• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2008 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "fault_handler.h"
18 
19 #include <setjmp.h>
20 #include <sys/mman.h>
21 #include <sys/ucontext.h>
22 
23 #include "art_method-inl.h"
24 #include "base/stl_util.h"
25 #include "mirror/class.h"
26 #include "sigchain.h"
27 #include "thread-inl.h"
28 #include "verify_object-inl.h"
29 
30 // Note on nested signal support
31 // -----------------------------
32 //
33 // Typically a signal handler should not need to deal with signals that occur within it.
34 // However, when a SIGSEGV occurs that is in generated code and is not one of the
35 // handled signals (implicit checks), we call a function to try to dump the stack
36 // to the log.  This enhances the debugging experience but may have the side effect
37 // that it may not work.  If the cause of the original SIGSEGV is a corrupted stack or other
38 // memory region, the stack backtrace code may run into trouble and may either crash
39 // or fail with an abort (SIGABRT).  In either case we don't want that (new) signal to
40 // mask the original signal and thus prevent useful debug output from being presented.
41 //
42 // In order to handle this situation, before we call the stack tracer we do the following:
43 //
44 // 1. shutdown the fault manager so that we are talking to the real signal management
45 //    functions rather than those in sigchain.
46 // 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the
47 //    thread running the signal handler.
48 // 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler.
49 // 4. save the thread's state to the TLS of the current thread using 'setjmp'
50 //
51 // We then call the stack tracer and one of two things may happen:
52 // a. it completes successfully
53 // b. it crashes and a signal is raised.
54 //
55 // In the former case, we fall through and everything is fine.  In the latter case
56 // our secondary signal handler gets called in a signal context.  This results in
57 // a call to FaultManager::HandledNestedSignal(), an archirecture specific function
58 // whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current
59 // thread.  This results in a return with a non-zero value from 'setjmp'.  We detect this
60 // and write something to the log to tell the user that it happened.
61 //
62 // Regardless of how we got there, we reach the code after the stack tracer and we
63 // restore the signal states to their original values, reinstate the fault manager (thus
64 // reestablishing the signal chain) and continue.
65 
66 // This is difficult to test with a runtime test.  To invoke the nested signal code
67 // on any signal, uncomment the following line and run something that throws a
68 // NullPointerException.
69 // #define TEST_NESTED_SIGNAL
70 
71 namespace art {
72 // Static fault manger object accessed by signal handler.
73 FaultManager fault_manager;
74 
art_sigsegv_fault()75 extern "C" __attribute__((visibility("default"))) void art_sigsegv_fault() {
76   // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
77   VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
78 }
79 
80 // Signal handler called on SIGSEGV.
art_fault_handler(int sig,siginfo_t * info,void * context)81 static void art_fault_handler(int sig, siginfo_t* info, void* context) {
82   fault_manager.HandleFault(sig, info, context);
83 }
84 
85 // Signal handler for dealing with a nested signal.
art_nested_signal_handler(int sig,siginfo_t * info,void * context)86 static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) {
87   fault_manager.HandleNestedSignal(sig, info, context);
88 }
89 
FaultManager()90 FaultManager::FaultManager() : initialized_(false) {
91   sigaction(SIGSEGV, nullptr, &oldaction_);
92 }
93 
~FaultManager()94 FaultManager::~FaultManager() {
95 }
96 
SetUpArtAction(struct sigaction * action)97 static void SetUpArtAction(struct sigaction* action) {
98   action->sa_sigaction = art_fault_handler;
99   sigemptyset(&action->sa_mask);
100   action->sa_flags = SA_SIGINFO | SA_ONSTACK;
101 #if !defined(__APPLE__) && !defined(__mips__)
102   action->sa_restorer = nullptr;
103 #endif
104 }
105 
EnsureArtActionInFrontOfSignalChain()106 void FaultManager::EnsureArtActionInFrontOfSignalChain() {
107   if (initialized_) {
108     struct sigaction action;
109     SetUpArtAction(&action);
110     EnsureFrontOfChain(SIGSEGV, &action);
111   } else {
112     LOG(WARNING) << "Can't call " << __FUNCTION__ << " due to unitialized fault manager";
113   }
114 }
115 
Init()116 void FaultManager::Init() {
117   CHECK(!initialized_);
118   struct sigaction action;
119   SetUpArtAction(&action);
120 
121   // Set our signal handler now.
122   int e = sigaction(SIGSEGV, &action, &oldaction_);
123   if (e != 0) {
124     VLOG(signals) << "Failed to claim SEGV: " << strerror(errno);
125   }
126   // Make sure our signal handler is called before any user handlers.
127   ClaimSignalChain(SIGSEGV, &oldaction_);
128   initialized_ = true;
129 }
130 
Release()131 void FaultManager::Release() {
132   if (initialized_) {
133     UnclaimSignalChain(SIGSEGV);
134     initialized_ = false;
135   }
136 }
137 
Shutdown()138 void FaultManager::Shutdown() {
139   if (initialized_) {
140     Release();
141 
142     // Free all handlers.
