• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Written by Doug Lea with assistance from members of JCP JSR-166
3  * Expert Group and released to the public domain, as explained at
4  * http://creativecommons.org/publicdomain/zero/1.0/
5  */
6 
7 package java.util.concurrent;
8 
9 import java.lang.Thread.UncaughtExceptionHandler;
10 import java.util.ArrayList;
11 import java.util.Arrays;
12 import java.util.Collection;
13 import java.util.Collections;
14 import java.util.List;
15 
16 /**
17  * An {@link ExecutorService} for running {@link ForkJoinTask}s.
18  * A {@code ForkJoinPool} provides the entry point for submissions
19  * from non-{@code ForkJoinTask} clients, as well as management and
20  * monitoring operations.
21  *
22  * <p>A {@code ForkJoinPool} differs from other kinds of {@link
23  * ExecutorService} mainly by virtue of employing
24  * <em>work-stealing</em>: all threads in the pool attempt to find and
25  * execute tasks submitted to the pool and/or created by other active
26  * tasks (eventually blocking waiting for work if none exist). This
27  * enables efficient processing when most tasks spawn other subtasks
28  * (as do most {@code ForkJoinTask}s), as well as when many small
29  * tasks are submitted to the pool from external clients.  Especially
30  * when setting <em>asyncMode</em> to true in constructors, {@code
31  * ForkJoinPool}s may also be appropriate for use with event-style
32  * tasks that are never joined.
33  *
34  * <p>A static {@code commonPool()} is available and appropriate for
35  * most applications. The common pool is used by any ForkJoinTask that
36  * is not explicitly submitted to a specified pool. Using the common
37  * pool normally reduces resource usage (its threads are slowly
38  * reclaimed during periods of non-use, and reinstated upon subsequent
39  * use).
40  *
41  * <p>For applications that require separate or custom pools, a {@code
42  * ForkJoinPool} may be constructed with a given target parallelism
43  * level; by default, equal to the number of available processors. The
44  * pool attempts to maintain enough active (or available) threads by
45  * dynamically adding, suspending, or resuming internal worker
46  * threads, even if some tasks are stalled waiting to join others.
47  * However, no such adjustments are guaranteed in the face of blocked
48  * I/O or other unmanaged synchronization. The nested {@link
49  * ManagedBlocker} interface enables extension of the kinds of
50  * synchronization accommodated.
51  *
52  * <p>In addition to execution and lifecycle control methods, this
53  * class provides status check methods (for example
54  * {@link #getStealCount}) that are intended to aid in developing,
55  * tuning, and monitoring fork/join applications. Also, method
56  * {@link #toString} returns indications of pool state in a
57  * convenient form for informal monitoring.
58  *
59  * <p>As is the case with other ExecutorServices, there are three
60  * main task execution methods summarized in the following table.
61  * These are designed to be used primarily by clients not already
62  * engaged in fork/join computations in the current pool.  The main
63  * forms of these methods accept instances of {@code ForkJoinTask},
64  * but overloaded forms also allow mixed execution of plain {@code
65  * Runnable}- or {@code Callable}- based activities as well.  However,
66  * tasks that are already executing in a pool should normally instead
67  * use the within-computation forms listed in the table unless using
68  * async event-style tasks that are not usually joined, in which case
69  * there is little difference among choice of methods.
70  *
71  * <table BORDER CELLPADDING=3 CELLSPACING=1>
72  * <caption>Summary of task execution methods</caption>
73  *  <tr>
74  *    <td></td>
75  *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76  *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77  *  </tr>
78  *  <tr>
79  *    <td> <b>Arrange async execution</b></td>
80  *    <td> {@link #execute(ForkJoinTask)}</td>
81  *    <td> {@link ForkJoinTask#fork}</td>
82  *  </tr>
83  *  <tr>
84  *    <td> <b>Await and obtain result</b></td>
85  *    <td> {@link #invoke(ForkJoinTask)}</td>
86  *    <td> {@link ForkJoinTask#invoke}</td>
87  *  </tr>
88  *  <tr>
89  *    <td> <b>Arrange exec and obtain Future</b></td>
90  *    <td> {@link #submit(ForkJoinTask)}</td>
91  *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92  *  </tr>
93  * </table>
94  *
95  * <p>The common pool is by default constructed with default
96  * parameters, but these may be controlled by setting three
97  * {@linkplain System#getProperty system properties}:
98  * <ul>
99  * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
100  * - the parallelism level, a non-negative integer
101  * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
102  * - the class name of a {@link ForkJoinWorkerThreadFactory}
103  * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
104  * - the class name of a {@link UncaughtExceptionHandler}
105  * </ul>
106  * The system class loader is used to load these classes.
107  * Upon any error in establishing these settings, default parameters
108  * are used. It is possible to disable or limit the use of threads in
109  * the common pool by setting the parallelism property to zero, and/or
110  * using a factory that may return {@code null}.
111  *
112  * <p><b>Implementation notes</b>: This implementation restricts the
113  * maximum number of running threads to 32767. Attempts to create
114  * pools with greater than the maximum number result in
115  * {@code IllegalArgumentException}.
116  *
117  * <p>This implementation rejects submitted tasks (that is, by throwing
118  * {@link RejectedExecutionException}) only when the pool is shut down
119  * or internal resources have been exhausted.
120  *
121  * @since 1.7
122  * @author Doug Lea
123  */
124 public class ForkJoinPool extends AbstractExecutorService {
125 
126     /*
127      * Implementation Overview
128      *
129      * This class and its nested classes provide the main
130      * functionality and control for a set of worker threads:
131      * Submissions from non-FJ threads enter into submission queues.
132      * Workers take these tasks and typically split them into subtasks
133      * that may be stolen by other workers.  Preference rules give
134      * first priority to processing tasks from their own queues (LIFO
135      * or FIFO, depending on mode), then to randomized FIFO steals of
136      * tasks in other queues.
137      *
138      * WorkQueues
139      * ==========
140      *
141      * Most operations occur within work-stealing queues (in nested
142      * class WorkQueue).  These are special forms of Deques that
143      * support only three of the four possible end-operations -- push,
144      * pop, and poll (aka steal), under the further constraints that
145      * push and pop are called only from the owning thread (or, as
146      * extended here, under a lock), while poll may be called from
147      * other threads.  (If you are unfamiliar with them, you probably
148      * want to read Herlihy and Shavit's book "The Art of
149      * Multiprocessor programming", chapter 16 describing these in
150      * more detail before proceeding.)  The main work-stealing queue
151      * design is roughly similar to those in the papers "Dynamic
152      * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
153      * (http://research.sun.com/scalable/pubs/index.html) and
154      * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
155      * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
156      * See also "Correct and Efficient Work-Stealing for Weak Memory
157      * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
158      * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
159      * analysis of memory ordering (atomic, volatile etc) issues.  The
160      * main differences ultimately stem from GC requirements that we
161      * null out taken slots as soon as we can, to maintain as small a
162      * footprint as possible even in programs generating huge numbers
163      * of tasks. To accomplish this, we shift the CAS arbitrating pop
164      * vs poll (steal) from being on the indices ("base" and "top") to
165      * the slots themselves.  So, both a successful pop and poll
166      * mainly entail a CAS of a slot from non-null to null.  Because
167      * we rely on CASes of references, we do not need tag bits on base
168      * or top.  They are simple ints as used in any circular
169      * array-based queue (see for example ArrayDeque).  Updates to the
170      * indices must still be ordered in a way that guarantees that top
171      * == base means the queue is empty, but otherwise may err on the
172      * side of possibly making the queue appear nonempty when a push,
173      * pop, or poll have not fully committed. Note that this means
174      * that the poll operation, considered individually, is not
175      * wait-free. One thief cannot successfully continue until another
176      * in-progress one (or, if previously empty, a push) completes.
177      * However, in the aggregate, we ensure at least probabilistic
178      * non-blockingness.  If an attempted steal fails, a thief always
179      * chooses a different random victim target to try next. So, in
180      * order for one thief to progress, it suffices for any
181      * in-progress poll or new push on any empty queue to
182      * complete. (This is why we normally use method pollAt and its
183      * variants that try once at the apparent base index, else
184      * consider alternative actions, rather than method poll.)
185      *
186      * This approach also enables support of a user mode in which local
187      * task processing is in FIFO, not LIFO order, simply by using
188      * poll rather than pop.  This can be useful in message-passing
189      * frameworks in which tasks are never joined.  However neither
190      * mode considers affinities, loads, cache localities, etc, so
191      * rarely provide the best possible performance on a given
192      * machine, but portably provide good throughput by averaging over
193      * these factors.  (Further, even if we did try to use such
194      * information, we do not usually have a basis for exploiting it.
195      * For example, some sets of tasks profit from cache affinities,
196      * but others are harmed by cache pollution effects.)
197      *
198      * WorkQueues are also used in a similar way for tasks submitted
199      * to the pool. We cannot mix these tasks in the same queues used
200      * for work-stealing (this would contaminate lifo/fifo
201      * processing). Instead, we randomly associate submission queues
202      * with submitting threads, using a form of hashing.  The
203      * Submitter probe value serves as a hash code for
204      * choosing existing queues, and may be randomly repositioned upon
205      * contention with other submitters.  In essence, submitters act
206      * like workers except that they are restricted to executing local
207      * tasks that they submitted. However, because most
208      * shared/external queue operations are more expensive than
209      * internal, and because, at steady state, external submitters
210      * will compete for CPU with workers, ForkJoinTask.join and
211      * related methods disable them from repeatedly helping to process
212      * tasks if all workers are active.  Insertion of tasks in shared
213      * mode requires a lock (mainly to protect in the case of
214      * resizing) but we use only a simple spinlock (using bits in
215      * field qlock), because submitters encountering a busy queue move
216      * on to try or create other queues -- they block only when
217      * creating and registering new queues.
218      *
219      * Management
220      * ==========
221      *
222      * The main throughput advantages of work-stealing stem from
223      * decentralized control -- workers mostly take tasks from
224      * themselves or each other. We cannot negate this in the
225      * implementation of other management responsibilities. The main
226      * tactic for avoiding bottlenecks is packing nearly all
227      * essentially atomic control state into two volatile variables
228      * that are by far most often read (not written) as status and
229      * consistency checks.
230      *
231      * Field "ctl" contains 64 bits holding all the information needed
232      * to atomically decide to add, inactivate, enqueue (on an event
233      * queue), dequeue, and/or re-activate workers.  To enable this
234      * packing, we restrict maximum parallelism to (1<<15)-1 (which is
235      * far in excess of normal operating range) to allow ids, counts,
236      * and their negations (used for thresholding) to fit into 16bit
237      * fields.
238      *
239      * Field "plock" is a form of sequence lock with a saturating
240      * shutdown bit (similarly for per-queue "qlocks"), mainly
241      * protecting updates to the workQueues array, as well as to
242      * enable shutdown.  When used as a lock, it is normally only very
243      * briefly held, so is nearly always available after at most a
244      * brief spin, but we use a monitor-based backup strategy to
245      * block when needed.
246      *
247      * Recording WorkQueues.  WorkQueues are recorded in the
248      * "workQueues" array that is created upon first use and expanded
249      * if necessary.  Updates to the array while recording new workers
250      * and unrecording terminated ones are protected from each other
251      * by a lock but the array is otherwise concurrently readable, and
252      * accessed directly.  To simplify index-based operations, the
253      * array size is always a power of two, and all readers must
254      * tolerate null slots. Worker queues are at odd indices. Shared
255      * (submission) queues are at even indices, up to a maximum of 64
256      * slots, to limit growth even if array needs to expand to add
257      * more workers. Grouping them together in this way simplifies and
258      * speeds up task scanning.
259      *
260      * All worker thread creation is on-demand, triggered by task
261      * submissions, replacement of terminated workers, and/or
262      * compensation for blocked workers. However, all other support
263      * code is set up to work with other policies.  To ensure that we
264      * do not hold on to worker references that would prevent GC, ALL
265      * accesses to workQueues are via indices into the workQueues
266      * array (which is one source of some of the messy code
267      * constructions here). In essence, the workQueues array serves as
268      * a weak reference mechanism. Thus for example the wait queue
269      * field of ctl stores indices, not references.  Access to the
270      * workQueues in associated methods (for example signalWork) must
271      * both index-check and null-check the IDs. All such accesses
272      * ignore bad IDs by returning out early from what they are doing,
273      * since this can only be associated with termination, in which
274      * case it is OK to give up.  All uses of the workQueues array
275      * also check that it is non-null (even if previously
276      * non-null). This allows nulling during termination, which is
277      * currently not necessary, but remains an option for
278      * resource-revocation-based shutdown schemes. It also helps
279      * reduce JIT issuance of uncommon-trap code, which tends to
280      * unnecessarily complicate control flow in some methods.
281      *
282      * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
283      * let workers spin indefinitely scanning for tasks when none can
284      * be found immediately, and we cannot start/resume workers unless
285      * there appear to be tasks available.  On the other hand, we must
286      * quickly prod them into action when new tasks are submitted or
287      * generated. In many usages, ramp-up time to activate workers is
288      * the main limiting factor in overall performance (this is
289      * compounded at program start-up by JIT compilation and
290      * allocation). So we try to streamline this as much as possible.
291      * We park/unpark workers after placing in an event wait queue
292      * when they cannot find work. This "queue" is actually a simple
293      * Treiber stack, headed by the "id" field of ctl, plus a 15bit
294      * counter value (that reflects the number of times a worker has
295      * been inactivated) to avoid ABA effects (we need only as many
296      * version numbers as worker threads). Successors are held in
297      * field WorkQueue.nextWait.  Queuing deals with several intrinsic
298      * races, mainly that a task-producing thread can miss seeing (and
299      * signalling) another thread that gave up looking for work but
300      * has not yet entered the wait queue. We solve this by requiring
301      * a full sweep of all workers (via repeated calls to method
302      * scan()) both before and after a newly waiting worker is added
303      * to the wait queue.  Because enqueued workers may actually be
304      * rescanning rather than waiting, we set and clear the "parker"
305      * field of WorkQueues to reduce unnecessary calls to unpark.
306      * (This requires a secondary recheck to avoid missed signals.)
307      * Note the unusual conventions about Thread.interrupts
308      * surrounding parking and other blocking: Because interrupts are
309      * used solely to alert threads to check termination, which is
310      * checked anyway upon blocking, we clear status (using
311      * Thread.interrupted) before any call to park, so that park does
312      * not immediately return due to status being set via some other
313      * unrelated call to interrupt in user code.
314      *
315      * Signalling.  We create or wake up workers only when there
316      * appears to be at least one task they might be able to find and
317      * execute.  When a submission is added or another worker adds a
318      * task to a queue that has fewer than two tasks, they signal
319      * waiting workers (or trigger creation of new ones if fewer than
320      * the given parallelism level -- signalWork).  These primary
321      * signals are buttressed by others whenever other threads remove
322      * a task from a queue and notice that there are other tasks there
323      * as well.  So in general, pools will be over-signalled. On most
324      * platforms, signalling (unpark) overhead time is noticeably
325      * long, and the time between signalling a thread and it actually
326      * making progress can be very noticeably long, so it is worth
327      * offloading these delays from critical paths as much as
328      * possible. Additionally, workers spin-down gradually, by staying
329      * alive so long as they see the ctl state changing.  Similar
330      * stability-sensing techniques are also used before blocking in
331      * awaitJoin and helpComplete.
