• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Basic/PrettyStackTrace.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/LoopHint.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/InlineAsm.h"
27 #include "llvm/IR/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 //===----------------------------------------------------------------------===//
32 //                              Statement Emission
33 //===----------------------------------------------------------------------===//
34 
EmitStopPoint(const Stmt * S)35 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
36   if (CGDebugInfo *DI = getDebugInfo()) {
37     SourceLocation Loc;
38     Loc = S->getLocStart();
39     DI->EmitLocation(Builder, Loc);
40 
41     LastStopPoint = Loc;
42   }
43 }
44 
EmitStmt(const Stmt * S)45 void CodeGenFunction::EmitStmt(const Stmt *S) {
46   assert(S && "Null statement?");
47   PGO.setCurrentStmt(S);
48 
49   // These statements have their own debug info handling.
50   if (EmitSimpleStmt(S))
51     return;
52 
53   // Check if we are generating unreachable code.
54   if (!HaveInsertPoint()) {
55     // If so, and the statement doesn't contain a label, then we do not need to
56     // generate actual code. This is safe because (1) the current point is
57     // unreachable, so we don't need to execute the code, and (2) we've already
58     // handled the statements which update internal data structures (like the
59     // local variable map) which could be used by subsequent statements.
60     if (!ContainsLabel(S)) {
61       // Verify that any decl statements were handled as simple, they may be in
62       // scope of subsequent reachable statements.
63       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
64       return;
65     }
66 
67     // Otherwise, make a new block to hold the code.
68     EnsureInsertPoint();
69   }
70 
71   // Generate a stoppoint if we are emitting debug info.
72   EmitStopPoint(S);
73 
74   switch (S->getStmtClass()) {
75   case Stmt::NoStmtClass:
76   case Stmt::CXXCatchStmtClass:
77   case Stmt::SEHExceptStmtClass:
78   case Stmt::SEHFinallyStmtClass:
79   case Stmt::MSDependentExistsStmtClass:
80     llvm_unreachable("invalid statement class to emit generically");
81   case Stmt::NullStmtClass:
82   case Stmt::CompoundStmtClass:
83   case Stmt::DeclStmtClass:
84   case Stmt::LabelStmtClass:
85   case Stmt::AttributedStmtClass:
86   case Stmt::GotoStmtClass:
87   case Stmt::BreakStmtClass:
88   case Stmt::ContinueStmtClass:
89   case Stmt::DefaultStmtClass:
90   case Stmt::CaseStmtClass:
91   case Stmt::SEHLeaveStmtClass:
92     llvm_unreachable("should have emitted these statements as simple");
93 
94 #define STMT(Type, Base)
95 #define ABSTRACT_STMT(Op)
96 #define EXPR(Type, Base) \
97   case Stmt::Type##Class:
98 #include "clang/AST/StmtNodes.inc"
99   {
100     // Remember the block we came in on.
101     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
102     assert(incoming && "expression emission must have an insertion point");
103 
104     EmitIgnoredExpr(cast<Expr>(S));
105 
106     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
107     assert(outgoing && "expression emission cleared block!");
108 
109     // The expression emitters assume (reasonably!) that the insertion
110     // point is always set.  To maintain that, the call-emission code
111     // for noreturn functions has to enter a new block with no
112     // predecessors.  We want to kill that block and mark the current
113     // insertion point unreachable in the common case of a call like
114     // "exit();".  Since expression emission doesn't otherwise create
115     // blocks with no predecessors, we can just test for that.
116     // However, we must be careful not to do this to our incoming
117     // block, because *statement* emission does sometimes create
118     // reachable blocks which will have no predecessors until later in
119     // the function.  This occurs with, e.g., labels that are not
120     // reachable by fallthrough.
121     if (incoming != outgoing && outgoing->use_empty()) {
122       outgoing->eraseFromParent();
123       Builder.ClearInsertionPoint();
124     }
125     break;
126   }
127 
128   case Stmt::IndirectGotoStmtClass:
129     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
130 
131   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
132   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
133   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
134   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
135 
136   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
137 
138   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
139   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
140   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
141   case Stmt::CapturedStmtClass: {
142     const CapturedStmt *CS = cast<CapturedStmt>(S);
143     EmitCapturedStmt(*CS, CS->getCapturedRegionKind());
144     }
145     break;
146   case Stmt::ObjCAtTryStmtClass:
147     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
148     break;
149   case Stmt::ObjCAtCatchStmtClass:
150     llvm_unreachable(
151                     "@catch statements should be handled by EmitObjCAtTryStmt");
152   case Stmt::ObjCAtFinallyStmtClass:
153     llvm_unreachable(
154                   "@finally statements should be handled by EmitObjCAtTryStmt");
155   case Stmt::ObjCAtThrowStmtClass:
156     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
157     break;
158   case Stmt::ObjCAtSynchronizedStmtClass:
159     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
160     break;
161   case Stmt::ObjCForCollectionStmtClass:
162     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
163     break;
164   case Stmt::ObjCAutoreleasePoolStmtClass:
165     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
166     break;
167 
168   case Stmt::CXXTryStmtClass:
169     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
170     break;
171   case Stmt::CXXForRangeStmtClass:
172     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
173     break;
174   case Stmt::SEHTryStmtClass:
175     EmitSEHTryStmt(cast<SEHTryStmt>(*S));
176     break;
177   case Stmt::OMPParallelDirectiveClass:
178     EmitOMPParallelDirective(cast<OMPParallelDirective>(*S));
179     break;
180   case Stmt::OMPSimdDirectiveClass:
181     EmitOMPSimdDirective(cast<OMPSimdDirective>(*S));
182     break;
183   case Stmt::OMPForDirectiveClass:
184     EmitOMPForDirective(cast<OMPForDirective>(*S));
185     break;
186   case Stmt::OMPForSimdDirectiveClass:
187     EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S));
188     break;
189   case Stmt::OMPSectionsDirectiveClass:
190     EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S));
191     break;
192   case Stmt::OMPSectionDirectiveClass:
193     EmitOMPSectionDirective(cast<OMPSectionDirective>(*S));
194     break;
195   case Stmt::OMPSingleDirectiveClass:
196     EmitOMPSingleDirective(cast<OMPSingleDirective>(*S));
197     break;
198   case Stmt::OMPMasterDirectiveClass:
199     EmitOMPMasterDirective(cast<OMPMasterDirective>(*S));
200     break;
201   case Stmt::OMPCriticalDirectiveClass:
202     EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S));
203     break;
204   case Stmt::OMPParallelForDirectiveClass:
205     EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S));
206     break;
207   case Stmt::OMPParallelForSimdDirectiveClass:
208     EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S));
209     break;
210   case Stmt::OMPParallelSectionsDirectiveClass:
211     EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S));
212     break;
213   case Stmt::OMPTaskDirectiveClass:
214     EmitOMPTaskDirective(cast<OMPTaskDirective>(*S));
215     break;
216   case Stmt::OMPTaskyieldDirectiveClass:
217     EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S));
218     break;
219   case Stmt::OMPBarrierDirectiveClass:
220     EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S));
221     break;
222   case Stmt::OMPTaskwaitDirectiveClass:
223     EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S));
224     break;
225   case Stmt::OMPFlushDirectiveClass:
226     EmitOMPFlushDirective(cast<OMPFlushDirective>(*S));
227     break;
228   case Stmt::OMPOrderedDirectiveClass:
229     EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S));
230     break;
231   case Stmt::OMPAtomicDirectiveClass:
232     EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S));
233     break;
234   case Stmt::OMPTargetDirectiveClass:
235     EmitOMPTargetDirective(cast<OMPTargetDirective>(*S));
236     break;
237   case Stmt::OMPTeamsDirectiveClass:
238     EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S));
239     break;
240   }
241 }
242 
EmitSimpleStmt(const Stmt * S)243 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
244   switch (S->getStmtClass()) {
245   default: return false;
246   case Stmt::NullStmtClass: break;
247   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
248   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
249   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
250   case Stmt::AttributedStmtClass:
251                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
252   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
253   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
254   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
255   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
256   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
257   case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break;
258   }
259 
260   return true;
261 }
262 
263 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
264 /// this captures the expression result of the last sub-statement and returns it
265 /// (for use by the statement expression extension).
EmitCompoundStmt(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)266 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
267                                                AggValueSlot AggSlot) {
268   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
269                              "LLVM IR generation of compound statement ('{}')");
270 
271   // Keep track of the current cleanup stack depth, including debug scopes.
272   LexicalScope Scope(*this, S.getSourceRange());
273 
274   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
275 }
276 
277 llvm::Value*
EmitCompoundStmtWithoutScope(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)278 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
279                                               bool GetLast,
280                                               AggValueSlot AggSlot) {
281 
282   for (CompoundStmt::const_body_iterator I = S.body_begin(),
283        E = S.body_end()-GetLast; I != E; ++I)
284     EmitStmt(*I);
285 
286   llvm::Value *RetAlloca = nullptr;
287   if (GetLast) {
288     // We have to special case labels here.  They are statements, but when put
289     // at the end of a statement expression, they yield the value of their
290     // subexpression.  Handle this by walking through all labels we encounter,
291     // emitting them before we evaluate the subexpr.
292     const Stmt *LastStmt = S.body_back();
293     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
294       EmitLabel(LS->getDecl());
295       LastStmt = LS->getSubStmt();
296     }
297 
298     EnsureInsertPoint();
299 
300     QualType ExprTy = cast<Expr>(LastStmt)->getType();
301     if (hasAggregateEvaluationKind(ExprTy)) {
302       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
303     } else {
304       // We can't return an RValue here because there might be cleanups at
305       // the end of the StmtExpr.  Because of that, we have to emit the result
306       // here into a temporary alloca.
