• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "codegen_x86.h"
18 
19 #include "base/logging.h"
20 #include "dex/mir_graph.h"
21 #include "dex/quick/mir_to_lir-inl.h"
22 #include "dex/dataflow_iterator-inl.h"
23 #include "dex/quick/dex_file_method_inliner.h"
24 #include "dex/quick/dex_file_to_method_inliner_map.h"
25 #include "dex/reg_storage_eq.h"
26 #include "driver/compiler_driver.h"
27 #include "x86_lir.h"
28 
29 namespace art {
30 
31 /* This file contains codegen for the X86 ISA */
32 
OpFpRegCopy(RegStorage r_dest,RegStorage r_src)33 LIR* X86Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
34   int opcode;
35   /* must be both DOUBLE or both not DOUBLE */
36   DCHECK(r_dest.IsFloat() || r_src.IsFloat());
37   DCHECK_EQ(r_dest.IsDouble(), r_src.IsDouble());
38   if (r_dest.IsDouble()) {
39     opcode = kX86MovsdRR;
40   } else {
41     if (r_dest.IsSingle()) {
42       if (r_src.IsSingle()) {
43         opcode = kX86MovssRR;
44       } else {  // Fpr <- Gpr
45         opcode = kX86MovdxrRR;
46       }
47     } else {  // Gpr <- Fpr
48       DCHECK(r_src.IsSingle()) << "Raw: 0x" << std::hex << r_src.GetRawBits();
49       opcode = kX86MovdrxRR;
50     }
51   }
52   DCHECK_NE((EncodingMap[opcode].flags & IS_BINARY_OP), 0ULL);
53   LIR* res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg());
54   if (r_dest == r_src) {
55     res->flags.is_nop = true;
56   }
57   return res;
58 }
59 
InexpensiveConstantInt(int32_t value)60 bool X86Mir2Lir::InexpensiveConstantInt(int32_t value) {
61   UNUSED(value);
62   return true;
63 }
64 
InexpensiveConstantFloat(int32_t value)65 bool X86Mir2Lir::InexpensiveConstantFloat(int32_t value) {
66   return value == 0;
67 }
68 
InexpensiveConstantLong(int64_t value)69 bool X86Mir2Lir::InexpensiveConstantLong(int64_t value) {
70   UNUSED(value);
71   return true;
72 }
73 
InexpensiveConstantDouble(int64_t value)74 bool X86Mir2Lir::InexpensiveConstantDouble(int64_t value) {
75   return value == 0;
76 }
77 
78 /*
79  * Load a immediate using a shortcut if possible; otherwise
80  * grab from the per-translation literal pool.  If target is
81  * a high register, build constant into a low register and copy.
82  *
83  * No additional register clobbering operation performed. Use this version when
84  * 1) r_dest is freshly returned from AllocTemp or
85  * 2) The codegen is under fixed register usage
86  */
LoadConstantNoClobber(RegStorage r_dest,int value)87 LIR* X86Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
88   RegStorage r_dest_save = r_dest;
89   if (r_dest.IsFloat()) {
90     if (value == 0) {
91       return NewLIR2(kX86XorpsRR, r_dest.GetReg(), r_dest.GetReg());
92     }
93     r_dest = AllocTemp();
94   }
95 
96   LIR *res;
97   if (value == 0) {
98     res = NewLIR2(kX86Xor32RR, r_dest.GetReg(), r_dest.GetReg());
99   } else {
100     // Note, there is no byte immediate form of a 32 bit immediate move.