332      *
333      * Trimming workers. To release resources after periods of lack of
334      * use, a worker starting to wait when the pool is quiescent will
335      * time out and terminate if the pool has remained quiescent for a
336      * given period -- a short period if there are more threads than
337      * parallelism, longer as the number of threads decreases. This
338      * will slowly propagate, eventually terminating all workers after
339      * periods of non-use.
340      *
341      * Shutdown and Termination. A call to shutdownNow atomically sets
342      * a plock bit and then (non-atomically) sets each worker's
343      * qlock status, cancels all unprocessed tasks, and wakes up
344      * all waiting workers.  Detecting whether termination should
345      * commence after a non-abrupt shutdown() call requires more work
346      * and bookkeeping. We need consensus about quiescence (i.e., that
347      * there is no more work). The active count provides a primary
348      * indication but non-abrupt shutdown still requires a rechecking
349      * scan for any workers that are inactive but not queued.
350      *
351      * Joining Tasks
352      * =============
353      *
354      * Any of several actions may be taken when one worker is waiting
355      * to join a task stolen (or always held) by another.  Because we
356      * are multiplexing many tasks on to a pool of workers, we can't
357      * just let them block (as in Thread.join).  We also cannot just
358      * reassign the joiner's run-time stack with another and replace
359      * it later, which would be a form of "continuation", that even if
360      * possible is not necessarily a good idea since we sometimes need
361      * both an unblocked task and its continuation to progress.
362      * Instead we combine two tactics:
363      *
364      *   Helping: Arranging for the joiner to execute some task that it
365      *      would be running if the steal had not occurred.
366      *
367      *   Compensating: Unless there are already enough live threads,
368      *      method tryCompensate() may create or re-activate a spare
369      *      thread to compensate for blocked joiners until they unblock.
370      *
371      * A third form (implemented in tryRemoveAndExec) amounts to
372      * helping a hypothetical compensator: If we can readily tell that
373      * a possible action of a compensator is to steal and execute the
374      * task being joined, the joining thread can do so directly,
375      * without the need for a compensation thread (although at the
376      * expense of larger run-time stacks, but the tradeoff is
377      * typically worthwhile).
378      *
379      * The ManagedBlocker extension API can't use helping so relies
380      * only on compensation in method awaitBlocker.
381      *
382      * The algorithm in tryHelpStealer entails a form of "linear"
383      * helping: Each worker records (in field currentSteal) the most
384      * recent task it stole from some other worker. Plus, it records
385      * (in field currentJoin) the task it is currently actively
386      * joining. Method tryHelpStealer uses these markers to try to
387      * find a worker to help (i.e., steal back a task from and execute
388      * it) that could hasten completion of the actively joined task.
389      * In essence, the joiner executes a task that would be on its own
390      * local deque had the to-be-joined task not been stolen. This may
391      * be seen as a conservative variant of the approach in Wagner &
392      * Calder "Leapfrogging: a portable technique for implementing
393      * efficient futures" SIGPLAN Notices, 1993
394      * (http://portal.acm.org/citation.cfm?id=155354). It differs in
395      * that: (1) We only maintain dependency links across workers upon
396      * steals, rather than use per-task bookkeeping.  This sometimes
397      * requires a linear scan of workQueues array to locate stealers,
398      * but often doesn't because stealers leave hints (that may become
399      * stale/wrong) of where to locate them.  It is only a hint
400      * because a worker might have had multiple steals and the hint
401      * records only one of them (usually the most current).  Hinting
402      * isolates cost to when it is needed, rather than adding to
403      * per-task overhead.  (2) It is "shallow", ignoring nesting and
404      * potentially cyclic mutual steals.  (3) It is intentionally
405      * racy: field currentJoin is updated only while actively joining,
406      * which means that we miss links in the chain during long-lived
407      * tasks, GC stalls etc (which is OK since blocking in such cases
408      * is usually a good idea).  (4) We bound the number of attempts
409      * to find work (see MAX_HELP) and fall back to suspending the
410      * worker and if necessary replacing it with another.
411      *
412      * It is impossible to keep exactly the target parallelism number
413      * of threads running at any given time.  Determining the
414      * existence of conservatively safe helping targets, the
415      * availability of already-created spares, and the apparent need
416      * to create new spares are all racy, so we rely on multiple
417      * retries of each.  Compensation in the apparent absence of
418      * helping opportunities is challenging to control on JVMs, where
419      * GC and other activities can stall progress of tasks that in
420      * turn stall out many other dependent tasks, without us being
421      * able to determine whether they will ever require compensation.
422      * Even though work-stealing otherwise encounters little
423      * degradation in the presence of more threads than cores,
424      * aggressively adding new threads in such cases entails risk of
425      * unwanted positive feedback control loops in which more threads
426      * cause more dependent stalls (as well as delayed progress of
427      * unblocked threads to the point that we know they are available)
428      * leading to more situations requiring more threads, and so
429      * on. This aspect of control can be seen as an (analytically
430      * intractable) game with an opponent that may choose the worst
431      * (for us) active thread to stall at any time.  We take several
432      * precautions to bound losses (and thus bound gains), mainly in
433      * methods tryCompensate and awaitJoin.
434      *
435      * Common Pool
436      * ===========
437      *
438      * The static common pool always exists after static
439      * initialization.  Since it (or any other created pool) need
440      * never be used, we minimize initial construction overhead and
441      * footprint to the setup of about a dozen fields, with no nested
442      * allocation. Most bootstrapping occurs within method
443      * fullExternalPush during the first submission to the pool.
444      *
445      * When external threads submit to the common pool, they can
446      * perform subtask processing (see externalHelpJoin and related
447      * methods).  This caller-helps policy makes it sensible to set
448      * common pool parallelism level to one (or more) less than the
449      * total number of available cores, or even zero for pure
450      * caller-runs.  We do not need to record whether external
451      * submissions are to the common pool -- if not, externalHelpJoin
452      * returns quickly (at the most helping to signal some common pool
453      * workers). These submitters would otherwise be blocked waiting
454      * for completion, so the extra effort (with liberally sprinkled
455      * task status checks) in inapplicable cases amounts to an odd
456      * form of limited spin-wait before blocking in ForkJoinTask.join.
457      *
458      * Style notes
459      * ===========
460      *
461      * There is a lot of representation-level coupling among classes
462      * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
463      * fields of WorkQueue maintain data structures managed by
464      * ForkJoinPool, so are directly accessed.  There is little point
465      * trying to reduce this, since any associated future changes in
466      * representations will need to be accompanied by algorithmic
467      * changes anyway. Several methods intrinsically sprawl because
468      * they must accumulate sets of consistent reads of volatiles held
469      * in local variables.  Methods signalWork() and scan() are the
470      * main bottlenecks, so are especially heavily
471      * micro-optimized/mangled.  There are lots of inline assignments
472      * (of form "while ((local = field) != 0)") which are usually the
473      * simplest way to ensure the required read orderings (which are
474      * sometimes critical). This leads to a "C"-like style of listing
475      * declarations of these locals at the heads of methods or blocks.
476      * There are several occurrences of the unusual "do {} while
477      * (!cas...)"  which is the simplest way to force an update of a
478      * CAS'ed variable. There are also other coding oddities (including
479      * several unnecessary-looking hoisted null checks) that help
480      * some methods perform reasonably even when interpreted (not
481      * compiled).
482      *
483      * The order of declarations in this file is:
484      * (1) Static utility functions
485      * (2) Nested (static) classes
486      * (3) Static fields
487      * (4) Fields, along with constants used when unpacking some of them
488      * (5) Internal control methods
489      * (6) Callbacks and other support for ForkJoinTask methods
490      * (7) Exported methods
491      * (8) Static block initializing statics in minimally dependent order
492      */
493     // android-note: Removed references to CountedCompleters.
494 
495     // Static utilities
496 
497     /**
498      * If there is a security manager, makes sure caller has
499      * permission to modify threads.
500      */
checkPermission()501     private static void checkPermission() {
502         SecurityManager security = System.getSecurityManager();
503         if (security != null)
504             security.checkPermission(modifyThreadPermission);
505     }
506 
507     // Nested classes
508 
509     /**
510      * Factory for creating new {@link ForkJoinWorkerThread}s.
511      * A {@code ForkJoinWorkerThreadFactory} must be defined and used
512      * for {@code ForkJoinWorkerThread} subclasses that extend base
513      * functionality or initialize threads with different contexts.
514      */
515     public static interface ForkJoinWorkerThreadFactory {
516         /**
517          * Returns a new worker thread operating in the given pool.
518          *
519          * @param pool the pool this thread works in
520          * @return the new worker thread
521          * @throws NullPointerException if the pool is null
522          */
newThread(ForkJoinPool pool)523         public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524     }
525 
526     /**
527      * Default ForkJoinWorkerThreadFactory implementation; creates a
528      * new ForkJoinWorkerThread.
529      */
530     static final class DefaultForkJoinWorkerThreadFactory
531         implements ForkJoinWorkerThreadFactory {
newThread(ForkJoinPool pool)532         public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533             return new ForkJoinWorkerThread(pool);
534         }
535     }
536 
537     /**
538      * Class for artificial tasks that are used to replace the target
539      * of local joins if they are removed from an interior queue slot
540      * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
541      * actually do anything beyond having a unique identity.
542      */
543     static final class EmptyTask extends ForkJoinTask<Void> {
544         private static final long serialVersionUID = -7721805057305804111L;
EmptyTask()545         EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
getRawResult()546         public final Void getRawResult() { return null; }
setRawResult(Void x)547         public final void setRawResult(Void x) {}
exec()548         public final boolean exec() { return true; }
549     }
550 
551     /**
552      * Queues supporting work-stealing as well as external task
553      * submission. See above for main rationale and algorithms.
554      * Implementation relies heavily on "Unsafe" intrinsics
555      * and selective use of "volatile":
556      *
557      * Field "base" is the index (mod array.length) of the least valid
558      * queue slot, which is always the next position to steal (poll)
559      * from if nonempty. Reads and writes require volatile orderings
560      * but not CAS, because updates are only performed after slot
561      * CASes.
562      *
563      * Field "top" is the index (mod array.length) of the next queue
564      * slot to push to or pop from. It is written only by owner thread
565      * for push, or under lock for external/shared push, and accessed
566      * by other threads only after reading (volatile) base.  Both top
567      * and base are allowed to wrap around on overflow, but (top -
568      * base) (or more commonly -(base - top) to force volatile read of
569      * base before top) still estimates size. The lock ("qlock") is
570      * forced to -1 on termination, causing all further lock attempts
571      * to fail. (Note: we don't need CAS for termination state because
572      * upon pool shutdown, all shared-queues will stop being used
573      * anyway.)  Nearly all lock bodies are set up so that exceptions
574      * within lock bodies are "impossible" (modulo JVM errors that
575      * would cause failure anyway.)
576      *
577      * The array slots are read and written using the emulation of
578      * volatiles/atomics provided by Unsafe. Insertions must in
579      * general use putOrderedObject as a form of releasing store to
580      * ensure that all writes to the task object are ordered before
581      * its publication in the queue.  All removals entail a CAS to
582      * null.  The array is always a power of two. To ensure safety of
583      * Unsafe array operations, all accesses perform explicit null
584      * checks and implicit bounds checks via power-of-two masking.
585      *
586      * In addition to basic queuing support, this class contains
587      * fields described elsewhere to control execution. It turns out
588      * to work better memory-layout-wise to include them in this class
589      * rather than a separate class.
590      *
591      * Performance on most platforms is very sensitive to placement of
592      * instances of both WorkQueues and their arrays -- we absolutely
593      * do not want multiple WorkQueue instances or multiple queue
594      * arrays sharing cache lines. (It would be best for queue objects
595      * and their arrays to share, but there is nothing available to
596      * help arrange that). The @Contended annotation alerts JVMs to
597      * try to keep instances apart.
598      */
599     static final class WorkQueue {
600         /**
601          * Capacity of work-stealing queue array upon initialization.
602          * Must be a power of two; at least 4, but should be larger to
603          * reduce or eliminate cacheline sharing among queues.
604          * Currently, it is much larger, as a partial workaround for
605          * the fact that JVMs often place arrays in locations that
606          * share GC bookkeeping (especially cardmarks) such that
607          * per-write accesses encounter serious memory contention.
608          */
609         static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
610 
611         /**
612          * Maximum size for queue arrays. Must be a power of two less
613          * than or equal to 1 << (31 - width of array entry) to ensure
614          * lack of wraparound of index calculations, but defined to a
615          * value a bit less than this to help users trap runaway
616          * programs before saturating systems.
617          */
618         static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
619 
620         // Heuristic padding to ameliorate unfortunate memory placements
621         volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
622 
623         volatile int eventCount;   // encoded inactivation count; < 0 if inactive
624         int nextWait;              // encoded record of next event waiter
625         int nsteals;               // number of steals
626         int hint;                  // steal index hint
627         short poolIndex;           // index of this queue in pool
628         final short mode;          // 0: lifo, > 0: fifo, < 0: shared
629         volatile int qlock;        // 1: locked, -1: terminate; else 0
630         volatile int base;         // index of next slot for poll
631         int top;                   // index of next slot for push
632         ForkJoinTask<?>[] array;   // the elements (initially unallocated)
633         final ForkJoinPool pool;   // the containing pool (may be null)
634         final ForkJoinWorkerThread owner; // owning thread or null if shared
635         volatile Thread parker;    // == owner during call to park; else null
636         volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
637         ForkJoinTask<?> currentSteal; // current non-local task being executed
638 
639         volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
640         volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
641 
WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode, int seed)642         WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
643                   int seed) {
644             this.pool = pool;
645             this.owner = owner;
646             this.mode = (short)mode;
647             this.hint = seed; // store initial seed for runWorker
648             // Place indices in the center of array (that is not yet allocated)
649             base = top = INITIAL_QUEUE_CAPACITY >>> 1;
650         }
651 
652         /**
653          * Returns the approximate number of tasks in the queue.
654          */
queueSize()655         final int queueSize() {
656             int n = base - top;       // non-owner callers must read base first
657             return (n >= 0) ? 0 : -n; // ignore transient negative
658         }
659 
660         /**
661          * Provides a more accurate estimate of whether this queue has
662          * any tasks than does queueSize, by checking whether a
663          * near-empty queue has at least one unclaimed task.
664          */
isEmpty()665         final boolean isEmpty() {
666             ForkJoinTask<?>[] a; int m, s;
667             int n = base - (s = top);
668             return (n >= 0 ||
669                     (n == -1 &&
670                      ((a = array) == null ||
671                       (m = a.length - 1) < 0 ||
672                       U.getObject
673                       (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
674         }
675 
676         /**
677          * Pushes a task. Call only by owner in unshared queues.  (The
678          * shared-queue version is embedded in method externalPush.)
679          *
680          * @param task the task. Caller must ensure non-null.
681          * @throws RejectedExecutionException if array cannot be resized
682          */
push(ForkJoinTask<?> task)683         final void push(ForkJoinTask<?> task) {
684             ForkJoinTask<?>[] a; ForkJoinPool p;
685             int s = top, n;
686             if ((a = array) != null) {    // ignore if queue removed
687                 int m = a.length - 1;
688                 U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
689                 if ((n = (top = s + 1) - base) <= 2)
690                     (p = pool).signalWork(p.workQueues, this);
691                 else if (n >= m)
692                     growArray();
693             }
694         }
695 
696         /**
697          * Initializes or doubles the capacity of array. Call either
698          * by owner or with lock held -- it is OK for base, but not
699          * top, to move while resizings are in progress.
