• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
18 #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
19 
20 #include <stdint.h>
21 
22 #include <iosfwd>
23 #include <string>
24 
25 #include "base/logging.h"
26 #include "base/mutex.h"
27 #include "gc_root.h"
28 #include "object_callbacks.h"
29 #include "offsets.h"
30 #include "read_barrier_option.h"
31 
32 namespace art {
33 
34 class RootInfo;
35 
36 namespace mirror {
37 class Object;
38 }  // namespace mirror
39 
40 class MemMap;
41 
42 /*
43  * Maintain a table of indirect references.  Used for local/global JNI
44  * references.
45  *
46  * The table contains object references that are part of the GC root set.
47  * When an object is added we return an IndirectRef that is not a valid
48  * pointer but can be used to find the original value in O(1) time.
49  * Conversions to and from indirect references are performed on upcalls
50  * and downcalls, so they need to be very fast.
51  *
52  * To be efficient for JNI local variable storage, we need to provide
53  * operations that allow us to operate on segments of the table, where
54  * segments are pushed and popped as if on a stack.  For example, deletion
55  * of an entry should only succeed if it appears in the current segment,
56  * and we want to be able to strip off the current segment quickly when
57  * a method returns.  Additions to the table must be made in the current
58  * segment even if space is available in an earlier area.
59  *
60  * A new segment is created when we call into native code from interpreted
61  * code, or when we handle the JNI PushLocalFrame function.
62  *
63  * The GC must be able to scan the entire table quickly.
64  *
65  * In summary, these must be very fast:
66  *  - adding or removing a segment
67  *  - adding references to a new segment
68  *  - converting an indirect reference back to an Object
69  * These can be a little slower, but must still be pretty quick:
70  *  - adding references to a "mature" segment
71  *  - removing individual references
72  *  - scanning the entire table straight through
73  *
74  * If there's more than one segment, we don't guarantee that the table
75  * will fill completely before we fail due to lack of space.  We do ensure
76  * that the current segment will pack tightly, which should satisfy JNI
77  * requirements (e.g. EnsureLocalCapacity).
78  *
79  * To make everything fit nicely in 32-bit integers, the maximum size of
80  * the table is capped at 64K.
81  *
82  * Only SynchronizedGet is synchronized.
83  */
84 
85 /*
86  * Indirect reference definition.  This must be interchangeable with JNI's
87  * jobject, and it's convenient to let null be null, so we use void*.
88  *
89  * We need a 16-bit table index and a 2-bit reference type (global, local,
90  * weak global).  Real object pointers will have zeroes in the low 2 or 3
91  * bits (4- or 8-byte alignment), so it's useful to put the ref type
92  * in the low bits and reserve zero as an invalid value.
93  *
94  * The remaining 14 bits can be used to detect stale indirect references.
95  * For example, if objects don't move, we can use a hash of the original
96  * Object* to make sure the entry hasn't been re-used.  (If the Object*
97  * we find there doesn't match because of heap movement, we could do a
98  * secondary check on the preserved hash value; this implies that creating
99  * a global/local ref queries the hash value and forces it to be saved.)
100  *
101  * A more rigorous approach would be to put a serial number in the extra
102  * bits, and keep a copy of the serial number in a parallel table.  This is
103  * easier when objects can move, but requires 2x the memory and additional
104  * memory accesses on add/get.  It will catch additional problems, e.g.:
105  * create iref1 for obj, delete iref1, create iref2 for same obj, lookup
106  * iref1.  A pattern based on object bits will miss this.
107  */
108 typedef void* IndirectRef;
109 
110 /*
111  * Indirect reference kind, used as the two low bits of IndirectRef.
112  *
113  * For convenience these match up with enum jobjectRefType from jni.h.
114  */
115 enum IndirectRefKind {
116   kHandleScopeOrInvalid = 0,  // <<stack indirect reference table or invalid reference>>
117   kLocal         = 1,  // <<local reference>>
118   kGlobal        = 2,  // <<global reference>>
119   kWeakGlobal    = 3   // <<weak global reference>>
120 };
121 std::ostream& operator<<(std::ostream& os, const IndirectRefKind& rhs);
122 
123 /*
124  * Determine what kind of indirect reference this is.
125  */
GetIndirectRefKind(IndirectRef iref)126 static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) {
127   return static_cast<IndirectRefKind>(reinterpret_cast<uintptr_t>(iref) & 0x03);
128 }
129 
130 /* use as initial value for "cookie", and when table has only one segment */
131 static const uint32_t IRT_FIRST_SEGMENT = 0;
132 
133 /*
134  * Table definition.
135  *
136  * For the global reference table, the expected common operations are
137  * adding a new entry and removing a recently-added entry (usually the
138  * most-recently-added entry).  For JNI local references, the common
139  * operations are adding a new entry and removing an entire table segment.
