• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_builder.h"
18 
19 #include "nodes.h"
20 #include "primitive_type_propagation.h"
21 #include "ssa_phi_elimination.h"
22 
23 namespace art {
24 
25 /**
26  * A debuggable application may require to reviving phis, to ensure their
27  * associated DEX register is available to a debugger. This class implements
28  * the logic for statement (c) of the SsaBuilder (see ssa_builder.h). It
29  * also makes sure that phis with incompatible input types are not revived
30  * (statement (b) of the SsaBuilder).
31  *
32  * This phase must be run after detecting dead phis through the
33  * DeadPhiElimination phase, and before deleting the dead phis.
34  */
35 class DeadPhiHandling : public ValueObject {
36  public:
DeadPhiHandling(HGraph * graph)37   explicit DeadPhiHandling(HGraph* graph)
38       : graph_(graph), worklist_(graph->GetArena(), kDefaultWorklistSize) {}
39 
40   void Run();
41 
42  private:
43   void VisitBasicBlock(HBasicBlock* block);
44   void ProcessWorklist();
45   void AddToWorklist(HPhi* phi);
46   void AddDependentInstructionsToWorklist(HPhi* phi);
47   bool UpdateType(HPhi* phi);
48 
49   HGraph* const graph_;
50   GrowableArray<HPhi*> worklist_;
51 
52   static constexpr size_t kDefaultWorklistSize = 8;
53 
54   DISALLOW_COPY_AND_ASSIGN(DeadPhiHandling);
55 };
56 
UpdateType(HPhi * phi)57 bool DeadPhiHandling::UpdateType(HPhi* phi) {
58   Primitive::Type existing = phi->GetType();
59   DCHECK(phi->IsLive());
60 
61   bool conflict = false;
62   Primitive::Type new_type = existing;
63   for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
64     HInstruction* input = phi->InputAt(i);
65     if (input->IsPhi() && input->AsPhi()->IsDead()) {
66       // We are doing a reverse post order visit of the graph, reviving
67       // phis that have environment uses and updating their types. If an
68       // input is a phi, and it is dead (because its input types are
69       // conflicting), this phi must be marked dead as well.
70       conflict = true;
71       break;
72     }
73     Primitive::Type input_type = HPhi::ToPhiType(input->GetType());
74 
75     // The only acceptable transitions are:
76     // - From void to typed: first time we update the type of this phi.
77     // - From int to reference (or reference to int): the phi has to change
78     //   to reference type. If the integer input cannot be converted to a
79     //   reference input, the phi will remain dead.
80     if (new_type == Primitive::kPrimVoid) {
81       new_type = input_type;
82     } else if (new_type == Primitive::kPrimNot && input_type == Primitive::kPrimInt) {
83       HInstruction* equivalent = SsaBuilder::GetReferenceTypeEquivalent(input);
84       if (equivalent == nullptr) {
85         conflict = true;
86         break;
87       } else {
88         phi->ReplaceInput(equivalent, i);
89         if (equivalent->IsPhi()) {
90           DCHECK_EQ(equivalent->GetType(), Primitive::kPrimNot);
91           // We created a new phi, but that phi has the same inputs as the old phi. We
92           // add it to the worklist to ensure its inputs can also be converted to reference.
93           // If not, it will remain dead, and the algorithm will make the current phi dead
94           // as well.
95           equivalent->AsPhi()->SetLive();
96           AddToWorklist(equivalent->AsPhi());
97         }
98       }
99     } else if (new_type == Primitive::kPrimInt && input_type == Primitive::kPrimNot) {
100       new_type = Primitive::kPrimNot;
101       // Start over, we may request reference equivalents for the inputs of the phi.
102       i = -1;
103     } else if (new_type != input_type) {
104       conflict = true;
105       break;
106     }
107   }
108 
109   if (conflict) {
110     phi->SetType(Primitive::kPrimVoid);
111     phi->SetDead();
112     return true;
113   } else {
114     DCHECK(phi->IsLive());
115     phi->SetType(new_type);
116     return existing != new_type;
117   }
118 }
119 
VisitBasicBlock(HBasicBlock * block)120 void DeadPhiHandling::VisitBasicBlock(HBasicBlock* block) {
121   for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
122     HPhi* phi = it.Current()->AsPhi();
123     if (phi->IsDead() && phi->HasEnvironmentUses()) {
124       phi->SetLive();
125       if (block->IsLoopHeader()) {
126         // Give a type to the loop phi, to guarantee convergence of the algorithm.
