = PseudoDtor->getBase();
3126 llvm::Value *BaseValue = nullptr;
3127 Qualifiers BaseQuals;
3128
3129 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3130 if (PseudoDtor->isArrow()) {
3131 BaseValue = EmitScalarExpr(BaseExpr);
3132 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3133 BaseQuals = PTy->getPointeeType().getQualifiers();
3134 } else {
3135 LValue BaseLV = EmitLValue(BaseExpr);
3136 BaseValue = BaseLV.getAddress();
3137 QualType BaseTy = BaseExpr->getType();
3138 BaseQuals = BaseTy.getQualifiers();
3139 }
3140
3141 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3142 case Qualifiers::OCL_None:
3143 case Qualifiers::OCL_ExplicitNone:
3144 case Qualifiers::OCL_Autoreleasing:
3145 break;
3146
3147 case Qualifiers::OCL_Strong:
3148 EmitARCRelease(Builder.CreateLoad(BaseValue,
3149 PseudoDtor->getDestroyedType().isVolatileQualified()),
3150 ARCPreciseLifetime);
3151 break;
3152
3153 case Qualifiers::OCL_Weak:
3154 EmitARCDestroyWeak(BaseValue);
3155 break;
3156 }
3157 } else {
3158 // C++ [expr.pseudo]p1:
3159 // The result shall only be used as the operand for the function call
3160 // operator (), and the result of such a call has type void. The only
3161 // effect is the evaluation of the postfix-expression before the dot or
3162 // arrow.
3163 EmitScalarExpr(E->getCallee());
3164 }
3165
3166 return RValue::get(nullptr);
3167 }
3168
3169 llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3170 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3171 TargetDecl);
3172 }
3173
EmitBinaryOperatorLValue(const BinaryOperator * E)3174 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3175 // Comma expressions just emit their LHS then their RHS as an l-value.
3176 if (E->getOpcode() == BO_Comma) {
3177 EmitIgnoredExpr(E->getLHS());
3178 EnsureInsertPoint();
3179 return EmitLValue(E->getRHS());
3180 }
3181
3182 if (E->getOpcode() == BO_PtrMemD ||
3183 E->getOpcode() == BO_PtrMemI)
3184 return EmitPointerToDataMemberBinaryExpr(E);
3185
3186 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3187
3188 // Note that in all of these cases, __block variables need the RHS
3189 // evaluated first just in case the variable gets moved by the RHS.
3190
3191 switch (getEvaluationKind(E->getType())) {
3192 case TEK_Scalar: {
3193 switch (E->getLHS()->getType().getObjCLifetime()) {
3194 case Qualifiers::OCL_Strong:
3195 return EmitARCStoreStrong(E, /*ignored*/ false).first;
3196
3197 case Qualifiers::OCL_Autoreleasing:
3198 return EmitARCStoreAutoreleasing(E).first;
3199
3200 // No reason to do any of these differently.
3201 case Qualifiers::OCL_None:
3202 case Qualifiers::OCL_ExplicitNone:
3203 case Qualifiers::OCL_Weak:
3204 break;
3205 }
3206
3207 RValue RV = EmitAnyExpr(E->getRHS());
3208 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3209 EmitStoreThroughLValue(RV, LV);
3210 return LV;
3211 }
3212
3213 case TEK_Complex:
3214 return EmitComplexAssignmentLValue(E);
3215
3216 case TEK_Aggregate:
3217 return EmitAggExprToLValue(E);
3218 }
3219 llvm_unreachable("bad evaluation kind");
3220 }
3221
EmitCallExprLValue(const CallExpr * E)3222 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3223 RValue RV = EmitCallExpr(E);
3224
3225 if (!RV.isScalar())
3226 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3227
3228 assert(E->getCallReturnType(getContext())->isReferenceType() &&
3229 "Can't have a scalar return unless the return type is a "
3230 "reference type!");
3231
3232 return MakeAddrLValue(RV.getScalarVal(), E->getType());
3233 }
3234
EmitVAArgExprLValue(const VAArgExpr * E)3235 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3236 // FIXME: This shouldn't require another copy.
