• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "large_object_space.h"
18 
19 #include <memory>
20 
21 #include "gc/accounting/heap_bitmap-inl.h"
22 #include "gc/accounting/space_bitmap-inl.h"
23 #include "base/logging.h"
24 #include "base/mutex-inl.h"
25 #include "base/stl_util.h"
26 #include "image.h"
27 #include "os.h"
28 #include "space-inl.h"
29 #include "thread-inl.h"
30 
31 namespace art {
32 namespace gc {
33 namespace space {
34 
35 class ValgrindLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
36  public:
ValgrindLargeObjectMapSpace(const std::string & name)37   explicit ValgrindLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
38   }
39 
~ValgrindLargeObjectMapSpace()40   ~ValgrindLargeObjectMapSpace() OVERRIDE {
41     // Keep valgrind happy if there is any large objects such as dex cache arrays which aren't
42     // freed since they are held live by the class linker.
43     MutexLock mu(Thread::Current(), lock_);
44     for (auto& m : large_objects_) {
45       delete m.second.mem_map;
46     }
47   }
48 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)49   mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
50                         size_t* usable_size, size_t* bytes_tl_bulk_allocated)
51       OVERRIDE {
52     mirror::Object* obj =
53         LargeObjectMapSpace::Alloc(self, num_bytes + kValgrindRedZoneBytes * 2, bytes_allocated,
54                                    usable_size, bytes_tl_bulk_allocated);
55     mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
56         reinterpret_cast<uintptr_t>(obj) + kValgrindRedZoneBytes);
57     VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<void*>(obj), kValgrindRedZoneBytes);
58     VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<uint8_t*>(object_without_rdz) + num_bytes,
59                                kValgrindRedZoneBytes);
60     if (usable_size != nullptr) {
61       *usable_size = num_bytes;  // Since we have redzones, shrink the usable size.
62     }
63     return object_without_rdz;
64   }
65 
AllocationSize(mirror::Object * obj,size_t * usable_size)66   size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
67     return LargeObjectMapSpace::AllocationSize(ObjectWithRedzone(obj), usable_size);
68   }
69 
IsZygoteLargeObject(Thread * self,mirror::Object * obj) const70   bool IsZygoteLargeObject(Thread* self, mirror::Object* obj) const OVERRIDE {
71     return LargeObjectMapSpace::IsZygoteLargeObject(self, ObjectWithRedzone(obj));
72   }
73 
Free(Thread * self,mirror::Object * obj)74   size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
75     mirror::Object* object_with_rdz = ObjectWithRedzone(obj);
76     VALGRIND_MAKE_MEM_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
77     return LargeObjectMapSpace::Free(self, object_with_rdz);
78   }
79 
Contains(const mirror::Object * obj) const80   bool Contains(const mirror::Object* obj) const OVERRIDE {
81     return LargeObjectMapSpace::Contains(ObjectWithRedzone(obj));
82   }
83 
84  private:
ObjectWithRedzone(const mirror::Object * obj)85   static const mirror::Object* ObjectWithRedzone(const mirror::Object* obj) {
86     return reinterpret_cast<const mirror::Object*>(
87         reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
88   }
89 
ObjectWithRedzone(mirror::Object * obj)90   static mirror::Object* ObjectWithRedzone(mirror::Object* obj) {
91     return reinterpret_cast<mirror::Object*>(
92         reinterpret_cast<uintptr_t>(obj) - kValgrindRedZoneBytes);
93   }
94 
95   static constexpr size_t kValgrindRedZoneBytes = kPageSize;
96 };
97 
SwapBitmaps()98 void LargeObjectSpace::SwapBitmaps() {
99   live_bitmap_.swap(mark_bitmap_);
100   // Swap names to get more descriptive diagnostics.