307       RetAlloca = CreateMemTemp(ExprTy);
308       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
309                        /*IsInit*/false);
310     }
311 
312   }
313 
314   return RetAlloca;
315 }
316 
SimplifyForwardingBlocks(llvm::BasicBlock * BB)317 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
318   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
319 
320   // If there is a cleanup stack, then we it isn't worth trying to
321   // simplify this block (we would need to remove it from the scope map
322   // and cleanup entry).
323   if (!EHStack.empty())
324     return;
325 
326   // Can only simplify direct branches.
327   if (!BI || !BI->isUnconditional())
328     return;
329 
330   // Can only simplify empty blocks.
331   if (BI != BB->begin())
332     return;
333 
334   BB->replaceAllUsesWith(BI->getSuccessor(0));
335   BI->eraseFromParent();
336   BB->eraseFromParent();
337 }
338 
EmitBlock(llvm::BasicBlock * BB,bool IsFinished)339 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
340   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
341 
342   // Fall out of the current block (if necessary).
343   EmitBranch(BB);
344 
345   if (IsFinished && BB->use_empty()) {
346     delete BB;
347     return;
348   }
349 
350   // Place the block after the current block, if possible, or else at
351   // the end of the function.
352   if (CurBB && CurBB->getParent())
353     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
354   else
355     CurFn->getBasicBlockList().push_back(BB);
356   Builder.SetInsertPoint(BB);
357 }
358 
EmitBranch(llvm::BasicBlock * Target)359 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
360   // Emit a branch from the current block to the target one if this
361   // was a real block.  If this was just a fall-through block after a
362   // terminator, don't emit it.
363   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
364 
365   if (!CurBB || CurBB->getTerminator()) {
366     // If there is no insert point or the previous block is already
367     // terminated, don't touch it.
368   } else {
369     // Otherwise, create a fall-through branch.
370     Builder.CreateBr(Target);
371   }
372 
373   Builder.ClearInsertionPoint();
374 }
375 
EmitBlockAfterUses(llvm::BasicBlock * block)376 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
377   bool inserted = false;
378   for (llvm::User *u : block->users()) {
379     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) {
380       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
381       inserted = true;
382       break;
383     }
384   }
385 
386   if (!inserted)
387     CurFn->getBasicBlockList().push_back(block);
388 
389   Builder.SetInsertPoint(block);
390 }
391 
392 CodeGenFunction::JumpDest
getJumpDestForLabel(const LabelDecl * D)393 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
394   JumpDest &Dest = LabelMap[D];
395   if (Dest.isValid()) return Dest;
396 
397   // Create, but don't insert, the new block.
398   Dest = JumpDest(createBasicBlock(D->getName()),
399                   EHScopeStack::stable_iterator::invalid(),
400                   NextCleanupDestIndex++);
401   return Dest;
402 }
403 
EmitLabel(const LabelDecl * D)404 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
405   // Add this label to the current lexical scope if we're within any
406   // normal cleanups.  Jumps "in" to this label --- when permitted by
407   // the language --- may need to be routed around such cleanups.
408   if (EHStack.hasNormalCleanups() && CurLexicalScope)
409     CurLexicalScope->addLabel(D);
410 
411   JumpDest &Dest = LabelMap[D];
412 
413   // If we didn't need a forward reference to this label, just go
414   // ahead and create a destination at the current scope.
415   if (!Dest.isValid()) {
416     Dest = getJumpDestInCurrentScope(D->getName());
417 
418   // Otherwise, we need to give this label a target depth and remove
419   // it from the branch-fixups list.
420   } else {
421     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
422     Dest.setScopeDepth(EHStack.stable_begin());
423     ResolveBranchFixups(Dest.getBlock());
424   }
425 
426   RegionCounter Cnt = getPGORegionCounter(D->getStmt());
427   EmitBlock(Dest.getBlock());
428   Cnt.beginRegion(Builder);
429 }
430 
431 /// Change the cleanup scope of the labels in this lexical scope to
432 /// match the scope of the enclosing context.
rescopeLabels()433 void CodeGenFunction::LexicalScope::rescopeLabels() {
434   assert(!Labels.empty());
435   EHScopeStack::stable_iterator innermostScope
436     = CGF.EHStack.getInnermostNormalCleanup();
437 
438   // Change the scope depth of all the labels.
439   for (SmallVectorImpl<const LabelDecl*>::const_iterator
440          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
441     assert(CGF.LabelMap.count(*i));
442     JumpDest &dest = CGF.LabelMap.find(*i)->second;
443     assert(dest.getScopeDepth().isValid());
444     assert(innermostScope.encloses(dest.getScopeDepth()));
445     dest.setScopeDepth(innermostScope);
446   }
447 
448   // Reparent the labels if the new scope also has cleanups.
449   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
450     ParentScope->Labels.append(Labels.begin(), Labels.end());
451   }
452 }
453 
454 
EmitLabelStmt(const LabelStmt & S)455 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
456   EmitLabel(S.getDecl());
457   EmitStmt(S.getSubStmt());
458 }
459 
EmitAttributedStmt(const AttributedStmt & S)460 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
461   const Stmt *SubStmt = S.getSubStmt();
462   switch (SubStmt->getStmtClass()) {
463   case Stmt::DoStmtClass:
464     EmitDoStmt(cast<DoStmt>(*SubStmt), S.getAttrs());
465     break;
466   case Stmt::ForStmtClass:
467     EmitForStmt(cast<ForStmt>(*SubStmt), S.getAttrs());
468     break;
469   case Stmt::WhileStmtClass:
470     EmitWhileStmt(cast<WhileStmt>(*SubStmt), S.getAttrs());
471     break;
472   case Stmt::CXXForRangeStmtClass:
473     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*SubStmt), S.getAttrs());
474     break;
475   default:
476     EmitStmt(SubStmt);
477   }
478 }
479 
EmitGotoStmt(const GotoStmt & S)480 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
481   // If this code is reachable then emit a stop point (if generating
482   // debug info). We have to do this ourselves because we are on the
483   // "simple" statement path.
484   if (HaveInsertPoint())
485     EmitStopPoint(&S);
486 
487   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
488 }
489 
490 
EmitIndirectGotoStmt(const IndirectGotoStmt & S)491 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
492   if (const LabelDecl *Target = S.getConstantTarget()) {
493     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
494     return;
495   }
496 
497   // Ensure that we have an i8* for our PHI node.
498   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
499                                          Int8PtrTy, "addr");
500   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
501 
502   // Get the basic block for the indirect goto.
503   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
504 
505   // The first instruction in the block has to be the PHI for the switch dest,
506   // add an entry for this branch.
507   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
508 
509   EmitBranch(IndGotoBB);
510 }
511 
EmitIfStmt(const IfStmt & S)512 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
513   // C99 6.8.4.1: The first substatement is executed if the expression compares
514   // unequal to 0.  The condition must be a scalar type.
515   LexicalScope ConditionScope(*this, S.getCond()->getSourceRange());
516   RegionCounter Cnt = getPGORegionCounter(&S);
517 
518   if (S.getConditionVariable())
519     EmitAutoVarDecl(*S.getConditionVariable());
520 
521   // If the condition constant folds and can be elided, try to avoid emitting
522   // the condition and the dead arm of the if/else.
523   bool CondConstant;
524   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
525     // Figure out which block (then or else) is executed.
526     const Stmt *Executed = S.getThen();
527     const Stmt *Skipped  = S.getElse();
528     if (!CondConstant)  // Condition false?
529       std::swap(Executed, Skipped);
530 
531     // If the skipped block has no labels in it, just emit the executed block.
532     // This avoids emitting dead code and simplifies the CFG substantially.
533     if (!ContainsLabel(Skipped)) {
534       if (CondConstant)
535         Cnt.beginRegion(Builder);
536       if (Executed) {
537         RunCleanupsScope ExecutedScope(*this);
538         EmitStmt(Executed);
539       }
540       return;
541     }
542   }
543 
544   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
545   // the conditional branch.
546   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
547   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
548   llvm::BasicBlock *ElseBlock = ContBlock;
549   if (S.getElse())
550     ElseBlock = createBasicBlock("if.else");
551 
552   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, Cnt.getCount());
553 
554   // Emit the 'then' code.
555   EmitBlock(ThenBlock);
556   Cnt.beginRegion(Builder);
557   {
558     RunCleanupsScope ThenScope(*this);
559     EmitStmt(S.getThen());
560   }
561   EmitBranch(ContBlock);
562 
563   // Emit the 'else' code if present.
564   if (const Stmt *Else = S.getElse()) {
565     {
566       // There is no need to emit line number for an unconditional branch.
567       auto NL = ApplyDebugLocation::CreateEmpty(*this);
568       EmitBlock(ElseBlock);
569     }
570     {
571       RunCleanupsScope ElseScope(*this);
572       EmitStmt(Else);
573     }
574     {
575       // There is no need to emit line number for an unconditional branch.
576       auto NL = ApplyDebugLocation::CreateEmpty(*this);
577       EmitBranch(ContBlock);
578     }
579   }
580 
581   // Emit the continuation block for code after the if.
582   EmitBlock(ContBlock, true);
583 }
584 
EmitCondBrHints(llvm::LLVMContext & Context,llvm::BranchInst * CondBr,ArrayRef<const Attr * > Attrs)585 void CodeGenFunction::EmitCondBrHints(llvm::LLVMContext &Context,
586                                       llvm::BranchInst *CondBr,
587                                       ArrayRef<const Attr *> Attrs) {
588   // Return if there are no hints.
589   if (Attrs.empty())
590     return;
591 
592   // Add vectorize and unroll hints to the metadata on the conditional branch.
593   //
594   // FIXME: Should this really start with a size of 1?