127         phi->SetType(phi->InputAt(0)->GetType());
128         AddToWorklist(phi);
129       } else {
130         // Because we are doing a reverse post order visit, all inputs of
131         // this phi have been visited and therefore had their (initial) type set.
132         UpdateType(phi);
133       }
134     }
135   }
136 }
137 
ProcessWorklist()138 void DeadPhiHandling::ProcessWorklist() {
139   while (!worklist_.IsEmpty()) {
140     HPhi* instruction = worklist_.Pop();
141     // Note that the same equivalent phi can be added multiple times in the work list, if
142     // used by multiple phis. The first call to `UpdateType` will know whether the phi is
143     // dead or live.
144     if (instruction->IsLive() && UpdateType(instruction)) {
145       AddDependentInstructionsToWorklist(instruction);
146     }
147   }
148 }
149 
AddToWorklist(HPhi * instruction)150 void DeadPhiHandling::AddToWorklist(HPhi* instruction) {
151   DCHECK(instruction->IsLive());
152   worklist_.Add(instruction);
153 }
154 
AddDependentInstructionsToWorklist(HPhi * instruction)155 void DeadPhiHandling::AddDependentInstructionsToWorklist(HPhi* instruction) {
156   for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) {
157     HPhi* phi = it.Current()->GetUser()->AsPhi();
158     if (phi != nullptr && !phi->IsDead()) {
159       AddToWorklist(phi);
160     }
161   }
162 }
163 
Run()164 void DeadPhiHandling::Run() {
165   for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
166     VisitBasicBlock(it.Current());
167   }
168   ProcessWorklist();
169 }
170 
IsPhiEquivalentOf(HInstruction * instruction,HPhi * phi)171 static bool IsPhiEquivalentOf(HInstruction* instruction, HPhi* phi) {
172   return instruction != nullptr
173       && instruction->IsPhi()
174       && instruction->AsPhi()->GetRegNumber() == phi->GetRegNumber();
175 }
176 
FixNullConstantType()177 void SsaBuilder::FixNullConstantType() {
178   // The order doesn't matter here.
179   for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) {
180     for (HInstructionIterator it(itb.Current()->GetInstructions()); !it.Done(); it.Advance()) {
181       HInstruction* equality_instr = it.Current();
182       if (!equality_instr->IsEqual() && !equality_instr->IsNotEqual()) {
183         continue;
184       }
185       HInstruction* left = equality_instr->InputAt(0);
186       HInstruction* right = equality_instr->InputAt(1);
187       HInstruction* int_operand = nullptr;
188 
189       if ((left->GetType() == Primitive::kPrimNot) && (right->GetType() == Primitive::kPrimInt)) {
190         int_operand = right;
191       } else if ((right->GetType() == Primitive::kPrimNot)
192                  && (left->GetType() == Primitive::kPrimInt)) {
193         int_operand = left;
194       } else {
195         continue;
196       }
197 
198       // If we got here, we are comparing against a reference and the int constant
199       // should be replaced with a null constant.
200       // Both type propagation and redundant phi elimination ensure `int_operand`
201       // can only be the 0 constant.
202       DCHECK(int_operand->IsIntConstant());
203       DCHECK_EQ(0, int_operand->AsIntConstant()->GetValue());
204       equality_instr->ReplaceInput(GetGraph()->GetNullConstant(), int_operand == right ? 1 : 0);
205     }
206   }
207 }
208 
EquivalentPhisCleanup()209 void SsaBuilder::EquivalentPhisCleanup() {
210   // The order doesn't matter here.
211   for (HReversePostOrderIterator itb(*GetGraph()); !itb.Done(); itb.Advance()) {
212     for (HInstructionIterator it(itb.Current()->GetPhis()); !it.Done(); it.Advance()) {
213       HPhi* phi = it.Current()->AsPhi();
214       HPhi* next = phi->GetNextEquivalentPhiWithSameType();
215       if (next != nullptr) {
216         // Make sure we do not replace a live phi with a dead phi. A live phi has been
217         // handled by the type propagation phase, unlike a dead phi.