700          */
growArray()701         final ForkJoinTask<?>[] growArray() {
702             ForkJoinTask<?>[] oldA = array;
703             int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
704             if (size > MAXIMUM_QUEUE_CAPACITY)
705                 throw new RejectedExecutionException("Queue capacity exceeded");
706             int oldMask, t, b;
707             ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
708             if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
709                 (t = top) - (b = base) > 0) {
710                 int mask = size - 1;
711                 do {
712                     ForkJoinTask<?> x;
713                     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
714                     int j    = ((b &    mask) << ASHIFT) + ABASE;
715                     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
716                     if (x != null &&
717                         U.compareAndSwapObject(oldA, oldj, x, null))
718                         U.putObjectVolatile(a, j, x);
719                 } while (++b != t);
720             }
721             return a;
722         }
723 
724         /**
725          * Takes next task, if one exists, in LIFO order.  Call only
726          * by owner in unshared queues.
727          */
pop()728         final ForkJoinTask<?> pop() {
729             ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
730             if ((a = array) != null && (m = a.length - 1) >= 0) {
731                 for (int s; (s = top - 1) - base >= 0;) {
732                     long j = ((m & s) << ASHIFT) + ABASE;
733                     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
734                         break;
735                     if (U.compareAndSwapObject(a, j, t, null)) {
736                         top = s;
737                         return t;
738                     }
739                 }
740             }
741             return null;
742         }
743 
744         /**
745          * Takes a task in FIFO order if b is base of queue and a task
746          * can be claimed without contention. Specialized versions
747          * appear in ForkJoinPool methods scan and tryHelpStealer.
748          */
pollAt(int b)749         final ForkJoinTask<?> pollAt(int b) {
750             ForkJoinTask<?> t; ForkJoinTask<?>[] a;
751             if ((a = array) != null) {
752                 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
753                 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
754                     base == b && U.compareAndSwapObject(a, j, t, null)) {
755                     U.putOrderedInt(this, QBASE, b + 1);
756                     return t;
757                 }
758             }
759             return null;
760         }
761 
762         /**
763          * Takes next task, if one exists, in FIFO order.
764          */
poll()765         final ForkJoinTask<?> poll() {
766             ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
767             while ((b = base) - top < 0 && (a = array) != null) {
768                 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
769                 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
770                 if (t != null) {
771                     if (U.compareAndSwapObject(a, j, t, null)) {
772                         U.putOrderedInt(this, QBASE, b + 1);
773                         return t;
774                     }
775                 }
776                 else if (base == b) {
777                     if (b + 1 == top)
778                         break;
779                     Thread.yield(); // wait for lagging update (very rare)
780                 }
781             }
782             return null;
783         }
784 
785         /**
786          * Takes next task, if one exists, in order specified by mode.
787          */
nextLocalTask()788         final ForkJoinTask<?> nextLocalTask() {
789             return mode == 0 ? pop() : poll();
790         }
791 
792         /**
793          * Returns next task, if one exists, in order specified by mode.
794          */
peek()795         final ForkJoinTask<?> peek() {
796             ForkJoinTask<?>[] a = array; int m;
797             if (a == null || (m = a.length - 1) < 0)
798                 return null;
799             int i = mode == 0 ? top - 1 : base;
800             int j = ((i & m) << ASHIFT) + ABASE;
801             return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
802         }
803 
804         /**
805          * Pops the given task only if it is at the current top.
806          * (A shared version is available only via FJP.tryExternalUnpush)
807          */
tryUnpush(ForkJoinTask<?> t)808         final boolean tryUnpush(ForkJoinTask<?> t) {
809             ForkJoinTask<?>[] a; int s;
810             if ((a = array) != null && (s = top) != base &&
811                 U.compareAndSwapObject
812                 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
813                 top = s;
814                 return true;
815             }
816             return false;
817         }
818 
819         /**
820          * Removes and cancels all known tasks, ignoring any exceptions.
821          */
cancelAll()822         final void cancelAll() {
823             ForkJoinTask.cancelIgnoringExceptions(currentJoin);
824             ForkJoinTask.cancelIgnoringExceptions(currentSteal);
825             for (ForkJoinTask<?> t; (t = poll()) != null; )
826                 ForkJoinTask.cancelIgnoringExceptions(t);
827         }
828 
829         // Specialized execution methods
830 
831         /**
832          * Polls and runs tasks until empty.
833          */
pollAndExecAll()834         final void pollAndExecAll() {
835             for (ForkJoinTask<?> t; (t = poll()) != null;)
836                 t.doExec();
837         }
838 
839         /**
840          * Executes a top-level task and any local tasks remaining
841          * after execution.
842          */
runTask(ForkJoinTask<?> task)843         final void runTask(ForkJoinTask<?> task) {
844             if ((currentSteal = task) != null) {
845                 task.doExec();
846                 ForkJoinTask<?>[] a = array;
847                 int md = mode;
848                 ++nsteals;
849                 currentSteal = null;
850                 if (md != 0)
851                     pollAndExecAll();
852                 else if (a != null) {
853                     int s, m = a.length - 1;
854                     while ((s = top - 1) - base >= 0) {
855                         long i = ((m & s) << ASHIFT) + ABASE;
856                         ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObject(a, i);
857                         if (t == null)
858                             break;
859                         if (U.compareAndSwapObject(a, i, t, null)) {
860                             top = s;
861                             t.doExec();
862                         }
863                     }
864                 }
865             }
866         }
867 
868         /**
869          * If present, removes from queue and executes the given task,
870          * or any other cancelled task. Returns (true) on any CAS
871          * or consistency check failure so caller can retry.
872          *
873          * @return false if no progress can be made, else true
874          */
tryRemoveAndExec(ForkJoinTask<?> task)875         final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
876             boolean stat;
877             ForkJoinTask<?>[] a; int m, s, b, n;
878             if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
879                 (n = (s = top) - (b = base)) > 0) {
880                 boolean removed = false, empty = true;
881                 stat = true;
882                 for (ForkJoinTask<?> t;;) {           // traverse from s to b
883                     long j = ((--s & m) << ASHIFT) + ABASE;
884                     t = (ForkJoinTask<?>)U.getObject(a, j);
885                     if (t == null)                    // inconsistent length
886                         break;
887                     else if (t == task) {
888                         if (s + 1 == top) {           // pop
889                             if (!U.compareAndSwapObject(a, j, task, null))
890                                 break;
891                             top = s;
892                             removed = true;
893                         }
894                         else if (base == b)           // replace with proxy
895                             removed = U.compareAndSwapObject(a, j, task,
896                                                              new EmptyTask());
897                         break;
898                     }
899                     else if (t.status >= 0)
900                         empty = false;
901                     else if (s + 1 == top) {          // pop and throw away
902                         if (U.compareAndSwapObject(a, j, t, null))
903                             top = s;
904                         break;
905                     }
906                     if (--n == 0) {
907                         if (!empty && base == b)
908                             stat = false;
909                         break;
910                     }
911                 }
912                 if (removed)
913                     task.doExec();
914             }
915             else
916                 stat = false;
917             return stat;
918         }
919 
920         /**
921          * Tries to poll for and execute the given task or any other
922          * task in its CountedCompleter computation.
923          */
pollAndExecCC(CountedCompleter<?> root)924         final boolean pollAndExecCC(CountedCompleter<?> root) {
925             ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
926             if ((b = base) - top < 0 && (a = array) != null) {
927                 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
928                 if ((o = U.getObjectVolatile(a, j)) == null)
929                     return true; // retry
930                 if (o instanceof CountedCompleter) {
931                     for (t = (CountedCompleter<?>)o, r = t;;) {
932                         if (r == root) {
933                             if (base == b &&
934                                 U.compareAndSwapObject(a, j, t, null)) {
935                                 U.putOrderedInt(this, QBASE, b + 1);
936                                 t.doExec();
937                             }
938                             return true;
939                         }
940                         else if ((r = r.completer) == null)
941                             break; // not part of root computation
942                     }
943                 }
944             }
945             return false;
946         }
947 
948         /**
949          * Tries to pop and execute the given task or any other task
950          * in its CountedCompleter computation.
951          */
externalPopAndExecCC(CountedCompleter<?> root)952         final boolean externalPopAndExecCC(CountedCompleter<?> root) {
953             ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
954             if (base - (s = top) < 0 && (a = array) != null) {
955                 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
956                 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
957                     for (t = (CountedCompleter<?>)o, r = t;;) {
958                         if (r == root) {
959                             if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
960                                 if (top == s && array == a &&
961                                     U.compareAndSwapObject(a, j, t, null)) {
962                                     top = s - 1;
963                                     qlock = 0;
964                                     t.doExec();
965                                 }
966                                 else
967                                     qlock = 0;
968                             }
969                             return true;
970                         }
971                         else if ((r = r.completer) == null)
972                             break;
973                     }
974                 }
975             }
976             return false;
977         }
978 
979         /**
980          * Internal version
981          */
internalPopAndExecCC(CountedCompleter<?> root)982         final boolean internalPopAndExecCC(CountedCompleter<?> root) {
983             ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
984             if (base - (s = top) < 0 && (a = array) != null) {
985                 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
986                 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
987                     for (t = (CountedCompleter<?>)o, r = t;;) {
988                         if (r == root) {
989                             if (U.compareAndSwapObject(a, j, t, null)) {
990                                 top = s - 1;
991                                 t.doExec();
992                             }
993                             return true;
994                         }
995                         else if ((r = r.completer) == null)
996                             break;
997                     }
998                 }
999             }
1000             return false;
1001         }
1002 
1003         /**
1004          * Returns true if owned and not known to be blocked.
1005          */
isApparentlyUnblocked()1006         final boolean isApparentlyUnblocked() {
1007             Thread wt; Thread.State s;
1008             return (eventCount >= 0 &&
1009                     (wt = owner) != null &&
1010                     (s = wt.getState()) != Thread.State.BLOCKED &&
1011                     s != Thread.State.WAITING &&
1012                     s != Thread.State.TIMED_WAITING);
1013         }
1014 
1015         // Unsafe mechanics
1016         private static final sun.misc.Unsafe U;
1017         private static final long QBASE;
1018         private static final long QLOCK;
1019         private static final int ABASE;
1020         private static final int ASHIFT;
1021         static {
1022             try {
1023                 U = sun.misc.Unsafe.getUnsafe();
1024                 Class<?> k = WorkQueue.class;
1025                 Class<?> ak = ForkJoinTask[].class;
1026                 QBASE = U.objectFieldOffset
1027                     (k.getDeclaredField("base"));
1028                 QLOCK = U.objectFieldOffset
1029                     (k.getDeclaredField("qlock"));
1030                 ABASE = U.arrayBaseOffset(ak);
1031                 int scale = U.arrayIndexScale(ak);
1032                 if ((scale & (scale - 1)) != 0)
1033                     throw new Error("data type scale not a power of two");
1034                 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1035             } catch (Exception e) {
1036                 throw new Error(e);
1037             }
1038         }
1039     }
1040 
1041     // static fields (initialized in static initializer below)
1042 
1043     /**
1044      * Per-thread submission bookkeeping. Shared across all pools
1045      * to reduce ThreadLocal pollution and because random motion
1046      * to avoid contention in one pool is likely to hold for others.
1047      * Lazily initialized on first submission (but null-checked
1048      * in other contexts to avoid unnecessary initialization).
1049      */
1050     static final ThreadLocal<Submitter> submitters;
1051 
1052     /**
1053      * Creates a new ForkJoinWorkerThread. This factory is used unless
1054      * overridden in ForkJoinPool constructors.
1055      */
1056     public static final ForkJoinWorkerThreadFactory
1057         defaultForkJoinWorkerThreadFactory;
1058 
1059     /**
1060      * Permission required for callers of methods that may start or
1061      * kill threads.
1062      */
1063     private static final RuntimePermission modifyThreadPermission;
1064 
1065     /**
1066      * Common (static) pool. Non-null for public use unless a static
1067      * construction exception, but internal usages null-check on use
1068      * to paranoically avoid potential initialization circularities
1069      * as well as to simplify generated code.
1070      */
1071     static final ForkJoinPool common;
1072 
1073     /**
1074      * Common pool parallelism. To allow simpler use and management
1075      * when common pool threads are disabled, we allow the underlying
1076      * common.parallelism field to be zero, but in that case still report
1077      * parallelism as 1 to reflect resulting caller-runs mechanics.
1078      */
1079     static final int commonParallelism;
1080 
1081     /**
1082      * Sequence number for creating workerNamePrefix.
1083      */
1084     private static int poolNumberSequence;
1085 
1086     /**
1087      * Returns the next sequence number. We don't expect this to
1088      * ever contend, so use simple builtin sync.
1089      */
nextPoolId()1090     private static final synchronized int nextPoolId() {
1091         return ++poolNumberSequence;
1092     }
1093 
1094     // static constants
1095 
1096     /**
1097      * Initial timeout value (in nanoseconds) for the thread
1098      * triggering quiescence to park waiting for new work. On timeout,
1099      * the thread will instead try to shrink the number of
1100      * workers. The value should be large enough to avoid overly
1101      * aggressive shrinkage during most transient stalls (long GCs
1102      * etc).
1103      */
1104     private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1105 
1106     /**
1107      * Timeout value when there are more threads than parallelism level
1108      */
1109     private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1110 
1111     /**
1112      * Tolerance for idle timeouts, to cope with timer undershoots
1113      */
1114     private static final long TIMEOUT_SLOP = 2000000L;
1115 
1116     /**
1117      * The maximum stolen->joining link depth allowed in method
1118      * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1119      * chains are unbounded, but we use a fixed constant to avoid
1120      * (otherwise unchecked) cycles and to bound staleness of
1121      * traversal parameters at the expense of sometimes blocking when
1122      * we could be helping.
1123      */
1124     private static final int MAX_HELP = 64;
1125 
1126     /**
1127      * Increment for seed generators. See class ThreadLocal for
1128      * explanation.
1129      */
1130     private static final int SEED_INCREMENT = 0x61c88647;
1131 
1132     /*
1133      * Bits and masks for control variables
1134      *
1135      * Field ctl is a long packed with:
1136      * AC: Number of active running workers minus target parallelism (16 bits)
1137      * TC: Number of total workers minus target parallelism (16 bits)
1138      * ST: true if pool is terminating (1 bit)
1139      * EC: the wait count of top waiting thread (15 bits)
1140      * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1141      *
1142      * When convenient, we can extract the upper 32 bits of counts and
1143      * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1144      * (int)ctl.  The ec field is never accessed alone, but always
1145      * together with id and st. The offsets of counts by the target
1146      * parallelism and the positionings of fields makes it possible to
1147      * perform the most common checks via sign tests of fields: When
1148      * ac is negative, there are not enough active workers, when tc is
1149      * negative, there are not enough total workers, and when e is
1150      * negative, the pool is terminating.  To deal with these possibly
1151      * negative fields, we use casts in and out of "short" and/or
1152      * signed shifts to maintain signedness.
1153      *
1154      * When a thread is queued (inactivated), its eventCount field is
1155      * set negative, which is the only way to tell if a worker is
1156      * prevented from executing tasks, even though it must continue to
1157      * scan for them to avoid queuing races. Note however that
1158      * eventCount updates lag releases so usage requires care.