595   SmallVector<llvm::Metadata *, 2> Metadata(1);
596   for (const auto *Attr : Attrs) {
597     const LoopHintAttr *LH = dyn_cast<LoopHintAttr>(Attr);
598 
599     // Skip non loop hint attributes
600     if (!LH)
601       continue;
602 
603     LoopHintAttr::OptionType Option = LH->getOption();
604     LoopHintAttr::LoopHintState State = LH->getState();
605     const char *MetadataName;
606     switch (Option) {
607     case LoopHintAttr::Vectorize:
608     case LoopHintAttr::VectorizeWidth:
609       MetadataName = "llvm.loop.vectorize.width";
610       break;
611     case LoopHintAttr::Interleave:
612     case LoopHintAttr::InterleaveCount:
613       MetadataName = "llvm.loop.interleave.count";
614       break;
615     case LoopHintAttr::Unroll:
616       // With the unroll loop hint, a non-zero value indicates full unrolling.
617       MetadataName = State == LoopHintAttr::Disable ? "llvm.loop.unroll.disable"
618                                                     : "llvm.loop.unroll.full";
619       break;
620     case LoopHintAttr::UnrollCount:
621       MetadataName = "llvm.loop.unroll.count";
622       break;
623     }
624 
625     Expr *ValueExpr = LH->getValue();
626     int ValueInt = 1;
627     if (ValueExpr) {
628       llvm::APSInt ValueAPS =
629           ValueExpr->EvaluateKnownConstInt(CGM.getContext());
630       ValueInt = static_cast<int>(ValueAPS.getSExtValue());
631     }
632 
633     llvm::Constant *Value;
634     llvm::MDString *Name;
635     switch (Option) {
636     case LoopHintAttr::Vectorize:
637     case LoopHintAttr::Interleave:
638       if (State != LoopHintAttr::Disable) {
639         // FIXME: In the future I will modifiy the behavior of the metadata
640         // so we can enable/disable vectorization and interleaving separately.
641         Name = llvm::MDString::get(Context, "llvm.loop.vectorize.enable");
642         Value = Builder.getTrue();
643         break;
644       }
645       // Vectorization/interleaving is disabled, set width/count to 1.
646       ValueInt = 1;
647       // Fallthrough.
648     case LoopHintAttr::VectorizeWidth:
649     case LoopHintAttr::InterleaveCount:
650     case LoopHintAttr::UnrollCount:
651       Name = llvm::MDString::get(Context, MetadataName);
652       Value = llvm::ConstantInt::get(Int32Ty, ValueInt);
653       break;
654     case LoopHintAttr::Unroll:
655       Name = llvm::MDString::get(Context, MetadataName);
656       Value = nullptr;
657       break;
658     }
659 
660     SmallVector<llvm::Metadata *, 2> OpValues;
661     OpValues.push_back(Name);
662     if (Value)
663       OpValues.push_back(llvm::ConstantAsMetadata::get(Value));
664 
665     // Set or overwrite metadata indicated by Name.
666     Metadata.push_back(llvm::MDNode::get(Context, OpValues));
667   }
668 
669   // FIXME: This condition is never false.  Should it be an assert?
670   if (!Metadata.empty()) {
671     // Add llvm.loop MDNode to CondBr.
672     llvm::MDNode *LoopID = llvm::MDNode::get(Context, Metadata);
673     LoopID->replaceOperandWith(0, LoopID); // First op points to itself.
674 
675     CondBr->setMetadata("llvm.loop", LoopID);
676   }
677 }
678 
EmitWhileStmt(const WhileStmt & S,ArrayRef<const Attr * > WhileAttrs)679 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S,
680                                     ArrayRef<const Attr *> WhileAttrs) {
681   RegionCounter Cnt = getPGORegionCounter(&S);
682 
683   // Emit the header for the loop, which will also become
684   // the continue target.
685   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
686   EmitBlock(LoopHeader.getBlock());
687 
688   LoopStack.push(LoopHeader.getBlock());
689 
690   // Create an exit block for when the condition fails, which will
691   // also become the break target.
692   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
693 
694   // Store the blocks to use for break and continue.
695   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
696 
697   // C++ [stmt.while]p2:
698   //   When the condition of a while statement is a declaration, the
699   //   scope of the variable that is declared extends from its point
700   //   of declaration (3.3.2) to the end of the while statement.
701   //   [...]
702   //   The object created in a condition is destroyed and created
703   //   with each iteration of the loop.
704   RunCleanupsScope ConditionScope(*this);
705 
706   if (S.getConditionVariable())
707     EmitAutoVarDecl(*S.getConditionVariable());
708 
709   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
710   // evaluation of the controlling expression takes place before each
711   // execution of the loop body.
712   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
713 
714   // while(1) is common, avoid extra exit blocks.  Be sure
715   // to correctly handle break/continue though.
716   bool EmitBoolCondBranch = true;
717   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
718     if (C->isOne())
719       EmitBoolCondBranch = false;
720 
721   // As long as the condition is true, go to the loop body.
722   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
723   if (EmitBoolCondBranch) {
724     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
725     if (ConditionScope.requiresCleanups())
726       ExitBlock = createBasicBlock("while.exit");
727     llvm::BranchInst *CondBr =
728         Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock,
729                              PGO.createLoopWeights(S.getCond(), Cnt));
730 
731     if (ExitBlock != LoopExit.getBlock()) {
732       EmitBlock(ExitBlock);
733       EmitBranchThroughCleanup(LoopExit);
734     }
735 
736     // Attach metadata to loop body conditional branch.
737     EmitCondBrHints(LoopBody->getContext(), CondBr, WhileAttrs);
738   }
739 
740   // Emit the loop body.  We have to emit this in a cleanup scope
741   // because it might be a singleton DeclStmt.
742   {
743     RunCleanupsScope BodyScope(*this);
744     EmitBlock(LoopBody);
745     Cnt.beginRegion(Builder);
746     EmitStmt(S.getBody());
747   }
748 
749   BreakContinueStack.pop_back();
750 
751   // Immediately force cleanup.
752   ConditionScope.ForceCleanup();
753 
754   EmitStopPoint(&S);
755   // Branch to the loop header again.
756   EmitBranch(LoopHeader.getBlock());
757 
758   LoopStack.pop();
759 
760   // Emit the exit block.
761   EmitBlock(LoopExit.getBlock(), true);
762 
763   // The LoopHeader typically is just a branch if we skipped emitting
764   // a branch, try to erase it.
765   if (!EmitBoolCondBranch)
766     SimplifyForwardingBlocks(LoopHeader.getBlock());
767 }
768 
EmitDoStmt(const DoStmt & S,ArrayRef<const Attr * > DoAttrs)769 void CodeGenFunction::EmitDoStmt(const DoStmt &S,
770                                  ArrayRef<const Attr *> DoAttrs) {
771   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
772   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
773 
774   RegionCounter Cnt = getPGORegionCounter(&S);
775 
776   // Store the blocks to use for break and continue.
777   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
778 
779   // Emit the body of the loop.
780   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
781 
782   LoopStack.push(LoopBody);
783 
784   EmitBlockWithFallThrough(LoopBody, Cnt);
785   {
786     RunCleanupsScope BodyScope(*this);
787     EmitStmt(S.getBody());
788   }
789 
790   EmitBlock(LoopCond.getBlock());
791 
792   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
793   // after each execution of the loop body."
794 
795   // Evaluate the conditional in the while header.
796   // C99 6.8.5p2/p4: The first substatement is executed if the expression
797   // compares unequal to 0.  The condition must be a scalar type.
798   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
799 
800   BreakContinueStack.pop_back();
801 
802   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
803   // to correctly handle break/continue though.
804   bool EmitBoolCondBranch = true;
805   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
806     if (C->isZero())
807       EmitBoolCondBranch = false;
808 
809   // As long as the condition is true, iterate the loop.
810   if (EmitBoolCondBranch) {
811     llvm::BranchInst *CondBr =
812         Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock(),
813                              PGO.createLoopWeights(S.getCond(), Cnt));
814 
815     // Attach metadata to loop body conditional branch.
816     EmitCondBrHints(LoopBody->getContext(), CondBr, DoAttrs);
817   }
818 
819   LoopStack.pop();
820 
821   // Emit the exit block.
822   EmitBlock(LoopExit.getBlock());
823 
824   // The DoCond block typically is just a branch if we skipped
825   // emitting a branch, try to erase it.
826   if (!EmitBoolCondBranch)
827     SimplifyForwardingBlocks(LoopCond.getBlock());
828 }
829 
EmitForStmt(const ForStmt & S,ArrayRef<const Attr * > ForAttrs)830 void CodeGenFunction::EmitForStmt(const ForStmt &S,
831                                   ArrayRef<const Attr *> ForAttrs) {
832   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
833 
834   LexicalScope ForScope(*this, S.getSourceRange());
835 
836   // Evaluate the first part before the loop.
837   if (S.getInit())
838     EmitStmt(S.getInit());
839 
840   RegionCounter Cnt = getPGORegionCounter(&S);
841 
842   // Start the loop with a block that tests the condition.
843   // If there's an increment, the continue scope will be overwritten
844   // later.
845   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
846   llvm::BasicBlock *CondBlock = Continue.getBlock();
847   EmitBlock(CondBlock);
848 
849   LoopStack.push(CondBlock);
850 
851   // If the for loop doesn't have an increment we can just use the
852   // condition as the continue block.  Otherwise we'll need to create
853   // a block for it (in the current scope, i.e. in the scope of the
854   // condition), and that we will become our continue block.
855   if (S.getInc())
856     Continue = getJumpDestInCurrentScope("for.inc");
857 
858   // Store the blocks to use for break and continue.
859   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
860 
861   // Create a cleanup scope for the condition variable cleanups.
862   LexicalScope ConditionScope(*this, S.getSourceRange());
863 
864   if (S.getCond()) {
865     // If the for statement has a condition scope, emit the local variable
866     // declaration.
867     if (S.getConditionVariable()) {
868       EmitAutoVarDecl(*S.getConditionVariable());
869     }
870 
871     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
872     // If there are any cleanups between here and the loop-exit scope,
873     // create a block to stage a loop exit along.
