1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "Win64Exception.h"
18 #include "WinCodeViewLineTables.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ConstantFolding.h"
22 #include "llvm/Analysis/JumpInstrTableInfo.h"
23 #include "llvm/CodeGen/Analysis.h"
24 #include "llvm/CodeGen/GCMetadataPrinter.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBundle.h"
29 #include "llvm/CodeGen/MachineJumpTableInfo.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/Mangler.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/MC/MCExpr.h"
40 #include "llvm/MC/MCInst.h"
41 #include "llvm/MC/MCSection.h"
42 #include "llvm/MC/MCStreamer.h"
43 #include "llvm/MC/MCSymbol.h"
44 #include "llvm/MC/MCValue.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/Format.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/TargetRegistry.h"
49 #include "llvm/Support/Timer.h"
50 #include "llvm/Target/TargetFrameLowering.h"
51 #include "llvm/Target/TargetInstrInfo.h"
52 #include "llvm/Target/TargetLowering.h"
53 #include "llvm/Target/TargetLoweringObjectFile.h"
54 #include "llvm/Target/TargetRegisterInfo.h"
55 #include "llvm/Target/TargetSubtargetInfo.h"
56 using namespace llvm;
57
58 #define DEBUG_TYPE "asm-printer"
59
60 static const char *const DWARFGroupName = "DWARF Emission";
61 static const char *const DbgTimerName = "Debug Info Emission";
62 static const char *const EHTimerName = "DWARF Exception Writer";
63 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables";
64
65 STATISTIC(EmittedInsts, "Number of machine instrs printed");
66
67 char AsmPrinter::ID = 0;
68
69 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
getGCMap(void * & P)70 static gcp_map_type &getGCMap(void *&P) {
71 if (!P)
72 P = new gcp_map_type();
73 return *(gcp_map_type*)P;
74 }
75
76
77 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
78 /// value in log2 form. This rounds up to the preferred alignment if possible
79 /// and legal.
getGVAlignmentLog2(const GlobalValue * GV,const DataLayout & DL,unsigned InBits=0)80 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
81 unsigned InBits = 0) {
82 unsigned NumBits = 0;
83 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
84 NumBits = DL.getPreferredAlignmentLog(GVar);
85
86 // If InBits is specified, round it to it.
87 if (InBits > NumBits)
88 NumBits = InBits;
89
90 // If the GV has a specified alignment, take it into account.
91 if (GV->getAlignment() == 0)
92 return NumBits;
93
94 unsigned GVAlign = Log2_32(GV->getAlignment());
95
96 // If the GVAlign is larger than NumBits, or if we are required to obey
97 // NumBits because the GV has an assigned section, obey it.
98 if (GVAlign > NumBits || GV->hasSection())
99 NumBits = GVAlign;
100 return NumBits;
101 }
102
AsmPrinter(TargetMachine & tm,std::unique_ptr<MCStreamer> Streamer)103 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
104 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
105 OutContext(Streamer->getContext()), OutStreamer(*Streamer.release()),
106 LastMI(nullptr), LastFn(0), Counter(~0U) {
107 DD = nullptr;
108 MMI = nullptr;
109 LI = nullptr;
110 MF = nullptr;
111 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr;
112 CurrentFnBegin = nullptr;
113 CurrentFnEnd = nullptr;
114 GCMetadataPrinters = nullptr;
115 VerboseAsm = OutStreamer.isVerboseAsm();
116 }
117
~AsmPrinter()118 AsmPrinter::~AsmPrinter() {
119 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
120
121 if (GCMetadataPrinters) {
122 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
123
124 delete &GCMap;
125 GCMetadataPrinters = nullptr;
126 }
127
128 delete &OutStreamer;
129 }
130
131 /// getFunctionNumber - Return a unique ID for the current function.
132 ///
getFunctionNumber() const133 unsigned AsmPrinter::getFunctionNumber() const {
134 return MF->getFunctionNumber();
135 }
136
getObjFileLowering() const137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
138 return *TM.getObjFileLowering();
139 }
140
141 /// getDataLayout - Return information about data layout.
getDataLayout() const142 const DataLayout &AsmPrinter::getDataLayout() const {
143 return *TM.getDataLayout();
144 }
145
getSubtargetInfo() const146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
148 return MF->getSubtarget<MCSubtargetInfo>();
149 }
150
EmitToStreamer(MCStreamer & S,const MCInst & Inst)151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
152 S.EmitInstruction(Inst, getSubtargetInfo());
153 }
154
getTargetTriple() const155 StringRef AsmPrinter::getTargetTriple() const {
156 return TM.getTargetTriple();
157 }
158
159 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const160 const MCSection *AsmPrinter::getCurrentSection() const {
161 return OutStreamer.getCurrentSection().first;
162 }
163
164
165
getAnalysisUsage(AnalysisUsage & AU) const166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
167 AU.setPreservesAll();
168 MachineFunctionPass::getAnalysisUsage(AU);
169 AU.addRequired<MachineModuleInfo>();
170 AU.addRequired<GCModuleInfo>();
171 if (isVerbose())
172 AU.addRequired<MachineLoopInfo>();
173 }
174
doInitialization(Module & M)175 bool AsmPrinter::doInitialization(Module &M) {
176 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
177 MMI->AnalyzeModule(M);
178
179 // Initialize TargetLoweringObjectFile.
180 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
181 .Initialize(OutContext, TM);
182
183 OutStreamer.InitSections(false);
184
185 Mang = new Mangler(TM.getDataLayout());
186
187 // Emit the version-min deplyment target directive if needed.
188 //
189 // FIXME: If we end up with a collection of these sorts of Darwin-specific
190 // or ELF-specific things, it may make sense to have a platform helper class
191 // that will work with the target helper class. For now keep it here, as the
192 // alternative is duplicated code in each of the target asm printers that
193 // use the directive, where it would need the same conditionalization
194 // anyway.
195 Triple TT(getTargetTriple());
196 if (TT.isOSDarwin()) {
197 unsigned Major, Minor, Update;
198 TT.getOSVersion(Major, Minor, Update);
199 // If there is a version specified, Major will be non-zero.
200 if (Major)
201 OutStreamer.EmitVersionMin((TT.isMacOSX() ?
202 MCVM_OSXVersionMin : MCVM_IOSVersionMin),
203 Major, Minor, Update);
204 }
205
206 // Allow the target to emit any magic that it wants at the start of the file.
207 EmitStartOfAsmFile(M);
208
209 // Very minimal debug info. It is ignored if we emit actual debug info. If we
210 // don't, this at least helps the user find where a global came from.
211 if (MAI->hasSingleParameterDotFile()) {
212 // .file "foo.c"
213 OutStreamer.EmitFileDirective(M.getModuleIdentifier());
214 }
215
216 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
217 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
218 for (auto &I : *MI)
219 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
220 MP->beginAssembly(M, *MI, *this);
221
222 // Emit module-level inline asm if it exists.
223 if (!M.getModuleInlineAsm().empty()) {
224 // We're at the module level. Construct MCSubtarget from the default CPU
225 // and target triple.
226 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
227 TM.getTargetTriple(), TM.getTargetCPU(), TM.getTargetFeatureString()));
228 OutStreamer.AddComment("Start of file scope inline assembly");
229 OutStreamer.AddBlankLine();
230 EmitInlineAsm(M.getModuleInlineAsm()+"\n", *STI);
231 OutStreamer.AddComment("End of file scope inline assembly");
232 OutStreamer.AddBlankLine();
233 }
234
235 if (MAI->doesSupportDebugInformation()) {
236 bool skip_dwarf = false;
237 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) {
238 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this),
239 DbgTimerName,
240 CodeViewLineTablesGroupName));
241 // FIXME: Don't emit DWARF debug info if there's at least one function
242 // with AddressSanitizer instrumentation.
243 // This is a band-aid fix for PR22032.
244 for (auto &F : M.functions()) {
245 if (F.hasFnAttribute(Attribute::SanitizeAddress)) {
246 skip_dwarf = true;
247 break;
248 }
249 }
250 }
251 if (!skip_dwarf) {
252 DD = new DwarfDebug(this, &M);
253 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName));
254 }
255 }
256
257 EHStreamer *ES = nullptr;
258 switch (MAI->getExceptionHandlingType()) {
259 case ExceptionHandling::None:
260 break;
261 case ExceptionHandling::SjLj:
262 case ExceptionHandling::DwarfCFI:
263 ES = new DwarfCFIException(this);
264 break;
265 case ExceptionHandling::ARM:
266 ES = new ARMException(this);
267 break;
268 case ExceptionHandling::WinEH:
269 switch (MAI->getWinEHEncodingType()) {
270 default: llvm_unreachable("unsupported unwinding information encoding");
271 case WinEH::EncodingType::Itanium:
272 ES = new Win64Exception(this);
273 break;
274 }
275 break;
276 }
277 if (ES)
278 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName));
279 return false;
280 }
281
canBeHidden(const GlobalValue * GV,const MCAsmInfo & MAI)282 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
283 if (!MAI.hasWeakDefCanBeHiddenDirective())
284 return false;
285
286 return canBeOmittedFromSymbolTable(GV);
287 }
288
EmitLinkage(const GlobalValue * GV,MCSymbol * GVSym) const289 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
290 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
291 switch (Linkage) {
292 case GlobalValue::CommonLinkage:
293 case GlobalValue::LinkOnceAnyLinkage:
294 case GlobalValue::LinkOnceODRLinkage:
295 case GlobalValue::WeakAnyLinkage:
296 case GlobalValue::WeakODRLinkage:
297 if (MAI->hasWeakDefDirective()) {
298 // .globl _foo
299 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
300
301 if (!canBeHidden(GV, *MAI))
302 // .weak_definition _foo
303 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
304 else
305 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
306 } else if (MAI->hasLinkOnceDirective()) {
307 // .globl _foo
308 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
309 //NOTE: linkonce is handled by the section the symbol was assigned to.
310 } else {
311 // .weak _foo
312 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
313 }
314 return;
315 case GlobalValue::AppendingLinkage:
316 // FIXME: appending linkage variables should go into a section of
317 // their name or something. For now, just emit them as external.
318 case GlobalValue::ExternalLinkage:
319 // If external or appending, declare as a global symbol.