1159      *
1160      * Field plock is an int packed with:
1161      * SHUTDOWN: true if shutdown is enabled (1 bit)
1162      * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1163      * SIGNAL: set when threads may be waiting on the lock (1 bit)
1164      *
1165      * The sequence number enables simple consistency checks:
1166      * Staleness of read-only operations on the workQueues array can
1167      * be checked by comparing plock before vs after the reads.
1168      */
1169 
1170     // bit positions/shifts for fields
1171     private static final int  AC_SHIFT   = 48;
1172     private static final int  TC_SHIFT   = 32;
1173     private static final int  ST_SHIFT   = 31;
1174     private static final int  EC_SHIFT   = 16;
1175 
1176     // bounds
1177     private static final int  SMASK      = 0xffff;  // short bits
1178     private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1179     private static final int  EVENMASK   = 0xfffe;  // even short bits
1180     private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1181     private static final int  SHORT_SIGN = 1 << 15;
1182     private static final int  INT_SIGN   = 1 << 31;
1183 
1184     // masks
1185     private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1186     private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1187     private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1188 
1189     // units for incrementing and decrementing
1190     private static final long TC_UNIT    = 1L << TC_SHIFT;
1191     private static final long AC_UNIT    = 1L << AC_SHIFT;
1192 
1193     // masks and units for dealing with u = (int)(ctl >>> 32)
1194     private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1195     private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1196     private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1197     private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1198     private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1199     private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1200 
1201     // masks and units for dealing with e = (int)ctl
1202     private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1203     private static final int E_SEQ       = 1 << EC_SHIFT;
1204 
1205     // plock bits
1206     private static final int SHUTDOWN    = 1 << 31;
1207     private static final int PL_LOCK     = 2;
1208     private static final int PL_SIGNAL   = 1;
1209     private static final int PL_SPINS    = 1 << 8;
1210 
1211     // access mode for WorkQueue
1212     static final int LIFO_QUEUE          =  0;
1213     static final int FIFO_QUEUE          =  1;
1214     static final int SHARED_QUEUE        = -1;
1215 
1216     // Heuristic padding to ameliorate unfortunate memory placements
1217     volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1218 
1219     // Instance fields
1220     volatile long stealCount;                  // collects worker counts
1221     volatile long ctl;                         // main pool control
1222     volatile int plock;                        // shutdown status and seqLock
1223     volatile int indexSeed;                    // worker/submitter index seed
1224     final short parallelism;                   // parallelism level
1225     final short mode;                          // LIFO/FIFO
1226     WorkQueue[] workQueues;                    // main registry
1227     final ForkJoinWorkerThreadFactory factory;
1228     final UncaughtExceptionHandler ueh;        // per-worker UEH
1229     final String workerNamePrefix;             // to create worker name string
1230 
1231     volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1232     volatile Object pad18, pad19, pad1a, pad1b;
1233 
1234     /**
1235      * Acquires the plock lock to protect worker array and related
1236      * updates. This method is called only if an initial CAS on plock
1237      * fails. This acts as a spinlock for normal cases, but falls back
1238      * to builtin monitor to block when (rarely) needed. This would be
1239      * a terrible idea for a highly contended lock, but works fine as
1240      * a more conservative alternative to a pure spinlock.
1241      */
acquirePlock()1242     private int acquirePlock() {
1243         int spins = PL_SPINS, ps, nps;
1244         for (;;) {
1245             if (((ps = plock) & PL_LOCK) == 0 &&
1246                 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1247                 return nps;
1248             else if (spins >= 0) {
1249                 if (ThreadLocalRandom.current().nextInt() >= 0)
1250                     --spins;
1251             }
1252             else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1253                 synchronized (this) {
1254                     if ((plock & PL_SIGNAL) != 0) {
1255                         try {
1256                             wait();
1257                         } catch (InterruptedException ie) {
1258                             try {
1259                                 Thread.currentThread().interrupt();
1260                             } catch (SecurityException ignore) {
1261                             }
1262                         }
1263                     }
1264                     else
1265                         notifyAll();
1266                 }
1267             }
1268         }
1269     }
1270 
1271     /**
1272      * Unlocks and signals any thread waiting for plock. Called only
1273      * when CAS of seq value for unlock fails.
1274      */
releasePlock(int ps)1275     private void releasePlock(int ps) {
1276         plock = ps;
1277         synchronized (this) { notifyAll(); }
1278     }
1279 
1280     /**
1281      * Tries to create and start one worker if fewer than target
1282      * parallelism level exist. Adjusts counts etc on failure.
1283      */
tryAddWorker()1284     private void tryAddWorker() {
1285         long c; int u, e;
1286         while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1287                (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1288             long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1289                               ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1290             if (U.compareAndSwapLong(this, CTL, c, nc)) {
1291                 ForkJoinWorkerThreadFactory fac;
1292                 Throwable ex = null;
1293                 ForkJoinWorkerThread wt = null;
1294                 try {
1295                     if ((fac = factory) != null &&
1296                         (wt = fac.newThread(this)) != null) {
1297                         wt.start();
1298                         break;
1299                     }
1300                 } catch (Throwable rex) {
1301                     ex = rex;
1302                 }
1303                 deregisterWorker(wt, ex);
1304                 break;
1305             }
1306         }
1307     }
1308 
1309     //  Registering and deregistering workers
1310 
1311     /**
1312      * Callback from ForkJoinWorkerThread to establish and record its
1313      * WorkQueue. To avoid scanning bias due to packing entries in
1314      * front of the workQueues array, we treat the array as a simple
1315      * power-of-two hash table using per-thread seed as hash,
1316      * expanding as needed.
1317      *
1318      * @param wt the worker thread
1319      * @return the worker's queue
1320      */
registerWorker(ForkJoinWorkerThread wt)1321     final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1322         UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1323         wt.setDaemon(true);
1324         if ((handler = ueh) != null)
1325             wt.setUncaughtExceptionHandler(handler);
1326         do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1327                                           s += SEED_INCREMENT) ||
1328                      s == 0); // skip 0
1329         WorkQueue w = new WorkQueue(this, wt, mode, s);
1330         if (((ps = plock) & PL_LOCK) != 0 ||
1331             !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1332             ps = acquirePlock();
1333         int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1334         try {
1335             if ((ws = workQueues) != null) {    // skip if shutting down
1336                 int n = ws.length, m = n - 1;
1337                 int r = (s << 1) | 1;           // use odd-numbered indices
1338                 if (ws[r &= m] != null) {       // collision
1339                     int probes = 0;             // step by approx half size
1340                     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1341                     while (ws[r = (r + step) & m] != null) {
1342                         if (++probes >= n) {
1343                             workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1344                             m = n - 1;
1345                             probes = 0;
1346                         }
1347                     }
1348                 }
1349                 w.poolIndex = (short)r;
1350                 w.eventCount = r; // volatile write orders
1351                 ws[r] = w;
1352             }
1353         } finally {
1354             if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1355                 releasePlock(nps);
1356         }
1357         wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1358         return w;
1359     }
1360 
1361     /**
1362      * Final callback from terminating worker, as well as upon failure
1363      * to construct or start a worker.  Removes record of worker from
1364      * array, and adjusts counts. If pool is shutting down, tries to
1365      * complete termination.
1366      *
1367      * @param wt the worker thread, or null if construction failed
1368      * @param ex the exception causing failure, or null if none
1369      */
deregisterWorker(ForkJoinWorkerThread wt, Throwable ex)1370     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1371         WorkQueue w = null;
1372         if (wt != null && (w = wt.workQueue) != null) {
1373             int ps; long sc;
1374             w.qlock = -1;                // ensure set
1375             do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1376                                                sc = stealCount,
1377                                                sc + w.nsteals));
1378             if (((ps = plock) & PL_LOCK) != 0 ||
1379                 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1380                 ps = acquirePlock();
1381             int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1382             try {
1383                 int idx = w.poolIndex;
1384                 WorkQueue[] ws = workQueues;
1385                 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1386                     ws[idx] = null;
1387             } finally {
1388                 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1389                     releasePlock(nps);
1390             }
1391         }
1392 
1393         long c;                          // adjust ctl counts
1394         do {} while (!U.compareAndSwapLong
1395                      (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1396                                            ((c - TC_UNIT) & TC_MASK) |
1397                                            (c & ~(AC_MASK|TC_MASK)))));
1398 
1399         if (!tryTerminate(false, false) && w != null && w.array != null) {
1400             w.cancelAll();               // cancel remaining tasks
1401             WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1402             while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1403                 if (e > 0) {             // activate or create replacement
1404                     if ((ws = workQueues) == null ||
1405                         (i = e & SMASK) >= ws.length ||
1406                         (v = ws[i]) == null)
1407                         break;
1408                     long nc = (((long)(v.nextWait & E_MASK)) |
1409                                ((long)(u + UAC_UNIT) << 32));
1410                     if (v.eventCount != (e | INT_SIGN))
1411                         break;
1412                     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1413                         v.eventCount = (e + E_SEQ) & E_MASK;
1414                         if ((p = v.parker) != null)
1415                             U.unpark(p);
1416                         break;
1417                     }
1418                 }
1419                 else {
1420                     if ((short)u < 0)
1421                         tryAddWorker();
1422                     break;
1423                 }
1424             }
1425         }
1426         if (ex == null)                     // help clean refs on way out
1427             ForkJoinTask.helpExpungeStaleExceptions();
1428         else                                // rethrow
1429             ForkJoinTask.rethrow(ex);
1430     }
1431 
1432     // Submissions
1433 
1434     /**
1435      * Per-thread records for threads that submit to pools. Currently
1436      * holds only pseudo-random seed / index that is used to choose
1437      * submission queues in method externalPush. In the future, this may
1438      * also incorporate a means to implement different task rejection
1439      * and resubmission policies.
1440      *
1441      * Seeds for submitters and workers/workQueues work in basically
1442      * the same way but are initialized and updated using slightly
1443      * different mechanics. Both are initialized using the same
1444      * approach as in class ThreadLocal, where successive values are
1445      * unlikely to collide with previous values. Seeds are then
1446      * randomly modified upon collisions using xorshifts, which
1447      * requires a non-zero seed.
1448      */
1449     static final class Submitter {
1450         int seed;
Submitter(int s)1451         Submitter(int s) { seed = s; }
1452     }
1453 
1454     /**
1455      * Unless shutting down, adds the given task to a submission queue
1456      * at submitter's current queue index (modulo submission
1457      * range). Only the most common path is directly handled in this
1458      * method. All others are relayed to fullExternalPush.
1459      *
1460      * @param task the task. Caller must ensure non-null.
1461      */
externalPush(ForkJoinTask<?> task)1462     final void externalPush(ForkJoinTask<?> task) {
1463         Submitter z = submitters.get();
1464         WorkQueue q; int r, m, s, n, am; ForkJoinTask<?>[] a;
1465         int ps = plock;
1466         WorkQueue[] ws = workQueues;
1467         if (z != null && ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1468             (q = ws[m & (r = z.seed) & SQMASK]) != null && r != 0 &&
1469             U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1470             if ((a = q.array) != null &&
1471                 (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1472                 int j = ((am & s) << ASHIFT) + ABASE;
1473                 U.putOrderedObject(a, j, task);
1474                 q.top = s + 1;                     // push on to deque
1475                 q.qlock = 0;
1476                 if (n <= 1)
1477                     signalWork(ws, q);
1478                 return;
1479             }
1480             q.qlock = 0;
1481         }
1482         fullExternalPush(task);
1483     }
1484 
1485     /**
1486      * Full version of externalPush. This method is called, among
1487      * other times, upon the first submission of the first task to the
1488      * pool, so must perform secondary initialization.  It also
1489      * detects first submission by an external thread by looking up
1490      * its ThreadLocal, and creates a new shared queue if the one at
1491      * index if empty or contended. The plock lock body must be
1492      * exception-free (so no try/finally) so we optimistically
1493      * allocate new queues outside the lock and throw them away if
1494      * (very rarely) not needed.
1495      *
1496      * Secondary initialization occurs when plock is zero, to create
1497      * workQueue array and set plock to a valid value.  This lock body
1498      * must also be exception-free. Because the plock seq value can
1499      * eventually wrap around zero, this method harmlessly fails to
1500      * reinitialize if workQueues exists, while still advancing plock.
1501      */
fullExternalPush(ForkJoinTask<?> task)1502     private void fullExternalPush(ForkJoinTask<?> task) {
1503         int r = 0; // random index seed
1504         for (Submitter z = submitters.get();;) {
1505             WorkQueue[] ws; WorkQueue q; int ps, m, k;
1506             if (z == null) {
1507                 if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1508                                         r += SEED_INCREMENT) && r != 0)
1509                     submitters.set(z = new Submitter(r));
1510             }
1511             else if (r == 0) {                  // move to a different index
1512                 r = z.seed;
1513                 r ^= r << 13;                   // same xorshift as WorkQueues
1514                 r ^= r >>> 17;
1515                 z.seed = r ^= (r << 5);
1516             }
1517             if ((ps = plock) < 0)
1518                 throw new RejectedExecutionException();
1519             else if (ps == 0 || (ws = workQueues) == null ||
1520                      (m = ws.length - 1) < 0) { // initialize workQueues
1521                 int p = parallelism;            // find power of two table size
1522                 int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1523                 n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1524                 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1525                 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1526                                    new WorkQueue[n] : null);
1527                 if (((ps = plock) & PL_LOCK) != 0 ||
1528                     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1529                     ps = acquirePlock();
1530                 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1531                     workQueues = nws;
1532                 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1533                 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1534                     releasePlock(nps);
1535             }
1536             else if ((q = ws[k = r & m & SQMASK]) != null) {
1537                 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1538                     ForkJoinTask<?>[] a = q.array;
1539                     int s = q.top;
1540                     boolean submitted = false;
1541                     try {                      // locked version of push
1542                         if ((a != null && a.length > s + 1 - q.base) ||
1543                             (a = q.growArray()) != null) {   // must presize
1544                             int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1545                             U.putOrderedObject(a, j, task);
1546                             q.top = s + 1;
1547                             submitted = true;
1548                         }
1549                     } finally {
1550                         q.qlock = 0;  // unlock
1551                     }
1552                     if (submitted) {
1553                         signalWork(ws, q);
1554                         return;
1555                     }
1556                 }
1557                 r = 0; // move on failure
1558             }
1559             else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1560                 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1561                 q.poolIndex = (short)k;
1562                 if (((ps = plock) & PL_LOCK) != 0 ||
1563                     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1564                     ps = acquirePlock();
1565                 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1566                     ws[k] = q;
1567                 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1568                 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1569                     releasePlock(nps);
1570             }
1571             else
1572                 r = 0;
1573         }
1574     }
1575 
1576     // Maintaining ctl counts
1577 
1578     /**
1579      * Increments active count; mainly called upon return from blocking.
1580      */
incrementActiveCount()1581     final void incrementActiveCount() {
1582         long c;
1583         do {} while (!U.compareAndSwapLong
1584                      (this, CTL, c = ctl, ((c & ~AC_MASK) |
1585                                            ((c & AC_MASK) + AC_UNIT))));
1586     }
1587 
1588     /**
1589      * Tries to create or activate a worker if too few are active.