101   std::string temp_name = live_bitmap_->GetName();
102   live_bitmap_->SetName(mark_bitmap_->GetName());
103   mark_bitmap_->SetName(temp_name);
104 }
105 
LargeObjectSpace(const std::string & name,uint8_t * begin,uint8_t * end)106 LargeObjectSpace::LargeObjectSpace(const std::string& name, uint8_t* begin, uint8_t* end)
107     : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
108       num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
109       total_objects_allocated_(0), begin_(begin), end_(end) {
110 }
111 
112 
CopyLiveToMarked()113 void LargeObjectSpace::CopyLiveToMarked() {
114   mark_bitmap_->CopyFrom(live_bitmap_.get());
115 }
116 
LargeObjectMapSpace(const std::string & name)117 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
118     : LargeObjectSpace(name, nullptr, nullptr),
119       lock_("large object map space lock", kAllocSpaceLock) {}
120 
Create(const std::string & name)121 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
122   if (Runtime::Current()->RunningOnValgrind()) {
123     return new ValgrindLargeObjectMapSpace(name);
124   } else {
125     return new LargeObjectMapSpace(name);
126   }
127 }
128 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)129 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
130                                            size_t* bytes_allocated, size_t* usable_size,
131                                            size_t* bytes_tl_bulk_allocated) {
132   std::string error_msg;
133   MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", nullptr, num_bytes,
134                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
135   if (UNLIKELY(mem_map == nullptr)) {
136     LOG(WARNING) << "Large object allocation failed: " << error_msg;
137     return nullptr;
138   }
139   mirror::Object* const obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
140   if (kIsDebugBuild) {
141     ReaderMutexLock mu2(Thread::Current(), *Locks::heap_bitmap_lock_);
142     auto* heap = Runtime::Current()->GetHeap();
143     auto* live_bitmap = heap->GetLiveBitmap();
144     auto* space_bitmap = live_bitmap->GetContinuousSpaceBitmap(obj);
145     CHECK(space_bitmap == nullptr) << obj << " overlaps with bitmap " << *space_bitmap;
146     auto* obj_end = reinterpret_cast<mirror::Object*>(mem_map->End());
147     space_bitmap = live_bitmap->GetContinuousSpaceBitmap(obj_end - 1);
148     CHECK(space_bitmap == nullptr) << obj_end << " overlaps with bitmap " << *space_bitmap;
149   }
150   MutexLock mu(self, lock_);
151   large_objects_.Put(obj, LargeObject {mem_map, false /* not zygote */});
152   const size_t allocation_size = mem_map->BaseSize();
153   DCHECK(bytes_allocated != nullptr);
154   begin_ = std::min(begin_, reinterpret_cast<uint8_t*>(obj));
155   uint8_t* obj_end = reinterpret_cast<uint8_t*>(obj) + allocation_size;
156   if (end_ == nullptr || obj_end > end_) {
157     end_ = obj_end;
158   }
159   *bytes_allocated = allocation_size;
160   if (usable_size != nullptr) {
161     *usable_size = allocation_size;
162   }
163   DCHECK(bytes_tl_bulk_allocated != nullptr);
164   *bytes_tl_bulk_allocated = allocation_size;
165   num_bytes_allocated_ += allocation_size;
166   total_bytes_allocated_ += allocation_size;
167   ++num_objects_allocated_;
168   ++total_objects_allocated_;
169   return obj;
170 }
171 
IsZygoteLargeObject(Thread * self,mirror::Object * obj) const172 bool LargeObjectMapSpace::IsZygoteLargeObject(Thread* self, mirror::Object* obj) const {
173   MutexLock mu(self, lock_);
174   auto it = large_objects_.find(obj);
175   CHECK(it != large_objects_.end());
176   return it->second.is_zygote;
177 }
178 
SetAllLargeObjectsAsZygoteObjects(Thread * self)179 void LargeObjectMapSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
180   MutexLock mu(self, lock_);
181   for (auto& pair : large_objects_) {
182     pair.second.is_zygote = true;
183   }
184 }
185 
Free(Thread * self,mirror::Object * ptr)186 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
187   MutexLock mu(self, lock_);
188   auto it = large_objects_.find(ptr);
189   if (UNLIKELY(it == large_objects_.end())) {
190     Runtime::Current()->GetHeap()->DumpSpaces(LOG(INTERNAL_FATAL));
191     LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
192   }
193   MemMap* mem_map = it->second.mem_map;
194   const size_t map_size = mem_map->BaseSize();
195   DCHECK_GE(num_bytes_allocated_, map_size);
196   size_t allocation_size = map_size;
197   num_bytes_allocated_ -= allocation_size;
198   --num_objects_allocated_;
199   delete mem_map;
200   large_objects_.erase(it);
201   return allocation_size;