874     if (ForScope.requiresCleanups())
875       ExitBlock = createBasicBlock("for.cond.cleanup");
876 
877     // As long as the condition is true, iterate the loop.
878     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
879 
880     // C99 6.8.5p2/p4: The first substatement is executed if the expression
881     // compares unequal to 0.  The condition must be a scalar type.
882     llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
883     llvm::BranchInst *CondBr =
884         Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock,
885                              PGO.createLoopWeights(S.getCond(), Cnt));
886 
887     // Attach metadata to loop body conditional branch.
888     EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
889 
890     if (ExitBlock != LoopExit.getBlock()) {
891       EmitBlock(ExitBlock);
892       EmitBranchThroughCleanup(LoopExit);
893     }
894 
895     EmitBlock(ForBody);
896   } else {
897     // Treat it as a non-zero constant.  Don't even create a new block for the
898     // body, just fall into it.
899   }
900   Cnt.beginRegion(Builder);
901 
902   {
903     // Create a separate cleanup scope for the body, in case it is not
904     // a compound statement.
905     RunCleanupsScope BodyScope(*this);
906     EmitStmt(S.getBody());
907   }
908 
909   // If there is an increment, emit it next.
910   if (S.getInc()) {
911     EmitBlock(Continue.getBlock());
912     EmitStmt(S.getInc());
913   }
914 
915   BreakContinueStack.pop_back();
916 
917   ConditionScope.ForceCleanup();
918 
919   EmitStopPoint(&S);
920   EmitBranch(CondBlock);
921 
922   ForScope.ForceCleanup();
923 
924   LoopStack.pop();
925 
926   // Emit the fall-through block.
927   EmitBlock(LoopExit.getBlock(), true);
928 }
929 
930 void
EmitCXXForRangeStmt(const CXXForRangeStmt & S,ArrayRef<const Attr * > ForAttrs)931 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S,
932                                      ArrayRef<const Attr *> ForAttrs) {
933   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
934 
935   LexicalScope ForScope(*this, S.getSourceRange());
936 
937   // Evaluate the first pieces before the loop.
938   EmitStmt(S.getRangeStmt());
939   EmitStmt(S.getBeginEndStmt());
940 
941   RegionCounter Cnt = getPGORegionCounter(&S);
942 
943   // Start the loop with a block that tests the condition.
944   // If there's an increment, the continue scope will be overwritten
945   // later.
946   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
947   EmitBlock(CondBlock);
948 
949   LoopStack.push(CondBlock);
950 
951   // If there are any cleanups between here and the loop-exit scope,
952   // create a block to stage a loop exit along.
953   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
954   if (ForScope.requiresCleanups())
955     ExitBlock = createBasicBlock("for.cond.cleanup");
956 
957   // The loop body, consisting of the specified body and the loop variable.
958   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
959 
960   // The body is executed if the expression, contextually converted
961   // to bool, is true.
962   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
963   llvm::BranchInst *CondBr = Builder.CreateCondBr(
964       BoolCondVal, ForBody, ExitBlock, PGO.createLoopWeights(S.getCond(), Cnt));
965 
966   // Attach metadata to loop body conditional branch.
967   EmitCondBrHints(ForBody->getContext(), CondBr, ForAttrs);
968 
969   if (ExitBlock != LoopExit.getBlock()) {
970     EmitBlock(ExitBlock);
971     EmitBranchThroughCleanup(LoopExit);
972   }
973 
974   EmitBlock(ForBody);
975   Cnt.beginRegion(Builder);
976 
977   // Create a block for the increment. In case of a 'continue', we jump there.
978   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
979 
980   // Store the blocks to use for break and continue.
981   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
982 
983   {
984     // Create a separate cleanup scope for the loop variable and body.
985     LexicalScope BodyScope(*this, S.getSourceRange());
986     EmitStmt(S.getLoopVarStmt());
987     EmitStmt(S.getBody());
988   }
989 
990   EmitStopPoint(&S);
991   // If there is an increment, emit it next.
992   EmitBlock(Continue.getBlock());
993   EmitStmt(S.getInc());
994 
995   BreakContinueStack.pop_back();
996 
997   EmitBranch(CondBlock);
998 
999   ForScope.ForceCleanup();
1000 
1001   LoopStack.pop();
1002 
1003   // Emit the fall-through block.
1004   EmitBlock(LoopExit.getBlock(), true);
1005 }
1006 
EmitReturnOfRValue(RValue RV,QualType Ty)1007 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
1008   if (RV.isScalar()) {
1009     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
1010   } else if (RV.isAggregate()) {
1011     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
1012   } else {
1013     EmitStoreOfComplex(RV.getComplexVal(),
1014                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
1015                        /*init*/ true);
1016   }
1017   EmitBranchThroughCleanup(ReturnBlock);
1018 }
1019 
1020 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
1021 /// if the function returns void, or may be missing one if the function returns
1022 /// non-void.  Fun stuff :).
EmitReturnStmt(const ReturnStmt & S)1023 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
1024   // Returning from an outlined SEH helper is UB, and we already warn on it.
1025   if (IsOutlinedSEHHelper) {
1026     Builder.CreateUnreachable();
1027     Builder.ClearInsertionPoint();
1028   }
1029 
1030   // Emit the result value, even if unused, to evalute the side effects.
1031   const Expr *RV = S.getRetValue();
1032 
1033   // Treat block literals in a return expression as if they appeared
1034   // in their own scope.  This permits a small, easily-implemented
1035   // exception to our over-conservative rules about not jumping to
1036   // statements following block literals with non-trivial cleanups.
1037   RunCleanupsScope cleanupScope(*this);
1038   if (const ExprWithCleanups *cleanups =
1039         dyn_cast_or_null<ExprWithCleanups>(RV)) {
1040     enterFullExpression(cleanups);
1041     RV = cleanups->getSubExpr();
1042   }
1043 
1044   // FIXME: Clean this up by using an LValue for ReturnTemp,
1045   // EmitStoreThroughLValue, and EmitAnyExpr.
1046   if (getLangOpts().ElideConstructors &&
1047       S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
1048     // Apply the named return value optimization for this return statement,
1049     // which means doing nothing: the appropriate result has already been
1050     // constructed into the NRVO variable.
1051 
1052     // If there is an NRVO flag for this variable, set it to 1 into indicate
1053     // that the cleanup code should not destroy the variable.
1054     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
1055       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
1056   } else if (!ReturnValue || (RV && RV->getType()->isVoidType())) {
1057     // Make sure not to return anything, but evaluate the expression
1058     // for side effects.
1059     if (RV)
1060       EmitAnyExpr(RV);
1061   } else if (!RV) {
1062     // Do nothing (return value is left uninitialized)
1063   } else if (FnRetTy->isReferenceType()) {
1064     // If this function returns a reference, take the address of the expression
1065     // rather than the value.
1066     RValue Result = EmitReferenceBindingToExpr(RV);
1067     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
1068   } else {
1069     switch (getEvaluationKind(RV->getType())) {
1070     case TEK_Scalar:
1071       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
1072       break;
1073     case TEK_Complex:
1074       EmitComplexExprIntoLValue(RV,
1075                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
1076                                 /*isInit*/ true);
1077       break;
1078     case TEK_Aggregate: {
1079       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
1080       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
1081                                             Qualifiers(),
1082                                             AggValueSlot::IsDestructed,
1083                                             AggValueSlot::DoesNotNeedGCBarriers,
1084                                             AggValueSlot::IsNotAliased));
1085       break;
1086     }
1087     }
1088   }
1089 
1090   ++NumReturnExprs;
1091   if (!RV || RV->isEvaluatable(getContext()))
1092     ++NumSimpleReturnExprs;
1093 
1094   cleanupScope.ForceCleanup();
1095   EmitBranchThroughCleanup(ReturnBlock);
1096 }
1097 
EmitDeclStmt(const DeclStmt & S)1098 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
1099   // As long as debug info is modeled with instructions, we have to ensure we
1100   // have a place to insert here and write the stop point here.
1101   if (HaveInsertPoint())
1102     EmitStopPoint(&S);
1103 
1104   for (const auto *I : S.decls())
1105     EmitDecl(*I);
1106 }
1107 
EmitBreakStmt(const BreakStmt & S)1108 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
1109   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
1110 
1111   // If this code is reachable then emit a stop point (if generating
1112   // debug info). We have to do this ourselves because we are on the
1113   // "simple" statement path.
1114   if (HaveInsertPoint())
1115     EmitStopPoint(&S);
1116 
1117   EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock);
1118 }
1119 
EmitContinueStmt(const ContinueStmt & S)1120 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
1121   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
1122 
1123   // If this code is reachable then emit a stop point (if generating
1124   // debug info). We have to do this ourselves because we are on the
1125   // "simple" statement path.
1126   if (HaveInsertPoint())
1127     EmitStopPoint(&S);
1128 
1129   EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock);
1130 }
1131 
1132 /// EmitCaseStmtRange - If case statement range is not too big then
1133 /// add multiple cases to switch instruction, one for each value within
1134 /// the range. If range is too big then emit "if" condition check.
EmitCaseStmtRange(const CaseStmt & S)1135 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
1136   assert(S.getRHS() && "Expected RHS value in CaseStmt");
1137 
1138   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
1139   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
1140 
1141   RegionCounter CaseCnt = getPGORegionCounter(&S);
1142 
1143   // Emit the code for this case. We do this first to make sure it is
1144   // properly chained from our predecessor before generating the
1145   // switch machinery to enter this block.
1146   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1147   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1148   EmitStmt(S.getSubStmt());
1149 
1150   // If range is empty, do nothing.
1151   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
1152     return;
1153 
1154   llvm::APInt Range = RHS - LHS;
1155   // FIXME: parameters such as this should not be hardcoded.