320 // .globl _foo
321 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
322 return;
323 case GlobalValue::PrivateLinkage:
324 case GlobalValue::InternalLinkage:
325 return;
326 case GlobalValue::AvailableExternallyLinkage:
327 llvm_unreachable("Should never emit this");
328 case GlobalValue::ExternalWeakLinkage:
329 llvm_unreachable("Don't know how to emit these");
330 }
331 llvm_unreachable("Unknown linkage type!");
332 }
333
getNameWithPrefix(SmallVectorImpl<char> & Name,const GlobalValue * GV) const334 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
335 const GlobalValue *GV) const {
336 TM.getNameWithPrefix(Name, GV, *Mang);
337 }
338
getSymbol(const GlobalValue * GV) const339 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
340 return TM.getSymbol(GV, *Mang);
341 }
342
343 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)344 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
345 if (GV->hasInitializer()) {
346 // Check to see if this is a special global used by LLVM, if so, emit it.
347 if (EmitSpecialLLVMGlobal(GV))
348 return;
349
350 // Skip the emission of global equivalents. The symbol can be emitted later
351 // on by emitGlobalGOTEquivs in case it turns out to be needed.
352 if (GlobalGOTEquivs.count(getSymbol(GV)))
353 return;
354
355 if (isVerbose()) {
356 GV->printAsOperand(OutStreamer.GetCommentOS(),
357 /*PrintType=*/false, GV->getParent());
358 OutStreamer.GetCommentOS() << '\n';
359 }
360 }
361
362 MCSymbol *GVSym = getSymbol(GV);
363 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
364
365 if (!GV->hasInitializer()) // External globals require no extra code.
366 return;
367
368 GVSym->redefineIfPossible();
369 if (GVSym->isDefined() || GVSym->isVariable())
370 report_fatal_error("symbol '" + Twine(GVSym->getName()) +
371 "' is already defined");
372
373 if (MAI->hasDotTypeDotSizeDirective())
374 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
375
376 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
377
378 const DataLayout *DL = TM.getDataLayout();
379 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType());
380
381 // If the alignment is specified, we *must* obey it. Overaligning a global
382 // with a specified alignment is a prompt way to break globals emitted to
383 // sections and expected to be contiguous (e.g. ObjC metadata).
384 unsigned AlignLog = getGVAlignmentLog2(GV, *DL);
385
386 for (const HandlerInfo &HI : Handlers) {
387 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
388 HI.Handler->setSymbolSize(GVSym, Size);
389 }
390
391 // Handle common and BSS local symbols (.lcomm).
392 if (GVKind.isCommon() || GVKind.isBSSLocal()) {
393 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
394 unsigned Align = 1 << AlignLog;
395
396 // Handle common symbols.
397 if (GVKind.isCommon()) {
398 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
399 Align = 0;
400
401 // .comm _foo, 42, 4
402 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
403 return;
404 }
405
406 // Handle local BSS symbols.
407 if (MAI->hasMachoZeroFillDirective()) {
408 const MCSection *TheSection =
409 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
410 // .zerofill __DATA, __bss, _foo, 400, 5
411 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
412 return;
413 }
414
415 // Use .lcomm only if it supports user-specified alignment.
416 // Otherwise, while it would still be correct to use .lcomm in some
417 // cases (e.g. when Align == 1), the external assembler might enfore
418 // some -unknown- default alignment behavior, which could cause
419 // spurious differences between external and integrated assembler.
420 // Prefer to simply fall back to .local / .comm in this case.
421 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
422 // .lcomm _foo, 42
423 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
424 return;
425 }
426
427 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
428 Align = 0;
429
430 // .local _foo
431 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
432 // .comm _foo, 42, 4
433 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
434 return;
435 }
436
437 const MCSection *TheSection =
438 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM);
439
440 // Handle the zerofill directive on darwin, which is a special form of BSS
441 // emission.
442 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
443 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
444
445 // .globl _foo
446 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
447 // .zerofill __DATA, __common, _foo, 400, 5
448 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
449 return;
450 }
451
452 // Handle thread local data for mach-o which requires us to output an
453 // additional structure of data and mangle the original symbol so that we
454 // can reference it later.
455 //
456 // TODO: This should become an "emit thread local global" method on TLOF.
457 // All of this macho specific stuff should be sunk down into TLOFMachO and
458 // stuff like "TLSExtraDataSection" should no longer be part of the parent
459 // TLOF class. This will also make it more obvious that stuff like
460 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
461 // specific code.
462 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
463 // Emit the .tbss symbol
464 MCSymbol *MangSym =
465 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
466
467 if (GVKind.isThreadBSS()) {
468 TheSection = getObjFileLowering().getTLSBSSSection();
469 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
470 } else if (GVKind.isThreadData()) {
471 OutStreamer.SwitchSection(TheSection);
472
473 EmitAlignment(AlignLog, GV);
474 OutStreamer.EmitLabel(MangSym);
475
476 EmitGlobalConstant(GV->getInitializer());
477 }
478
479 OutStreamer.AddBlankLine();
480
481 // Emit the variable struct for the runtime.
482 const MCSection *TLVSect
483 = getObjFileLowering().getTLSExtraDataSection();
484
485 OutStreamer.SwitchSection(TLVSect);
486 // Emit the linkage here.
487 EmitLinkage(GV, GVSym);
488 OutStreamer.EmitLabel(GVSym);
489
490 // Three pointers in size:
491 // - __tlv_bootstrap - used to make sure support exists
492 // - spare pointer, used when mapped by the runtime
493 // - pointer to mangled symbol above with initializer
494 unsigned PtrSize = DL->getPointerTypeSize(GV->getType());
495 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
496 PtrSize);
497 OutStreamer.EmitIntValue(0, PtrSize);
498 OutStreamer.EmitSymbolValue(MangSym, PtrSize);
499
500 OutStreamer.AddBlankLine();
501 return;
502 }
503
504 OutStreamer.SwitchSection(TheSection);
505
506 EmitLinkage(GV, GVSym);
507 EmitAlignment(AlignLog, GV);
508
509 OutStreamer.EmitLabel(GVSym);
510
511 EmitGlobalConstant(GV->getInitializer());
512
513 if (MAI->hasDotTypeDotSizeDirective())
514 // .size foo, 42
515 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
516
517 OutStreamer.AddBlankLine();
518 }
519
520 /// EmitFunctionHeader - This method emits the header for the current
521 /// function.
EmitFunctionHeader()522 void AsmPrinter::EmitFunctionHeader() {
523 // Print out constants referenced by the function
524 EmitConstantPool();
525
526 // Print the 'header' of function.
527 const Function *F = MF->getFunction();
528
529 OutStreamer.SwitchSection(
530 getObjFileLowering().SectionForGlobal(F, *Mang, TM));
531 EmitVisibility(CurrentFnSym, F->getVisibility());
532
533 EmitLinkage(F, CurrentFnSym);
534 if (MAI->hasFunctionAlignment())
535 EmitAlignment(MF->getAlignment(), F);
536
537 if (MAI->hasDotTypeDotSizeDirective())
538 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
539
540 if (isVerbose()) {
541 F->printAsOperand(OutStreamer.GetCommentOS(),
542 /*PrintType=*/false, F->getParent());
543 OutStreamer.GetCommentOS() << '\n';
544 }
545
546 // Emit the prefix data.
547 if (F->hasPrefixData())
548 EmitGlobalConstant(F->getPrefixData());
549
550 // Emit the CurrentFnSym. This is a virtual function to allow targets to
551 // do their wild and crazy things as required.
552 EmitFunctionEntryLabel();
553
554 // If the function had address-taken blocks that got deleted, then we have
555 // references to the dangling symbols. Emit them at the start of the function
556 // so that we don't get references to undefined symbols.
557 std::vector<MCSymbol*> DeadBlockSyms;
558 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
559 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
560 OutStreamer.AddComment("Address taken block that was later removed");
561 OutStreamer.EmitLabel(DeadBlockSyms[i]);
562 }
563
564 if (CurrentFnBegin) {
565 if (MAI->useAssignmentForEHBegin()) {
566 MCSymbol *CurPos = OutContext.CreateTempSymbol();
567 OutStreamer.EmitLabel(CurPos);
568 OutStreamer.EmitAssignment(CurrentFnBegin,
569 MCSymbolRefExpr::Create(CurPos, OutContext));
570 } else {
571 OutStreamer.EmitLabel(CurrentFnBegin);
572 }
573 }
574
575 // Emit pre-function debug and/or EH information.
576 for (const HandlerInfo &HI : Handlers) {
577 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
578 HI.Handler->beginFunction(MF);
579 }
580
581 // Emit the prologue data.
582 if (F->hasPrologueData())
583 EmitGlobalConstant(F->getPrologueData());
584 }
585
586 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
587 /// function. This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()588 void AsmPrinter::EmitFunctionEntryLabel() {
589 CurrentFnSym->redefineIfPossible();
590
591 // The function label could have already been emitted if two symbols end up
592 // conflicting due to asm renaming. Detect this and emit an error.
593 if (CurrentFnSym->isVariable())
594 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
595 "' is a protected alias");
596 if (CurrentFnSym->isDefined())
597 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
598 "' label emitted multiple times to assembly file");
599
600 return OutStreamer.EmitLabel(CurrentFnSym);
601 }
602
603 /// emitComments - Pretty-print comments for instructions.
emitComments(const MachineInstr & MI,raw_ostream & CommentOS)604 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
605 const MachineFunction *MF = MI.getParent()->getParent();
606 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
607
608 // Check for spills and reloads
609 int FI;
610
611 const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
612
613 // We assume a single instruction only has a spill or reload, not
614 // both.
615 const MachineMemOperand *MMO;
616 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) {
617 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
618 MMO = *MI.memoperands_begin();
619 CommentOS << MMO->getSize() << "-byte Reload\n";
620 }
621 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) {
622 if (FrameInfo->isSpillSlotObjectIndex(FI))
623 CommentOS << MMO->getSize() << "-byte Folded Reload\n";
624 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) {
625 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
626 MMO = *MI.memoperands_begin();
627 CommentOS << MMO->getSize() << "-byte Spill\n";
628 }
629 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) {
630 if (FrameInfo->isSpillSlotObjectIndex(FI))
631 CommentOS << MMO->getSize() << "-byte Folded Spill\n";
632 }
633
634 // Check for spill-induced copies
635 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
636 CommentOS << " Reload Reuse\n";
637 }
638
639 /// emitImplicitDef - This method emits the specified machine instruction
640 /// that is an implicit def.
emitImplicitDef(const MachineInstr * MI) const641 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
642 unsigned RegNo = MI->getOperand(0).getReg();
643 OutStreamer.AddComment(Twine("implicit-def: ") +
644 MMI->getContext().getRegisterInfo()->getName(RegNo));
645 OutStreamer.AddBlankLine();
646 }
647
emitKill(const MachineInstr * MI,AsmPrinter & AP)648 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
649 std::string Str = "kill:";
650 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
651 const MachineOperand &Op = MI->getOperand(i);
652 assert(Op.isReg() && "KILL instruction must have only register operands");
653 Str += ' ';
654 Str += AP.MMI->getContext().getRegisterInfo()->getName(Op.getReg());
655 Str += (Op.isDef() ? "<def>" : "<kill>");
656 }
657 AP.OutStreamer.AddComment(Str);
658 AP.OutStreamer.AddBlankLine();
659 }
660
661 /// emitDebugValueComment - This method handles the target-independent form
662 /// of DBG_VALUE, returning true if it was able to do so. A false return
663 /// means the target will need to handle MI in EmitInstruction.
emitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)664 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
665 // This code handles only the 4-operand target-independent form.