218         if (next->IsLive()) {
219           phi->ReplaceWith(next);
220         } else {
221           next->ReplaceWith(phi);
222         }
223         DCHECK(next->GetNextEquivalentPhiWithSameType() == nullptr)
224             << "More then one phi equivalent with type " << phi->GetType()
225             << " found for phi" << phi->GetId();
226       }
227     }
228   }
229 }
230 
BuildSsa()231 void SsaBuilder::BuildSsa() {
232   // 1) Visit in reverse post order. We need to have all predecessors of a block visited
233   // (with the exception of loops) in order to create the right environment for that
234   // block. For loops, we create phis whose inputs will be set in 2).
235   for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) {
236     VisitBasicBlock(it.Current());
237   }
238 
239   // 2) Set inputs of loop phis.
240   for (size_t i = 0; i < loop_headers_.Size(); i++) {
241     HBasicBlock* block = loop_headers_.Get(i);
242     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
243       HPhi* phi = it.Current()->AsPhi();
244       for (size_t pred = 0; pred < block->GetPredecessors().Size(); pred++) {
245         HInstruction* input = ValueOfLocal(block->GetPredecessors().Get(pred), phi->GetRegNumber());
246         phi->AddInput(input);
247       }
248     }
249   }
250 
251   // 3) Mark dead phis. This will mark phis that are only used by environments:
252   // at the DEX level, the type of these phis does not need to be consistent, but
253   // our code generator will complain if the inputs of a phi do not have the same
254   // type. The marking allows the type propagation to know which phis it needs
255   // to handle. We mark but do not eliminate: the elimination will be done in
256   // step 9).
257   SsaDeadPhiElimination dead_phis_for_type_propagation(GetGraph());
258   dead_phis_for_type_propagation.MarkDeadPhis();
259 
260   // 4) Propagate types of phis. At this point, phis are typed void in the general
261   // case, or float/double/reference when we created an equivalent phi. So we
262   // need to propagate the types across phis to give them a correct type.
263   PrimitiveTypePropagation type_propagation(GetGraph());
264   type_propagation.Run();
265 
266   // 5) When creating equivalent phis we copy the inputs of the original phi which
267   // may be improperly typed. This was fixed during the type propagation in 4) but
268   // as a result we may end up with two equivalent phis with the same type for
269   // the same dex register. This pass cleans them up.
270   EquivalentPhisCleanup();
271 
272   // 6) Mark dead phis again. Step 4) may have introduced new phis.
273   // Step 5) might enable the death of new phis.
274   SsaDeadPhiElimination dead_phis(GetGraph());
275   dead_phis.MarkDeadPhis();
276 
277   // 7) Now that the graph is correctly typed, we can get rid of redundant phis.
278   // Note that we cannot do this phase before type propagation, otherwise
279   // we could get rid of phi equivalents, whose presence is a requirement for the
280   // type propagation phase. Note that this is to satisfy statement (a) of the
281   // SsaBuilder (see ssa_builder.h).
282   SsaRedundantPhiElimination redundant_phi(GetGraph());
283   redundant_phi.Run();
284 
285   // 8) Fix the type for null constants which are part of an equality comparison.
286   // We need to do this after redundant phi elimination, to ensure the only cases
287   // that we can see are reference comparison against 0. The redundant phi
288   // elimination ensures we do not see a phi taking two 0 constants in a HEqual
289   // or HNotEqual.
290   FixNullConstantType();
291 
292   // 9) Make sure environments use the right phi "equivalent": a phi marked dead
293   // can have a phi equivalent that is not dead. We must therefore update
294   // all environment uses of the dead phi to use its equivalent. Note that there
295   // can be multiple phis for the same Dex register that are live (for example
296   // when merging constants), in which case it is OK for the environments
297   // to just reference one.