1590      *
1591      * @param ws the worker array to use to find signallees
1592      * @param q if non-null, the queue holding tasks to be processed
1593      */
signalWork(WorkQueue[] ws, WorkQueue q)1594     final void signalWork(WorkQueue[] ws, WorkQueue q) {
1595         for (;;) {
1596             long c; int e, u, i; WorkQueue w; Thread p;
1597             if ((u = (int)((c = ctl) >>> 32)) >= 0)
1598                 break;
1599             if ((e = (int)c) <= 0) {
1600                 if ((short)u < 0)
1601                     tryAddWorker();
1602                 break;
1603             }
1604             if (ws == null || ws.length <= (i = e & SMASK) ||
1605                 (w = ws[i]) == null)
1606                 break;
1607             long nc = (((long)(w.nextWait & E_MASK)) |
1608                        ((long)(u + UAC_UNIT)) << 32);
1609             int ne = (e + E_SEQ) & E_MASK;
1610             if (w.eventCount == (e | INT_SIGN) &&
1611                 U.compareAndSwapLong(this, CTL, c, nc)) {
1612                 w.eventCount = ne;
1613                 if ((p = w.parker) != null)
1614                     U.unpark(p);
1615                 break;
1616             }
1617             if (q != null && q.base >= q.top)
1618                 break;
1619         }
1620     }
1621 
1622     // Scanning for tasks
1623 
1624     /**
1625      * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1626      */
runWorker(WorkQueue w)1627     final void runWorker(WorkQueue w) {
1628         w.growArray(); // allocate queue
1629         for (int r = w.hint; scan(w, r) == 0; ) {
1630             r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1631         }
1632     }
1633 
1634     /**
1635      * Scans for and, if found, runs one task, else possibly
1636      * inactivates the worker. This method operates on single reads of
1637      * volatile state and is designed to be re-invoked continuously,
1638      * in part because it returns upon detecting inconsistencies,
1639      * contention, or state changes that indicate possible success on
1640      * re-invocation.
1641      *
1642      * The scan searches for tasks across queues starting at a random
1643      * index, checking each at least twice.  The scan terminates upon
1644      * either finding a non-empty queue, or completing the sweep. If
1645      * the worker is not inactivated, it takes and runs a task from
1646      * this queue. Otherwise, if not activated, it tries to activate
1647      * itself or some other worker by signalling. On failure to find a
1648      * task, returns (for retry) if pool state may have changed during
1649      * an empty scan, or tries to inactivate if active, else possibly
1650      * blocks or terminates via method awaitWork.
1651      *
1652      * @param w the worker (via its WorkQueue)
1653      * @param r a random seed
1654      * @return worker qlock status if would have waited, else 0
1655      */
scan(WorkQueue w, int r)1656     private final int scan(WorkQueue w, int r) {
1657         WorkQueue[] ws; int m;
1658         long c = ctl;                            // for consistency check
1659         if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1660             for (int j = m + m + 1, ec = w.eventCount;;) {
1661                 WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1662                 if ((q = ws[(r - j) & m]) != null &&
1663                     (b = q.base) - q.top < 0 && (a = q.array) != null) {
1664                     long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1665                     if ((t = ((ForkJoinTask<?>)
1666                               U.getObjectVolatile(a, i))) != null) {
1667                         if (ec < 0)
1668                             helpRelease(c, ws, w, q, b);
1669                         else if (q.base == b &&
1670                                  U.compareAndSwapObject(a, i, t, null)) {
1671                             U.putOrderedInt(q, QBASE, b + 1);
1672                             if ((b + 1) - q.top < 0)
1673                                 signalWork(ws, q);
1674                             w.runTask(t);
1675                         }
1676                     }
1677                     break;
1678                 }
1679                 else if (--j < 0) {
1680                     if ((ec | (e = (int)c)) < 0) // inactive or terminating
1681                         return awaitWork(w, c, ec);
1682                     else if (ctl == c) {         // try to inactivate and enqueue
1683                         long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1684                         w.nextWait = e;
1685                         w.eventCount = ec | INT_SIGN;
1686                         if (!U.compareAndSwapLong(this, CTL, c, nc))
1687                             w.eventCount = ec;   // back out
1688                     }
1689                     break;
1690                 }
1691             }
1692         }
1693         return 0;
1694     }
1695 
1696     /**
1697      * A continuation of scan(), possibly blocking or terminating
1698      * worker w. Returns without blocking if pool state has apparently
1699      * changed since last invocation.  Also, if inactivating w has
1700      * caused the pool to become quiescent, checks for pool
1701      * termination, and, so long as this is not the only worker, waits
1702      * for event for up to a given duration.  On timeout, if ctl has
1703      * not changed, terminates the worker, which will in turn wake up
1704      * another worker to possibly repeat this process.
1705      *
1706      * @param w the calling worker
1707      * @param c the ctl value on entry to scan
1708      * @param ec the worker's eventCount on entry to scan
1709      */
awaitWork(WorkQueue w, long c, int ec)1710     private final int awaitWork(WorkQueue w, long c, int ec) {
1711         int stat, ns; long parkTime, deadline;
1712         if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1713             !Thread.interrupted()) {
1714             int e = (int)c;
1715             int u = (int)(c >>> 32);
1716             int d = (u >> UAC_SHIFT) + parallelism; // active count
1717 
1718             if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1719                 stat = w.qlock = -1;          // pool is terminating
1720             else if ((ns = w.nsteals) != 0) { // collect steals and retry
1721                 long sc;
1722                 w.nsteals = 0;
1723                 do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1724                                                    sc = stealCount, sc + ns));
1725             }
1726             else {
1727                 long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1728                            ((long)(w.nextWait & E_MASK)) | // ctl to restore
1729                            ((long)(u + UAC_UNIT)) << 32);
1730                 if (pc != 0L) {               // timed wait if last waiter
1731                     int dc = -(short)(c >>> TC_SHIFT);
1732                     parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1733                                 (dc + 1) * IDLE_TIMEOUT);
1734                     deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1735                 }
1736                 else
1737                     parkTime = deadline = 0L;
1738                 if (w.eventCount == ec && ctl == c) {
1739                     Thread wt = Thread.currentThread();
1740                     U.putObject(wt, PARKBLOCKER, this);
1741                     w.parker = wt;            // emulate LockSupport.park
1742                     if (w.eventCount == ec && ctl == c)
1743                         U.park(false, parkTime);  // must recheck before park
1744                     w.parker = null;
1745                     U.putObject(wt, PARKBLOCKER, null);
1746                     if (parkTime != 0L && ctl == c &&
1747                         deadline - System.nanoTime() <= 0L &&
1748                         U.compareAndSwapLong(this, CTL, c, pc))
1749                         stat = w.qlock = -1;  // shrink pool
1750                 }
1751             }
1752         }
1753         return stat;
1754     }
1755 
1756     /**
1757      * Possibly releases (signals) a worker. Called only from scan()
1758      * when a worker with apparently inactive status finds a non-empty
1759      * queue. This requires revalidating all of the associated state
1760      * from caller.
1761      */
helpRelease(long c, WorkQueue[] ws, WorkQueue w, WorkQueue q, int b)1762     private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1763                                    WorkQueue q, int b) {
1764         WorkQueue v; int e, i; Thread p;
1765         if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1766             ws != null && ws.length > (i = e & SMASK) &&
1767             (v = ws[i]) != null && ctl == c) {
1768             long nc = (((long)(v.nextWait & E_MASK)) |
1769                        ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1770             int ne = (e + E_SEQ) & E_MASK;
1771             if (q != null && q.base == b && w.eventCount < 0 &&
1772                 v.eventCount == (e | INT_SIGN) &&
1773                 U.compareAndSwapLong(this, CTL, c, nc)) {
1774                 v.eventCount = ne;
1775                 if ((p = v.parker) != null)
1776                     U.unpark(p);
1777             }
1778         }
1779     }
1780 
1781     /**
1782      * Tries to locate and execute tasks for a stealer of the given
1783      * task, or in turn one of its stealers, Traces currentSteal ->
1784      * currentJoin links looking for a thread working on a descendant
1785      * of the given task and with a non-empty queue to steal back and
1786      * execute tasks from. The first call to this method upon a
1787      * waiting join will often entail scanning/search, (which is OK
1788      * because the joiner has nothing better to do), but this method
1789      * leaves hints in workers to speed up subsequent calls. The
1790      * implementation is very branchy to cope with potential
1791      * inconsistencies or loops encountering chains that are stale,
1792      * unknown, or so long that they are likely cyclic.
1793      *
1794      * @param joiner the joining worker
1795      * @param task the task to join
1796      * @return 0 if no progress can be made, negative if task
1797      * known complete, else positive
1798      */
tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task)1799     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1800         int stat = 0, steps = 0;                    // bound to avoid cycles
1801         if (task != null && joiner != null &&
1802             joiner.base - joiner.top >= 0) {        // hoist checks
1803             restart: for (;;) {
1804                 ForkJoinTask<?> subtask = task;     // current target
1805                 for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1806                     WorkQueue[] ws; int m, s, h;
1807                     if ((s = task.status) < 0) {
1808                         stat = s;
1809                         break restart;
1810                     }
1811                     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1812                         break restart;              // shutting down
1813                     if ((v = ws[h = (j.hint | 1) & m]) == null ||
1814                         v.currentSteal != subtask) {
1815                         for (int origin = h;;) {    // find stealer
1816                             if (((h = (h + 2) & m) & 15) == 1 &&
1817                                 (subtask.status < 0 || j.currentJoin != subtask))
1818                                 continue restart;   // occasional staleness check
1819                             if ((v = ws[h]) != null &&
1820                                 v.currentSteal == subtask) {
1821                                 j.hint = h;        // save hint
1822                                 break;
1823                             }
1824                             if (h == origin)
1825                                 break restart;      // cannot find stealer
1826                         }
1827                     }
1828                     for (;;) { // help stealer or descend to its stealer
1829                         ForkJoinTask[] a; int b;
1830                         if (subtask.status < 0)     // surround probes with
1831                             continue restart;       //   consistency checks
1832                         if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1833                             int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1834                             ForkJoinTask<?> t =
1835                                 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1836                             if (subtask.status < 0 || j.currentJoin != subtask ||
1837                                 v.currentSteal != subtask)
1838                                 continue restart;   // stale
1839                             stat = 1;               // apparent progress
1840                             if (v.base == b) {
1841                                 if (t == null)
1842                                     break restart;
1843                                 if (U.compareAndSwapObject(a, i, t, null)) {
1844                                     U.putOrderedInt(v, QBASE, b + 1);
1845                                     ForkJoinTask<?> ps = joiner.currentSteal;
1846                                     int jt = joiner.top;
1847                                     do {
1848                                         joiner.currentSteal = t;
1849                                         t.doExec(); // clear local tasks too
1850                                     } while (task.status >= 0 &&
1851                                              joiner.top != jt &&
1852                                              (t = joiner.pop()) != null);
1853                                     joiner.currentSteal = ps;
1854                                     break restart;
1855                                 }
1856                             }
1857                         }
1858                         else {                      // empty -- try to descend
1859                             ForkJoinTask<?> next = v.currentJoin;
1860                             if (subtask.status < 0 || j.currentJoin != subtask ||
1861                                 v.currentSteal != subtask)
1862                                 continue restart;   // stale
1863                             else if (next == null || ++steps == MAX_HELP)
1864                                 break restart;      // dead-end or maybe cyclic
1865                             else {
1866                                 subtask = next;
1867                                 j = v;
1868                                 break;
1869                             }
1870                         }
1871                     }
1872                 }
1873             }
1874         }
1875         return stat;
1876     }
1877 
1878     /**
1879      * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1880      * and run tasks within the target's computation.
1881      *
1882      * @param task the task to join
1883      */
helpComplete(WorkQueue joiner, CountedCompleter<?> task)1884     private int helpComplete(WorkQueue joiner, CountedCompleter<?> task) {
1885         WorkQueue[] ws; int m;
1886         int s = 0;
1887         if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1888             joiner != null && task != null) {
1889             int j = joiner.poolIndex;
1890             int scans = m + m + 1;
1891             long c = 0L;              // for stability check
1892             for (int k = scans; ; j += 2) {
1893                 WorkQueue q;
1894                 if ((s = task.status) < 0)
1895                     break;
1896                 else if (joiner.internalPopAndExecCC(task))
1897                     k = scans;
1898                 else if ((s = task.status) < 0)
1899                     break;
1900                 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
1901                     k = scans;
1902                 else if (--k < 0) {
1903                     if (c == (c = ctl))
1904                         break;
1905                     k = scans;
1906                 }
1907             }
1908         }
1909         return s;
1910     }
1911 
1912     /**
1913      * Tries to decrement active count (sometimes implicitly) and
1914      * possibly release or create a compensating worker in preparation
1915      * for blocking. Fails on contention or termination. Otherwise,
1916      * adds a new thread if no idle workers are available and pool
1917      * may become starved.
1918      *
1919      * @param c the assumed ctl value
1920      */
tryCompensate(long c)1921     final boolean tryCompensate(long c) {
1922         WorkQueue[] ws = workQueues;
1923         int pc = parallelism, e = (int)c, m, tc;
1924         if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1925             WorkQueue w = ws[e & m];
1926             if (e != 0 && w != null) {
1927                 Thread p;
1928                 long nc = ((long)(w.nextWait & E_MASK) |
1929                            (c & (AC_MASK|TC_MASK)));
1930                 int ne = (e + E_SEQ) & E_MASK;
1931                 if (w.eventCount == (e | INT_SIGN) &&
1932                     U.compareAndSwapLong(this, CTL, c, nc)) {
1933                     w.eventCount = ne;
1934                     if ((p = w.parker) != null)
1935                         U.unpark(p);
1936                     return true;   // replace with idle worker
1937                 }
1938             }
1939             else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1940                      (int)(c >> AC_SHIFT) + pc > 1) {
1941                 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1942                 if (U.compareAndSwapLong(this, CTL, c, nc))
1943                     return true;   // no compensation
1944             }
1945             else if (tc + pc < MAX_CAP) {
1946                 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1947                 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1948                     ForkJoinWorkerThreadFactory fac;
1949                     Throwable ex = null;
1950                     ForkJoinWorkerThread wt = null;
1951                     try {
1952                         if ((fac = factory) != null &&
1953                             (wt = fac.newThread(this)) != null) {
1954                             wt.start();
1955                             return true;
1956                         }
1957                     } catch (Throwable rex) {
1958                         ex = rex;
1959                     }
1960                     deregisterWorker(wt, ex); // clean up and return false
1961                 }
1962             }
1963         }
1964         return false;
1965     }
1966 
1967     /**
1968      * Helps and/or blocks until the given task is done.
1969      *
1970      * @param joiner the joining worker
1971      * @param task the task
1972      * @return task status on exit
1973      */
awaitJoin(WorkQueue joiner, ForkJoinTask<?> task)1974     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1975         int s = 0;
1976         if (task != null && (s = task.status) >= 0 && joiner != null) {
1977             ForkJoinTask<?> prevJoin = joiner.currentJoin;
1978             joiner.currentJoin = task;
1979             do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1980                          (s = task.status) >= 0);
1981             if (s >= 0 && (task instanceof CountedCompleter))
1982                 s = helpComplete(joiner, (CountedCompleter<?>)task);
1983             long cc = 0;        // for stability checks
1984             while (s >= 0 && (s = task.status) >= 0) {
1985                 if ((s = tryHelpStealer(joiner, task)) == 0 &&
1986                     (s = task.status) >= 0) {
1987                     if (!tryCompensate(cc))
1988                         cc = ctl;
1989                     else {
1990                         if (task.trySetSignal() && (s = task.status) >= 0) {
1991                             synchronized (task) {
1992                                 if (task.status >= 0) {
1993                                     try {                // see ForkJoinTask
1994                                         task.wait();     //  for explanation
1995                                     } catch (InterruptedException ie) {
1996                                     }
1997                                 }
1998                                 else
1999                                     task.notifyAll();
2000                             }
2001                         }
2002                         long c; // reactivate
2003                         do {} while (!U.compareAndSwapLong
2004                                      (this, CTL, c = ctl,
2005                                       ((c & ~AC_MASK) |
2006                                        ((c & AC_MASK) + AC_UNIT))));
2007                     }
2008                 }
2009             }
2010             joiner.currentJoin = prevJoin;
2011         }
2012         return s;
2013     }
2014 
2015     /**
2016      * Stripped-down variant of awaitJoin used by timed joins. Tries
2017      * to help join only while there is continuous progress. (Caller
2018      * will then enter a timed wait.)