3237 return EmitAggExprToLValue(E);
3238 }
3239
EmitCXXConstructLValue(const CXXConstructExpr * E)3240 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3241 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3242 && "binding l-value to type which needs a temporary");
3243 AggValueSlot Slot = CreateAggTemp(E->getType());
3244 EmitCXXConstructExpr(E, Slot);
3245 return MakeAddrLValue(Slot.getAddr(), E->getType());
3246 }
3247
3248 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)3249 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3250 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3251 }
3252
EmitCXXUuidofExpr(const CXXUuidofExpr * E)3253 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3254 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3255 ConvertType(E->getType())->getPointerTo());
3256 }
3257
EmitCXXUuidofLValue(const CXXUuidofExpr * E)3258 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3259 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3260 }
3261
3262 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)3263 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3264 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3265 Slot.setExternallyDestructed();
3266 EmitAggExpr(E->getSubExpr(), Slot);
3267 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3268 return MakeAddrLValue(Slot.getAddr(), E->getType());
3269 }
3270
3271 LValue
EmitLambdaLValue(const LambdaExpr * E)3272 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3273 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3274 EmitLambdaExpr(E, Slot);
3275 return MakeAddrLValue(Slot.getAddr(), E->getType());
3276 }
3277
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)3278 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3279 RValue RV = EmitObjCMessageExpr(E);
3280
3281 if (!RV.isScalar())
3282 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3283
3284 assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3285 "Can't have a scalar return unless the return type is a "
3286 "reference type!");
3287
3288 return MakeAddrLValue(RV.getScalarVal(), E->getType());
3289 }
3290
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)3291 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3292 llvm::Value *V =
3293 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3294 return MakeAddrLValue(V, E->getType());
3295 }
3296
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)3297 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3298 const ObjCIvarDecl *Ivar) {
3299 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3300 }
3301
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)3302 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3303 llvm::Value *BaseValue,
3304 const ObjCIvarDecl *Ivar,
3305 unsigned CVRQualifiers) {
3306 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3307 Ivar, CVRQualifiers);
3308 }
3309
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)3310 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3311 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3312 llvm::Value *BaseValue = nullptr;
3313 const Expr *BaseExpr = E->getBase();
3314 Qualifiers BaseQuals;
3315 QualType ObjectTy;
3316 if (E->isArrow()) {
3317 BaseValue = EmitScalarExpr(BaseExpr);
3318 ObjectTy = BaseExpr->getType()->getPointeeType();
3319 BaseQuals = ObjectTy.getQualifiers();
3320 } else {
3321 LValue BaseLV = EmitLValue(BaseExpr);
3322 // FIXME: this isn't right for bitfields.
3323 BaseValue = BaseLV.getAddress();
3324 ObjectTy = BaseExpr->getType();
3325 BaseQuals = ObjectTy.getQualifiers();
3326 }
3327
3328 LValue LV =
3329 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3330 BaseQuals.getCVRQualifiers());
3331 setObjCGCLValueClass(getContext(), E, LV);
3332 return LV;
3333 }
3334
EmitStmtExprLValue(const StmtExpr * E)3335 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3336 // Can only get l-value for message expression returning aggregate type
3337 RValue RV = EmitAnyExprToTemp(E);
3338 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3339 }
3340
EmitCall(QualType CalleeType,llvm::Value * Callee,const CallExpr * E,ReturnValueSlot ReturnValue,const Decl * TargetDecl,llvm::Value * Chain)3341 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3342 const CallExpr *E, ReturnValueSlot ReturnValue,
3343 const Decl *TargetDecl, llvm::Value *Chain) {
3344 // Get the actual function type. The callee type will always be a pointer to
3345 // function type or a block pointer type.
3346 assert(CalleeType->isFunctionPointerType() &&
3347 "Call must have function pointer type!");
3348
3349 CalleeType = getContext().getCanonicalType(CalleeType);
3350
3351 const auto *FnType =
3352 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3353
3354 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3355 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3356 if (llvm::Constant *PrefixSig =
3357 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3358 SanitizerScope SanScope(this);
3359 llvm::Constant *FTRTTIConst =
3360 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3361 llvm::Type *PrefixStructTyElems[] = {
3362 PrefixSig->getType(),
3363 FTRTTIConst->getType()
3364 };
3365 llvm::StructType *PrefixStructTy = llvm::StructType::get(
3366 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3367
3368 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3369 Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3370 llvm::Value *CalleeSigPtr =
3371 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
3372 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3373 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3374
3375 llvm::BasicBlock *Cont = createBasicBlock("cont");
3376 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3377 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3378
3379 EmitBlock(TypeCheck);
3380 llvm::Value *CalleeRTTIPtr =
3381 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
3382 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3383 llvm::Value *CalleeRTTIMatch =
3384 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3385 llvm::Constant *StaticData[] = {
3386 EmitCheckSourceLocation(E->getLocStart()),
3387 EmitCheckTypeDescriptor(CalleeType)
3388 };
3389 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3390 "function_type_mismatch", StaticData, Callee);
3391
3392 Builder.CreateBr(Cont);
3393 EmitBlock(Cont);
3394 }
3395 }
3396
3397 CallArgList Args;
3398 if (Chain)
3399 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3400 CGM.getContext().VoidPtrTy);
3401 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(),
3402 E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0);
3403
3404 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3405 Args, FnType, /*isChainCall=*/Chain);
3406
3407 // C99 6.5.2.2p6:
3408 // If the expression that denotes the called function has a type
3409 // that does not include a prototype, [the default argument
3410 // promotions are performed]. If the number of arguments does not
3411 // equal the number of parameters, the behavior is undefined. If
3412 // the function is defined with a type that includes a prototype,
3413 // and either the prototype ends with an ellipsis (, ...) or the
3414 // types of the arguments after promotion are not compatible with
3415 // the types of the parameters, the behavior is undefined. If the
3416 // function is defined with a type that does not include a
3417 // prototype, and the types of the arguments after promotion are
3418 // not compatible with those of the parameters after promotion,
3419 // the behavior is undefined [except in some trivial cases].