298   for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) {
299     HBasicBlock* block = it.Current();
300     for (HInstructionIterator it_phis(block->GetPhis()); !it_phis.Done(); it_phis.Advance()) {
301       HPhi* phi = it_phis.Current()->AsPhi();
302       // If the phi is not dead, or has no environment uses, there is nothing to do.
303       if (!phi->IsDead() || !phi->HasEnvironmentUses()) continue;
304       HInstruction* next = phi->GetNext();
305       if (!IsPhiEquivalentOf(next, phi)) continue;
306       if (next->AsPhi()->IsDead()) {
307         // If the phi equivalent is dead, check if there is another one.
308         next = next->GetNext();
309         if (!IsPhiEquivalentOf(next, phi)) continue;
310         // There can be at most two phi equivalents.
311         DCHECK(!IsPhiEquivalentOf(next->GetNext(), phi));
312         if (next->AsPhi()->IsDead()) continue;
313       }
314       // We found a live phi equivalent. Update the environment uses of `phi` with it.
315       phi->ReplaceWith(next);
316     }
317   }
318 
319   // 10) Deal with phis to guarantee liveness of phis in case of a debuggable
320   // application. This is for satisfying statement (c) of the SsaBuilder
321   // (see ssa_builder.h).
322   if (GetGraph()->IsDebuggable()) {
323     DeadPhiHandling dead_phi_handler(GetGraph());
324     dead_phi_handler.Run();
325   }
326 
327   // 11) Now that the right phis are used for the environments, and we
328   // have potentially revive dead phis in case of a debuggable application,
329   // we can eliminate phis we do not need. Regardless of the debuggable status,
330   // this phase is necessary for statement (b) of the SsaBuilder (see ssa_builder.h),
331   // as well as for the code generation, which does not deal with phis of conflicting
332   // input types.
333   dead_phis.EliminateDeadPhis();
334 
335   // 12) Clear locals.
336   for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions());
337        !it.Done();
338        it.Advance()) {
339     HInstruction* current = it.Current();
340     if (current->IsLocal()) {
341       current->GetBlock()->RemoveInstruction(current);
342     }
343   }
344 }
345 
ValueOfLocal(HBasicBlock * block,size_t local)346 HInstruction* SsaBuilder::ValueOfLocal(HBasicBlock* block, size_t local) {
347   return GetLocalsFor(block)->Get(local);
348 }
349 
VisitBasicBlock(HBasicBlock * block)350 void SsaBuilder::VisitBasicBlock(HBasicBlock* block) {
351   current_locals_ = GetLocalsFor(block);
352 
353   if (block->IsLoopHeader()) {
354     // If the block is a loop header, we know we only have visited the pre header
355     // because we are visiting in reverse post order. We create phis for all initialized
356     // locals from the pre header. Their inputs will be populated at the end of
357     // the analysis.
358     for (size_t local = 0; local < current_locals_->Size(); local++) {
359       HInstruction* incoming = ValueOfLocal(block->GetLoopInformation()->GetPreHeader(), local);
360       if (incoming != nullptr) {
361         HPhi* phi = new (GetGraph()->GetArena()) HPhi(
362             GetGraph()->GetArena(), local, 0, Primitive::kPrimVoid);
363         block->AddPhi(phi);
364         current_locals_->Put(local, phi);
365       }
366     }
367     // Save the loop header so that the last phase of the analysis knows which
368     // blocks need to be updated.
369     loop_headers_.Add(block);
370   } else if (block->GetPredecessors().Size() > 0) {
371     // All predecessors have already been visited because we are visiting in reverse post order.
372     // We merge the values of all locals, creating phis if those values differ.
373     for (size_t local = 0; local < current_locals_->Size(); local++) {
374       bool one_predecessor_has_no_value = false;
375       bool is_different = false;
376       HInstruction* value = ValueOfLocal(block->GetPredecessors().Get(0), local);
377 
378       for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) {
379         HInstruction* current = ValueOfLocal(block->GetPredecessors().Get(i), local);
380         if (current == nullptr) {
381           one_predecessor_has_no_value = true;
382           break;
383         } else if (current != value) {
384           is_different = true;
385         }
386       }
387 
388       if (one_predecessor_has_no_value) {
389         // If one predecessor has no value for this local, we trust the verifier has
390         // successfully checked that there is a store dominating any read after this block.