1156   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
1157     // Range is small enough to add multiple switch instruction cases.
1158     uint64_t Total = CaseCnt.getCount();
1159     unsigned NCases = Range.getZExtValue() + 1;
1160     // We only have one region counter for the entire set of cases here, so we
1161     // need to divide the weights evenly between the generated cases, ensuring
1162     // that the total weight is preserved. E.g., a weight of 5 over three cases
1163     // will be distributed as weights of 2, 2, and 1.
1164     uint64_t Weight = Total / NCases, Rem = Total % NCases;
1165     for (unsigned I = 0; I != NCases; ++I) {
1166       if (SwitchWeights)
1167         SwitchWeights->push_back(Weight + (Rem ? 1 : 0));
1168       if (Rem)
1169         Rem--;
1170       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
1171       LHS++;
1172     }
1173     return;
1174   }
1175 
1176   // The range is too big. Emit "if" condition into a new block,
1177   // making sure to save and restore the current insertion point.
1178   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
1179 
1180   // Push this test onto the chain of range checks (which terminates
1181   // in the default basic block). The switch's default will be changed
1182   // to the top of this chain after switch emission is complete.
1183   llvm::BasicBlock *FalseDest = CaseRangeBlock;
1184   CaseRangeBlock = createBasicBlock("sw.caserange");
1185 
1186   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
1187   Builder.SetInsertPoint(CaseRangeBlock);
1188 
1189   // Emit range check.
1190   llvm::Value *Diff =
1191     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
1192   llvm::Value *Cond =
1193     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
1194 
1195   llvm::MDNode *Weights = nullptr;
1196   if (SwitchWeights) {
1197     uint64_t ThisCount = CaseCnt.getCount();
1198     uint64_t DefaultCount = (*SwitchWeights)[0];
1199     Weights = PGO.createBranchWeights(ThisCount, DefaultCount);
1200 
1201     // Since we're chaining the switch default through each large case range, we
1202     // need to update the weight for the default, ie, the first case, to include
1203     // this case.
1204     (*SwitchWeights)[0] += ThisCount;
1205   }
1206   Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights);
1207 
1208   // Restore the appropriate insertion point.
1209   if (RestoreBB)
1210     Builder.SetInsertPoint(RestoreBB);
1211   else
1212     Builder.ClearInsertionPoint();
1213 }
1214 
EmitCaseStmt(const CaseStmt & S)1215 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
1216   // If there is no enclosing switch instance that we're aware of, then this
1217   // case statement and its block can be elided.  This situation only happens
1218   // when we've constant-folded the switch, are emitting the constant case,
1219   // and part of the constant case includes another case statement.  For
1220   // instance: switch (4) { case 4: do { case 5: } while (1); }
1221   if (!SwitchInsn) {
1222     EmitStmt(S.getSubStmt());
1223     return;
1224   }
1225 
1226   // Handle case ranges.
1227   if (S.getRHS()) {
1228     EmitCaseStmtRange(S);
1229     return;
1230   }
1231 
1232   RegionCounter CaseCnt = getPGORegionCounter(&S);
1233   llvm::ConstantInt *CaseVal =
1234     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
1235 
1236   // If the body of the case is just a 'break', try to not emit an empty block.
1237   // If we're profiling or we're not optimizing, leave the block in for better
1238   // debug and coverage analysis.
1239   if (!CGM.getCodeGenOpts().ProfileInstrGenerate &&
1240       CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1241       isa<BreakStmt>(S.getSubStmt())) {
1242     JumpDest Block = BreakContinueStack.back().BreakBlock;
1243 
1244     // Only do this optimization if there are no cleanups that need emitting.
1245     if (isObviouslyBranchWithoutCleanups(Block)) {
1246       if (SwitchWeights)
1247         SwitchWeights->push_back(CaseCnt.getCount());
1248       SwitchInsn->addCase(CaseVal, Block.getBlock());
1249 
1250       // If there was a fallthrough into this case, make sure to redirect it to
1251       // the end of the switch as well.
1252       if (Builder.GetInsertBlock()) {
1253         Builder.CreateBr(Block.getBlock());
1254         Builder.ClearInsertionPoint();
1255       }
1256       return;
1257     }
1258   }
1259 
1260   llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb");
1261   EmitBlockWithFallThrough(CaseDest, CaseCnt);
1262   if (SwitchWeights)
1263     SwitchWeights->push_back(CaseCnt.getCount());
1264   SwitchInsn->addCase(CaseVal, CaseDest);
1265 
1266   // Recursively emitting the statement is acceptable, but is not wonderful for
1267   // code where we have many case statements nested together, i.e.:
1268   //  case 1:
1269   //    case 2:
1270   //      case 3: etc.
1271   // Handling this recursively will create a new block for each case statement
1272   // that falls through to the next case which is IR intensive.  It also causes
1273   // deep recursion which can run into stack depth limitations.  Handle
1274   // sequential non-range case statements specially.
1275   const CaseStmt *CurCase = &S;
1276   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1277 
1278   // Otherwise, iteratively add consecutive cases to this switch stmt.
1279   while (NextCase && NextCase->getRHS() == nullptr) {
1280     CurCase = NextCase;
1281     llvm::ConstantInt *CaseVal =
1282       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1283 
1284     CaseCnt = getPGORegionCounter(NextCase);
1285     if (SwitchWeights)
1286       SwitchWeights->push_back(CaseCnt.getCount());
1287     if (CGM.getCodeGenOpts().ProfileInstrGenerate) {
1288       CaseDest = createBasicBlock("sw.bb");
1289       EmitBlockWithFallThrough(CaseDest, CaseCnt);
1290     }
1291 
1292     SwitchInsn->addCase(CaseVal, CaseDest);
1293     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1294   }
1295 
1296   // Normal default recursion for non-cases.
1297   EmitStmt(CurCase->getSubStmt());
1298 }
1299 
EmitDefaultStmt(const DefaultStmt & S)1300 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1301   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1302   assert(DefaultBlock->empty() &&
1303          "EmitDefaultStmt: Default block already defined?");
1304 
1305   RegionCounter Cnt = getPGORegionCounter(&S);
1306   EmitBlockWithFallThrough(DefaultBlock, Cnt);
1307 
1308   EmitStmt(S.getSubStmt());
1309 }
1310 
1311 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1312 /// constant value that is being switched on, see if we can dead code eliminate
1313 /// the body of the switch to a simple series of statements to emit.  Basically,
1314 /// on a switch (5) we want to find these statements:
1315 ///    case 5:
1316 ///      printf(...);    <--
1317 ///      ++i;            <--
1318 ///      break;
1319 ///
1320 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1321 /// transformation (for example, one of the elided statements contains a label
1322 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1323 /// should include statements after it (e.g. the printf() line is a substmt of
1324 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1325 /// statement, then return CSFC_Success.
1326 ///
1327 /// If Case is non-null, then we are looking for the specified case, checking
1328 /// that nothing we jump over contains labels.  If Case is null, then we found
1329 /// the case and are looking for the break.
1330 ///
1331 /// If the recursive walk actually finds our Case, then we set FoundCase to
1332 /// true.
1333 ///
1334 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
CollectStatementsForCase(const Stmt * S,const SwitchCase * Case,bool & FoundCase,SmallVectorImpl<const Stmt * > & ResultStmts)1335 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1336                                             const SwitchCase *Case,
1337                                             bool &FoundCase,
1338                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1339   // If this is a null statement, just succeed.
1340   if (!S)
1341     return Case ? CSFC_Success : CSFC_FallThrough;
1342 
1343   // If this is the switchcase (case 4: or default) that we're looking for, then
1344   // we're in business.  Just add the substatement.
1345   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1346     if (S == Case) {
1347       FoundCase = true;
1348       return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase,
1349                                       ResultStmts);
1350     }
1351 
1352     // Otherwise, this is some other case or default statement, just ignore it.
1353     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1354                                     ResultStmts);
1355   }
1356 
1357   // If we are in the live part of the code and we found our break statement,
1358   // return a success!
1359   if (!Case && isa<BreakStmt>(S))
1360     return CSFC_Success;
1361 
1362   // If this is a switch statement, then it might contain the SwitchCase, the
1363   // break, or neither.
1364   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1365     // Handle this as two cases: we might be looking for the SwitchCase (if so
1366     // the skipped statements must be skippable) or we might already have it.
1367     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1368     if (Case) {
1369       // Keep track of whether we see a skipped declaration.  The code could be
1370       // using the declaration even if it is skipped, so we can't optimize out
1371       // the decl if the kept statements might refer to it.
1372       bool HadSkippedDecl = false;
1373 
1374       // If we're looking for the case, just see if we can skip each of the
1375       // substatements.
1376       for (; Case && I != E; ++I) {
1377         HadSkippedDecl |= isa<DeclStmt>(*I);
1378 
1379         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1380         case CSFC_Failure: return CSFC_Failure;
1381         case CSFC_Success:
1382           // A successful result means that either 1) that the statement doesn't
1383           // have the case and is skippable, or 2) does contain the case value
1384           // and also contains the break to exit the switch.  In the later case,
1385           // we just verify the rest of the statements are elidable.
1386           if (FoundCase) {
1387             // If we found the case and skipped declarations, we can't do the
1388             // optimization.
1389             if (HadSkippedDecl)
1390               return CSFC_Failure;
1391 
1392             for (++I; I != E; ++I)
1393               if (CodeGenFunction::ContainsLabel(*I, true))
1394                 return CSFC_Failure;
1395             return CSFC_Success;
1396           }
1397           break;
1398         case CSFC_FallThrough:
1399           // If we have a fallthrough condition, then we must have found the
1400           // case started to include statements.  Consider the rest of the
1401           // statements in the compound statement as candidates for inclusion.
1402           assert(FoundCase && "Didn't find case but returned fallthrough?");
1403           // We recursively found Case, so we're not looking for it anymore.