666 if (MI->getNumOperands() != 4)
667 return false;
668
669 SmallString<128> Str;
670 raw_svector_ostream OS(Str);
671 OS << "DEBUG_VALUE: ";
672
673 DIVariable V = MI->getDebugVariable();
674 if (auto *SP = dyn_cast<MDSubprogram>(V->getScope())) {
675 StringRef Name = SP->getDisplayName();
676 if (!Name.empty())
677 OS << Name << ":";
678 }
679 OS << V->getName();
680
681 DIExpression Expr = MI->getDebugExpression();
682 if (Expr->isBitPiece())
683 OS << " [bit_piece offset=" << Expr->getBitPieceOffset()
684 << " size=" << Expr->getBitPieceSize() << "]";
685 OS << " <- ";
686
687 // The second operand is only an offset if it's an immediate.
688 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
689 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
690
691 // Register or immediate value. Register 0 means undef.
692 if (MI->getOperand(0).isFPImm()) {
693 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
694 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
695 OS << (double)APF.convertToFloat();
696 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
697 OS << APF.convertToDouble();
698 } else {
699 // There is no good way to print long double. Convert a copy to
700 // double. Ah well, it's only a comment.
701 bool ignored;
702 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
703 &ignored);
704 OS << "(long double) " << APF.convertToDouble();
705 }
706 } else if (MI->getOperand(0).isImm()) {
707 OS << MI->getOperand(0).getImm();
708 } else if (MI->getOperand(0).isCImm()) {
709 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
710 } else {
711 unsigned Reg;
712 if (MI->getOperand(0).isReg()) {
713 Reg = MI->getOperand(0).getReg();
714 } else {
715 assert(MI->getOperand(0).isFI() && "Unknown operand type");
716 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
717 Offset += TFI->getFrameIndexReference(*AP.MF,
718 MI->getOperand(0).getIndex(), Reg);
719 Deref = true;
720 }
721 if (Reg == 0) {
722 // Suppress offset, it is not meaningful here.
723 OS << "undef";
724 // NOTE: Want this comment at start of line, don't emit with AddComment.
725 AP.OutStreamer.emitRawComment(OS.str());
726 return true;
727 }
728 if (Deref)
729 OS << '[';
730 OS << AP.MMI->getContext().getRegisterInfo()->getName(Reg);
731 }
732
733 if (Deref)
734 OS << '+' << Offset << ']';
735
736 // NOTE: Want this comment at start of line, don't emit with AddComment.
737 AP.OutStreamer.emitRawComment(OS.str());
738 return true;
739 }
740
needsCFIMoves()741 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
742 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
743 MF->getFunction()->needsUnwindTableEntry())
744 return CFI_M_EH;
745
746 if (MMI->hasDebugInfo())
747 return CFI_M_Debug;
748
749 return CFI_M_None;
750 }
751
needsSEHMoves()752 bool AsmPrinter::needsSEHMoves() {
753 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
754 }
755
emitCFIInstruction(const MachineInstr & MI)756 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
757 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
758 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
759 ExceptionHandlingType != ExceptionHandling::ARM)
760 return;
761
762 if (needsCFIMoves() == CFI_M_None)
763 return;
764
765 const MachineModuleInfo &MMI = MF->getMMI();
766 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions();
767 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
768 const MCCFIInstruction &CFI = Instrs[CFIIndex];
769 emitCFIInstruction(CFI);
770 }
771
emitFrameAlloc(const MachineInstr & MI)772 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
773 // The operands are the MCSymbol and the frame offset of the allocation.
774 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
775 int FrameOffset = MI.getOperand(1).getImm();
776
777 // Emit a symbol assignment.
778 OutStreamer.EmitAssignment(FrameAllocSym,
779 MCConstantExpr::Create(FrameOffset, OutContext));
780 }
781
782 /// EmitFunctionBody - This method emits the body and trailer for a
783 /// function.
EmitFunctionBody()784 void AsmPrinter::EmitFunctionBody() {
785 EmitFunctionHeader();
786
787 // Emit target-specific gunk before the function body.
788 EmitFunctionBodyStart();
789
790 bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
791
792 // Print out code for the function.
793 bool HasAnyRealCode = false;
794 for (auto &MBB : *MF) {
795 // Print a label for the basic block.
796 EmitBasicBlockStart(MBB);
797 for (auto &MI : MBB) {
798
799 // Print the assembly for the instruction.
800 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
801 !MI.isDebugValue()) {
802 HasAnyRealCode = true;
803 ++EmittedInsts;
804 }
805
806 if (ShouldPrintDebugScopes) {
807 for (const HandlerInfo &HI : Handlers) {
808 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
809 TimePassesIsEnabled);
810 HI.Handler->beginInstruction(&MI);
811 }
812 }
813
814 if (isVerbose())
815 emitComments(MI, OutStreamer.GetCommentOS());
816
817 switch (MI.getOpcode()) {
818 case TargetOpcode::CFI_INSTRUCTION:
819 emitCFIInstruction(MI);
820 break;
821
822 case TargetOpcode::FRAME_ALLOC:
823 emitFrameAlloc(MI);
824 break;
825
826 case TargetOpcode::EH_LABEL:
827 case TargetOpcode::GC_LABEL:
828 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol());
829 break;
830 case TargetOpcode::INLINEASM:
831 EmitInlineAsm(&MI);
832 break;
833 case TargetOpcode::DBG_VALUE:
834 if (isVerbose()) {
835 if (!emitDebugValueComment(&MI, *this))
836 EmitInstruction(&MI);
837 }
838 break;
839 case TargetOpcode::IMPLICIT_DEF:
840 if (isVerbose()) emitImplicitDef(&MI);
841 break;
842 case TargetOpcode::KILL:
843 if (isVerbose()) emitKill(&MI, *this);
844 break;
845 default:
846 EmitInstruction(&MI);
847 break;
848 }
849
850 if (ShouldPrintDebugScopes) {
851 for (const HandlerInfo &HI : Handlers) {
852 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
853 TimePassesIsEnabled);
854 HI.Handler->endInstruction();
855 }
856 }
857 }
858
859 EmitBasicBlockEnd(MBB);
860 }
861
862 // If the function is empty and the object file uses .subsections_via_symbols,
863 // then we need to emit *something* to the function body to prevent the
864 // labels from collapsing together. Just emit a noop.
865 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
866 MCInst Noop;
867 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
868 OutStreamer.AddComment("avoids zero-length function");
869
870 // Targets can opt-out of emitting the noop here by leaving the opcode
871 // unspecified.
872 if (Noop.getOpcode())
873 OutStreamer.EmitInstruction(Noop, getSubtargetInfo());
874 }
875
876 const Function *F = MF->getFunction();
877 for (const auto &BB : *F) {
878 if (!BB.hasAddressTaken())
879 continue;
880 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
881 if (Sym->isDefined())
882 continue;
883 OutStreamer.AddComment("Address of block that was removed by CodeGen");
884 OutStreamer.EmitLabel(Sym);
885 }
886
887 // Emit target-specific gunk after the function body.
888 EmitFunctionBodyEnd();
889
890 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
891 MAI->hasDotTypeDotSizeDirective()) {
892 // Create a symbol for the end of function.
893 CurrentFnEnd = createTempSymbol("func_end");
894 OutStreamer.EmitLabel(CurrentFnEnd);
895 }
896
897 // If the target wants a .size directive for the size of the function, emit
898 // it.
899 if (MAI->hasDotTypeDotSizeDirective()) {
900 // We can get the size as difference between the function label and the
901 // temp label.
902 const MCExpr *SizeExp =
903 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(CurrentFnEnd, OutContext),
904 MCSymbolRefExpr::Create(CurrentFnSymForSize,
905 OutContext),
906 OutContext);
907 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
908 }
909
910 for (const HandlerInfo &HI : Handlers) {
911 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
912 HI.Handler->markFunctionEnd();
913 }
914
915 // Print out jump tables referenced by the function.
916 EmitJumpTableInfo();
917
918 // Emit post-function debug and/or EH information.
919 for (const HandlerInfo &HI : Handlers) {
920 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled);
921 HI.Handler->endFunction(MF);
922 }
923 MMI->EndFunction();
924
925 OutStreamer.AddBlankLine();
926 }
927
928 /// \brief Compute the number of Global Variables that uses a Constant.
getNumGlobalVariableUses(const Constant * C)929 static unsigned getNumGlobalVariableUses(const Constant *C) {
930 if (!C)
931 return 0;
932
933 if (isa<GlobalVariable>(C))
934 return 1;
935
936 unsigned NumUses = 0;
937 for (auto *CU : C->users())
938 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
939
940 return NumUses;
941 }
942
943 /// \brief Only consider global GOT equivalents if at least one user is a
944 /// cstexpr inside an initializer of another global variables. Also, don't
945 /// handle cstexpr inside instructions. During global variable emission,
946 /// candidates are skipped and are emitted later in case at least one cstexpr
947 /// isn't replaced by a PC relative GOT entry access.
isGOTEquivalentCandidate(const GlobalVariable * GV,unsigned & NumGOTEquivUsers)948 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
949 unsigned &NumGOTEquivUsers) {
950 // Global GOT equivalents are unnamed private globals with a constant
951 // pointer initializer to another global symbol. They must point to a
952 // GlobalVariable or Function, i.e., as GlobalValue.
953 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() ||
954 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0)))
955 return false;
956
957 // To be a got equivalent, at least one of its users need to be a constant
958 // expression used by another global variable.