391         continue;
392       }
393 
394       if (is_different) {
395         HPhi* phi = new (GetGraph()->GetArena()) HPhi(
396             GetGraph()->GetArena(), local, block->GetPredecessors().Size(), Primitive::kPrimVoid);
397         for (size_t i = 0; i < block->GetPredecessors().Size(); i++) {
398           HInstruction* pred_value = ValueOfLocal(block->GetPredecessors().Get(i), local);
399           phi->SetRawInputAt(i, pred_value);
400         }
401         block->AddPhi(phi);
402         value = phi;
403       }
404       current_locals_->Put(local, value);
405     }
406   }
407 
408   // Visit all instructions. The instructions of interest are:
409   // - HLoadLocal: replace them with the current value of the local.
410   // - HStoreLocal: update current value of the local and remove the instruction.
411   // - Instructions that require an environment: populate their environment
412   //   with the current values of the locals.
413   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
414     it.Current()->Accept(this);
415   }
416 }
417 
418 /**
419  * Constants in the Dex format are not typed. So the builder types them as
420  * integers, but when doing the SSA form, we might realize the constant
421  * is used for floating point operations. We create a floating-point equivalent
422  * constant to make the operations correctly typed.
423  */
GetFloatEquivalent(HIntConstant * constant)424 HFloatConstant* SsaBuilder::GetFloatEquivalent(HIntConstant* constant) {
425   // We place the floating point constant next to this constant.
426   HFloatConstant* result = constant->GetNext()->AsFloatConstant();
427   if (result == nullptr) {
428     HGraph* graph = constant->GetBlock()->GetGraph();
429     ArenaAllocator* allocator = graph->GetArena();
430     result = new (allocator) HFloatConstant(bit_cast<float, int32_t>(constant->GetValue()));
431     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
432     graph->CacheFloatConstant(result);
433   } else {
434     // If there is already a constant with the expected type, we know it is
435     // the floating point equivalent of this constant.
436     DCHECK_EQ((bit_cast<int32_t, float>(result->GetValue())), constant->GetValue());
437   }
438   return result;
439 }
440 
441 /**
442  * Wide constants in the Dex format are not typed. So the builder types them as
443  * longs, but when doing the SSA form, we might realize the constant
444  * is used for floating point operations. We create a floating-point equivalent
445  * constant to make the operations correctly typed.
446  */
GetDoubleEquivalent(HLongConstant * constant)447 HDoubleConstant* SsaBuilder::GetDoubleEquivalent(HLongConstant* constant) {
448   // We place the floating point constant next to this constant.
449   HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
450   if (result == nullptr) {
451     HGraph* graph = constant->GetBlock()->GetGraph();
452     ArenaAllocator* allocator = graph->GetArena();
453     result = new (allocator) HDoubleConstant(bit_cast<double, int64_t>(constant->GetValue()));
454     constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
455     graph->CacheDoubleConstant(result);
456   } else {
457     // If there is already a constant with the expected type, we know it is
458     // the floating point equivalent of this constant.
459     DCHECK_EQ((bit_cast<int64_t, double>(result->GetValue())), constant->GetValue());
460   }
461   return result;
462 }
463 
464 /**
465  * Because of Dex format, we might end up having the same phi being
466  * used for non floating point operations and floating point / reference operations.
467  * Because we want the graph to be correctly typed (and thereafter avoid moves between
468  * floating point registers and core registers), we need to create a copy of the
469  * phi with a floating point / reference type.
470  */
GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi * phi,Primitive::Type type)471 HPhi* SsaBuilder::GetFloatDoubleOrReferenceEquivalentOfPhi(HPhi* phi, Primitive::Type type) {
472   // We place the floating point /reference phi next to this phi.
473   HInstruction* next = phi->GetNext();
474   if (next != nullptr
475       && next->AsPhi()->GetRegNumber() == phi->GetRegNumber()
476       && next->GetType() != type) {
477     // Move to the next phi to see if it is the one we are looking for.