143     STLDeleteElements(&generated_code_handlers_);
144     STLDeleteElements(&other_handlers_);
145   }
146 }
147 
HandleFault(int sig,siginfo_t * info,void * context)148 void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) {
149   // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...)
150   //
151   // If malloc calls abort, it will be holding its lock.
152   // If the handler tries to call malloc, it will deadlock.
153   VLOG(signals) << "Handling fault";
154   if (IsInGeneratedCode(info, context, true)) {
155     VLOG(signals) << "in generated code, looking for handler";
156     for (const auto& handler : generated_code_handlers_) {
157       VLOG(signals) << "invoking Action on handler " << handler;
158       if (handler->Action(sig, info, context)) {
159 #ifdef TEST_NESTED_SIGNAL
160         // In test mode we want to fall through to stack trace handler
161         // on every signal (in reality this will cause a crash on the first
162         // signal).
163         break;
164 #else
165         // We have handled a signal so it's time to return from the
166         // signal handler to the appropriate place.
167         return;
168 #endif
169       }
170     }
171   }
172 
173   // We hit a signal we didn't handle.  This might be something for which
174   // we can give more information about so call all registered handlers to see
175   // if it is.
176 
177   Thread* self = Thread::Current();
178 
179   // If ART is not running, or the thread is not attached to ART pass the
180   // signal on to the next handler in the chain.
181   if (self == nullptr || Runtime::Current() == nullptr || !Runtime::Current()->IsStarted()) {
182     InvokeUserSignalHandler(sig, info, context);
183     return;
184   }
185   // Now set up the nested signal handler.
186 
187   // TODO: add SIGSEGV back to the nested signals when we can handle running out stack gracefully.
188   static const int handled_nested_signals[] = {SIGABRT};
189   constexpr size_t num_handled_nested_signals = arraysize(handled_nested_signals);
190 
191   // Release the fault manager so that it will remove the signal chain for
192   // SIGSEGV and we call the real sigaction.
193   fault_manager.Release();
194 
195   // The action for SIGSEGV should be the default handler now.
196 
197   // Unblock the signals we allow so that they can be delivered in the signal handler.
198   sigset_t sigset;
199   sigemptyset(&sigset);
200   for (int signal : handled_nested_signals) {
201     sigaddset(&sigset, signal);
202   }
203   pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr);
204 
205   // If we get a signal in this code we want to invoke our nested signal
206   // handler.
207   struct sigaction action;
208   struct sigaction oldactions[num_handled_nested_signals];
209   action.sa_sigaction = art_nested_signal_handler;
210 
211   // Explicitly mask out SIGSEGV and SIGABRT from the nested signal handler.  This
212   // should be the default but we definitely don't want these happening in our
213   // nested signal handler.
214   sigemptyset(&action.sa_mask);
215   for (int signal : handled_nested_signals) {
216     sigaddset(&action.sa_mask, signal);
217   }
218 
219   action.sa_flags = SA_SIGINFO | SA_ONSTACK;
220 #if !defined(__APPLE__) && !defined(__mips__)
221   action.sa_restorer = nullptr;
222 #endif
223 
224   // Catch handled signals to invoke our nested handler.
225   bool success = true;
226   for (size_t i = 0; i < num_handled_nested_signals; ++i) {
227     success = sigaction(handled_nested_signals[i], &action, &oldactions[i]) == 0;
228     if (!success) {
229       PLOG(ERROR) << "Unable to set up nested signal handler";
230       break;
231     }
232   }
233   if (success) {
234     // Save the current state and call the handlers.  If anything causes a signal
235     // our nested signal handler will be invoked and this will longjmp to the saved
236     // state.
237     if (setjmp(*self->GetNestedSignalState()) == 0) {
238       for (const auto& handler : other_handlers_) {
239         if (handler->Action(sig, info, context)) {
240           // Restore the signal handlers, reinit the fault manager and return.  Signal was
241           // handled.
242           for (size_t i = 0; i < num_handled_nested_signals; ++i) {
243             success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0;
244             if (!success) {
245               PLOG(ERROR) << "Unable to restore signal handler";
246             }
247           }
248           fault_manager.Init();
249           return;
250         }
251       }
252     } else {
253       LOG(ERROR) << "Nested signal detected - original signal being reported";
254     }
255 
256     // Restore the signal handlers.
257     for (size_t i = 0; i < num_handled_nested_signals; ++i) {
258       success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0;
259       if (!success) {
260         PLOG(ERROR) << "Unable to restore signal handler";
261       }
262     }
263   }
264 
265   // Now put the fault manager back in place.
266   fault_manager.Init();
267 
268   // Set a breakpoint in this function to catch unhandled signals.
269   art_sigsegv_fault();
270 
271   // Pass this on to the next handler in the chain, or the default if none.