3420 // That is, in the general case, we should assume that a call
3421 // through an unprototyped function type works like a *non-variadic*
3422 // call. The way we make this work is to cast to the exact type
3423 // of the promoted arguments.
3424 //
3425 // Chain calls use this same code path to add the invisible chain parameter
3426 // to the function type.
3427 if (isa<FunctionNoProtoType>(FnType) || Chain) {
3428 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3429 CalleeTy = CalleeTy->getPointerTo();
3430 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3431 }
3432
3433 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3434 }
3435
3436 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)3437 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3438 llvm::Value *BaseV;
3439 if (E->getOpcode() == BO_PtrMemI)
3440 BaseV = EmitScalarExpr(E->getLHS());
3441 else
3442 BaseV = EmitLValue(E->getLHS()).getAddress();
3443
3444 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3445
3446 const MemberPointerType *MPT
3447 = E->getRHS()->getType()->getAs<MemberPointerType>();
3448
3449 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3450 *this, E, BaseV, OffsetV, MPT);
3451
3452 return MakeAddrLValue(AddV, MPT->getPointeeType());
3453 }
3454
3455 /// Given the address of a temporary variable, produce an r-value of
3456 /// its type.
convertTempToRValue(llvm::Value * addr,QualType type,SourceLocation loc)3457 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3458 QualType type,
3459 SourceLocation loc) {
3460 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3461 switch (getEvaluationKind(type)) {
3462 case TEK_Complex:
3463 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3464 case TEK_Aggregate:
3465 return lvalue.asAggregateRValue();
3466 case TEK_Scalar:
3467 return RValue::get(EmitLoadOfScalar(lvalue, loc));
3468 }
3469 llvm_unreachable("bad evaluation kind");
3470 }
3471
SetFPAccuracy(llvm::Value * Val,float Accuracy)3472 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3473 assert(Val->getType()->isFPOrFPVectorTy());
3474 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3475 return;
3476
3477 llvm::MDBuilder MDHelper(getLLVMContext());
3478 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3479
3480 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3481 }
3482
3483 namespace {
3484 struct LValueOrRValue {
3485 LValue LV;
3486 RValue RV;
3487 };
3488 }
3489
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)3490 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3491 const PseudoObjectExpr *E,
3492 bool forLValue,
3493 AggValueSlot slot) {
3494 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3495
3496 // Find the result expression, if any.
3497 const Expr *resultExpr = E->getResultExpr();
3498 LValueOrRValue result;
3499
3500 for (PseudoObjectExpr::const_semantics_iterator
3501 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3502 const Expr *semantic = *i;
3503
3504 // If this semantic expression is an opaque value, bind it
3505 // to the result of its source expression.
3506 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3507
3508 // If this is the result expression, we may need to evaluate
3509 // directly into the slot.
3510 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3511 OVMA opaqueData;
3512 if (ov == resultExpr && ov->isRValue() && !forLValue &&
3513 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3514 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3515
3516 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3517 opaqueData = OVMA::bind(CGF, ov, LV);
3518 result.RV = slot.asRValue();
3519
3520 // Otherwise, emit as normal.
3521 } else {
3522 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3523
3524 // If this is the result, also evaluate the result now.
3525 if (ov == resultExpr) {
3526 if (forLValue)
3527 result.LV = CGF.EmitLValue(ov);
3528 else
3529 result.RV = CGF.EmitAnyExpr(ov, slot);
3530 }
3531 }
3532
3533 opaques.push_back(opaqueData);
3534
3535 // Otherwise, if the expression is the result, evaluate it
3536 // and remember the result.
3537 } else if (semantic == resultExpr) {
3538 if (forLValue)
3539 result.LV = CGF.EmitLValue(semantic);
3540 else
3541 result.RV = CGF.EmitAnyExpr(semantic, slot);
3542
3543 // Otherwise, evaluate the expression in an ignored context.
3544 } else {
3545 CGF.EmitIgnoredExpr(semantic);
3546 }
3547 }
3548
3549 // Unbind all the opaques now.
3550 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3551 opaques[i].unbind(CGF);
3552
3553 return result;
3554 }
3555
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)3556 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3557 AggValueSlot slot) {
3558 return emitPseudoObjectExpr(*this, E, false, slot).RV;
3559 }
3560
EmitPseudoObjectLValue(const PseudoObjectExpr * E)3561 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3562 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3563 }
3564