202 }
203 
AllocationSize(mirror::Object * obj,size_t * usable_size)204 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
205   MutexLock mu(Thread::Current(), lock_);
206   auto it = large_objects_.find(obj);
207   CHECK(it != large_objects_.end()) << "Attempted to get size of a large object which is not live";
208   size_t alloc_size = it->second.mem_map->BaseSize();
209   if (usable_size != nullptr) {
210     *usable_size = alloc_size;
211   }
212   return alloc_size;
213 }
214 
FreeList(Thread * self,size_t num_ptrs,mirror::Object ** ptrs)215 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
216   size_t total = 0;
217   for (size_t i = 0; i < num_ptrs; ++i) {
218     if (kDebugSpaces) {
219       CHECK(Contains(ptrs[i]));
220     }
221     total += Free(self, ptrs[i]);
222   }
223   return total;
224 }
225 
Walk(DlMallocSpace::WalkCallback callback,void * arg)226 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
227   MutexLock mu(Thread::Current(), lock_);
228   for (auto& pair : large_objects_) {
229     MemMap* mem_map = pair.second.mem_map;
230     callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
231     callback(nullptr, nullptr, 0, arg);
232   }
233 }
234 
Contains(const mirror::Object * obj) const235 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
236   Thread* self = Thread::Current();
237   if (lock_.IsExclusiveHeld(self)) {
238     // We hold lock_ so do the check.
239     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
240   } else {
241     MutexLock mu(self, lock_);
242     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
243   }
244 }
245 
246 // Keeps track of allocation sizes + whether or not the previous allocation is free.
247 // Used to coalesce free blocks and find the best fit block for an allocation for best fit object
248 // allocation. Each allocation has an AllocationInfo which contains the size of the previous free
249 // block preceding it. Implemented in such a way that we can also find the iterator for any
250 // allocation info pointer.
251 class AllocationInfo {
252  public:
AllocationInfo()253   AllocationInfo() : prev_free_(0), alloc_size_(0) {
254   }
255   // Return the number of pages that the allocation info covers.
AlignSize() const256   size_t AlignSize() const {
257     return alloc_size_ & kFlagsMask;
258   }
259   // Returns the allocation size in bytes.
ByteSize() const260   size_t ByteSize() const {
261     return AlignSize() * FreeListSpace::kAlignment;
262   }
263   // Updates the allocation size and whether or not it is free.
SetByteSize(size_t size,bool free)264   void SetByteSize(size_t size, bool free) {
265     DCHECK_EQ(size & ~kFlagsMask, 0u);
266     DCHECK_ALIGNED(size, FreeListSpace::kAlignment);
267     alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0u);
268   }
269   // Returns true if the block is free.
IsFree() const270   bool IsFree() const {
271     return (alloc_size_ & kFlagFree) != 0;
272   }
273   // Return true if the large object is a zygote object.
IsZygoteObject() const274   bool IsZygoteObject() const {
275     return (alloc_size_ & kFlagZygote) != 0;
276   }
277   // Change the object to be a zygote object.
SetZygoteObject()278   void SetZygoteObject() {
279     alloc_size_ |= kFlagZygote;
280   }
281   // Return true if this is a zygote large object.
282   // Finds and returns the next non free allocation info after ourself.
GetNextInfo()283   AllocationInfo* GetNextInfo() {
284     return this + AlignSize();
285   }
GetNextInfo() const286   const AllocationInfo* GetNextInfo() const {
287     return this + AlignSize();
288   }
289   // Returns the previous free allocation info by using the prev_free_ member to figure out
290   // where it is. This is only used for coalescing so we only need to be able to do it if the
291   // previous allocation info is free.
GetPrevFreeInfo()292   AllocationInfo* GetPrevFreeInfo() {
293     DCHECK_NE(prev_free_, 0U);
294     return this - prev_free_;
295   }
296   // Returns the address of the object associated with this allocation info.
GetObjectAddress()297   mirror::Object* GetObjectAddress() {
298     return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
299   }
300   // Return how many kAlignment units there are before the free block.
GetPrevFree() const301   size_t GetPrevFree() const {
302     return prev_free_;
303   }
304   // Returns how many free bytes there is before the block.
GetPrevFreeBytes() const305   size_t GetPrevFreeBytes() const {
306     return GetPrevFree() * FreeListSpace::kAlignment;
307   }
308   // Update the size of the free block prior to the allocation.