1404           Case = nullptr;
1405 
1406           // If we found the case and skipped declarations, we can't do the
1407           // optimization.
1408           if (HadSkippedDecl)
1409             return CSFC_Failure;
1410           break;
1411         }
1412       }
1413     }
1414 
1415     // If we have statements in our range, then we know that the statements are
1416     // live and need to be added to the set of statements we're tracking.
1417     for (; I != E; ++I) {
1418       switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) {
1419       case CSFC_Failure: return CSFC_Failure;
1420       case CSFC_FallThrough:
1421         // A fallthrough result means that the statement was simple and just
1422         // included in ResultStmt, keep adding them afterwards.
1423         break;
1424       case CSFC_Success:
1425         // A successful result means that we found the break statement and
1426         // stopped statement inclusion.  We just ensure that any leftover stmts
1427         // are skippable and return success ourselves.
1428         for (++I; I != E; ++I)
1429           if (CodeGenFunction::ContainsLabel(*I, true))
1430             return CSFC_Failure;
1431         return CSFC_Success;
1432       }
1433     }
1434 
1435     return Case ? CSFC_Success : CSFC_FallThrough;
1436   }
1437 
1438   // Okay, this is some other statement that we don't handle explicitly, like a
1439   // for statement or increment etc.  If we are skipping over this statement,
1440   // just verify it doesn't have labels, which would make it invalid to elide.
1441   if (Case) {
1442     if (CodeGenFunction::ContainsLabel(S, true))
1443       return CSFC_Failure;
1444     return CSFC_Success;
1445   }
1446 
1447   // Otherwise, we want to include this statement.  Everything is cool with that
1448   // so long as it doesn't contain a break out of the switch we're in.
1449   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1450 
1451   // Otherwise, everything is great.  Include the statement and tell the caller
1452   // that we fall through and include the next statement as well.
1453   ResultStmts.push_back(S);
1454   return CSFC_FallThrough;
1455 }
1456 
1457 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1458 /// then invoke CollectStatementsForCase to find the list of statements to emit
1459 /// for a switch on constant.  See the comment above CollectStatementsForCase
1460 /// for more details.
FindCaseStatementsForValue(const SwitchStmt & S,const llvm::APSInt & ConstantCondValue,SmallVectorImpl<const Stmt * > & ResultStmts,ASTContext & C,const SwitchCase * & ResultCase)1461 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1462                                        const llvm::APSInt &ConstantCondValue,
1463                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1464                                        ASTContext &C,
1465                                        const SwitchCase *&ResultCase) {
1466   // First step, find the switch case that is being branched to.  We can do this
1467   // efficiently by scanning the SwitchCase list.
1468   const SwitchCase *Case = S.getSwitchCaseList();
1469   const DefaultStmt *DefaultCase = nullptr;
1470 
1471   for (; Case; Case = Case->getNextSwitchCase()) {
1472     // It's either a default or case.  Just remember the default statement in
1473     // case we're not jumping to any numbered cases.
1474     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1475       DefaultCase = DS;
1476       continue;
1477     }
1478 
1479     // Check to see if this case is the one we're looking for.
1480     const CaseStmt *CS = cast<CaseStmt>(Case);
1481     // Don't handle case ranges yet.
1482     if (CS->getRHS()) return false;
1483 
1484     // If we found our case, remember it as 'case'.
1485     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1486       break;
1487   }
1488 
1489   // If we didn't find a matching case, we use a default if it exists, or we
1490   // elide the whole switch body!
1491   if (!Case) {
1492     // It is safe to elide the body of the switch if it doesn't contain labels
1493     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1494     if (!DefaultCase)
1495       return !CodeGenFunction::ContainsLabel(&S);
1496     Case = DefaultCase;
1497   }
1498 
1499   // Ok, we know which case is being jumped to, try to collect all the
1500   // statements that follow it.  This can fail for a variety of reasons.  Also,
1501   // check to see that the recursive walk actually found our case statement.
1502   // Insane cases like this can fail to find it in the recursive walk since we
1503   // don't handle every stmt kind:
1504   // switch (4) {
1505   //   while (1) {
1506   //     case 4: ...
1507   bool FoundCase = false;
1508   ResultCase = Case;
1509   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1510                                   ResultStmts) != CSFC_Failure &&
1511          FoundCase;
1512 }
1513 
EmitSwitchStmt(const SwitchStmt & S)1514 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1515   // Handle nested switch statements.
1516   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1517   SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights;
1518   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1519 
1520   // See if we can constant fold the condition of the switch and therefore only
1521   // emit the live case statement (if any) of the switch.
1522   llvm::APSInt ConstantCondValue;
1523   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1524     SmallVector<const Stmt*, 4> CaseStmts;
1525     const SwitchCase *Case = nullptr;
1526     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1527                                    getContext(), Case)) {
1528       if (Case) {
1529         RegionCounter CaseCnt = getPGORegionCounter(Case);
1530         CaseCnt.beginRegion(Builder);
1531       }
1532       RunCleanupsScope ExecutedScope(*this);
1533 
1534       // Emit the condition variable if needed inside the entire cleanup scope
1535       // used by this special case for constant folded switches.
1536       if (S.getConditionVariable())
1537         EmitAutoVarDecl(*S.getConditionVariable());
1538 
1539       // At this point, we are no longer "within" a switch instance, so
1540       // we can temporarily enforce this to ensure that any embedded case
1541       // statements are not emitted.
1542       SwitchInsn = nullptr;
1543 
1544       // Okay, we can dead code eliminate everything except this case.  Emit the
1545       // specified series of statements and we're good.
1546       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1547         EmitStmt(CaseStmts[i]);
1548       RegionCounter ExitCnt = getPGORegionCounter(&S);
1549       ExitCnt.beginRegion(Builder);
1550 
1551       // Now we want to restore the saved switch instance so that nested
1552       // switches continue to function properly
1553       SwitchInsn = SavedSwitchInsn;
1554 
1555       return;
1556     }
1557   }
1558 
1559   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1560 
1561   RunCleanupsScope ConditionScope(*this);
1562   if (S.getConditionVariable())
1563     EmitAutoVarDecl(*S.getConditionVariable());
1564   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1565 
1566   // Create basic block to hold stuff that comes after switch
1567   // statement. We also need to create a default block now so that
1568   // explicit case ranges tests can have a place to jump to on
1569   // failure.
1570   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1571   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1572   if (PGO.haveRegionCounts()) {
1573     // Walk the SwitchCase list to find how many there are.
1574     uint64_t DefaultCount = 0;
1575     unsigned NumCases = 0;
1576     for (const SwitchCase *Case = S.getSwitchCaseList();
1577          Case;
1578          Case = Case->getNextSwitchCase()) {
1579       if (isa<DefaultStmt>(Case))
1580         DefaultCount = getPGORegionCounter(Case).getCount();
1581       NumCases += 1;
1582     }
1583     SwitchWeights = new SmallVector<uint64_t, 16>();
1584     SwitchWeights->reserve(NumCases);
1585     // The default needs to be first. We store the edge count, so we already
1586     // know the right weight.
1587     SwitchWeights->push_back(DefaultCount);
1588   }
1589   CaseRangeBlock = DefaultBlock;
1590 
1591   // Clear the insertion point to indicate we are in unreachable code.
1592   Builder.ClearInsertionPoint();
1593 
1594   // All break statements jump to NextBlock. If BreakContinueStack is non-empty
1595   // then reuse last ContinueBlock.
1596   JumpDest OuterContinue;
1597   if (!BreakContinueStack.empty())
1598     OuterContinue = BreakContinueStack.back().ContinueBlock;
1599 
1600   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1601 
1602   // Emit switch body.
1603   EmitStmt(S.getBody());
1604 
1605   BreakContinueStack.pop_back();
1606 
1607   // Update the default block in case explicit case range tests have
1608   // been chained on top.
1609   SwitchInsn->setDefaultDest(CaseRangeBlock);
1610 
1611   // If a default was never emitted:
1612   if (!DefaultBlock->getParent()) {
1613     // If we have cleanups, emit the default block so that there's a
1614     // place to jump through the cleanups from.
1615     if (ConditionScope.requiresCleanups()) {
1616       EmitBlock(DefaultBlock);
1617 
1618     // Otherwise, just forward the default block to the switch end.
1619     } else {
1620       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1621       delete DefaultBlock;
1622     }
1623   }
1624 
1625   ConditionScope.ForceCleanup();
1626 
1627   // Emit continuation.
1628   EmitBlock(SwitchExit.getBlock(), true);
1629   RegionCounter ExitCnt = getPGORegionCounter(&S);
1630   ExitCnt.beginRegion(Builder);
1631 
1632   if (SwitchWeights) {
1633     assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() &&
1634            "switch weights do not match switch cases");
1635     // If there's only one jump destination there's no sense weighting it.
1636     if (SwitchWeights->size() > 1)
1637       SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof,
1638                               PGO.createBranchWeights(*SwitchWeights));
1639     delete SwitchWeights;
1640   }
1641   SwitchInsn = SavedSwitchInsn;
1642   SwitchWeights = SavedSwitchWeights;
1643   CaseRangeBlock = SavedCRBlock;
1644 }
1645 
1646 static std::string
SimplifyConstraint(const char * Constraint,const TargetInfo & Target,SmallVectorImpl<TargetInfo::ConstraintInfo> * OutCons=nullptr)1647 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1648                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) {
1649   std::string Result;
1650 
1651   while (*Constraint) {
1652     switch (*Constraint) {
1653     default:
1654       Result += Target.convertConstraint(Constraint);
1655       break;
1656     // Ignore these
1657     case '*':
1658     case '?':
1659     case '!':
1660     case '=': // Will see this and the following in mult-alt constraints.
1661     case '+':
1662       break;
1663     case '#': // Ignore the rest of the constraint alternative.