2019      *
2020      * @param joiner the joining worker
2021      * @param task the task
2022      */
helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task)2023     final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2024         int s;
2025         if (joiner != null && task != null && (s = task.status) >= 0) {
2026             ForkJoinTask<?> prevJoin = joiner.currentJoin;
2027             joiner.currentJoin = task;
2028             do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2029                          (s = task.status) >= 0);
2030             if (s >= 0) {
2031                 if (task instanceof CountedCompleter)
2032                     helpComplete(joiner, (CountedCompleter<?>)task);
2033                 do {} while (task.status >= 0 &&
2034                              tryHelpStealer(joiner, task) > 0);
2035             }
2036             joiner.currentJoin = prevJoin;
2037         }
2038     }
2039 
2040     /**
2041      * Returns a (probably) non-empty steal queue, if one is found
2042      * during a scan, else null.  This method must be retried by
2043      * caller if, by the time it tries to use the queue, it is empty.
2044      */
findNonEmptyStealQueue()2045     private WorkQueue findNonEmptyStealQueue() {
2046         int r = ThreadLocalRandom.current().nextInt();
2047         for (;;) {
2048             int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2049             if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2050                 for (int j = (m + 1) << 2; j >= 0; --j) {
2051                     if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2052                         q.base - q.top < 0)
2053                         return q;
2054                 }
2055             }
2056             if (plock == ps)
2057                 return null;
2058         }
2059     }
2060 
2061     /**
2062      * Runs tasks until {@code isQuiescent()}. We piggyback on
2063      * active count ctl maintenance, but rather than blocking
2064      * when tasks cannot be found, we rescan until all others cannot
2065      * find tasks either.
2066      */
helpQuiescePool(WorkQueue w)2067     final void helpQuiescePool(WorkQueue w) {
2068         ForkJoinTask<?> ps = w.currentSteal;
2069         for (boolean active = true;;) {
2070             long c; WorkQueue q; ForkJoinTask<?> t; int b;
2071             while ((t = w.nextLocalTask()) != null)
2072                 t.doExec();
2073             if ((q = findNonEmptyStealQueue()) != null) {
2074                 if (!active) {      // re-establish active count
2075                     active = true;
2076                     do {} while (!U.compareAndSwapLong
2077                                  (this, CTL, c = ctl,
2078                                   ((c & ~AC_MASK) |
2079                                    ((c & AC_MASK) + AC_UNIT))));
2080                 }
2081                 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2082                     (w.currentSteal = t).doExec();
2083                     w.currentSteal = ps;
2084                 }
2085             }
2086             else if (active) {      // decrement active count without queuing
2087                 long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2088                 if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2089                     break;          // bypass decrement-then-increment
2090                 if (U.compareAndSwapLong(this, CTL, c, nc))
2091                     active = false;
2092             }
2093             else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2094                      U.compareAndSwapLong
2095                      (this, CTL, c, ((c & ~AC_MASK) |
2096                                      ((c & AC_MASK) + AC_UNIT))))
2097                 break;
2098         }
2099     }
2100 
2101     /**
2102      * Gets and removes a local or stolen task for the given worker.
2103      *
2104      * @return a task, if available
2105      */
nextTaskFor(WorkQueue w)2106     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2107         for (ForkJoinTask<?> t;;) {
2108             WorkQueue q; int b;
2109             if ((t = w.nextLocalTask()) != null)
2110                 return t;
2111             if ((q = findNonEmptyStealQueue()) == null)
2112                 return null;
2113             if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2114                 return t;
2115         }
2116     }
2117 
2118     /**
2119      * Returns a cheap heuristic guide for task partitioning when
2120      * programmers, frameworks, tools, or languages have little or no
2121      * idea about task granularity.  In essence by offering this
2122      * method, we ask users only about tradeoffs in overhead vs
2123      * expected throughput and its variance, rather than how finely to
2124      * partition tasks.
2125      *
2126      * In a steady state strict (tree-structured) computation, each
2127      * thread makes available for stealing enough tasks for other
2128      * threads to remain active. Inductively, if all threads play by
2129      * the same rules, each thread should make available only a
2130      * constant number of tasks.
2131      *
2132      * The minimum useful constant is just 1. But using a value of 1
2133      * would require immediate replenishment upon each steal to
2134      * maintain enough tasks, which is infeasible.  Further,
2135      * partitionings/granularities of offered tasks should minimize
2136      * steal rates, which in general means that threads nearer the top
2137      * of computation tree should generate more than those nearer the
2138      * bottom. In perfect steady state, each thread is at
2139      * approximately the same level of computation tree. However,
2140      * producing extra tasks amortizes the uncertainty of progress and
2141      * diffusion assumptions.
2142      *
2143      * So, users will want to use values larger (but not much larger)
2144      * than 1 to both smooth over transient shortages and hedge
2145      * against uneven progress; as traded off against the cost of
2146      * extra task overhead. We leave the user to pick a threshold
2147      * value to compare with the results of this call to guide
2148      * decisions, but recommend values such as 3.
2149      *
2150      * When all threads are active, it is on average OK to estimate
2151      * surplus strictly locally. In steady-state, if one thread is
2152      * maintaining say 2 surplus tasks, then so are others. So we can
2153      * just use estimated queue length.  However, this strategy alone
2154      * leads to serious mis-estimates in some non-steady-state
2155      * conditions (ramp-up, ramp-down, other stalls). We can detect
2156      * many of these by further considering the number of "idle"
2157      * threads, that are known to have zero queued tasks, so
2158      * compensate by a factor of (#idle/#active) threads.
2159      *
2160      * Note: The approximation of #busy workers as #active workers is
2161      * not very good under current signalling scheme, and should be
2162      * improved.
2163      */
getSurplusQueuedTaskCount()2164     static int getSurplusQueuedTaskCount() {
2165         Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2166         if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2167             int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2168             int n = (q = wt.workQueue).top - q.base;
2169             int a = (int)(pool.ctl >> AC_SHIFT) + p;
2170             return n - (a > (p >>>= 1) ? 0 :
2171                         a > (p >>>= 1) ? 1 :
2172                         a > (p >>>= 1) ? 2 :
2173                         a > (p >>>= 1) ? 4 :
2174                         8);
2175         }
2176         return 0;
2177     }
2178 
2179     //  Termination
2180 
2181     /**
2182      * Possibly initiates and/or completes termination.  The caller
2183      * triggering termination runs three passes through workQueues:
2184      * (0) Setting termination status, followed by wakeups of queued
2185      * workers; (1) cancelling all tasks; (2) interrupting lagging
2186      * threads (likely in external tasks, but possibly also blocked in
2187      * joins).  Each pass repeats previous steps because of potential
2188      * lagging thread creation.
2189      *
2190      * @param now if true, unconditionally terminate, else only
2191      * if no work and no active workers
2192      * @param enable if true, enable shutdown when next possible
2193      * @return true if now terminating or terminated
2194      */
tryTerminate(boolean now, boolean enable)2195     private boolean tryTerminate(boolean now, boolean enable) {
2196         int ps;
2197         if (this == common)                        // cannot shut down
2198             return false;
2199         if ((ps = plock) >= 0) {                   // enable by setting plock
2200             if (!enable)
2201                 return false;
2202             if ((ps & PL_LOCK) != 0 ||
2203                 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2204                 ps = acquirePlock();
2205             int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2206             if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2207                 releasePlock(nps);
2208         }
2209         for (long c;;) {
2210             if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2211                 if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2212                     synchronized (this) {
2213                         notifyAll();               // signal when 0 workers
2214                     }
2215                 }
2216                 return true;
2217             }
2218             if (!now) {                            // check if idle & no tasks
2219                 WorkQueue[] ws; WorkQueue w;
2220                 if ((int)(c >> AC_SHIFT) + parallelism > 0)
2221                     return false;
2222                 if ((ws = workQueues) != null) {
2223                     for (int i = 0; i < ws.length; ++i) {
2224                         if ((w = ws[i]) != null &&
2225                             (!w.isEmpty() ||
2226                              ((i & 1) != 0 && w.eventCount >= 0))) {
2227                             signalWork(ws, w);
2228                             return false;
2229                         }
2230                     }
2231                 }
2232             }
2233             if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2234                 for (int pass = 0; pass < 3; ++pass) {
2235                     WorkQueue[] ws; WorkQueue w; Thread wt;
2236                     if ((ws = workQueues) != null) {
2237                         int n = ws.length;
2238                         for (int i = 0; i < n; ++i) {
2239                             if ((w = ws[i]) != null) {
2240                                 w.qlock = -1;
2241                                 if (pass > 0) {
2242                                     w.cancelAll();
2243                                     if (pass > 1 && (wt = w.owner) != null) {
2244                                         if (!wt.isInterrupted()) {
2245                                             try {
2246                                                 wt.interrupt();
2247                                             } catch (Throwable ignore) {
2248                                             }
2249                                         }
2250                                         U.unpark(wt);
2251                                     }
2252                                 }
2253                             }
2254                         }
2255                         // Wake up workers parked on event queue
2256                         int i, e; long cc; Thread p;
2257                         while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2258                                (i = e & SMASK) < n && i >= 0 &&
2259                                (w = ws[i]) != null) {
2260                             long nc = ((long)(w.nextWait & E_MASK) |
2261                                        ((cc + AC_UNIT) & AC_MASK) |
2262                                        (cc & (TC_MASK|STOP_BIT)));
2263                             if (w.eventCount == (e | INT_SIGN) &&
2264                                 U.compareAndSwapLong(this, CTL, cc, nc)) {
2265                                 w.eventCount = (e + E_SEQ) & E_MASK;
2266                                 w.qlock = -1;
2267                                 if ((p = w.parker) != null)
2268                                     U.unpark(p);
2269                             }
2270                         }
2271                     }
2272                 }
2273             }
2274         }
2275     }
2276 
2277     // external operations on common pool
2278 
2279     /**
2280      * Returns common pool queue for a thread that has submitted at
2281      * least one task.
2282      */
commonSubmitterQueue()2283     static WorkQueue commonSubmitterQueue() {
2284         Submitter z; ForkJoinPool p; WorkQueue[] ws; int m, r;
2285         return ((z = submitters.get()) != null &&
2286                 (p = common) != null &&
2287                 (ws = p.workQueues) != null &&
2288                 (m = ws.length - 1) >= 0) ?
2289             ws[m & z.seed & SQMASK] : null;
2290     }
2291 
2292     /**
2293      * Tries to pop the given task from submitter's queue in common pool.
2294      */
tryExternalUnpush(ForkJoinTask<?> task)2295     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2296         WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2297         Submitter z = submitters.get();
2298         WorkQueue[] ws = workQueues;
2299         boolean popped = false;
2300         if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2301             (joiner = ws[z.seed & m & SQMASK]) != null &&
2302             joiner.base != (s = joiner.top) &&
2303             (a = joiner.array) != null) {
2304             long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2305             if (U.getObject(a, j) == task &&
2306                 U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2307                 if (joiner.top == s && joiner.array == a &&
2308                     U.compareAndSwapObject(a, j, task, null)) {
2309                     joiner.top = s - 1;
2310                     popped = true;
2311                 }
2312                 joiner.qlock = 0;
2313             }
2314         }
2315         return popped;
2316     }
2317 
externalHelpComplete(CountedCompleter<?> task)2318     final int externalHelpComplete(CountedCompleter<?> task) {
2319         WorkQueue joiner; int m, j;
2320         Submitter z = submitters.get();
2321         WorkQueue[] ws = workQueues;
2322         int s = 0;
2323         if (z != null && ws != null && (m = ws.length - 1) >= 0 &&
2324             (joiner = ws[(j = z.seed) & m & SQMASK]) != null && task != null) {
2325             int scans = m + m + 1;
2326             long c = 0L;             // for stability check
2327             j |= 1;                  // poll odd queues
2328             for (int k = scans; ; j += 2) {
2329                 WorkQueue q;
2330                 if ((s = task.status) < 0)
2331                     break;
2332                 else if (joiner.externalPopAndExecCC(task))
2333                     k = scans;
2334                 else if ((s = task.status) < 0)
2335                     break;
2336                 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task))
2337                     k = scans;
2338                 else if (--k < 0) {
2339                     if (c == (c = ctl))
2340                         break;
2341                     k = scans;
2342                 }
2343             }
2344         }
2345         return s;
2346     }
2347 
2348     // Exported methods
2349 
2350     // Constructors
2351 
2352     /**
2353      * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2354      * java.lang.Runtime#availableProcessors}, using the {@linkplain
2355      * #defaultForkJoinWorkerThreadFactory default thread factory},
2356      * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2357      */
ForkJoinPool()2358     public ForkJoinPool() {
2359         this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2360              defaultForkJoinWorkerThreadFactory, null, false);
2361     }
2362 
2363     /**
2364      * Creates a {@code ForkJoinPool} with the indicated parallelism
2365      * level, the {@linkplain
2366      * #defaultForkJoinWorkerThreadFactory default thread factory},
2367      * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2368      *
2369      * @param parallelism the parallelism level
2370      * @throws IllegalArgumentException if parallelism less than or
2371      *         equal to zero, or greater than implementation limit
2372      */
ForkJoinPool(int parallelism)2373     public ForkJoinPool(int parallelism) {
2374         this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2375     }
2376 
2377     /**
2378      * Creates a {@code ForkJoinPool} with the given parameters.
2379      *
2380      * @param parallelism the parallelism level. For default value,
2381      * use {@link java.lang.Runtime#availableProcessors}.
2382      * @param factory the factory for creating new threads. For default value,
2383      * use {@link #defaultForkJoinWorkerThreadFactory}.
2384      * @param handler the handler for internal worker threads that
2385      * terminate due to unrecoverable errors encountered while executing
2386      * tasks. For default value, use {@code null}.
2387      * @param asyncMode if true,
2388      * establishes local first-in-first-out scheduling mode for forked
2389      * tasks that are never joined. This mode may be more appropriate
2390      * than default locally stack-based mode in applications in which
2391      * worker threads only process event-style asynchronous tasks.
2392      * For default value, use {@code false}.