SetPrevFreeBytes(size_t bytes)309   void SetPrevFreeBytes(size_t bytes) {
310     DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment);
311     prev_free_ = bytes / FreeListSpace::kAlignment;
312   }
313 
314  private:
315   static constexpr uint32_t kFlagFree = 0x80000000;  // If block is free.
316   static constexpr uint32_t kFlagZygote = 0x40000000;  // If the large object is a zygote object.
317   static constexpr uint32_t kFlagsMask = ~(kFlagFree | kFlagZygote);  // Combined flags for masking.
318   // Contains the size of the previous free block with kAlignment as the unit. If 0 then the
319   // allocation before us is not free.
320   // These variables are undefined in the middle of allocations / free blocks.
321   uint32_t prev_free_;
322   // Allocation size of this object in kAlignment as the unit.
323   uint32_t alloc_size_;
324 };
325 
GetSlotIndexForAllocationInfo(const AllocationInfo * info) const326 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const {
327   DCHECK_GE(info, allocation_info_);
328   DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End()));
329   return info - allocation_info_;
330 }
331 
GetAllocationInfoForAddress(uintptr_t address)332 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) {
333   return &allocation_info_[GetSlotIndexForAddress(address)];
334 }
335 
GetAllocationInfoForAddress(uintptr_t address) const336 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const {
337   return &allocation_info_[GetSlotIndexForAddress(address)];
338 }
339 
operator ()(const AllocationInfo * a,const AllocationInfo * b) const340 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a,
341                                                       const AllocationInfo* b) const {
342   if (a->GetPrevFree() < b->GetPrevFree()) return true;
343   if (a->GetPrevFree() > b->GetPrevFree()) return false;
344   if (a->AlignSize() < b->AlignSize()) return true;
345   if (a->AlignSize() > b->AlignSize()) return false;
346   return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
347 }
348 
Create(const std::string & name,uint8_t * requested_begin,size_t size)349 FreeListSpace* FreeListSpace::Create(const std::string& name, uint8_t* requested_begin, size_t size) {
350   CHECK_EQ(size % kAlignment, 0U);
351   std::string error_msg;
352   MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
353                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
354   CHECK(mem_map != nullptr) << "Failed to allocate large object space mem map: " << error_msg;
355   return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
356 }
357 
FreeListSpace(const std::string & name,MemMap * mem_map,uint8_t * begin,uint8_t * end)358 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, uint8_t* begin, uint8_t* end)
359     : LargeObjectSpace(name, begin, end),
360       mem_map_(mem_map),
361       lock_("free list space lock", kAllocSpaceLock) {
362   const size_t space_capacity = end - begin;
363   free_end_ = space_capacity;
364   CHECK_ALIGNED(space_capacity, kAlignment);
365   const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment);
366   std::string error_msg;
367   allocation_info_map_.reset(
368       MemMap::MapAnonymous("large object free list space allocation info map",
369                            nullptr, alloc_info_size, PROT_READ | PROT_WRITE,
370                            false, false, &error_msg));
371   CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map"
372       << error_msg;
373   allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin());
374 }
375 
~FreeListSpace()376 FreeListSpace::~FreeListSpace() {}
377 
Walk(DlMallocSpace::WalkCallback callback,void * arg)378 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
379   MutexLock mu(Thread::Current(), lock_);
380   const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
381   AllocationInfo* cur_info = &allocation_info_[0];
382   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
383   while (cur_info < end_info) {
384     if (!cur_info->IsFree()) {
385       size_t alloc_size = cur_info->ByteSize();
386       uint8_t* byte_start = reinterpret_cast<uint8_t*>(GetAddressForAllocationInfo(cur_info));
387       uint8_t* byte_end = byte_start + alloc_size;
388       callback(byte_start, byte_end, alloc_size, arg);
389       callback(nullptr, nullptr, 0, arg);
390     }
391     cur_info = cur_info->GetNextInfo();
392   }
393   CHECK_EQ(cur_info, end_info);
394 }
395 
RemoveFreePrev(AllocationInfo * info)396 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) {
397   CHECK_GT(info->GetPrevFree(), 0U);
398   auto it = free_blocks_.lower_bound(info);
399   CHECK(it != free_blocks_.end());
400   CHECK_EQ(*it, info);
401   free_blocks_.erase(it);
402 }
403 
Free(Thread * self,mirror::Object * obj)404 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
405   MutexLock mu(self, lock_);
406   DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " "
407                         << reinterpret_cast<void*>(End());
408   DCHECK_ALIGNED(obj, kAlignment);
409   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
410   DCHECK(!info->IsFree());
411   const size_t allocation_size = info->ByteSize();
412   DCHECK_GT(allocation_size, 0U);
413   DCHECK_ALIGNED(allocation_size, kAlignment);
414   info->SetByteSize(allocation_size, true);  // Mark as free.