272   InvokeUserSignalHandler(sig, info, context);
273 }
274 
AddHandler(FaultHandler * handler,bool generated_code)275 void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
276   DCHECK(initialized_);
277   if (generated_code) {
278     generated_code_handlers_.push_back(handler);
279   } else {
280     other_handlers_.push_back(handler);
281   }
282 }
283 
RemoveHandler(FaultHandler * handler)284 void FaultManager::RemoveHandler(FaultHandler* handler) {
285   auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
286   if (it != generated_code_handlers_.end()) {
287     generated_code_handlers_.erase(it);
288     return;
289   }
290   auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
291   if (it2 != other_handlers_.end()) {
292     other_handlers_.erase(it);
293     return;
294   }
295   LOG(FATAL) << "Attempted to remove non existent handler " << handler;
296 }
297 
298 // This function is called within the signal handler.  It checks that
299 // the mutator_lock is held (shared).  No annotalysis is done.
IsInGeneratedCode(siginfo_t * siginfo,void * context,bool check_dex_pc)300 bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) {
301   // We can only be running Java code in the current thread if it
302   // is in Runnable state.
303   VLOG(signals) << "Checking for generated code";
304   Thread* thread = Thread::Current();
305   if (thread == nullptr) {
306     VLOG(signals) << "no current thread";
307     return false;
308   }
309 
310   ThreadState state = thread->GetState();
311   if (state != kRunnable) {
312     VLOG(signals) << "not runnable";
313     return false;
314   }
315 
316   // Current thread is runnable.
317   // Make sure it has the mutator lock.
318   if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
319     VLOG(signals) << "no lock";
320     return false;
321   }
322 
323   ArtMethod* method_obj = 0;
324   uintptr_t return_pc = 0;
325   uintptr_t sp = 0;
326 
327   // Get the architecture specific method address and return address.  These
328   // are in architecture specific files in arch/<arch>/fault_handler_<arch>.
329   GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp);
330 
331   // If we don't have a potential method, we're outta here.
332   VLOG(signals) << "potential method: " << method_obj;
333   // TODO: Check linear alloc and image.
334   if (method_obj == 0 || !IsAligned<kObjectAlignment>(method_obj)) {
335     VLOG(signals) << "no method";
336     return false;
337   }
338 
339   // Verify that the potential method is indeed a method.
340   // TODO: check the GC maps to make sure it's an object.
341   // Check that the class pointer inside the object is not null and is aligned.
342   // TODO: Method might be not a heap address, and GetClass could fault.
343   // No read barrier because method_obj may not be a real object.
344   mirror::Class* cls = method_obj->GetDeclaringClassNoBarrier();
345   if (cls == nullptr) {
346     VLOG(signals) << "not a class";
347     return false;
348   }
349   if (!IsAligned<kObjectAlignment>(cls)) {
350     VLOG(signals) << "not aligned";
351     return false;
352   }
353 
354 
355   if (!VerifyClassClass(cls)) {
356     VLOG(signals) << "not a class class";
357     return false;
358   }
359 
360   // We can be certain that this is a method now.  Check if we have a GC map
361   // at the return PC address.
362   if (true || kIsDebugBuild) {
363     VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc;
364     const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj,
365                                                                                  sizeof(void*));
366     uint32_t sought_offset = return_pc - reinterpret_cast<uintptr_t>(code);
367     VLOG(signals) << "pc offset: " << std::hex << sought_offset;
368   }
369   uint32_t dexpc = method_obj->ToDexPc(return_pc, false);
370   VLOG(signals) << "dexpc: " << dexpc;
371   return !check_dex_pc || dexpc != DexFile::kDexNoIndex;
372 }
373 
FaultHandler(FaultManager * manager)374 FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
375 }
376 
377 //
378 // Null pointer fault handler
379 //
NullPointerHandler(FaultManager * manager)380 NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
381   manager_->AddHandler(this, true);
382 }
383 
384 //
385 // Suspension fault handler
386 //
SuspensionHandler(FaultManager * manager)387 SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
388   manager_->AddHandler(this, true);
389 }
390 
391 //
392 // Stack overflow fault handler
393 //
StackOverflowHandler(FaultManager * manager)394 StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
395   manager_->AddHandler(this, true);
396 }
397 
398 //
399 // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
400 //
JavaStackTraceHandler(FaultManager * manager)401 JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
402   manager_->AddHandler(this, false);
403 }
404 
Action(int sig,siginfo_t * siginfo,void * context)405 bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) {
406   // Make sure that we are in the generated code, but we may not have a dex pc.
407   UNUSED(sig);
408 #ifdef TEST_NESTED_SIGNAL
409   bool in_generated_code = true;
410 #else
411   bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false);
412 #endif
413   if (in_generated_code) {
414     LOG(ERROR) << "Dumping java stack trace for crash in generated code";
415     ArtMethod* method = nullptr;
416     uintptr_t return_pc = 0;
417     uintptr_t sp = 0;
418     Thread* self = Thread::Current();
419 
420     manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp);
421     // Inside of generated code, sp[0] is the method, so sp is the frame.
422     self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp));
423 #ifdef TEST_NESTED_SIGNAL
424     // To test the nested signal handler we raise a signal here.  This will cause the
425     // nested signal handler to be called and perform a longjmp back to the setjmp
426     // above.
427     abort();
428 #endif
429     self->DumpJavaStack(LOG(ERROR));
430   }
431 
432   return false;  // Return false since we want to propagate the fault to the main signal handler.
433 }
434 
435 }   // namespace art
436