1664       while (Constraint[1] && Constraint[1] != ',')
1665         Constraint++;
1666       break;
1667     case '&':
1668     case '%':
1669       Result += *Constraint;
1670       while (Constraint[1] && Constraint[1] == *Constraint)
1671         Constraint++;
1672       break;
1673     case ',':
1674       Result += "|";
1675       break;
1676     case 'g':
1677       Result += "imr";
1678       break;
1679     case '[': {
1680       assert(OutCons &&
1681              "Must pass output names to constraints with a symbolic name");
1682       unsigned Index;
1683       bool result = Target.resolveSymbolicName(Constraint,
1684                                                &(*OutCons)[0],
1685                                                OutCons->size(), Index);
1686       assert(result && "Could not resolve symbolic name"); (void)result;
1687       Result += llvm::utostr(Index);
1688       break;
1689     }
1690     }
1691 
1692     Constraint++;
1693   }
1694 
1695   return Result;
1696 }
1697 
1698 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1699 /// as using a particular register add that as a constraint that will be used
1700 /// in this asm stmt.
1701 static std::string
AddVariableConstraints(const std::string & Constraint,const Expr & AsmExpr,const TargetInfo & Target,CodeGenModule & CGM,const AsmStmt & Stmt,const bool EarlyClobber)1702 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1703                        const TargetInfo &Target, CodeGenModule &CGM,
1704                        const AsmStmt &Stmt, const bool EarlyClobber) {
1705   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1706   if (!AsmDeclRef)
1707     return Constraint;
1708   const ValueDecl &Value = *AsmDeclRef->getDecl();
1709   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1710   if (!Variable)
1711     return Constraint;
1712   if (Variable->getStorageClass() != SC_Register)
1713     return Constraint;
1714   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1715   if (!Attr)
1716     return Constraint;
1717   StringRef Register = Attr->getLabel();
1718   assert(Target.isValidGCCRegisterName(Register));
1719   // We're using validateOutputConstraint here because we only care if
1720   // this is a register constraint.
1721   TargetInfo::ConstraintInfo Info(Constraint, "");
1722   if (Target.validateOutputConstraint(Info) &&
1723       !Info.allowsRegister()) {
1724     CGM.ErrorUnsupported(&Stmt, "__asm__");
1725     return Constraint;
1726   }
1727   // Canonicalize the register here before returning it.
1728   Register = Target.getNormalizedGCCRegisterName(Register);
1729   return (EarlyClobber ? "&{" : "{") + Register.str() + "}";
1730 }
1731 
1732 llvm::Value*
EmitAsmInputLValue(const TargetInfo::ConstraintInfo & Info,LValue InputValue,QualType InputType,std::string & ConstraintStr,SourceLocation Loc)1733 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1734                                     LValue InputValue, QualType InputType,
1735                                     std::string &ConstraintStr,
1736                                     SourceLocation Loc) {
1737   llvm::Value *Arg;
1738   if (Info.allowsRegister() || !Info.allowsMemory()) {
1739     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1740       Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal();
1741     } else {
1742       llvm::Type *Ty = ConvertType(InputType);
1743       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1744       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1745         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1746         Ty = llvm::PointerType::getUnqual(Ty);
1747 
1748         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1749                                                        Ty));
1750       } else {
1751         Arg = InputValue.getAddress();
1752         ConstraintStr += '*';
1753       }
1754     }
1755   } else {
1756     Arg = InputValue.getAddress();
1757     ConstraintStr += '*';
1758   }
1759 
1760   return Arg;
1761 }
1762 
EmitAsmInput(const TargetInfo::ConstraintInfo & Info,const Expr * InputExpr,std::string & ConstraintStr)1763 llvm::Value* CodeGenFunction::EmitAsmInput(
1764                                          const TargetInfo::ConstraintInfo &Info,
1765                                            const Expr *InputExpr,
1766                                            std::string &ConstraintStr) {
1767   if (Info.allowsRegister() || !Info.allowsMemory())
1768     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1769       return EmitScalarExpr(InputExpr);
1770 
1771   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1772   LValue Dest = EmitLValue(InputExpr);
1773   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr,
1774                             InputExpr->getExprLoc());
1775 }
1776 
1777 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1778 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1779 /// integers which are the source locations of the start of each line in the
1780 /// asm.
getAsmSrcLocInfo(const StringLiteral * Str,CodeGenFunction & CGF)1781 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1782                                       CodeGenFunction &CGF) {
1783   SmallVector<llvm::Metadata *, 8> Locs;
1784   // Add the location of the first line to the MDNode.
1785   Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1786       CGF.Int32Ty, Str->getLocStart().getRawEncoding())));
1787   StringRef StrVal = Str->getString();
1788   if (!StrVal.empty()) {
1789     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1790     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1791 
1792     // Add the location of the start of each subsequent line of the asm to the
1793     // MDNode.
1794     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1795       if (StrVal[i] != '\n') continue;
1796       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1797                                                       CGF.getTarget());
1798       Locs.push_back(llvm::ConstantAsMetadata::get(
1799           llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding())));
1800     }
1801   }
1802 
1803   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1804 }
1805 
EmitAsmStmt(const AsmStmt & S)1806 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1807   // Assemble the final asm string.
1808   std::string AsmString = S.generateAsmString(getContext());
1809 
1810   // Get all the output and input constraints together.
1811   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1812   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1813 
1814   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1815     StringRef Name;
1816     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1817       Name = GAS->getOutputName(i);
1818     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1819     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1820     assert(IsValid && "Failed to parse output constraint");
1821     OutputConstraintInfos.push_back(Info);
1822   }
1823 
1824   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1825     StringRef Name;
1826     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1827       Name = GAS->getInputName(i);
1828     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1829     bool IsValid =
1830       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1831                                           S.getNumOutputs(), Info);
1832     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1833     InputConstraintInfos.push_back(Info);
1834   }
1835 
1836   std::string Constraints;
1837 
1838   std::vector<LValue> ResultRegDests;
1839   std::vector<QualType> ResultRegQualTys;
1840   std::vector<llvm::Type *> ResultRegTypes;
1841   std::vector<llvm::Type *> ResultTruncRegTypes;
1842   std::vector<llvm::Type *> ArgTypes;
1843   std::vector<llvm::Value*> Args;
1844 
1845   // Keep track of inout constraints.
1846   std::string InOutConstraints;
1847   std::vector<llvm::Value*> InOutArgs;
1848   std::vector<llvm::Type*> InOutArgTypes;
1849 
1850   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1851     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1852 
1853     // Simplify the output constraint.
1854     std::string OutputConstraint(S.getOutputConstraint(i));
1855     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1856                                           getTarget());
1857 
1858     const Expr *OutExpr = S.getOutputExpr(i);
1859     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1860 
1861     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1862                                               getTarget(), CGM, S,
1863                                               Info.earlyClobber());
1864 
1865     LValue Dest = EmitLValue(OutExpr);
1866     if (!Constraints.empty())
1867       Constraints += ',';
1868 
1869     // If this is a register output, then make the inline asm return it
1870     // by-value.  If this is a memory result, return the value by-reference.
1871     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1872       Constraints += "=" + OutputConstraint;
1873       ResultRegQualTys.push_back(OutExpr->getType());
1874       ResultRegDests.push_back(Dest);
1875       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1876       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1877 
1878       // If this output is tied to an input, and if the input is larger, then
1879       // we need to set the actual result type of the inline asm node to be the
1880       // same as the input type.
1881       if (Info.hasMatchingInput()) {
1882         unsigned InputNo;
1883         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1884           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1885           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1886             break;
1887         }
1888         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1889 
1890         QualType InputTy = S.getInputExpr(InputNo)->getType();
1891         QualType OutputType = OutExpr->getType();
1892 
1893         uint64_t InputSize = getContext().getTypeSize(InputTy);
1894         if (getContext().getTypeSize(OutputType) < InputSize) {
1895           // Form the asm to return the value as a larger integer or fp type.
1896           ResultRegTypes.back() = ConvertType(InputTy);
1897         }
1898       }
1899       if (llvm::Type* AdjTy =
1900             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1901                                                  ResultRegTypes.back()))
1902         ResultRegTypes.back() = AdjTy;
1903       else {
1904         CGM.getDiags().Report(S.getAsmLoc(),
1905                               diag::err_asm_invalid_type_in_input)
1906             << OutExpr->getType() << OutputConstraint;
1907       }
1908     } else {
1909       ArgTypes.push_back(Dest.getAddress()->getType());
1910       Args.push_back(Dest.getAddress());
1911       Constraints += "=*";
1912       Constraints += OutputConstraint;
1913     }
1914 
1915     if (Info.isReadWrite()) {
1916       InOutConstraints += ',';
1917 
1918       const Expr *InputExpr = S.getOutputExpr(i);
1919       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1920                                             InOutConstraints,
1921                                             InputExpr->getExprLoc());
1922 
1923       if (llvm::Type* AdjTy =
1924           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1925                                                Arg->getType()))
1926         Arg = Builder.CreateBitCast(Arg, AdjTy);
1927 
1928       if (Info.allowsRegister())
1929         InOutConstraints += llvm::utostr(i);
1930       else
1931         InOutConstraints += OutputConstraint;
1932 
1933       InOutArgTypes.push_back(Arg->getType());
1934       InOutArgs.push_back(Arg);
1935     }
1936   }
1937 
1938   // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX)
1939   // to the return value slot. Only do this when returning in registers.
1940   if (isa<MSAsmStmt>(&S)) {
1941     const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
1942     if (RetAI.isDirect() || RetAI.isExtend()) {
1943       // Make a fake lvalue for the return value slot.