478     next = next->GetNext();
479   }
480 
481   if (next == nullptr
482       || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())
483       || (next->GetType() != type)) {
484     ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena();
485     HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type);
486     for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
487       // Copy the inputs. Note that the graph may not be correctly typed by doing this copy,
488       // but the type propagation phase will fix it.
489       new_phi->SetRawInputAt(i, phi->InputAt(i));
490     }
491     phi->GetBlock()->InsertPhiAfter(new_phi, phi);
492     return new_phi;
493   } else {
494     DCHECK_EQ(next->GetType(), type);
495     return next->AsPhi();
496   }
497 }
498 
GetFloatOrDoubleEquivalent(HInstruction * user,HInstruction * value,Primitive::Type type)499 HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* user,
500                                                      HInstruction* value,
501                                                      Primitive::Type type) {
502   if (value->IsArrayGet()) {
503     // The verifier has checked that values in arrays cannot be used for both
504     // floating point and non-floating point operations. It is therefore safe to just
505     // change the type of the operation.
506     value->AsArrayGet()->SetType(type);
507     return value;
508   } else if (value->IsLongConstant()) {
509     return GetDoubleEquivalent(value->AsLongConstant());
510   } else if (value->IsIntConstant()) {
511     return GetFloatEquivalent(value->AsIntConstant());
512   } else if (value->IsPhi()) {
513     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), type);
514   } else {
515     // For other instructions, we assume the verifier has checked that the dex format is correctly
516     // typed and the value in a dex register will not be used for both floating point and
517     // non-floating point operations. So the only reason an instruction would want a floating
518     // point equivalent is for an unused phi that will be removed by the dead phi elimination phase.
519     DCHECK(user->IsPhi());
520     return value;
521   }
522 }
523 
GetReferenceTypeEquivalent(HInstruction * value)524 HInstruction* SsaBuilder::GetReferenceTypeEquivalent(HInstruction* value) {
525   if (value->IsIntConstant() && value->AsIntConstant()->GetValue() == 0) {
526     return value->GetBlock()->GetGraph()->GetNullConstant();
527   } else if (value->IsPhi()) {
528     return GetFloatDoubleOrReferenceEquivalentOfPhi(value->AsPhi(), Primitive::kPrimNot);
529   } else {
530     return nullptr;
531   }
532 }
533 
VisitLoadLocal(HLoadLocal * load)534 void SsaBuilder::VisitLoadLocal(HLoadLocal* load) {
535   HInstruction* value = current_locals_->Get(load->GetLocal()->GetRegNumber());
536   // If the operation requests a specific type, we make sure its input is of that type.
537   if (load->GetType() != value->GetType()) {
538     if (load->GetType() == Primitive::kPrimFloat || load->GetType() == Primitive::kPrimDouble) {
539       value = GetFloatOrDoubleEquivalent(load, value, load->GetType());
540     } else if (load->GetType() == Primitive::kPrimNot) {
541       value = GetReferenceTypeEquivalent(value);
542     }
543   }
544   load->ReplaceWith(value);
545   load->GetBlock()->RemoveInstruction(load);
546 }
547 
VisitStoreLocal(HStoreLocal * store)548 void SsaBuilder::VisitStoreLocal(HStoreLocal* store) {
549   current_locals_->Put(store->GetLocal()->GetRegNumber(), store->InputAt(1));
550   store->GetBlock()->RemoveInstruction(store);
551 }
552 
VisitInstruction(HInstruction * instruction)553 void SsaBuilder::VisitInstruction(HInstruction* instruction) {
554   if (!instruction->NeedsEnvironment()) {
555     return;
556   }
557   HEnvironment* environment = new (GetGraph()->GetArena()) HEnvironment(
558       GetGraph()->GetArena(),
559       current_locals_->Size(),
560       GetGraph()->GetDexFile(),
561       GetGraph()->GetMethodIdx(),
562       instruction->GetDexPc());
563   environment->CopyFrom(*current_locals_);
564   instruction->SetRawEnvironment(environment);
565 }
566 
VisitTemporary(HTemporary * temp)567 void SsaBuilder::VisitTemporary(HTemporary* temp) {
568   // Temporaries are only used by the baseline register allocator.
569   temp->GetBlock()->RemoveInstruction(temp);
570 }
571 
572 }  // namespace art
573