415   // Look at the next chunk.
416   AllocationInfo* next_info = info->GetNextInfo();
417   // Calculate the start of the end free block.
418   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
419   size_t prev_free_bytes = info->GetPrevFreeBytes();
420   size_t new_free_size = allocation_size;
421   if (prev_free_bytes != 0) {
422     // Coalesce with previous free chunk.
423     new_free_size += prev_free_bytes;
424     RemoveFreePrev(info);
425     info = info->GetPrevFreeInfo();
426     // The previous allocation info must not be free since we are supposed to always coalesce.
427     DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free";
428   }
429   uintptr_t next_addr = GetAddressForAllocationInfo(next_info);
430   if (next_addr >= free_end_start) {
431     // Easy case, the next chunk is the end free region.
432     CHECK_EQ(next_addr, free_end_start);
433     free_end_ += new_free_size;
434   } else {
435     AllocationInfo* new_free_info;
436     if (next_info->IsFree()) {
437       AllocationInfo* next_next_info = next_info->GetNextInfo();
438       // Next next info can't be free since we always coalesce.
439       DCHECK(!next_next_info->IsFree());
440       DCHECK(IsAligned<kAlignment>(next_next_info->ByteSize()));
441       new_free_info = next_next_info;
442       new_free_size += next_next_info->GetPrevFreeBytes();
443       RemoveFreePrev(next_next_info);
444     } else {
445       new_free_info = next_info;
446     }
447     new_free_info->SetPrevFreeBytes(new_free_size);
448     free_blocks_.insert(new_free_info);
449     info->SetByteSize(new_free_size, true);
450     DCHECK_EQ(info->GetNextInfo(), new_free_info);
451   }
452   --num_objects_allocated_;
453   DCHECK_LE(allocation_size, num_bytes_allocated_);
454   num_bytes_allocated_ -= allocation_size;
455   madvise(obj, allocation_size, MADV_DONTNEED);
456   if (kIsDebugBuild) {
457     // Can't disallow reads since we use them to find next chunks during coalescing.
458     mprotect(obj, allocation_size, PROT_READ);
459   }
460   return allocation_size;
461 }
462 
AllocationSize(mirror::Object * obj,size_t * usable_size)463 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
464   DCHECK(Contains(obj));
465   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
466   DCHECK(!info->IsFree());
467   size_t alloc_size = info->ByteSize();
468   if (usable_size != nullptr) {
469     *usable_size = alloc_size;
470   }
471   return alloc_size;
472 }
473 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)474 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
475                                      size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
476   MutexLock mu(self, lock_);
477   const size_t allocation_size = RoundUp(num_bytes, kAlignment);
478   AllocationInfo temp_info;
479   temp_info.SetPrevFreeBytes(allocation_size);
480   temp_info.SetByteSize(0, false);
481   AllocationInfo* new_info;
482   // Find the smallest chunk at least num_bytes in size.
483   auto it = free_blocks_.lower_bound(&temp_info);
484   if (it != free_blocks_.end()) {
485     AllocationInfo* info = *it;
486     free_blocks_.erase(it);
487     // Fit our object in the previous allocation info free space.
488     new_info = info->GetPrevFreeInfo();
489     // Remove the newly allocated block from the info and update the prev_free_.
490     info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size);
491     if (info->GetPrevFreeBytes() > 0) {
492       AllocationInfo* new_free = info - info->GetPrevFree();
493       new_free->SetPrevFreeBytes(0);
494       new_free->SetByteSize(info->GetPrevFreeBytes(), true);
495       // If there is remaining space, insert back into the free set.
496       free_blocks_.insert(info);
497     }
498   } else {
499     // Try to steal some memory from the free space at the end of the space.