959 for (auto *U : GV->users())
960 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
961
962 return NumGOTEquivUsers > 0;
963 }
964
965 /// \brief Unnamed constant global variables solely contaning a pointer to
966 /// another globals variable is equivalent to a GOT table entry; it contains the
967 /// the address of another symbol. Optimize it and replace accesses to these
968 /// "GOT equivalents" by using the GOT entry for the final global instead.
969 /// Compute GOT equivalent candidates among all global variables to avoid
970 /// emitting them if possible later on, after it use is replaced by a GOT entry
971 /// access.
computeGlobalGOTEquivs(Module & M)972 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
973 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
974 return;
975
976 for (const auto &G : M.globals()) {
977 unsigned NumGOTEquivUsers = 0;
978 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
979 continue;
980
981 const MCSymbol *GOTEquivSym = getSymbol(&G);
982 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
983 }
984 }
985
986 /// \brief Constant expressions using GOT equivalent globals may not be eligible
987 /// for PC relative GOT entry conversion, in such cases we need to emit such
988 /// globals we previously omitted in EmitGlobalVariable.
emitGlobalGOTEquivs()989 void AsmPrinter::emitGlobalGOTEquivs() {
990 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
991 return;
992
993 SmallVector<const GlobalVariable *, 8> FailedCandidates;
994 for (auto &I : GlobalGOTEquivs) {
995 const GlobalVariable *GV = I.second.first;
996 unsigned Cnt = I.second.second;
997 if (Cnt)
998 FailedCandidates.push_back(GV);
999 }
1000 GlobalGOTEquivs.clear();
1001
1002 for (auto *GV : FailedCandidates)
1003 EmitGlobalVariable(GV);
1004 }
1005
doFinalization(Module & M)1006 bool AsmPrinter::doFinalization(Module &M) {
1007 // Set the MachineFunction to nullptr so that we can catch attempted
1008 // accesses to MF specific features at the module level and so that
1009 // we can conditionalize accesses based on whether or not it is nullptr.
1010 MF = nullptr;
1011
1012 // Gather all GOT equivalent globals in the module. We really need two
1013 // passes over the globals: one to compute and another to avoid its emission
1014 // in EmitGlobalVariable, otherwise we would not be able to handle cases
1015 // where the got equivalent shows up before its use.
1016 computeGlobalGOTEquivs(M);
1017
1018 // Emit global variables.
1019 for (const auto &G : M.globals())
1020 EmitGlobalVariable(&G);
1021
1022 // Emit remaining GOT equivalent globals.
1023 emitGlobalGOTEquivs();
1024
1025 // Emit visibility info for declarations
1026 for (const Function &F : M) {
1027 if (!F.isDeclaration())
1028 continue;
1029 GlobalValue::VisibilityTypes V = F.getVisibility();
1030 if (V == GlobalValue::DefaultVisibility)
1031 continue;
1032
1033 MCSymbol *Name = getSymbol(&F);
1034 EmitVisibility(Name, V, false);
1035 }
1036
1037 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1038
1039 // Emit module flags.
1040 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
1041 M.getModuleFlagsMetadata(ModuleFlags);
1042 if (!ModuleFlags.empty())
1043 TLOF.emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM);
1044
1045 Triple TT(TM.getTargetTriple());
1046 if (TT.isOSBinFormatELF()) {
1047 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1048
1049 // Output stubs for external and common global variables.
1050 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1051 if (!Stubs.empty()) {
1052 OutStreamer.SwitchSection(TLOF.getDataRelSection());
1053 const DataLayout *DL = TM.getDataLayout();
1054
1055 for (const auto &Stub : Stubs) {
1056 OutStreamer.EmitLabel(Stub.first);
1057 OutStreamer.EmitSymbolValue(Stub.second.getPointer(),
1058 DL->getPointerSize());
1059 }
1060 }
1061 }
1062
1063 // Make sure we wrote out everything we need.
1064 OutStreamer.Flush();
1065
1066 // Finalize debug and EH information.
1067 for (const HandlerInfo &HI : Handlers) {
1068 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName,
1069 TimePassesIsEnabled);
1070 HI.Handler->endModule();
1071 delete HI.Handler;
1072 }
1073 Handlers.clear();
1074 DD = nullptr;
1075
1076 // If the target wants to know about weak references, print them all.
1077 if (MAI->getWeakRefDirective()) {
1078 // FIXME: This is not lazy, it would be nice to only print weak references
1079 // to stuff that is actually used. Note that doing so would require targets
1080 // to notice uses in operands (due to constant exprs etc). This should
1081 // happen with the MC stuff eventually.
1082
1083 // Print out module-level global variables here.
1084 for (const auto &G : M.globals()) {
1085 if (!G.hasExternalWeakLinkage())
1086 continue;
1087 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference);
1088 }
1089
1090 for (const auto &F : M) {
1091 if (!F.hasExternalWeakLinkage())
1092 continue;
1093 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference);
1094 }
1095 }
1096
1097 OutStreamer.AddBlankLine();
1098 for (const auto &Alias : M.aliases()) {
1099 MCSymbol *Name = getSymbol(&Alias);
1100
1101 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective())
1102 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
1103 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage())
1104 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
1105 else
1106 assert(Alias.hasLocalLinkage() && "Invalid alias linkage");
1107
1108 EmitVisibility(Name, Alias.getVisibility());
1109
1110 // Emit the directives as assignments aka .set:
1111 OutStreamer.EmitAssignment(Name, lowerConstant(Alias.getAliasee()));
1112 }
1113
1114 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1115 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1116 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1117 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1118 MP->finishAssembly(M, *MI, *this);
1119
1120 // Emit llvm.ident metadata in an '.ident' directive.
1121 EmitModuleIdents(M);
1122
1123 // Emit __morestack address if needed for indirect calls.
1124 if (MMI->usesMorestackAddr()) {
1125 const MCSection *ReadOnlySection =
1126 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(),
1127 /*C=*/nullptr);
1128 OutStreamer.SwitchSection(ReadOnlySection);
1129
1130 MCSymbol *AddrSymbol =
1131 OutContext.GetOrCreateSymbol(StringRef("__morestack_addr"));
1132 OutStreamer.EmitLabel(AddrSymbol);
1133
1134 unsigned PtrSize = TM.getDataLayout()->getPointerSize(0);
1135 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1136 PtrSize);
1137 }
1138
1139 // If we don't have any trampolines, then we don't require stack memory
1140 // to be executable. Some targets have a directive to declare this.
1141 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1142 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1143 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1144 OutStreamer.SwitchSection(S);
1145
1146 // Allow the target to emit any magic that it wants at the end of the file,
1147 // after everything else has gone out.
1148 EmitEndOfAsmFile(M);
1149
1150 delete Mang; Mang = nullptr;
1151 MMI = nullptr;
1152
1153 OutStreamer.Finish();
1154 OutStreamer.reset();
1155
1156 return false;
1157 }
1158
getCurExceptionSym()1159 MCSymbol *AsmPrinter::getCurExceptionSym() {
1160 if (!CurExceptionSym)
1161 CurExceptionSym = createTempSymbol("exception");
1162 return CurExceptionSym;
1163 }
1164
SetupMachineFunction(MachineFunction & MF)1165 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1166 this->MF = &MF;
1167 // Get the function symbol.
1168 CurrentFnSym = getSymbol(MF.getFunction());
1169 CurrentFnSymForSize = CurrentFnSym;
1170 CurrentFnBegin = nullptr;
1171 CurExceptionSym = nullptr;
1172 bool NeedsLocalForSize = MAI->needsLocalForSize();
1173 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() ||
1174 NeedsLocalForSize) {
1175 CurrentFnBegin = createTempSymbol("func_begin");
1176 if (NeedsLocalForSize)
1177 CurrentFnSymForSize = CurrentFnBegin;
1178 }
1179
1180 if (isVerbose())
1181 LI = &getAnalysis<MachineLoopInfo>();
1182 }
1183
1184 namespace {
1185 // SectionCPs - Keep track the alignment, constpool entries per Section.
1186 struct SectionCPs {
1187 const MCSection *S;
1188 unsigned Alignment;
1189 SmallVector<unsigned, 4> CPEs;
SectionCPs__anone190126f0111::SectionCPs1190 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
1191 };
1192 }
1193
1194 /// EmitConstantPool - Print to the current output stream assembly
1195 /// representations of the constants in the constant pool MCP. This is
1196 /// used to print out constants which have been "spilled to memory" by
1197 /// the code generator.
1198 ///
EmitConstantPool()1199 void AsmPrinter::EmitConstantPool() {
1200 const MachineConstantPool *MCP = MF->getConstantPool();
1201 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1202 if (CP.empty()) return;
1203
1204 // Calculate sections for constant pool entries. We collect entries to go into
1205 // the same section together to reduce amount of section switch statements.
1206 SmallVector<SectionCPs, 4> CPSections;
1207 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1208 const MachineConstantPoolEntry &CPE = CP[i];
1209 unsigned Align = CPE.getAlignment();
1210
1211 SectionKind Kind =
1212 CPE.getSectionKind(TM.getDataLayout());
1213
1214 const Constant *C = nullptr;
1215 if (!CPE.isMachineConstantPoolEntry())
1216 C = CPE.Val.ConstVal;
1217
1218 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C);
1219
1220 // The number of sections are small, just do a linear search from the
1221 // last section to the first.
1222 bool Found = false;
1223 unsigned SecIdx = CPSections.size();
1224 while (SecIdx != 0) {
1225 if (CPSections[--SecIdx].S == S) {
1226 Found = true;
1227 break;
1228 }
1229 }
1230 if (!Found) {
1231 SecIdx = CPSections.size();
1232 CPSections.push_back(SectionCPs(S, Align));
1233 }
1234
1235 if (Align > CPSections[SecIdx].Alignment)
1236 CPSections[SecIdx].Alignment = Align;
1237 CPSections[SecIdx].CPEs.push_back(i);
1238 }
1239
1240 // Now print stuff into the calculated sections.
1241 const MCSection *CurSection = nullptr;
1242 unsigned Offset = 0;
1243 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1244 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1245 unsigned CPI = CPSections[i].CPEs[j];
1246 MCSymbol *Sym = GetCPISymbol(CPI);
1247 if (!Sym->isUndefined())
1248 continue;
1249
1250 if (CurSection != CPSections[i].S) {
1251 OutStreamer.SwitchSection(CPSections[i].S);
1252 EmitAlignment(Log2_32(CPSections[i].Alignment));
1253 CurSection = CPSections[i].S;
1254 Offset = 0;
1255 }
1256
1257 MachineConstantPoolEntry CPE = CP[CPI];
1258
1259 // Emit inter-object padding for alignment.
