• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/MC/MCInstrItineraries.h - Scheduling ---------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file describes the structures used for instruction
11 // itineraries, stages, and operand reads/writes.  This is used by
12 // schedulers to determine instruction stages and latencies.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_MC_MCINSTRITINERARIES_H
17 #define LLVM_MC_MCINSTRITINERARIES_H
18 
19 #include "llvm/MC/MCSchedule.h"
20 #include <algorithm>
21 
22 namespace llvm {
23 
24 //===----------------------------------------------------------------------===//
25 /// These values represent a non-pipelined step in
26 /// the execution of an instruction.  Cycles represents the number of
27 /// discrete time slots needed to complete the stage.  Units represent
28 /// the choice of functional units that can be used to complete the
29 /// stage.  Eg. IntUnit1, IntUnit2. NextCycles indicates how many
30 /// cycles should elapse from the start of this stage to the start of
31 /// the next stage in the itinerary. A value of -1 indicates that the
32 /// next stage should start immediately after the current one.
33 /// For example:
34 ///
35 ///   { 1, x, -1 }
36 ///      indicates that the stage occupies FU x for 1 cycle and that
37 ///      the next stage starts immediately after this one.
38 ///
39 ///   { 2, x|y, 1 }
40 ///      indicates that the stage occupies either FU x or FU y for 2
41 ///      consecuative cycles and that the next stage starts one cycle
42 ///      after this stage starts. That is, the stage requirements
43 ///      overlap in time.
44 ///
45 ///   { 1, x, 0 }
46 ///      indicates that the stage occupies FU x for 1 cycle and that
47 ///      the next stage starts in this same cycle. This can be used to
48 ///      indicate that the instruction requires multiple stages at the
49 ///      same time.
50 ///
51 /// FU reservation can be of two different kinds:
52 ///  - FUs which instruction actually requires
53 ///  - FUs which instruction just reserves. Reserved unit is not available for
54 ///    execution of other instruction. However, several instructions can reserve
55 ///    the same unit several times.
56 /// Such two types of units reservation is used to model instruction domain
57 /// change stalls, FUs using the same resource (e.g. same register file), etc.
58 
59 struct InstrStage {
60   enum ReservationKinds {
61     Required = 0,
62     Reserved = 1
63   };
64 
65   unsigned Cycles_;  ///< Length of stage in machine cycles
66   unsigned Units_;   ///< Choice of functional units
67   int NextCycles_;   ///< Number of machine cycles to next stage
68   ReservationKinds Kind_; ///< Kind of the FU reservation
69 
70   /// Returns the number of cycles the stage is occupied.
getCyclesInstrStage71   unsigned getCycles() const {
72     return Cycles_;
73   }
74 
75   /// Returns the choice of FUs.
getUnitsInstrStage76   unsigned getUnits() const {
77     return Units_;
78   }
79 
getReservationKindInstrStage80   ReservationKinds getReservationKind() const {
81     return Kind_;
82   }
83 
84   /// Returns the number of cycles from the start of
85   /// this stage to the start of the next stage in the itinerary
getNextCyclesInstrStage86   unsigned getNextCycles() const {
87     return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
88   }
89 };
90 
91 
92 //===----------------------------------------------------------------------===//
93 /// An itinerary represents the scheduling information for an instruction.
94 /// This includes a set of stages occupied by the instruction and the pipeline
95 /// cycle in which operands are read and written.
96 ///
97 struct InstrItinerary {
98   int      NumMicroOps;        ///< # of micro-ops, -1 means it's variable
99   unsigned FirstStage;         ///< Index of first stage in itinerary
100   unsigned LastStage;          ///< Index of last + 1 stage in itinerary
101   unsigned FirstOperandCycle;  ///< Index of first operand rd/wr
102   unsigned LastOperandCycle;   ///< Index of last + 1 operand rd/wr
103 };
104 
105 
106 //===----------------------------------------------------------------------===//
107 /// Itinerary data supplied by a subtarget to be used by a target.
108 ///
109 class InstrItineraryData {
110 public:
111   MCSchedModel          SchedModel;     ///< Basic machine properties.
112   const InstrStage     *Stages;         ///< Array of stages selected
113   const unsigned       *OperandCycles;  ///< Array of operand cycles selected
114   const unsigned       *Forwardings;    ///< Array of pipeline forwarding pathes
115   const InstrItinerary *Itineraries;    ///< Array of itineraries selected
116 
117   /// Ctors.