140  *
141  * If "alloc_entries_" is not equal to "max_entries_", the table may expand
142  * when entries are added, which means the memory may move.  If you want
143  * to keep pointers into "table" rather than offsets, you must use a
144  * fixed-size table.
145  *
146  * If we delete entries from the middle of the list, we will be left with
147  * "holes".  We track the number of holes so that, when adding new elements,
148  * we can quickly decide to do a trivial append or go slot-hunting.
149  *
150  * When the top-most entry is removed, any holes immediately below it are
151  * also removed.  Thus, deletion of an entry may reduce "topIndex" by more
152  * than one.
153  *
154  * To get the desired behavior for JNI locals, we need to know the bottom
155  * and top of the current "segment".  The top is managed internally, and
156  * the bottom is passed in as a function argument.  When we call a native method or
157  * push a local frame, the current top index gets pushed on, and serves
158  * as the new bottom.  When we pop a frame off, the value from the stack
159  * becomes the new top index, and the value stored in the previous frame
160  * becomes the new bottom.
161  *
162  * To avoid having to re-scan the table after a pop, we want to push the
163  * number of holes in the table onto the stack.  Because of our 64K-entry
164  * cap, we can combine the two into a single unsigned 32-bit value.
165  * Instead of a "bottom" argument we take a "cookie", which includes the
166  * bottom index and the count of holes below the bottom.
167  *
168  * Common alternative implementation: make IndirectRef a pointer to the
169  * actual reference slot.  Instead of getting a table and doing a lookup,
170  * the lookup can be done instantly.  Operations like determining the
171  * type and deleting the reference are more expensive because the table
172  * must be hunted for (i.e. you have to do a pointer comparison to see
173  * which table it's in), you can't move the table when expanding it (so
174  * realloc() is out), and tricks like serial number checking to detect
175  * stale references aren't possible (though we may be able to get similar
176  * benefits with other approaches).
177  *
178  * TODO: consider a "lastDeleteIndex" for quick hole-filling when an
179  * add immediately follows a delete; must invalidate after segment pop
180  * (which could increase the cost/complexity of method call/return).
181  * Might be worth only using it for JNI globals.
182  *
183  * TODO: may want completely different add/remove algorithms for global
184  * and local refs to improve performance.  A large circular buffer might
185  * reduce the amortized cost of adding global references.
186  *
187  */
188 union IRTSegmentState {
189   uint32_t          all;
190   struct {
191     uint32_t      topIndex:16;            /* index of first unused entry */
192     uint32_t      numHoles:16;            /* #of holes in entire table */
193   } parts;
194 };
195 
196 // Try to choose kIRTPrevCount so that sizeof(IrtEntry) is a power of 2.
197 // Contains multiple entries but only one active one, this helps us detect use after free errors
198 // since the serial stored in the indirect ref wont match.
199 static const size_t kIRTPrevCount = kIsDebugBuild ? 7 : 3;
200 class IrtEntry {
201  public:
Add(mirror::Object * obj)202   void Add(mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
203     ++serial_;
204     if (serial_ == kIRTPrevCount) {
205       serial_ = 0;
206     }
207     references_[serial_] = GcRoot<mirror::Object>(obj);
208   }
GetReference()209   GcRoot<mirror::Object>* GetReference() {
210     DCHECK_LT(serial_, kIRTPrevCount);
211     return &references_[serial_];
212   }
GetSerial()213   uint32_t GetSerial() const {
214     return serial_;
215   }
SetReference(mirror::Object * obj)216   void SetReference(mirror::Object* obj) {
217     DCHECK_LT(serial_, kIRTPrevCount);
218     references_[serial_] = GcRoot<mirror::Object>(obj);
219   }
220 
221  private:
222   uint32_t serial_;
223   GcRoot<mirror::Object> references_[kIRTPrevCount];
224 };
225 static_assert(sizeof(IrtEntry) == (1 + kIRTPrevCount) * sizeof(uint32_t),
226               "Unexpected sizeof(IrtEntry)");
227 
228 class IrtIterator {
229  public:
IrtIterator(IrtEntry * table,size_t i,size_t capacity)230   explicit IrtIterator(IrtEntry* table, size_t i, size_t capacity)
231       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
232       : table_(table), i_(i), capacity_(capacity) {
233   }
234 
235   IrtIterator& operator++() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
236     ++i_;
237     return *this;
238   }
239 
240   GcRoot<mirror::Object>* operator*() {
241     // This does not have a read barrier as this is used to visit roots.
242     return table_[i_].GetReference();
243   }
244 
equals(const IrtIterator & rhs)245   bool equals(const IrtIterator& rhs) const {
246     return (i_ == rhs.i_ && table_ == rhs.table_);
247   }
248 
249  private:
250   IrtEntry* const table_;
251   size_t i_;
252   const size_t capacity_;
253 };
254 
255 bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) {
256   return lhs.equals(rhs);
257 }
258 
259 bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) {
260   return !lhs.equals(rhs);
261 }
262 
263 class IndirectReferenceTable {
264  public:
265   // WARNING: When using with abort_on_error = false, the object may be in a partially
266   //          initialized state. Use IsValid() to check.