1260 unsigned AlignMask = CPE.getAlignment() - 1;
1261 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1262 OutStreamer.EmitZeros(NewOffset - Offset);
1263
1264 Type *Ty = CPE.getType();
1265 Offset = NewOffset +
1266 TM.getDataLayout()->getTypeAllocSize(Ty);
1267
1268 OutStreamer.EmitLabel(Sym);
1269 if (CPE.isMachineConstantPoolEntry())
1270 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1271 else
1272 EmitGlobalConstant(CPE.Val.ConstVal);
1273 }
1274 }
1275 }
1276
1277 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1278 /// by the current function to the current output stream.
1279 ///
EmitJumpTableInfo()1280 void AsmPrinter::EmitJumpTableInfo() {
1281 const DataLayout *DL = MF->getTarget().getDataLayout();
1282 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1283 if (!MJTI) return;
1284 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1285 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1286 if (JT.empty()) return;
1287
1288 // Pick the directive to use to print the jump table entries, and switch to
1289 // the appropriate section.
1290 const Function *F = MF->getFunction();
1291 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1292 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1293 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1294 *F);
1295 if (JTInDiffSection) {
1296 // Drop it in the readonly section.
1297 const MCSection *ReadOnlySection =
1298 TLOF.getSectionForJumpTable(*F, *Mang, TM);
1299 OutStreamer.SwitchSection(ReadOnlySection);
1300 }
1301
1302 EmitAlignment(Log2_32(
1303 MJTI->getEntryAlignment(*TM.getDataLayout())));
1304
1305 // Jump tables in code sections are marked with a data_region directive
1306 // where that's supported.
1307 if (!JTInDiffSection)
1308 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1309
1310 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1311 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1312
1313 // If this jump table was deleted, ignore it.
1314 if (JTBBs.empty()) continue;
1315
1316 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1317 /// emit a .set directive for each unique entry.
1318 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1319 MAI->doesSetDirectiveSuppressesReloc()) {
1320 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1321 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1322 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1323 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1324 const MachineBasicBlock *MBB = JTBBs[ii];
1325 if (!EmittedSets.insert(MBB).second)
1326 continue;
1327
1328 // .set LJTSet, LBB32-base
1329 const MCExpr *LHS =
1330 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1331 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1332 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1333 }
1334 }
1335
1336 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1337 // before each jump table. The first label is never referenced, but tells
1338 // the assembler and linker the extents of the jump table object. The
1339 // second label is actually referenced by the code.
1340 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix())
1341 // FIXME: This doesn't have to have any specific name, just any randomly
1342 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1343 OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1344
1345 OutStreamer.EmitLabel(GetJTISymbol(JTI));
1346
1347 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1348 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1349 }
1350 if (!JTInDiffSection)
1351 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1352 }
1353
1354 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1355 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1356 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1357 const MachineBasicBlock *MBB,
1358 unsigned UID) const {
1359 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1360 const MCExpr *Value = nullptr;
1361 switch (MJTI->getEntryKind()) {
1362 case MachineJumpTableInfo::EK_Inline:
1363 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1364 case MachineJumpTableInfo::EK_Custom32:
1365 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1366 MJTI, MBB, UID, OutContext);
1367 break;
1368 case MachineJumpTableInfo::EK_BlockAddress:
1369 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1370 // .word LBB123
1371 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1372 break;
1373 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1374 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1375 // with a relocation as gp-relative, e.g.:
1376 // .gprel32 LBB123
1377 MCSymbol *MBBSym = MBB->getSymbol();
1378 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1379 return;
1380 }
1381
1382 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1383 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1384 // with a relocation as gp-relative, e.g.:
1385 // .gpdword LBB123
1386 MCSymbol *MBBSym = MBB->getSymbol();
1387 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1388 return;
1389 }
1390
1391 case MachineJumpTableInfo::EK_LabelDifference32: {
1392 // Each entry is the address of the block minus the address of the jump
1393 // table. This is used for PIC jump tables where gprel32 is not supported.
1394 // e.g.:
1395 // .word LBB123 - LJTI1_2
1396 // If the .set directive avoids relocations, this is emitted as:
1397 // .set L4_5_set_123, LBB123 - LJTI1_2
1398 // .word L4_5_set_123
1399 if (MAI->doesSetDirectiveSuppressesReloc()) {
1400 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1401 OutContext);
1402 break;
1403 }
1404 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1405 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1406 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1407 Value = MCBinaryExpr::CreateSub(Value, Base, OutContext);
1408 break;
1409 }
1410 }
1411
1412 assert(Value && "Unknown entry kind!");
1413
1414 unsigned EntrySize =
1415 MJTI->getEntrySize(*TM.getDataLayout());
1416 OutStreamer.EmitValue(Value, EntrySize);
1417 }
1418
1419
1420 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1421 /// special global used by LLVM. If so, emit it and return true, otherwise
1422 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1423 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1424 if (GV->getName() == "llvm.used") {
1425 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1426 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1427 return true;
1428 }
1429
1430 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1431 if (StringRef(GV->getSection()) == "llvm.metadata" ||
1432 GV->hasAvailableExternallyLinkage())
1433 return true;
1434
1435 if (!GV->hasAppendingLinkage()) return false;
1436
1437 assert(GV->hasInitializer() && "Not a special LLVM global!");
1438
1439 if (GV->getName() == "llvm.global_ctors") {
1440 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1441
1442 if (TM.getRelocationModel() == Reloc::Static &&
1443 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1444 StringRef Sym(".constructors_used");
1445 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1446 MCSA_Reference);
1447 }
1448 return true;
1449 }
1450
1451 if (GV->getName() == "llvm.global_dtors") {
1452 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1453
1454 if (TM.getRelocationModel() == Reloc::Static &&
1455 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1456 StringRef Sym(".destructors_used");
1457 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1458 MCSA_Reference);
1459 }
1460 return true;
1461 }
1462
1463 return false;
1464 }
1465
1466 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1467 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1468 /// is true, as being used with this directive.
EmitLLVMUsedList(const ConstantArray * InitList)1469 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1470 // Should be an array of 'i8*'.
1471 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1472 const GlobalValue *GV =
1473 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1474 if (GV)
1475 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1476 }
1477 }
1478
1479 namespace {
1480 struct Structor {
Structor__anone190126f0211::Structor1481 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {}
1482 int Priority;
1483 llvm::Constant *Func;
1484 llvm::GlobalValue *ComdatKey;
1485 };
1486 } // end namespace
1487
1488 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1489 /// priority.
EmitXXStructorList(const Constant * List,bool isCtor)1490 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1491 // Should be an array of '{ int, void ()* }' structs. The first value is the
1492 // init priority.
1493 if (!isa<ConstantArray>(List)) return;
1494
1495 // Sanity check the structors list.
1496 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1497 if (!InitList) return; // Not an array!
1498 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1499 // FIXME: Only allow the 3-field form in LLVM 4.0.
1500 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1501 return; // Not an array of two or three elements!
1502 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1503 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1504 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1505 return; // Not (int, ptr, ptr).
1506
1507 // Gather the structors in a form that's convenient for sorting by priority.
1508 SmallVector<Structor, 8> Structors;
1509 for (Value *O : InitList->operands()) {
1510 ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1511 if (!CS) continue; // Malformed.
1512 if (CS->getOperand(1)->isNullValue())
1513 break; // Found a null terminator, skip the rest.
1514 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1515 if (!Priority) continue; // Malformed.
1516 Structors.push_back(Structor());
1517 Structor &S = Structors.back();
1518 S.Priority = Priority->getLimitedValue(65535);
1519 S.Func = CS->getOperand(1);
1520 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1521 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1522 }
1523
1524 // Emit the function pointers in the target-specific order
1525 const DataLayout *DL = TM.getDataLayout();
1526 unsigned Align = Log2_32(DL->getPointerPrefAlignment());
1527 std::stable_sort(Structors.begin(), Structors.end(),
1528 [](const Structor &L,
1529 const Structor &R) { return L.Priority < R.Priority; });
1530 for (Structor &S : Structors) {
1531 const TargetLoweringObjectFile &Obj = getObjFileLowering();
1532 const MCSymbol *KeySym = nullptr;
1533 if (GlobalValue *GV = S.ComdatKey) {
1534 if (GV->hasAvailableExternallyLinkage())
1535 // If the associated variable is available_externally, some other TU
1536 // will provide its dynamic initializer.
1537 continue;
1538
1539 KeySym = getSymbol(GV);
1540 }
1541 const MCSection *OutputSection =
1542 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1543 : Obj.getStaticDtorSection(S.Priority, KeySym));
1544 OutStreamer.SwitchSection(OutputSection);
1545 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1546 EmitAlignment(Align);
1547 EmitXXStructor(S.Func);
1548 }
1549 }
1550
EmitModuleIdents(Module & M)1551 void AsmPrinter::EmitModuleIdents(Module &M) {
1552 if (!MAI->hasIdentDirective())
1553 return;
1554
1555 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1556 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1557 const MDNode *N = NMD->getOperand(i);
1558 assert(N->getNumOperands() == 1 &&
1559 "llvm.ident metadata entry can have only one operand");
1560 const MDString *S = cast<MDString>(N->getOperand(0));
1561 OutStreamer.EmitIdent(S->getString());
1562 }
1563 }
1564 }
1565
1566 //===--------------------------------------------------------------------===//
1567 // Emission and print routines
1568 //
1569
1570 /// EmitInt8 - Emit a byte directive and value.
1571 ///
EmitInt8(int Value) const1572 void AsmPrinter::EmitInt8(int Value) const {
1573 OutStreamer.EmitIntValue(Value, 1);
1574 }
1575
1576 /// EmitInt16 - Emit a short directive and value.
1577 ///
EmitInt16(int Value) const1578 void AsmPrinter::EmitInt16(int Value) const {
1579 OutStreamer.EmitIntValue(Value, 2);
1580 }
1581
1582 /// EmitInt32 - Emit a long directive and value.
1583 ///
EmitInt32(int Value) const1584 void AsmPrinter::EmitInt32(int Value) const {
1585 OutStreamer.EmitIntValue(Value, 4);
1586 }
1587
1588 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1589 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1590 /// .set if it avoids relocations.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const1591 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1592 unsigned Size) const {
1593 // Get the Hi-Lo expression.