118   ///
InstrItineraryData()119   InstrItineraryData() : SchedModel(MCSchedModel::GetDefaultSchedModel()),
120                          Stages(nullptr), OperandCycles(nullptr),
121                          Forwardings(nullptr), Itineraries(nullptr) {}
122 
InstrItineraryData(const MCSchedModel & SM,const InstrStage * S,const unsigned * OS,const unsigned * F)123   InstrItineraryData(const MCSchedModel &SM, const InstrStage *S,
124                      const unsigned *OS, const unsigned *F)
125     : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F),
126       Itineraries(SchedModel.InstrItineraries) {}
127 
128   /// Returns true if there are no itineraries.
isEmpty()129   bool isEmpty() const { return Itineraries == nullptr; }
130 
131   /// Returns true if the index is for the end marker itinerary.
isEndMarker(unsigned ItinClassIndx)132   bool isEndMarker(unsigned ItinClassIndx) const {
133     return ((Itineraries[ItinClassIndx].FirstStage == ~0U) &&
134             (Itineraries[ItinClassIndx].LastStage == ~0U));
135   }
136 
137   /// Return the first stage of the itinerary.
beginStage(unsigned ItinClassIndx)138   const InstrStage *beginStage(unsigned ItinClassIndx) const {
139     unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
140     return Stages + StageIdx;
141   }
142 
143   /// Return the last+1 stage of the itinerary.
endStage(unsigned ItinClassIndx)144   const InstrStage *endStage(unsigned ItinClassIndx) const {
145     unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
146     return Stages + StageIdx;
147   }
148 
149   /// Return the total stage latency of the given class.
150   /// The latency is the maximum completion time for any stage in the itinerary.
151   /// If no stages exist, it defaults to one cycle.
getStageLatency(unsigned ItinClassIndx)152   unsigned getStageLatency(unsigned ItinClassIndx) const {
153     // If the target doesn't provide itinerary information, use a simple
154     // non-zero default value for all instructions.
155     if (isEmpty())
156       return 1;
157 
158     // Calculate the maximum completion time for any stage.
159     unsigned Latency = 0, StartCycle = 0;
160     for (const InstrStage *IS = beginStage(ItinClassIndx),
161            *E = endStage(ItinClassIndx); IS != E; ++IS) {
162       Latency = std::max(Latency, StartCycle + IS->getCycles());
163       StartCycle += IS->getNextCycles();
164     }
165     return Latency;
166   }
167 
168   /// Return the cycle for the given class and operand.
169   /// Return -1 if no cycle is specified for the operand.
getOperandCycle(unsigned ItinClassIndx,unsigned OperandIdx)170   int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
171     if (isEmpty())
172       return -1;
173 
174     unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
175     unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
176     if ((FirstIdx + OperandIdx) >= LastIdx)
177       return -1;
178 
179     return (int)OperandCycles[FirstIdx + OperandIdx];
180   }
181 
182   /// Return true if there is a pipeline forwarding
183   /// between instructions of itinerary classes DefClass and UseClasses so that
184   /// value produced by an instruction of itinerary class DefClass, operand
185   /// index DefIdx can be bypassed when it's read by an instruction of
186   /// itinerary class UseClass, operand index UseIdx.
hasPipelineForwarding(unsigned DefClass,unsigned DefIdx,unsigned UseClass,unsigned UseIdx)187   bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
188                              unsigned UseClass, unsigned UseIdx) const {
189     unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
190     unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
191     if ((FirstDefIdx + DefIdx) >= LastDefIdx)
192       return false;
193     if (Forwardings[FirstDefIdx + DefIdx] == 0)
194       return false;
195 
196     unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
197     unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
198     if ((FirstUseIdx + UseIdx) >= LastUseIdx)
199       return false;
200 
201     return Forwardings[FirstDefIdx + DefIdx] ==
202       Forwardings[FirstUseIdx + UseIdx];
203   }
204 
205   /// Compute and return the use operand latency of a given
206   /// itinerary class and operand index if the value is produced by an
207   /// instruction of the specified itinerary class and def operand index.
getOperandLatency(unsigned DefClass,unsigned DefIdx,unsigned UseClass,unsigned UseIdx)208   int getOperandLatency(unsigned DefClass, unsigned DefIdx,
209                         unsigned UseClass, unsigned UseIdx) const {
210     if (isEmpty())
211       return -1;
212 
213     int DefCycle = getOperandCycle(DefClass, DefIdx);
214     if (DefCycle == -1)
215       return -1;
216 
217     int UseCycle = getOperandCycle(UseClass, UseIdx);
218     if (UseCycle == -1)
219       return -1;
220 
221     UseCycle = DefCycle - UseCycle + 1;
222     if (UseCycle > 0 &&
223         hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
224       // FIXME: This assumes one cycle benefit for every pipeline forwarding.
225       --UseCycle;
226     return UseCycle;
227   }
228 
229   /// Return the number of micro-ops that the given class decodes to.
230   /// Return -1 for classes that require dynamic lookup via TargetInstrInfo.
getNumMicroOps(unsigned ItinClassIndx)231   int getNumMicroOps(unsigned ItinClassIndx) const {
232     if (isEmpty())
233       return 1;
234     return Itineraries[ItinClassIndx].NumMicroOps;
235   }
236 };
237 
238 } // End llvm namespace
239 
240 #endif
241