267   IndirectReferenceTable(size_t initialCount, size_t maxCount, IndirectRefKind kind,
268                          bool abort_on_error = true);
269 
270   ~IndirectReferenceTable();
271 
272   bool IsValid() const;
273 
274   /*
275    * Add a new entry.  "obj" must be a valid non-nullptr object reference.
276    *
277    * Returns nullptr if the table is full (max entries reached, or alloc
278    * failed during expansion).
279    */
280   IndirectRef Add(uint32_t cookie, mirror::Object* obj)
281       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
282 
283   /*
284    * Given an IndirectRef in the table, return the Object it refers to.
285    *
286    * Returns kInvalidIndirectRefObject if iref is invalid.
287    */
288   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
289   mirror::Object* Get(IndirectRef iref) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
290       ALWAYS_INLINE;
291 
292   // Synchronized get which reads a reference, acquiring a lock if necessary.
293   template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier>
SynchronizedGet(Thread *,ReaderWriterMutex *,IndirectRef iref)294   mirror::Object* SynchronizedGet(Thread* /*self*/, ReaderWriterMutex* /*mutex*/,
295                                   IndirectRef iref) const
296       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
297     return Get<kReadBarrierOption>(iref);
298   }
299 
300   /*
301    * Update an existing entry.
302    *
303    * Updates an existing indirect reference to point to a new object.
304    */
305   void Update(IndirectRef iref, mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
306 
307   /*
308    * Remove an existing entry.
309    *
310    * If the entry is not between the current top index and the bottom index
311    * specified by the cookie, we don't remove anything.  This is the behavior
312    * required by JNI's DeleteLocalRef function.
313    *
314    * Returns "false" if nothing was removed.
315    */
316   bool Remove(uint32_t cookie, IndirectRef iref);
317 
318   void AssertEmpty();
319 
320   void Dump(std::ostream& os) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
321 
322   /*
323    * Return the #of entries in the entire table.  This includes holes, and
324    * so may be larger than the actual number of "live" entries.
325    */
Capacity()326   size_t Capacity() const {
327     return segment_state_.parts.topIndex;
328   }
329 
330   // Note IrtIterator does not have a read barrier as it's used to visit roots.
begin()331   IrtIterator begin() {
332     return IrtIterator(table_, 0, Capacity());
333   }
334 
end()335   IrtIterator end() {
336     return IrtIterator(table_, Capacity(), Capacity());
337   }
338 
339   void VisitRoots(RootVisitor* visitor, const RootInfo& root_info)
340       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
341 
GetSegmentState()342   uint32_t GetSegmentState() const {
343     return segment_state_.all;
344   }
345 
SetSegmentState(uint32_t new_state)346   void SetSegmentState(uint32_t new_state) {
347     segment_state_.all = new_state;
348   }
349 
SegmentStateOffset()350   static Offset SegmentStateOffset() {
351     return Offset(OFFSETOF_MEMBER(IndirectReferenceTable, segment_state_));
352   }
353 
354   // Release pages past the end of the table that may have previously held references.
355   void Trim() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
356 
357  private:
358   // Extract the table index from an indirect reference.
ExtractIndex(IndirectRef iref)359   static uint32_t ExtractIndex(IndirectRef iref) {
360     uintptr_t uref = reinterpret_cast<uintptr_t>(iref);
361     return (uref >> 2) & 0xffff;
362   }
363 
364   /*
365    * The object pointer itself is subject to relocation in some GC
366    * implementations, so we shouldn't really be using it here.
367    */
ToIndirectRef(uint32_t tableIndex)368   IndirectRef ToIndirectRef(uint32_t tableIndex) const {
369     DCHECK_LT(tableIndex, 65536U);
370     uint32_t serialChunk = table_[tableIndex].GetSerial();
371     uintptr_t uref = (serialChunk << 20) | (tableIndex << 2) | kind_;
372     return reinterpret_cast<IndirectRef>(uref);
373   }
374 
375   // Abort if check_jni is not enabled.
376   static void AbortIfNoCheckJNI();
377 
378   /* extra debugging checks */
379   bool GetChecked(IndirectRef) const;
380   bool CheckEntry(const char*, IndirectRef, int) const;
381 
382   /* semi-public - read/write by jni down calls */
383   IRTSegmentState segment_state_;
384 
385   // Mem map where we store the indirect refs.
386   std::unique_ptr<MemMap> table_mem_map_;
387   // bottom of the stack. Do not directly access the object references
388   // in this as they are roots. Use Get() that has a read barrier.
389   IrtEntry* table_;
390   /* bit mask, ORed into all irefs */
391   const IndirectRefKind kind_;
392   /* max #of entries allowed */
393   const size_t max_entries_;
394 };
395 
396 }  // namespace art
397 
398 #endif  // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_
399