2393      * @throws IllegalArgumentException if parallelism less than or
2394      *         equal to zero, or greater than implementation limit
2395      * @throws NullPointerException if the factory is null
2396      */
ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory, UncaughtExceptionHandler handler, boolean asyncMode)2397     public ForkJoinPool(int parallelism,
2398                         ForkJoinWorkerThreadFactory factory,
2399                         UncaughtExceptionHandler handler,
2400                         boolean asyncMode) {
2401         this(checkParallelism(parallelism),
2402              checkFactory(factory),
2403              handler,
2404              (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2405              "ForkJoinPool-" + nextPoolId() + "-worker-");
2406         checkPermission();
2407     }
2408 
checkParallelism(int parallelism)2409     private static int checkParallelism(int parallelism) {
2410         if (parallelism <= 0 || parallelism > MAX_CAP)
2411             throw new IllegalArgumentException();
2412         return parallelism;
2413     }
2414 
checkFactory(ForkJoinWorkerThreadFactory factory)2415     private static ForkJoinWorkerThreadFactory checkFactory
2416         (ForkJoinWorkerThreadFactory factory) {
2417         if (factory == null)
2418             throw new NullPointerException();
2419         return factory;
2420     }
2421 
2422     /**
2423      * Creates a {@code ForkJoinPool} with the given parameters, without
2424      * any security checks or parameter validation.  Invoked directly by
2425      * makeCommonPool.
2426      */
ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory, UncaughtExceptionHandler handler, int mode, String workerNamePrefix)2427     private ForkJoinPool(int parallelism,
2428                          ForkJoinWorkerThreadFactory factory,
2429                          UncaughtExceptionHandler handler,
2430                          int mode,
2431                          String workerNamePrefix) {
2432         this.workerNamePrefix = workerNamePrefix;
2433         this.factory = factory;
2434         this.ueh = handler;
2435         this.mode = (short)mode;
2436         this.parallelism = (short)parallelism;
2437         long np = (long)(-parallelism); // offset ctl counts
2438         this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2439     }
2440 
2441     /**
2442      * Returns the common pool instance. This pool is statically
2443      * constructed; its run state is unaffected by attempts to {@link
2444      * #shutdown} or {@link #shutdownNow}. However this pool and any
2445      * ongoing processing are automatically terminated upon program
2446      * {@link System#exit}.  Any program that relies on asynchronous
2447      * task processing to complete before program termination should
2448      * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2449      * before exit.
2450      *
2451      * @return the common pool instance
2452      * @since 1.8
2453      * @hide
2454      */
commonPool()2455     public static ForkJoinPool commonPool() {
2456         // assert common != null : "static init error";
2457         return common;
2458     }
2459 
2460     // Execution methods
2461 
2462     /**
2463      * Performs the given task, returning its result upon completion.
2464      * If the computation encounters an unchecked Exception or Error,
2465      * it is rethrown as the outcome of this invocation.  Rethrown
2466      * exceptions behave in the same way as regular exceptions, but,
2467      * when possible, contain stack traces (as displayed for example
2468      * using {@code ex.printStackTrace()}) of both the current thread
2469      * as well as the thread actually encountering the exception;
2470      * minimally only the latter.
2471      *
2472      * @param task the task
2473      * @return the task's result
2474      * @throws NullPointerException if the task is null
2475      * @throws RejectedExecutionException if the task cannot be
2476      *         scheduled for execution
2477      */
invoke(ForkJoinTask<T> task)2478     public <T> T invoke(ForkJoinTask<T> task) {
2479         if (task == null)
2480             throw new NullPointerException();
2481         externalPush(task);
2482         return task.join();
2483     }
2484 
2485     /**
2486      * Arranges for (asynchronous) execution of the given task.
2487      *
2488      * @param task the task
2489      * @throws NullPointerException if the task is null
2490      * @throws RejectedExecutionException if the task cannot be
2491      *         scheduled for execution
2492      */
execute(ForkJoinTask<?> task)2493     public void execute(ForkJoinTask<?> task) {
2494         if (task == null)
2495             throw new NullPointerException();
2496         externalPush(task);
2497     }
2498 
2499     // AbstractExecutorService methods
2500 
2501     /**
2502      * @throws NullPointerException if the task is null
2503      * @throws RejectedExecutionException if the task cannot be
2504      *         scheduled for execution
2505      */
execute(Runnable task)2506     public void execute(Runnable task) {
2507         if (task == null)
2508             throw new NullPointerException();
2509         ForkJoinTask<?> job;
2510         if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2511             job = (ForkJoinTask<?>) task;
2512         else
2513             job = new ForkJoinTask.RunnableExecuteAction(task);
2514         externalPush(job);
2515     }
2516 
2517     /**
2518      * Submits a ForkJoinTask for execution.
2519      *
2520      * @param task the task to submit
2521      * @return the task
2522      * @throws NullPointerException if the task is null
2523      * @throws RejectedExecutionException if the task cannot be
2524      *         scheduled for execution
2525      */
submit(ForkJoinTask<T> task)2526     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2527         if (task == null)
2528             throw new NullPointerException();
2529         externalPush(task);
2530         return task;
2531     }
2532 
2533     /**
2534      * @throws NullPointerException if the task is null
2535      * @throws RejectedExecutionException if the task cannot be
2536      *         scheduled for execution
2537      */
submit(Callable<T> task)2538     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2539         ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2540         externalPush(job);
2541         return job;
2542     }
2543 
2544     /**
2545      * @throws NullPointerException if the task is null
2546      * @throws RejectedExecutionException if the task cannot be
2547      *         scheduled for execution
2548      */
submit(Runnable task, T result)2549     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2550         ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2551         externalPush(job);
2552         return job;
2553     }
2554 
2555     /**
2556      * @throws NullPointerException if the task is null
2557      * @throws RejectedExecutionException if the task cannot be
2558      *         scheduled for execution
2559      */
submit(Runnable task)2560     public ForkJoinTask<?> submit(Runnable task) {
2561         if (task == null)
2562             throw new NullPointerException();
2563         ForkJoinTask<?> job;
2564         if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2565             job = (ForkJoinTask<?>) task;
2566         else
2567             job = new ForkJoinTask.AdaptedRunnableAction(task);
2568         externalPush(job);
2569         return job;
2570     }
2571 
2572     /**
2573      * @throws NullPointerException       {@inheritDoc}
2574      * @throws RejectedExecutionException {@inheritDoc}
2575      */
invokeAll(Collection<? extends Callable<T>> tasks)2576     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2577         // In previous versions of this class, this method constructed
2578         // a task to run ForkJoinTask.invokeAll, but now external
2579         // invocation of multiple tasks is at least as efficient.
2580         ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2581 
2582         boolean done = false;
2583         try {
2584             for (Callable<T> t : tasks) {
2585                 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2586                 futures.add(f);
2587                 externalPush(f);
2588             }
2589             for (int i = 0, size = futures.size(); i < size; i++)
2590                 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2591             done = true;
2592             return futures;
2593         } finally {
2594             if (!done)
2595                 for (int i = 0, size = futures.size(); i < size; i++)
2596                     futures.get(i).cancel(false);
2597         }
2598     }
2599 
2600     /**
2601      * Returns the factory used for constructing new workers.
2602      *
2603      * @return the factory used for constructing new workers
2604      */
getFactory()2605     public ForkJoinWorkerThreadFactory getFactory() {
2606         return factory;
2607     }
2608 
2609     /**
2610      * Returns the handler for internal worker threads that terminate
2611      * due to unrecoverable errors encountered while executing tasks.
2612      *
2613      * @return the handler, or {@code null} if none
2614      */
getUncaughtExceptionHandler()2615     public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2616         return ueh;
2617     }
2618 
2619     /**
2620      * Returns the targeted parallelism level of this pool.
2621      *
2622      * @return the targeted parallelism level of this pool
2623      */
getParallelism()2624     public int getParallelism() {
2625         int par;
2626         return ((par = parallelism) > 0) ? par : 1;
2627     }
2628 
2629     /**
2630      * Returns the targeted parallelism level of the common pool.
2631      *
2632      * @return the targeted parallelism level of the common pool
2633      * @since 1.8
2634      * @hide
2635      */
getCommonPoolParallelism()2636     public static int getCommonPoolParallelism() {
2637         return commonParallelism;
2638     }
2639 
2640     /**
2641      * Returns the number of worker threads that have started but not
2642      * yet terminated.  The result returned by this method may differ
2643      * from {@link #getParallelism} when threads are created to
2644      * maintain parallelism when others are cooperatively blocked.
2645      *
2646      * @return the number of worker threads
2647      */
getPoolSize()2648     public int getPoolSize() {
2649         return parallelism + (short)(ctl >>> TC_SHIFT);
2650     }
2651 
2652     /**
2653      * Returns {@code true} if this pool uses local first-in-first-out
2654      * scheduling mode for forked tasks that are never joined.
2655      *
2656      * @return {@code true} if this pool uses async mode
2657      */
getAsyncMode()2658     public boolean getAsyncMode() {
2659         return mode == FIFO_QUEUE;
2660     }
2661 
2662     /**
2663      * Returns an estimate of the number of worker threads that are
2664      * not blocked waiting to join tasks or for other managed
2665      * synchronization. This method may overestimate the
2666      * number of running threads.
2667      *
2668      * @return the number of worker threads
2669      */
getRunningThreadCount()2670     public int getRunningThreadCount() {
2671         int rc = 0;
2672         WorkQueue[] ws; WorkQueue w;
2673         if ((ws = workQueues) != null) {
2674             for (int i = 1; i < ws.length; i += 2) {
2675                 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2676                     ++rc;
2677             }
2678         }
2679         return rc;
2680     }
2681 
2682     /**
2683      * Returns an estimate of the number of threads that are currently
2684      * stealing or executing tasks. This method may overestimate the
2685      * number of active threads.
2686      *
2687      * @return the number of active threads
2688      */
getActiveThreadCount()2689     public int getActiveThreadCount() {
2690         int r = parallelism + (int)(ctl >> AC_SHIFT);
2691         return (r <= 0) ? 0 : r; // suppress momentarily negative values
2692     }
2693 
2694     /**
2695      * Returns {@code true} if all worker threads are currently idle.
2696      * An idle worker is one that cannot obtain a task to execute
2697      * because none are available to steal from other threads, and
2698      * there are no pending submissions to the pool. This method is
2699      * conservative; it might not return {@code true} immediately upon
2700      * idleness of all threads, but will eventually become true if
2701      * threads remain inactive.
2702      *
2703      * @return {@code true} if all threads are currently idle
2704      */
isQuiescent()2705     public boolean isQuiescent() {
2706         return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2707     }
2708 
2709     /**
2710      * Returns an estimate of the total number of tasks stolen from
2711      * one thread's work queue by another. The reported value
2712      * underestimates the actual total number of steals when the pool
2713      * is not quiescent. This value may be useful for monitoring and
2714      * tuning fork/join programs: in general, steal counts should be
2715      * high enough to keep threads busy, but low enough to avoid
2716      * overhead and contention across threads.
2717      *
2718      * @return the number of steals
2719      */
getStealCount()2720     public long getStealCount() {
2721         long count = stealCount;
2722         WorkQueue[] ws; WorkQueue w;
2723         if ((ws = workQueues) != null) {
2724             for (int i = 1; i < ws.length; i += 2) {
2725                 if ((w = ws[i]) != null)
2726                     count += w.nsteals;
2727             }
2728         }
2729         return count;
2730     }
2731 
2732     /**
2733      * Returns an estimate of the total number of tasks currently held
2734      * in queues by worker threads (but not including tasks submitted
2735      * to the pool that have not begun executing). This value is only
2736      * an approximation, obtained by iterating across all threads in
2737      * the pool. This method may be useful for tuning task
2738      * granularities.
2739      *
2740      * @return the number of queued tasks
2741      */
getQueuedTaskCount()2742     public long getQueuedTaskCount() {
2743         long count = 0;
2744         WorkQueue[] ws; WorkQueue w;
2745         if ((ws = workQueues) != null) {
2746             for (int i = 1; i < ws.length; i += 2) {
2747                 if ((w = ws[i]) != null)
2748                     count += w.queueSize();
2749             }
2750         }
2751         return count;
2752     }
2753 
2754     /**
2755      * Returns an estimate of the number of tasks submitted to this
2756      * pool that have not yet begun executing.  This method may take
2757      * time proportional to the number of submissions.
2758      *
2759      * @return the number of queued submissions
2760      */
getQueuedSubmissionCount()2761     public int getQueuedSubmissionCount() {
2762         int count = 0;
2763         WorkQueue[] ws; WorkQueue w;
2764         if ((ws = workQueues) != null) {
2765             for (int i = 0; i < ws.length; i += 2) {
2766                 if ((w = ws[i]) != null)
2767                     count += w.queueSize();
2768             }
2769         }
2770         return count;
2771     }
2772 
2773     /**
2774      * Returns {@code true} if there are any tasks submitted to this
2775      * pool that have not yet begun executing.
2776      *
2777      * @return {@code true} if there are any queued submissions
2778      */
hasQueuedSubmissions()2779     public boolean hasQueuedSubmissions() {
2780         WorkQueue[] ws; WorkQueue w;
2781         if ((ws = workQueues) != null) {
2782             for (int i = 0; i < ws.length; i += 2) {
2783                 if ((w = ws[i]) != null && !w.isEmpty())
2784                     return true;
2785             }
2786         }
2787         return false;
2788     }
2789 
2790     /**
2791      * Removes and returns the next unexecuted submission if one is
2792      * available.  This method may be useful in extensions to this
2793      * class that re-assign work in systems with multiple pools.
2794      *
2795      * @return the next submission, or {@code null} if none
2796      */
pollSubmission()2797     protected ForkJoinTask<?> pollSubmission() {
2798         WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2799         if ((ws = workQueues) != null) {
2800             for (int i = 0; i < ws.length; i += 2) {
2801                 if ((w = ws[i]) != null && (t = w.poll()) != null)
2802                     return t;
2803             }
2804         }
2805         return null;
2806     }
2807 
2808     /**
2809      * Removes all available unexecuted submitted and forked tasks
2810      * from scheduling queues and adds them to the given collection,
2811      * without altering their execution status. These may include
2812      * artificially generated or wrapped tasks. This method is
2813      * designed to be invoked only when the pool is known to be
2814      * quiescent. Invocations at other times may not remove all
2815      * tasks. A failure encountered while attempting to add elements
2816      * to collection {@code c} may result in elements being in
2817      * neither, either or both collections when the associated
2818      * exception is thrown.  The behavior of this operation is
2819      * undefined if the specified collection is modified while the
2820      * operation is in progress.
2821      *
2822      * @param c the collection to transfer elements into
2823      * @return the number of elements transferred
2824      */
drainTasksTo(Collection<? super ForkJoinTask<?>> c)2825     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2826         int count = 0;
2827         WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2828         if ((ws = workQueues) != null) {
2829             for (int i = 0; i < ws.length; ++i) {
2830                 if ((w = ws[i]) != null) {
2831                     while ((t = w.poll()) != null) {
2832                         c.add(t);
2833                         ++count;
2834                     }
2835                 }
2836             }
2837         }
2838         return count;
2839     }
2840 
2841     /**
2842      * Returns a string identifying this pool, as well as its state,
2843      * including indications of run state, parallelism level, and
2844      * worker and task counts.