1594 const MCExpr *Diff =
1595 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1596 MCSymbolRefExpr::Create(Lo, OutContext),
1597 OutContext);
1598
1599 if (!MAI->doesSetDirectiveSuppressesReloc()) {
1600 OutStreamer.EmitValue(Diff, Size);
1601 return;
1602 }
1603
1604 // Otherwise, emit with .set (aka assignment).
1605 MCSymbol *SetLabel = createTempSymbol("set");
1606 OutStreamer.EmitAssignment(SetLabel, Diff);
1607 OutStreamer.EmitSymbolValue(SetLabel, Size);
1608 }
1609
1610 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1611 /// where the size in bytes of the directive is specified by Size and Label
1612 /// specifies the label. This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size,bool IsSectionRelative) const1613 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1614 unsigned Size,
1615 bool IsSectionRelative) const {
1616 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1617 OutStreamer.EmitCOFFSecRel32(Label);
1618 return;
1619 }
1620
1621 // Emit Label+Offset (or just Label if Offset is zero)
1622 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1623 if (Offset)
1624 Expr = MCBinaryExpr::CreateAdd(
1625 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext);
1626
1627 OutStreamer.EmitValue(Expr, Size);
1628 }
1629
1630 //===----------------------------------------------------------------------===//
1631
1632 // EmitAlignment - Emit an alignment directive to the specified power of
1633 // two boundary. For example, if you pass in 3 here, you will get an 8
1634 // byte alignment. If a global value is specified, and if that global has
1635 // an explicit alignment requested, it will override the alignment request
1636 // if required for correctness.
1637 //
EmitAlignment(unsigned NumBits,const GlobalObject * GV) const1638 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1639 if (GV)
1640 NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(),
1641 NumBits);
1642
1643 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1644
1645 assert(NumBits <
1646 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1647 "undefined behavior");
1648 if (getCurrentSection()->getKind().isText())
1649 OutStreamer.EmitCodeAlignment(1u << NumBits);
1650 else
1651 OutStreamer.EmitValueToAlignment(1u << NumBits);
1652 }
1653
1654 //===----------------------------------------------------------------------===//
1655 // Constant emission.
1656 //===----------------------------------------------------------------------===//
1657
lowerConstant(const Constant * CV)1658 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1659 MCContext &Ctx = OutContext;
1660
1661 if (CV->isNullValue() || isa<UndefValue>(CV))
1662 return MCConstantExpr::Create(0, Ctx);
1663
1664 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1665 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1666
1667 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1668 return MCSymbolRefExpr::Create(getSymbol(GV), Ctx);
1669
1670 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1671 return MCSymbolRefExpr::Create(GetBlockAddressSymbol(BA), Ctx);
1672
1673 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1674 if (!CE) {
1675 llvm_unreachable("Unknown constant value to lower!");
1676 }
1677
1678 if (const MCExpr *RelocExpr
1679 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM))
1680 return RelocExpr;
1681
1682 switch (CE->getOpcode()) {
1683 default:
1684 // If the code isn't optimized, there may be outstanding folding
1685 // opportunities. Attempt to fold the expression using DataLayout as a
1686 // last resort before giving up.
1687 if (Constant *C = ConstantFoldConstantExpression(CE, *TM.getDataLayout()))
1688 if (C != CE)
1689 return lowerConstant(C);
1690
1691 // Otherwise report the problem to the user.
1692 {
1693 std::string S;
1694 raw_string_ostream OS(S);
1695 OS << "Unsupported expression in static initializer: ";
1696 CE->printAsOperand(OS, /*PrintType=*/false,
1697 !MF ? nullptr : MF->getFunction()->getParent());
1698 report_fatal_error(OS.str());
1699 }
1700 case Instruction::GetElementPtr: {
1701 const DataLayout &DL = *TM.getDataLayout();
1702
1703 // Generate a symbolic expression for the byte address
1704 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0);
1705 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI);
1706
1707 const MCExpr *Base = lowerConstant(CE->getOperand(0));
1708 if (!OffsetAI)
1709 return Base;
1710
1711 int64_t Offset = OffsetAI.getSExtValue();
1712 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1713 Ctx);
1714 }
1715
1716 case Instruction::Trunc:
1717 // We emit the value and depend on the assembler to truncate the generated
1718 // expression properly. This is important for differences between
1719 // blockaddress labels. Since the two labels are in the same function, it
1720 // is reasonable to treat their delta as a 32-bit value.
1721 // FALL THROUGH.
1722 case Instruction::BitCast:
1723 return lowerConstant(CE->getOperand(0));
1724
1725 case Instruction::IntToPtr: {
1726 const DataLayout &DL = *TM.getDataLayout();
1727
1728 // Handle casts to pointers by changing them into casts to the appropriate
1729 // integer type. This promotes constant folding and simplifies this code.
1730 Constant *Op = CE->getOperand(0);
1731 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1732 false/*ZExt*/);
1733 return lowerConstant(Op);
1734 }
1735
1736 case Instruction::PtrToInt: {
1737 const DataLayout &DL = *TM.getDataLayout();
1738
1739 // Support only foldable casts to/from pointers that can be eliminated by
1740 // changing the pointer to the appropriately sized integer type.
1741 Constant *Op = CE->getOperand(0);
1742 Type *Ty = CE->getType();
1743
1744 const MCExpr *OpExpr = lowerConstant(Op);
1745
1746 // We can emit the pointer value into this slot if the slot is an
1747 // integer slot equal to the size of the pointer.
1748 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1749 return OpExpr;
1750
1751 // Otherwise the pointer is smaller than the resultant integer, mask off
1752 // the high bits so we are sure to get a proper truncation if the input is
1753 // a constant expr.
1754 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1755 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1756 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1757 }
1758
1759 // The MC library also has a right-shift operator, but it isn't consistently
1760 // signed or unsigned between different targets.
1761 case Instruction::Add:
1762 case Instruction::Sub:
1763 case Instruction::Mul:
1764 case Instruction::SDiv:
1765 case Instruction::SRem:
1766 case Instruction::Shl:
1767 case Instruction::And:
1768 case Instruction::Or:
1769 case Instruction::Xor: {
1770 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
1771 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
1772 switch (CE->getOpcode()) {
1773 default: llvm_unreachable("Unknown binary operator constant cast expr");
1774 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1775 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1776 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1777 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1778 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1779 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1780 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1781 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1782 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1783 }
1784 }
1785 }
1786 }
1787
1788 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP,
1789 const Constant *BaseCV = nullptr,
1790 uint64_t Offset = 0);
1791
1792 /// isRepeatedByteSequence - Determine whether the given value is
1793 /// composed of a repeated sequence of identical bytes and return the
1794 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)1795 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1796 StringRef Data = V->getRawDataValues();
1797 assert(!Data.empty() && "Empty aggregates should be CAZ node");
1798 char C = Data[0];
1799 for (unsigned i = 1, e = Data.size(); i != e; ++i)
1800 if (Data[i] != C) return -1;
1801 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1802 }
1803
1804
1805 /// isRepeatedByteSequence - Determine whether the given value is
1806 /// composed of a repeated sequence of identical bytes and return the
1807 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,TargetMachine & TM)1808 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1809
1810 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1811 if (CI->getBitWidth() > 64) return -1;
1812
1813 uint64_t Size =
1814 TM.getDataLayout()->getTypeAllocSize(V->getType());
1815 uint64_t Value = CI->getZExtValue();
1816
1817 // Make sure the constant is at least 8 bits long and has a power
1818 // of 2 bit width. This guarantees the constant bit width is
1819 // always a multiple of 8 bits, avoiding issues with padding out
1820 // to Size and other such corner cases.
1821 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1822
1823 uint8_t Byte = static_cast<uint8_t>(Value);
1824
1825 for (unsigned i = 1; i < Size; ++i) {
1826 Value >>= 8;
1827 if (static_cast<uint8_t>(Value) != Byte) return -1;
1828 }
1829 return Byte;
1830 }
1831 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1832 // Make sure all array elements are sequences of the same repeated
1833 // byte.
1834 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1835 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1836 if (Byte == -1) return -1;
1837
1838 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1839 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1840 if (ThisByte == -1) return -1;
1841 if (Byte != ThisByte) return -1;
1842 }
1843 return Byte;
1844 }
1845
1846 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1847 return isRepeatedByteSequence(CDS);
1848
1849 return -1;
1850 }
1851
emitGlobalConstantDataSequential(const ConstantDataSequential * CDS,AsmPrinter & AP)1852 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1853 AsmPrinter &AP){
1854
1855 // See if we can aggregate this into a .fill, if so, emit it as such.
1856 int Value = isRepeatedByteSequence(CDS, AP.TM);
1857 if (Value != -1) {
1858 uint64_t Bytes =
1859 AP.TM.getDataLayout()->getTypeAllocSize(
1860 CDS->getType());
1861 // Don't emit a 1-byte object as a .fill.
1862 if (Bytes > 1)
1863 return AP.OutStreamer.EmitFill(Bytes, Value);
1864 }
1865
1866 // If this can be emitted with .ascii/.asciz, emit it as such.
1867 if (CDS->isString())
1868 return AP.OutStreamer.EmitBytes(CDS->getAsString());
1869
1870 // Otherwise, emit the values in successive locations.
1871 unsigned ElementByteSize = CDS->getElementByteSize();
1872 if (isa<IntegerType>(CDS->getElementType())) {
1873 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1874 if (AP.isVerbose())
1875 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1876 CDS->getElementAsInteger(i));
1877 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1878 ElementByteSize);
1879 }
1880 } else if (ElementByteSize == 4) {
1881 // FP Constants are printed as integer constants to avoid losing
1882 // precision.
1883 assert(CDS->getElementType()->isFloatTy());
1884 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1885 union {
1886 float F;
1887 uint32_t I;
1888 };
1889
1890 F = CDS->getElementAsFloat(i);
1891 if (AP.isVerbose())
1892 AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1893 AP.OutStreamer.EmitIntValue(I, 4);
1894 }
1895 } else {
1896 assert(CDS->getElementType()->isDoubleTy());
1897 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1898 union {
1899 double F;
1900 uint64_t I;
1901 };
1902
1903 F = CDS->getElementAsDouble(i);
1904 if (AP.isVerbose())
1905 AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1906 AP.OutStreamer.EmitIntValue(I, 8);
1907 }
1908 }
1909
1910 const DataLayout &DL = *AP.TM.getDataLayout();
1911 unsigned Size = DL.getTypeAllocSize(CDS->getType());
1912 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
1913 CDS->getNumElements();
1914 if (unsigned Padding = Size - EmittedSize)
1915 AP.OutStreamer.EmitZeros(Padding);
1916
1917 }
1918
emitGlobalConstantArray(const ConstantArray * CA,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)1919 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP,
1920 const Constant *BaseCV, uint64_t Offset) {
1921 // See if we can aggregate some values. Make sure it can be
1922 // represented as a series of bytes of the constant value.