500     if (LIKELY(free_end_ >= allocation_size)) {
501       // Fit our object at the start of the end free block.
502       new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_);
503       free_end_ -= allocation_size;
504     } else {
505       return nullptr;
506     }
507   }
508   DCHECK(bytes_allocated != nullptr);
509   *bytes_allocated = allocation_size;
510   if (usable_size != nullptr) {
511     *usable_size = allocation_size;
512   }
513   DCHECK(bytes_tl_bulk_allocated != nullptr);
514   *bytes_tl_bulk_allocated = allocation_size;
515   // Need to do these inside of the lock.
516   ++num_objects_allocated_;
517   ++total_objects_allocated_;
518   num_bytes_allocated_ += allocation_size;
519   total_bytes_allocated_ += allocation_size;
520   mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info));
521   // We always put our object at the start of the free block, there can not be another free block
522   // before it.
523   if (kIsDebugBuild) {
524     mprotect(obj, allocation_size, PROT_READ | PROT_WRITE);
525   }
526   new_info->SetPrevFreeBytes(0);
527   new_info->SetByteSize(allocation_size, false);
528   return obj;
529 }
530 
Dump(std::ostream & os) const531 void FreeListSpace::Dump(std::ostream& os) const {
532   MutexLock mu(Thread::Current(), lock_);
533   os << GetName() << " -"
534      << " begin: " << reinterpret_cast<void*>(Begin())
535      << " end: " << reinterpret_cast<void*>(End()) << "\n";
536   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
537   const AllocationInfo* cur_info =
538       GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin()));
539   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
540   while (cur_info < end_info) {
541     size_t size = cur_info->ByteSize();
542     uintptr_t address = GetAddressForAllocationInfo(cur_info);
543     if (cur_info->IsFree()) {
544       os << "Free block at address: " << reinterpret_cast<const void*>(address)
545          << " of length " << size << " bytes\n";
546     } else {
547       os << "Large object at address: " << reinterpret_cast<const void*>(address)
548          << " of length " << size << " bytes\n";
549     }
550     cur_info = cur_info->GetNextInfo();
551   }
552   if (free_end_) {
553     os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
554        << " of length " << free_end_ << " bytes\n";
555   }
556 }
557 
IsZygoteLargeObject(Thread * self ATTRIBUTE_UNUSED,mirror::Object * obj) const558 bool FreeListSpace::IsZygoteLargeObject(Thread* self ATTRIBUTE_UNUSED, mirror::Object* obj) const {
559   const AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
560   DCHECK(info != nullptr);
561   return info->IsZygoteObject();
562 }
563 
SetAllLargeObjectsAsZygoteObjects(Thread * self)564 void FreeListSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
565   MutexLock mu(self, lock_);
566   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
567   for (AllocationInfo* cur_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())),
568       *end_info = GetAllocationInfoForAddress(free_end_start); cur_info < end_info;
569       cur_info = cur_info->GetNextInfo()) {
570     if (!cur_info->IsFree()) {
571       cur_info->SetZygoteObject();
572     }
573   }
574 }
575 
SweepCallback(size_t num_ptrs,mirror::Object ** ptrs,void * arg)576 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
577   SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
578   space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
579   Thread* self = context->self;
580   Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
581   // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
582   // the bitmaps as an optimization.
583   if (!context->swap_bitmaps) {
584     accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
585     for (size_t i = 0; i < num_ptrs; ++i) {
586       bitmap->Clear(ptrs[i]);
587     }
588   }
589   context->freed.objects += num_ptrs;
590   context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
591 }
592 
Sweep(bool swap_bitmaps)593 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
594   if (Begin() >= End()) {
595     return collector::ObjectBytePair(0, 0);
596   }
597   accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
598   accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
599   if (swap_bitmaps) {
600     std::swap(live_bitmap, mark_bitmap);
601   }
602   AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
603   accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
604                                            reinterpret_cast<uintptr_t>(Begin()),
605                                            reinterpret_cast<uintptr_t>(End()), SweepCallback, &scc);
606   return scc.freed;
607 }
608 
LogFragmentationAllocFailure(std::ostream &,size_t)609 void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
610                                                     size_t /*failed_alloc_bytes*/) {
611   UNIMPLEMENTED(FATAL);
612 }
613 
614 }  // namespace space
615 }  // namespace gc
616 }  // namespace art
617