2845      *
2846      * @return a string identifying this pool, as well as its state
2847      */
toString()2848     public String toString() {
2849         // Use a single pass through workQueues to collect counts
2850         long qt = 0L, qs = 0L; int rc = 0;
2851         long st = stealCount;
2852         long c = ctl;
2853         WorkQueue[] ws; WorkQueue w;
2854         if ((ws = workQueues) != null) {
2855             for (int i = 0; i < ws.length; ++i) {
2856                 if ((w = ws[i]) != null) {
2857                     int size = w.queueSize();
2858                     if ((i & 1) == 0)
2859                         qs += size;
2860                     else {
2861                         qt += size;
2862                         st += w.nsteals;
2863                         if (w.isApparentlyUnblocked())
2864                             ++rc;
2865                     }
2866                 }
2867             }
2868         }
2869         int pc = parallelism;
2870         int tc = pc + (short)(c >>> TC_SHIFT);
2871         int ac = pc + (int)(c >> AC_SHIFT);
2872         if (ac < 0) // ignore transient negative
2873             ac = 0;
2874         String level;
2875         if ((c & STOP_BIT) != 0)
2876             level = (tc == 0) ? "Terminated" : "Terminating";
2877         else
2878             level = plock < 0 ? "Shutting down" : "Running";
2879         return super.toString() +
2880             "[" + level +
2881             ", parallelism = " + pc +
2882             ", size = " + tc +
2883             ", active = " + ac +
2884             ", running = " + rc +
2885             ", steals = " + st +
2886             ", tasks = " + qt +
2887             ", submissions = " + qs +
2888             "]";
2889     }
2890 
2891     /**
2892      * Possibly initiates an orderly shutdown in which previously
2893      * submitted tasks are executed, but no new tasks will be
2894      * accepted. Invocation has no effect on execution state if this
2895      * is the {@code commonPool()}, and no additional effect if
2896      * already shut down.  Tasks that are in the process of being
2897      * submitted concurrently during the course of this method may or
2898      * may not be rejected.
2899      */
2900     public void shutdown() {
2901         checkPermission();
2902         tryTerminate(false, true);
2903     }
2904 
2905     /**
2906      * Possibly attempts to cancel and/or stop all tasks, and reject
2907      * all subsequently submitted tasks.  Invocation has no effect on
2908      * execution state if this is the {@code commonPool()}, and no
2909      * additional effect if already shut down. Otherwise, tasks that
2910      * are in the process of being submitted or executed concurrently
2911      * during the course of this method may or may not be
2912      * rejected. This method cancels both existing and unexecuted
2913      * tasks, in order to permit termination in the presence of task
2914      * dependencies. So the method always returns an empty list
2915      * (unlike the case for some other Executors).
2916      *
2917      * @return an empty list
2918      */
2919     public List<Runnable> shutdownNow() {
2920         checkPermission();
2921         tryTerminate(true, true);
2922         return Collections.emptyList();
2923     }
2924 
2925     /**
2926      * Returns {@code true} if all tasks have completed following shut down.
2927      *
2928      * @return {@code true} if all tasks have completed following shut down
2929      */
2930     public boolean isTerminated() {
2931         long c = ctl;
2932         return ((c & STOP_BIT) != 0L &&
2933                 (short)(c >>> TC_SHIFT) + parallelism <= 0);
2934     }
2935 
2936     /**
2937      * Returns {@code true} if the process of termination has
2938      * commenced but not yet completed.  This method may be useful for
2939      * debugging. A return of {@code true} reported a sufficient
2940      * period after shutdown may indicate that submitted tasks have
2941      * ignored or suppressed interruption, or are waiting for I/O,
2942      * causing this executor not to properly terminate. (See the
2943      * advisory notes for class {@link ForkJoinTask} stating that
2944      * tasks should not normally entail blocking operations.  But if
2945      * they do, they must abort them on interrupt.)
2946      *
2947      * @return {@code true} if terminating but not yet terminated
2948      */
isTerminating()2949     public boolean isTerminating() {
2950         long c = ctl;
2951         return ((c & STOP_BIT) != 0L &&
2952                 (short)(c >>> TC_SHIFT) + parallelism > 0);
2953     }
2954 
2955     /**
2956      * Returns {@code true} if this pool has been shut down.
2957      *
2958      * @return {@code true} if this pool has been shut down
2959      */
isShutdown()2960     public boolean isShutdown() {
2961         return plock < 0;
2962     }
2963 
2964     /**
2965      * Blocks until all tasks have completed execution after a
2966      * shutdown request, or the timeout occurs, or the current thread
2967      * is interrupted, whichever happens first. Because the {@code
2968      * commonPool()} never terminates until program shutdown, when
2969      * applied to the common pool, this method is equivalent to {@link
2970      * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
2971      *
2972      * @param timeout the maximum time to wait
2973      * @param unit the time unit of the timeout argument
2974      * @return {@code true} if this executor terminated and
2975      *         {@code false} if the timeout elapsed before termination
2976      * @throws InterruptedException if interrupted while waiting
2977      */
awaitTermination(long timeout, TimeUnit unit)2978     public boolean awaitTermination(long timeout, TimeUnit unit)
2979         throws InterruptedException {
2980         if (Thread.interrupted())
2981             throw new InterruptedException();
2982         if (this == common) {
2983             awaitQuiescence(timeout, unit);
2984             return false;
2985         }
2986         long nanos = unit.toNanos(timeout);
2987         if (isTerminated())
2988             return true;
2989         if (nanos <= 0L)
2990             return false;
2991         long deadline = System.nanoTime() + nanos;
2992         synchronized (this) {
2993             for (;;) {
2994                 if (isTerminated())
2995                     return true;
2996                 if (nanos <= 0L)
2997                     return false;
2998                 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
2999                 wait(millis > 0L ? millis : 1L);
3000                 nanos = deadline - System.nanoTime();
3001             }
3002         }
3003     }
3004 
3005     /**
3006      * If called by a ForkJoinTask operating in this pool, equivalent
3007      * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3008      * waits and/or attempts to assist performing tasks until this
3009      * pool {@link #isQuiescent} or the indicated timeout elapses.
3010      *
3011      * @param timeout the maximum time to wait
3012      * @param unit the time unit of the timeout argument
3013      * @return {@code true} if quiescent; {@code false} if the
3014      * timeout elapsed.
3015      */
awaitQuiescence(long timeout, TimeUnit unit)3016     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3017         long nanos = unit.toNanos(timeout);
3018         ForkJoinWorkerThread wt;
3019         Thread thread = Thread.currentThread();
3020         if ((thread instanceof ForkJoinWorkerThread) &&
3021             (wt = (ForkJoinWorkerThread)thread).pool == this) {
3022             helpQuiescePool(wt.workQueue);
3023             return true;
3024         }
3025         long startTime = System.nanoTime();
3026         WorkQueue[] ws;
3027         int r = 0, m;
3028         boolean found = true;
3029         while (!isQuiescent() && (ws = workQueues) != null &&
3030                (m = ws.length - 1) >= 0) {
3031             if (!found) {
3032                 if ((System.nanoTime() - startTime) > nanos)
3033                     return false;
3034                 Thread.yield(); // cannot block
3035             }
3036             found = false;
3037             for (int j = (m + 1) << 2; j >= 0; --j) {
3038                 ForkJoinTask<?> t; WorkQueue q; int b;
3039                 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3040                     found = true;
3041                     if ((t = q.pollAt(b)) != null)
3042                         t.doExec();
3043                     break;
3044                 }
3045             }
3046         }
3047         return true;
3048     }
3049 
3050     /**
3051      * Waits and/or attempts to assist performing tasks indefinitely
3052      * until the {@code commonPool()} {@link #isQuiescent}.
3053      */
quiesceCommonPool()3054     static void quiesceCommonPool() {
3055         common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3056     }
3057 
3058     /**
3059      * Interface for extending managed parallelism for tasks running
3060      * in {@link ForkJoinPool}s.
3061      *
3062      * <p>A {@code ManagedBlocker} provides two methods.  Method
3063      * {@code isReleasable} must return {@code true} if blocking is
3064      * not necessary. Method {@code block} blocks the current thread
3065      * if necessary (perhaps internally invoking {@code isReleasable}
3066      * before actually blocking). These actions are performed by any
3067      * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3068      * The unusual methods in this API accommodate synchronizers that
3069      * may, but don't usually, block for long periods. Similarly, they
3070      * allow more efficient internal handling of cases in which
3071      * additional workers may be, but usually are not, needed to
3072      * ensure sufficient parallelism.  Toward this end,
3073      * implementations of method {@code isReleasable} must be amenable
3074      * to repeated invocation.
3075      *
3076      * <p>For example, here is a ManagedBlocker based on a
3077      * ReentrantLock:
3078      *  <pre> {@code
3079      * class ManagedLocker implements ManagedBlocker {
3080      *   final ReentrantLock lock;
3081      *   boolean hasLock = false;
3082      *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3083      *   public boolean block() {
3084      *     if (!hasLock)
3085      *       lock.lock();
3086      *     return true;
3087      *   }
3088      *   public boolean isReleasable() {
3089      *     return hasLock || (hasLock = lock.tryLock());
3090      *   }
3091      * }}</pre>
3092      *
3093      * <p>Here is a class that possibly blocks waiting for an
3094      * item on a given queue:
3095      *  <pre> {@code
3096      * class QueueTaker<E> implements ManagedBlocker {
3097      *   final BlockingQueue<E> queue;
3098      *   volatile E item = null;
3099      *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3100      *   public boolean block() throws InterruptedException {
3101      *     if (item == null)
3102      *       item = queue.take();
3103      *     return true;
3104      *   }
3105      *   public boolean isReleasable() {
3106      *     return item != null || (item = queue.poll()) != null;
3107      *   }
3108      *   public E getItem() { // call after pool.managedBlock completes
3109      *     return item;
3110      *   }
3111      * }}</pre>
3112      */
3113     public static interface ManagedBlocker {
3114         /**
3115          * Possibly blocks the current thread, for example waiting for
3116          * a lock or condition.
3117          *
3118          * @return {@code true} if no additional blocking is necessary
3119          * (i.e., if isReleasable would return true)
3120          * @throws InterruptedException if interrupted while waiting
3121          * (the method is not required to do so, but is allowed to)
3122          */
block()3123         boolean block() throws InterruptedException;
3124 
3125         /**
3126          * Returns {@code true} if blocking is unnecessary.
3127          * @return {@code true} if blocking is unnecessary
3128          */
isReleasable()3129         boolean isReleasable();
3130     }
3131 
3132     /**
3133      * Blocks in accord with the given blocker.  If the current thread
3134      * is a {@link ForkJoinWorkerThread}, this method possibly
3135      * arranges for a spare thread to be activated if necessary to
3136      * ensure sufficient parallelism while the current thread is blocked.
3137      *
3138      * <p>If the caller is not a {@link ForkJoinTask}, this method is
3139      * behaviorally equivalent to
3140      *  <pre> {@code
3141      * while (!blocker.isReleasable())
3142      *   if (blocker.block())
3143      *     return;
3144      * }</pre>
3145      *
3146      * If the caller is a {@code ForkJoinTask}, then the pool may
3147      * first be expanded to ensure parallelism, and later adjusted.
3148      *
3149      * @param blocker the blocker
3150      * @throws InterruptedException if blocker.block did so
3151      */
managedBlock(ManagedBlocker blocker)3152     public static void managedBlock(ManagedBlocker blocker)
3153         throws InterruptedException {
3154         Thread t = Thread.currentThread();
3155         if (t instanceof ForkJoinWorkerThread) {
3156             ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3157             while (!blocker.isReleasable()) {
3158                 if (p.tryCompensate(p.ctl)) {
3159                     try {
3160                         do {} while (!blocker.isReleasable() &&
3161                                      !blocker.block());
3162                     } finally {
3163                         p.incrementActiveCount();
3164                     }
3165                     break;
3166                 }
3167             }
3168         }
3169         else {
3170             do {} while (!blocker.isReleasable() &&
3171                          !blocker.block());
3172         }
3173     }
3174 
3175     // AbstractExecutorService overrides.  These rely on undocumented
3176     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3177     // implement RunnableFuture.
3178 
newTaskFor(Runnable runnable, T value)3179     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3180         return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3181     }
3182 
newTaskFor(Callable<T> callable)3183     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3184         return new ForkJoinTask.AdaptedCallable<T>(callable);
3185     }
3186 
3187     // Unsafe mechanics
3188     private static final sun.misc.Unsafe U;
3189     private static final long CTL;
3190     private static final long PARKBLOCKER;
3191     private static final int ABASE;
3192     private static final int ASHIFT;
3193     private static final long STEALCOUNT;
3194     private static final long PLOCK;
3195     private static final long INDEXSEED;
3196     private static final long QBASE;
3197     private static final long QLOCK;
3198 
3199     static {
3200         // initialize field offsets for CAS etc
3201         try {
3202             U = sun.misc.Unsafe.getUnsafe();
3203             Class<?> k = ForkJoinPool.class;
3204             CTL = U.objectFieldOffset
3205                 (k.getDeclaredField("ctl"));
3206             STEALCOUNT = U.objectFieldOffset
3207                 (k.getDeclaredField("stealCount"));
3208             PLOCK = U.objectFieldOffset
3209                 (k.getDeclaredField("plock"));
3210             INDEXSEED = U.objectFieldOffset
3211                 (k.getDeclaredField("indexSeed"));
3212             Class<?> tk = Thread.class;
3213             PARKBLOCKER = U.objectFieldOffset
3214                 (tk.getDeclaredField("parkBlocker"));
3215             Class<?> wk = WorkQueue.class;
3216             QBASE = U.objectFieldOffset
3217                 (wk.getDeclaredField("base"));
3218             QLOCK = U.objectFieldOffset
3219                 (wk.getDeclaredField("qlock"));
3220             Class<?> ak = ForkJoinTask[].class;
3221             ABASE = U.arrayBaseOffset(ak);
3222             int scale = U.arrayIndexScale(ak);
3223             if ((scale & (scale - 1)) != 0)
3224                 throw new Error("data type scale not a power of two");
3225             ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3226         } catch (Exception e) {
3227             throw new Error(e);
3228         }
3229 
3230         submitters = new ThreadLocal<Submitter>();
3231         defaultForkJoinWorkerThreadFactory =
3232             new DefaultForkJoinWorkerThreadFactory();
3233         modifyThreadPermission = new RuntimePermission("modifyThread");
3234 
3235         common = java.security.AccessController.doPrivileged
3236             (new java.security.PrivilegedAction<ForkJoinPool>() {
3237                 public ForkJoinPool run() { return makeCommonPool(); }});
3238         int par = common.parallelism; // report 1 even if threads disabled
3239         commonParallelism = par > 0 ? par : 1;
3240     }
3241 
3242     /**
3243      * Creates and returns the common pool, respecting user settings
3244      * specified via system properties.
3245      */
makeCommonPool()3246     private static ForkJoinPool makeCommonPool() {
3247         int parallelism = -1;
3248         ForkJoinWorkerThreadFactory factory
3249             = defaultForkJoinWorkerThreadFactory;
3250         UncaughtExceptionHandler handler = null;
3251         try {  // ignore exceptions in accessing/parsing properties
3252             String pp = System.getProperty
3253                 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3254             String fp = System.getProperty
3255                 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3256             String hp = System.getProperty
3257                 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3258             if (pp != null)
3259                 parallelism = Integer.parseInt(pp);
3260             if (fp != null)
3261                 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3262                            getSystemClassLoader().loadClass(fp).newInstance());
3263             if (hp != null)
3264                 handler = ((UncaughtExceptionHandler)ClassLoader.
3265                            getSystemClassLoader().loadClass(hp).newInstance());
3266         } catch (Exception ignore) {
3267         }
3268 
3269         if (parallelism < 0 && // default 1 less than #cores
3270             (parallelism = Runtime.getRuntime().availableProcessors() - 1) < 0)
3271             parallelism = 0;
3272         if (parallelism > MAX_CAP)
3273             parallelism = MAX_CAP;
3274         return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3275                                 "ForkJoinPool.commonPool-worker-");
3276     }
3277 
3278 }
3279