1923 int Value = isRepeatedByteSequence(CA, AP.TM);
1924 const DataLayout &DL = *AP.TM.getDataLayout();
1925
1926 if (Value != -1) {
1927 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
1928 AP.OutStreamer.EmitFill(Bytes, Value);
1929 }
1930 else {
1931 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
1932 emitGlobalConstantImpl(CA->getOperand(i), AP, BaseCV, Offset);
1933 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
1934 }
1935 }
1936 }
1937
emitGlobalConstantVector(const ConstantVector * CV,AsmPrinter & AP)1938 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1939 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1940 emitGlobalConstantImpl(CV->getOperand(i), AP);
1941
1942 const DataLayout &DL = *AP.TM.getDataLayout();
1943 unsigned Size = DL.getTypeAllocSize(CV->getType());
1944 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
1945 CV->getType()->getNumElements();
1946 if (unsigned Padding = Size - EmittedSize)
1947 AP.OutStreamer.EmitZeros(Padding);
1948 }
1949
emitGlobalConstantStruct(const ConstantStruct * CS,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)1950 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP,
1951 const Constant *BaseCV, uint64_t Offset) {
1952 // Print the fields in successive locations. Pad to align if needed!
1953 const DataLayout *DL = AP.TM.getDataLayout();
1954 unsigned Size = DL->getTypeAllocSize(CS->getType());
1955 const StructLayout *Layout = DL->getStructLayout(CS->getType());
1956 uint64_t SizeSoFar = 0;
1957 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1958 const Constant *Field = CS->getOperand(i);
1959
1960 // Print the actual field value.
1961 emitGlobalConstantImpl(Field, AP, BaseCV, Offset+SizeSoFar);
1962
1963 // Check if padding is needed and insert one or more 0s.
1964 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType());
1965 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1966 - Layout->getElementOffset(i)) - FieldSize;
1967 SizeSoFar += FieldSize + PadSize;
1968
1969 // Insert padding - this may include padding to increase the size of the
1970 // current field up to the ABI size (if the struct is not packed) as well
1971 // as padding to ensure that the next field starts at the right offset.
1972 AP.OutStreamer.EmitZeros(PadSize);
1973 }
1974 assert(SizeSoFar == Layout->getSizeInBytes() &&
1975 "Layout of constant struct may be incorrect!");
1976 }
1977
emitGlobalConstantFP(const ConstantFP * CFP,AsmPrinter & AP)1978 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1979 APInt API = CFP->getValueAPF().bitcastToAPInt();
1980
1981 // First print a comment with what we think the original floating-point value
1982 // should have been.
1983 if (AP.isVerbose()) {
1984 SmallString<8> StrVal;
1985 CFP->getValueAPF().toString(StrVal);
1986
1987 if (CFP->getType())
1988 CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1989 else
1990 AP.OutStreamer.GetCommentOS() << "Printing <null> Type";
1991 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1992 }
1993
1994 // Now iterate through the APInt chunks, emitting them in endian-correct
1995 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1996 // floats).
1997 unsigned NumBytes = API.getBitWidth() / 8;
1998 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1999 const uint64_t *p = API.getRawData();
2000
2001 // PPC's long double has odd notions of endianness compared to how LLVM
2002 // handles it: p[0] goes first for *big* endian on PPC.
2003 if (AP.TM.getDataLayout()->isBigEndian() &&
2004 !CFP->getType()->isPPC_FP128Ty()) {
2005 int Chunk = API.getNumWords() - 1;
2006
2007 if (TrailingBytes)
2008 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
2009
2010 for (; Chunk >= 0; --Chunk)
2011 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
2012 } else {
2013 unsigned Chunk;
2014 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2015 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
2016
2017 if (TrailingBytes)
2018 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
2019 }
2020
2021 // Emit the tail padding for the long double.
2022 const DataLayout &DL = *AP.TM.getDataLayout();
2023 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2024 DL.getTypeStoreSize(CFP->getType()));
2025 }
2026
emitGlobalConstantLargeInt(const ConstantInt * CI,AsmPrinter & AP)2027 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2028 const DataLayout *DL = AP.TM.getDataLayout();
2029 unsigned BitWidth = CI->getBitWidth();
2030
2031 // Copy the value as we may massage the layout for constants whose bit width
2032 // is not a multiple of 64-bits.
2033 APInt Realigned(CI->getValue());
2034 uint64_t ExtraBits = 0;
2035 unsigned ExtraBitsSize = BitWidth & 63;
2036
2037 if (ExtraBitsSize) {
2038 // The bit width of the data is not a multiple of 64-bits.
2039 // The extra bits are expected to be at the end of the chunk of the memory.
2040 // Little endian:
2041 // * Nothing to be done, just record the extra bits to emit.
2042 // Big endian:
2043 // * Record the extra bits to emit.
2044 // * Realign the raw data to emit the chunks of 64-bits.
2045 if (DL->isBigEndian()) {
2046 // Basically the structure of the raw data is a chunk of 64-bits cells:
2047 // 0 1 BitWidth / 64
2048 // [chunk1][chunk2] ... [chunkN].
2049 // The most significant chunk is chunkN and it should be emitted first.
2050 // However, due to the alignment issue chunkN contains useless bits.
2051 // Realign the chunks so that they contain only useless information:
2052 // ExtraBits 0 1 (BitWidth / 64) - 1
2053 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2054 ExtraBits = Realigned.getRawData()[0] &
2055 (((uint64_t)-1) >> (64 - ExtraBitsSize));
2056 Realigned = Realigned.lshr(ExtraBitsSize);
2057 } else
2058 ExtraBits = Realigned.getRawData()[BitWidth / 64];
2059 }
2060
2061 // We don't expect assemblers to support integer data directives
2062 // for more than 64 bits, so we emit the data in at most 64-bit
2063 // quantities at a time.
2064 const uint64_t *RawData = Realigned.getRawData();
2065 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2066 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i];
2067 AP.OutStreamer.EmitIntValue(Val, 8);
2068 }
2069
2070 if (ExtraBitsSize) {
2071 // Emit the extra bits after the 64-bits chunks.
2072
2073 // Emit a directive that fills the expected size.
2074 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(
2075 CI->getType());
2076 Size -= (BitWidth / 64) * 8;
2077 assert(Size && Size * 8 >= ExtraBitsSize &&
2078 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2079 == ExtraBits && "Directive too small for extra bits.");
2080 AP.OutStreamer.EmitIntValue(ExtraBits, Size);
2081 }
2082 }
2083
2084 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2085 /// equivalent global, by a target specific GOT pc relative access to the
2086 /// final symbol.
handleIndirectSymViaGOTPCRel(AsmPrinter & AP,const MCExpr ** ME,const Constant * BaseCst,uint64_t Offset)2087 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2088 const Constant *BaseCst,
2089 uint64_t Offset) {
2090 // The global @foo below illustrates a global that uses a got equivalent.
2091 //
2092 // @bar = global i32 42
2093 // @gotequiv = private unnamed_addr constant i32* @bar
2094 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2095 // i64 ptrtoint (i32* @foo to i64))
2096 // to i32)
2097 //
2098 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2099 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2100 // form:
2101 //
2102 // foo = cstexpr, where
2103 // cstexpr := <gotequiv> - "." + <cst>
2104 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2105 //
2106 // After canonicalization by EvaluateAsRelocatable `ME` turns into:
2107 //
2108 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2109 // gotpcrelcst := <offset from @foo base> + <cst>
2110 //
2111 MCValue MV;
2112 if (!(*ME)->EvaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2113 return;
2114
2115 const MCSymbol *GOTEquivSym = &MV.getSymA()->getSymbol();
2116 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2117 return;
2118
2119 const GlobalValue *BaseGV = dyn_cast<GlobalValue>(BaseCst);
2120 if (!BaseGV)
2121 return;
2122
2123 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2124 if (BaseSym != &MV.getSymB()->getSymbol())
2125 return;
2126
2127 // Make sure to match:
2128 //
2129 // gotpcrelcst := <offset from @foo base> + <cst>
2130 //
2131 // If gotpcrelcst is positive it means that we can safely fold the pc rel
2132 // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2133 // if the target knows how to encode it.
2134 //
2135 int64_t GOTPCRelCst = Offset + MV.getConstant();
2136 if (GOTPCRelCst < 0)
2137 return;
2138 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2139 return;
2140
2141 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2142 //
2143 // bar:
2144 // .long 42
2145 // gotequiv:
2146 // .quad bar
2147 // foo:
2148 // .long gotequiv - "." + <cst>
2149 //
2150 // is replaced by the target specific equivalent to:
2151 //
2152 // bar:
2153 // .long 42
2154 // foo:
2155 // .long bar@GOTPCREL+<gotpcrelcst>
2156 //
2157 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2158 const GlobalVariable *GV = Result.first;
2159 int NumUses = (int)Result.second;
2160 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2161 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2162 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2163 FinalSym, MV, Offset, AP.MMI, AP.OutStreamer);
2164
2165 // Update GOT equivalent usage information
2166 --NumUses;
2167 if (NumUses >= 0)
2168 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2169 }
2170
emitGlobalConstantImpl(const Constant * CV,AsmPrinter & AP,const Constant * BaseCV,uint64_t Offset)2171 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP,
2172 const Constant *BaseCV, uint64_t Offset) {
2173 const DataLayout *DL = AP.TM.getDataLayout();
2174 uint64_t Size = DL->getTypeAllocSize(CV->getType());
2175
2176 // Globals with sub-elements such as combinations of arrays and structs
2177 // are handled recursively by emitGlobalConstantImpl. Keep track of the
2178 // constant symbol base and the current position with BaseCV and Offset.