1944       LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy);
1945       CGM.getTargetCodeGenInfo().addReturnRegisterOutputs(
1946           *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes,
1947           ResultRegDests, AsmString, S.getNumOutputs());
1948       SawAsmBlock = true;
1949     }
1950   }
1951 
1952   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1953     const Expr *InputExpr = S.getInputExpr(i);
1954 
1955     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1956 
1957     if (!Constraints.empty())
1958       Constraints += ',';
1959 
1960     // Simplify the input constraint.
1961     std::string InputConstraint(S.getInputConstraint(i));
1962     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1963                                          &OutputConstraintInfos);
1964 
1965     InputConstraint = AddVariableConstraints(
1966         InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()),
1967         getTarget(), CGM, S, false /* No EarlyClobber */);
1968 
1969     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1970 
1971     // If this input argument is tied to a larger output result, extend the
1972     // input to be the same size as the output.  The LLVM backend wants to see
1973     // the input and output of a matching constraint be the same size.  Note
1974     // that GCC does not define what the top bits are here.  We use zext because
1975     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1976     if (Info.hasTiedOperand()) {
1977       unsigned Output = Info.getTiedOperand();
1978       QualType OutputType = S.getOutputExpr(Output)->getType();
1979       QualType InputTy = InputExpr->getType();
1980 
1981       if (getContext().getTypeSize(OutputType) >
1982           getContext().getTypeSize(InputTy)) {
1983         // Use ptrtoint as appropriate so that we can do our extension.
1984         if (isa<llvm::PointerType>(Arg->getType()))
1985           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1986         llvm::Type *OutputTy = ConvertType(OutputType);
1987         if (isa<llvm::IntegerType>(OutputTy))
1988           Arg = Builder.CreateZExt(Arg, OutputTy);
1989         else if (isa<llvm::PointerType>(OutputTy))
1990           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1991         else {
1992           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1993           Arg = Builder.CreateFPExt(Arg, OutputTy);
1994         }
1995       }
1996     }
1997     if (llvm::Type* AdjTy =
1998               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1999                                                    Arg->getType()))
2000       Arg = Builder.CreateBitCast(Arg, AdjTy);
2001     else
2002       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
2003           << InputExpr->getType() << InputConstraint;
2004 
2005     ArgTypes.push_back(Arg->getType());
2006     Args.push_back(Arg);
2007     Constraints += InputConstraint;
2008   }
2009 
2010   // Append the "input" part of inout constraints last.
2011   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
2012     ArgTypes.push_back(InOutArgTypes[i]);
2013     Args.push_back(InOutArgs[i]);
2014   }
2015   Constraints += InOutConstraints;
2016 
2017   // Clobbers
2018   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
2019     StringRef Clobber = S.getClobber(i);
2020 
2021     if (Clobber != "memory" && Clobber != "cc")
2022       Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
2023 
2024     if (!Constraints.empty())
2025       Constraints += ',';
2026 
2027     Constraints += "~{";
2028     Constraints += Clobber;
2029     Constraints += '}';
2030   }
2031 
2032   // Add machine specific clobbers
2033   std::string MachineClobbers = getTarget().getClobbers();
2034   if (!MachineClobbers.empty()) {
2035     if (!Constraints.empty())
2036       Constraints += ',';
2037     Constraints += MachineClobbers;
2038   }
2039 
2040   llvm::Type *ResultType;
2041   if (ResultRegTypes.empty())
2042     ResultType = VoidTy;
2043   else if (ResultRegTypes.size() == 1)
2044     ResultType = ResultRegTypes[0];
2045   else
2046     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
2047 
2048   llvm::FunctionType *FTy =
2049     llvm::FunctionType::get(ResultType, ArgTypes, false);
2050 
2051   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
2052   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
2053     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
2054   llvm::InlineAsm *IA =
2055     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
2056                          /* IsAlignStack */ false, AsmDialect);
2057   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
2058   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
2059                        llvm::Attribute::NoUnwind);
2060 
2061   // Slap the source location of the inline asm into a !srcloc metadata on the
2062   // call.
2063   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) {
2064     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
2065                                                    *this));
2066   } else {
2067     // At least put the line number on MS inline asm blobs.
2068     auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding());
2069     Result->setMetadata("srcloc",
2070                         llvm::MDNode::get(getLLVMContext(),
2071                                           llvm::ConstantAsMetadata::get(Loc)));
2072   }
2073 
2074   // Extract all of the register value results from the asm.
2075   std::vector<llvm::Value*> RegResults;
2076   if (ResultRegTypes.size() == 1) {
2077     RegResults.push_back(Result);
2078   } else {
2079     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
2080       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
2081       RegResults.push_back(Tmp);
2082     }
2083   }
2084 
2085   assert(RegResults.size() == ResultRegTypes.size());
2086   assert(RegResults.size() == ResultTruncRegTypes.size());
2087   assert(RegResults.size() == ResultRegDests.size());
2088   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
2089     llvm::Value *Tmp = RegResults[i];
2090 
2091     // If the result type of the LLVM IR asm doesn't match the result type of
2092     // the expression, do the conversion.
2093     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
2094       llvm::Type *TruncTy = ResultTruncRegTypes[i];
2095 
2096       // Truncate the integer result to the right size, note that TruncTy can be
2097       // a pointer.
2098       if (TruncTy->isFloatingPointTy())
2099         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
2100       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
2101         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
2102         Tmp = Builder.CreateTrunc(Tmp,
2103                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
2104         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
2105       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
2106         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
2107         Tmp = Builder.CreatePtrToInt(Tmp,
2108                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
2109         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2110       } else if (TruncTy->isIntegerTy()) {
2111         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
2112       } else if (TruncTy->isVectorTy()) {
2113         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
2114       }
2115     }
2116 
2117     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
2118   }
2119 }
2120 
InitCapturedStruct(const CapturedStmt & S)2121 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) {
2122   const RecordDecl *RD = S.getCapturedRecordDecl();
2123   QualType RecordTy = getContext().getRecordType(RD);
2124 
2125   // Initialize the captured struct.
2126   LValue SlotLV = MakeNaturalAlignAddrLValue(
2127       CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
2128 
2129   RecordDecl::field_iterator CurField = RD->field_begin();
2130   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
2131                                            E = S.capture_init_end();
2132        I != E; ++I, ++CurField) {
2133     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
2134     if (CurField->hasCapturedVLAType()) {
2135       auto VAT = CurField->getCapturedVLAType();
2136       EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2137     } else {
2138       EmitInitializerForField(*CurField, LV, *I, None);
2139     }
2140   }
2141 
2142   return SlotLV;
2143 }
2144 
2145 /// Generate an outlined function for the body of a CapturedStmt, store any
2146 /// captured variables into the captured struct, and call the outlined function.
2147 llvm::Function *
EmitCapturedStmt(const CapturedStmt & S,CapturedRegionKind K)2148 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
2149   LValue CapStruct = InitCapturedStruct(S);
2150 
2151   // Emit the CapturedDecl
2152   CodeGenFunction CGF(CGM, true);
2153   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
2154   llvm::Function *F = CGF.GenerateCapturedStmtFunction(S);
2155   delete CGF.CapturedStmtInfo;
2156 
2157   // Emit call to the helper function.
2158   EmitCallOrInvoke(F, CapStruct.getAddress());
2159 
2160   return F;
2161 }
2162 
2163 llvm::Value *
GenerateCapturedStmtArgument(const CapturedStmt & S)2164 CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) {
2165   LValue CapStruct = InitCapturedStruct(S);
2166   return CapStruct.getAddress();
2167 }
2168 
2169 /// Creates the outlined function for a CapturedStmt.
2170 llvm::Function *
GenerateCapturedStmtFunction(const CapturedStmt & S)2171 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) {
2172   assert(CapturedStmtInfo &&
2173     "CapturedStmtInfo should be set when generating the captured function");
2174   const CapturedDecl *CD = S.getCapturedDecl();
2175   const RecordDecl *RD = S.getCapturedRecordDecl();
2176   SourceLocation Loc = S.getLocStart();
2177   assert(CD->hasBody() && "missing CapturedDecl body");
2178 
2179   // Build the argument list.
2180   ASTContext &Ctx = CGM.getContext();
2181   FunctionArgList Args;
2182   Args.append(CD->param_begin(), CD->param_end());
2183 
2184   // Create the function declaration.
2185   FunctionType::ExtInfo ExtInfo;
2186   const CGFunctionInfo &FuncInfo =
2187       CGM.getTypes().arrangeFreeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
2188                                                     /*IsVariadic=*/false);
2189   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
2190 
2191   llvm::Function *F =
2192     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
2193                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
2194   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
2195   if (CD->isNothrow())
2196     F->addFnAttr(llvm::Attribute::NoUnwind);
2197 
2198   // Generate the function.
2199   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args,
2200                 CD->getLocation(),
2201                 CD->getBody()->getLocStart());
2202   // Set the context parameter in CapturedStmtInfo.
2203   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
2204   assert(DeclPtr && "missing context parameter for CapturedStmt");
2205   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
2206 
2207   // Initialize variable-length arrays.
2208   LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
2209                                            Ctx.getTagDeclType(RD));
2210   for (auto *FD : RD->fields()) {
2211     if (FD->hasCapturedVLAType()) {
2212       auto *ExprArg = EmitLoadOfLValue(EmitLValueForField(Base, FD),
2213                                        S.getLocStart()).getScalarVal();
2214       auto VAT = FD->getCapturedVLAType();
2215       VLASizeMap[VAT->getSizeExpr()] = ExprArg;
2216     }
2217   }
2218 
2219   // If 'this' is captured, load it into CXXThisValue.
2220   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
2221     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
2222     LValue ThisLValue = EmitLValueForField(Base, FD);
2223     CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal();
2224   }
2225 
2226   PGO.assignRegionCounters(CD, F);
2227   CapturedStmtInfo->EmitBody(*this, CD->getBody());
2228   FinishFunction(CD->getBodyRBrace());
2229 
2230   return F;
2231 }
2232