2179 if (!BaseCV && CV->hasOneUse())
2180 BaseCV = dyn_cast<Constant>(CV->user_back());
2181
2182 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2183 return AP.OutStreamer.EmitZeros(Size);
2184
2185 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2186 switch (Size) {
2187 case 1:
2188 case 2:
2189 case 4:
2190 case 8:
2191 if (AP.isVerbose())
2192 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
2193 CI->getZExtValue());
2194 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
2195 return;
2196 default:
2197 emitGlobalConstantLargeInt(CI, AP);
2198 return;
2199 }
2200 }
2201
2202 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2203 return emitGlobalConstantFP(CFP, AP);
2204
2205 if (isa<ConstantPointerNull>(CV)) {
2206 AP.OutStreamer.EmitIntValue(0, Size);
2207 return;
2208 }
2209
2210 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2211 return emitGlobalConstantDataSequential(CDS, AP);
2212
2213 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2214 return emitGlobalConstantArray(CVA, AP, BaseCV, Offset);
2215
2216 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2217 return emitGlobalConstantStruct(CVS, AP, BaseCV, Offset);
2218
2219 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2220 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2221 // vectors).
2222 if (CE->getOpcode() == Instruction::BitCast)
2223 return emitGlobalConstantImpl(CE->getOperand(0), AP);
2224
2225 if (Size > 8) {
2226 // If the constant expression's size is greater than 64-bits, then we have
2227 // to emit the value in chunks. Try to constant fold the value and emit it
2228 // that way.
2229 Constant *New = ConstantFoldConstantExpression(CE, *DL);
2230 if (New && New != CE)
2231 return emitGlobalConstantImpl(New, AP);
2232 }
2233 }
2234
2235 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2236 return emitGlobalConstantVector(V, AP);
2237
2238 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
2239 // thread the streamer with EmitValue.
2240 const MCExpr *ME = AP.lowerConstant(CV);
2241
2242 // Since lowerConstant already folded and got rid of all IR pointer and
2243 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2244 // directly.
2245 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2246 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2247
2248 AP.OutStreamer.EmitValue(ME, Size);
2249 }
2250
2251 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const Constant * CV)2252 void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
2253 uint64_t Size =
2254 TM.getDataLayout()->getTypeAllocSize(CV->getType());
2255 if (Size)
2256 emitGlobalConstantImpl(CV, *this);
2257 else if (MAI->hasSubsectionsViaSymbols()) {
2258 // If the global has zero size, emit a single byte so that two labels don't
2259 // look like they are at the same location.
2260 OutStreamer.EmitIntValue(0, 1);
2261 }
2262 }
2263
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)2264 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2265 // Target doesn't support this yet!
2266 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2267 }
2268
printOffset(int64_t Offset,raw_ostream & OS) const2269 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2270 if (Offset > 0)
2271 OS << '+' << Offset;
2272 else if (Offset < 0)
2273 OS << Offset;
2274 }
2275
2276 //===----------------------------------------------------------------------===//
2277 // Symbol Lowering Routines.
2278 //===----------------------------------------------------------------------===//
2279
createTempSymbol(const Twine & Name) const2280 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2281 return OutContext.createTempSymbol(Name, true);
2282 }
2283
GetBlockAddressSymbol(const BlockAddress * BA) const2284 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2285 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2286 }
2287
GetBlockAddressSymbol(const BasicBlock * BB) const2288 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2289 return MMI->getAddrLabelSymbol(BB);
2290 }
2291
2292 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const2293 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2294 const DataLayout *DL = TM.getDataLayout();
2295 return OutContext.GetOrCreateSymbol
2296 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
2297 + "_" + Twine(CPID));
2298 }
2299
2300 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const2301 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2302 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2303 }
2304
2305 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2306 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const2307 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2308 const DataLayout *DL = TM.getDataLayout();
2309 return OutContext.GetOrCreateSymbol
2310 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
2311 Twine(UID) + "_set_" + Twine(MBBID));
2312 }
2313
getSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix) const2314 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2315 StringRef Suffix) const {
2316 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang,
2317 TM);
2318 }
2319
2320 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2321 /// ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const2322 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2323 SmallString<60> NameStr;
2324 Mang->getNameWithPrefix(NameStr, Sym);
2325 return OutContext.GetOrCreateSymbol(NameStr);
2326 }
2327
2328
2329
2330 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2331 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2332 unsigned FunctionNumber) {
2333 if (!Loop) return;
2334 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2335 OS.indent(Loop->getLoopDepth()*2)
2336 << "Parent Loop BB" << FunctionNumber << "_"
2337 << Loop->getHeader()->getNumber()
2338 << " Depth=" << Loop->getLoopDepth() << '\n';
2339 }
2340
2341
2342 /// PrintChildLoopComment - Print comments about child loops within
2343 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2344 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2345 unsigned FunctionNumber) {
2346 // Add child loop information
2347 for (const MachineLoop *CL : *Loop) {
2348 OS.indent(CL->getLoopDepth()*2)
2349 << "Child Loop BB" << FunctionNumber << "_"
2350 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2351 << '\n';
2352 PrintChildLoopComment(OS, CL, FunctionNumber);
2353 }
2354 }
2355
2356 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
emitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)2357 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2358 const MachineLoopInfo *LI,
2359 const AsmPrinter &AP) {
2360 // Add loop depth information
2361 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2362 if (!Loop) return;
2363
2364 MachineBasicBlock *Header = Loop->getHeader();
2365 assert(Header && "No header for loop");
2366
2367 // If this block is not a loop header, just print out what is the loop header
2368 // and return.
2369 if (Header != &MBB) {
2370 AP.OutStreamer.AddComment(" in Loop: Header=BB" +
2371 Twine(AP.getFunctionNumber())+"_" +
2372 Twine(Loop->getHeader()->getNumber())+
2373 " Depth="+Twine(Loop->getLoopDepth()));
2374 return;
2375 }
2376
2377 // Otherwise, it is a loop header. Print out information about child and
2378 // parent loops.
2379 raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2380
2381 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2382
2383 OS << "=>";
2384 OS.indent(Loop->getLoopDepth()*2-2);
2385
2386 OS << "This ";
2387 if (Loop->empty())
2388 OS << "Inner ";
2389 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2390
2391 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2392 }
2393
2394
2395 /// EmitBasicBlockStart - This method prints the label for the specified
2396 /// MachineBasicBlock, an alignment (if present) and a comment describing
2397 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock & MBB) const2398 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2399 // Emit an alignment directive for this block, if needed.
2400 if (unsigned Align = MBB.getAlignment())
2401 EmitAlignment(Align);
2402
2403 // If the block has its address taken, emit any labels that were used to
2404 // reference the block. It is possible that there is more than one label
2405 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2406 // the references were generated.
2407 if (MBB.hasAddressTaken()) {
2408 const BasicBlock *BB = MBB.getBasicBlock();
2409 if (isVerbose())
2410 OutStreamer.AddComment("Block address taken");
2411
2412 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB);
2413 for (auto *Sym : Symbols)
2414 OutStreamer.EmitLabel(Sym);
2415 }
2416
2417 // Print some verbose block comments.
2418 if (isVerbose()) {
2419 if (const BasicBlock *BB = MBB.getBasicBlock())
2420 if (BB->hasName())
2421 OutStreamer.AddComment("%" + BB->getName());
2422 emitBasicBlockLoopComments(MBB, LI, *this);
2423 }
2424
2425 // Print the main label for the block.
2426 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) {
2427 if (isVerbose()) {
2428 // NOTE: Want this comment at start of line, don't emit with AddComment.
2429 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2430 }
2431 } else {
2432 OutStreamer.EmitLabel(MBB.getSymbol());
2433 }
2434 }
2435
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const2436 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2437 bool IsDefinition) const {
2438 MCSymbolAttr Attr = MCSA_Invalid;
2439
2440 switch (Visibility) {
2441 default: break;
2442 case GlobalValue::HiddenVisibility:
2443 if (IsDefinition)
2444 Attr = MAI->getHiddenVisibilityAttr();
2445 else
2446 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2447 break;
2448 case GlobalValue::ProtectedVisibility:
2449 Attr = MAI->getProtectedVisibilityAttr();
2450 break;
2451 }
2452
2453 if (Attr != MCSA_Invalid)
2454 OutStreamer.EmitSymbolAttribute(Sym, Attr);
2455 }
2456
2457 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2458 /// exactly one predecessor and the control transfer mechanism between
2459 /// the predecessor and this block is a fall-through.
2460 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const2461 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2462 // If this is a landing pad, it isn't a fall through. If it has no preds,
2463 // then nothing falls through to it.
2464 if (MBB->isLandingPad() || MBB->pred_empty())
2465 return false;
2466
2467 // If there isn't exactly one predecessor, it can't be a fall through.
2468 if (MBB->pred_size() > 1)
2469 return false;
2470
2471 // The predecessor has to be immediately before this block.
2472 MachineBasicBlock *Pred = *MBB->pred_begin();
2473 if (!Pred->isLayoutSuccessor(MBB))
2474 return false;
2475
2476 // If the block is completely empty, then it definitely does fall through.
2477 if (Pred->empty())
2478 return true;
2479
2480 // Check the terminators in the previous blocks
2481 for (const auto &MI : Pred->terminators()) {
2482 // If it is not a simple branch, we are in a table somewhere.
2483 if (!MI.isBranch() || MI.isIndirectBranch())
2484 return false;
2485
2486 // If we are the operands of one of the branches, this is not a fall
2487 // through. Note that targets with delay slots will usually bundle
2488 // terminators with the delay slot instruction.
2489 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) {
2490 if (OP->isJTI())
2491 return false;
2492 if (OP->isMBB() && OP->getMBB() == MBB)
2493 return false;
2494 }
2495 }
2496
2497 return true;
2498 }
2499
2500
2501
GetOrCreateGCPrinter(GCStrategy & S)2502 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2503 if (!S.usesMetadata())
2504 return nullptr;
2505
2506 assert(!S.useStatepoints() && "statepoints do not currently support custom"
2507 " stackmap formats, please see the documentation for a description of"
2508 " the default format. If you really need a custom serialized format,"
2509 " please file a bug");
2510
2511 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2512 gcp_map_type::iterator GCPI = GCMap.find(&S);
2513 if (GCPI != GCMap.end())
2514 return GCPI->second.get();
2515
2516 const char *Name = S.getName().c_str();
2517
2518 for (GCMetadataPrinterRegistry::iterator
2519 I = GCMetadataPrinterRegistry::begin(),
2520 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2521 if (strcmp(Name, I->getName()) == 0) {
2522 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2523 GMP->S = &S;
2524 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2525 return IterBool.first->second.get();
2526 }
2527
2528 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2529 }
2530
2531 /// Pin vtable to this file.
~AsmPrinterHandler()2532 AsmPrinterHandler::~AsmPrinterHandler() {}
2533
markFunctionEnd()2534 void AsmPrinterHandler::markFunctionEnd() {}
2535