101     // 64-bit immediate is not supported by LIR structure
102     res = NewLIR2(kX86Mov32RI, r_dest.GetReg(), value);
103   }
104 
105   if (r_dest_save.IsFloat()) {
106     NewLIR2(kX86MovdxrRR, r_dest_save.GetReg(), r_dest.GetReg());
107     FreeTemp(r_dest);
108   }
109 
110   return res;
111 }
112 
OpUnconditionalBranch(LIR * target)113 LIR* X86Mir2Lir::OpUnconditionalBranch(LIR* target) {
114   LIR* res = NewLIR1(kX86Jmp8, 0 /* offset to be patched during assembly*/);
115   res->target = target;
116   return res;
117 }
118 
OpCondBranch(ConditionCode cc,LIR * target)119 LIR* X86Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
120   LIR* branch = NewLIR2(kX86Jcc8, 0 /* offset to be patched */,
121                         X86ConditionEncoding(cc));
122   branch->target = target;
123   return branch;
124 }
125 
OpReg(OpKind op,RegStorage r_dest_src)126 LIR* X86Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
127   X86OpCode opcode = kX86Bkpt;
128   switch (op) {
129     case kOpNeg: opcode = r_dest_src.Is64Bit() ? kX86Neg64R : kX86Neg32R; break;
130     case kOpNot: opcode = r_dest_src.Is64Bit() ? kX86Not64R : kX86Not32R; break;
131     case kOpRev: opcode = r_dest_src.Is64Bit() ? kX86Bswap64R : kX86Bswap32R; break;
132     case kOpBlx: opcode = kX86CallR; break;
133     default:
134       LOG(FATAL) << "Bad case in OpReg " << op;
135   }
136   return NewLIR1(opcode, r_dest_src.GetReg());
137 }
138 
OpRegImm(OpKind op,RegStorage r_dest_src1,int value)139 LIR* X86Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
140   X86OpCode opcode = kX86Bkpt;
141   bool byte_imm = IS_SIMM8(value);
142   DCHECK(!r_dest_src1.IsFloat());
143   if (r_dest_src1.Is64Bit()) {
144     switch (op) {
145       case kOpAdd: opcode = byte_imm ? kX86Add64RI8 : kX86Add64RI; break;
146       case kOpSub: opcode = byte_imm ? kX86Sub64RI8 : kX86Sub64RI; break;
147       case kOpLsl: opcode = kX86Sal64RI; break;
148       case kOpLsr: opcode = kX86Shr64RI; break;
149       case kOpAsr: opcode = kX86Sar64RI; break;
150       case kOpCmp: opcode = byte_imm ? kX86Cmp64RI8 : kX86Cmp64RI; break;
151       default:
152         LOG(FATAL) << "Bad case in OpRegImm (64-bit) " << op;
153     }
154   } else {
155     switch (op) {
156       case kOpLsl: opcode = kX86Sal32RI; break;
157       case kOpLsr: opcode = kX86Shr32RI; break;
158       case kOpAsr: opcode = kX86Sar32RI; break;
159       case kOpAdd: opcode = byte_imm ? kX86Add32RI8 : kX86Add32RI; break;
160       case kOpOr:  opcode = byte_imm ? kX86Or32RI8  : kX86Or32RI;  break;
161       case kOpAdc: opcode = byte_imm ? kX86Adc32RI8 : kX86Adc32RI; break;
162       // case kOpSbb: opcode = kX86Sbb32RI; break;
163       case kOpAnd: opcode = byte_imm ? kX86And32RI8 : kX86And32RI; break;
164       case kOpSub: opcode = byte_imm ? kX86Sub32RI8 : kX86Sub32RI; break;
165       case kOpXor: opcode = byte_imm ? kX86Xor32RI8 : kX86Xor32RI; break;
166       case kOpCmp: opcode = byte_imm ? kX86Cmp32RI8 : kX86Cmp32RI; break;
167       case kOpMov:
168         /*
169          * Moving the constant zero into register can be specialized as an xor of the register.
170          * However, that sets eflags while the move does not. For that reason here, always do
171          * the move and if caller is flexible, they should be calling LoadConstantNoClobber instead.
172          */
173         opcode = kX86Mov32RI;
174         break;
175       case kOpMul:
176         opcode = byte_imm ? kX86Imul32RRI8 : kX86Imul32RRI;
177         return NewLIR3(opcode, r_dest_src1.GetReg(), r_dest_src1.GetReg(), value);
178       case kOp2Byte:
179         opcode = kX86Mov32RI;
180         value = static_cast<int8_t>(value);
181         break;
182       case kOp2Short:
183         opcode = kX86Mov32RI;
184         value = static_cast<int16_t>(value);
185         break;
186       case kOp2Char:
187         opcode = kX86Mov32RI;
188         value = static_cast<uint16_t>(value);
189         break;
190       case kOpNeg:
191         opcode = kX86Mov32RI;
192         value = -value;
193         break;
194       default:
195         LOG(FATAL) << "Bad case in OpRegImm " << op;
196     }
197   }
198   return NewLIR2(opcode, r_dest_src1.GetReg(), value);
199 }
200 
OpRegReg(OpKind op,RegStorage r_dest_src1,RegStorage r_src2)201 LIR* X86Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
202     bool is64Bit = r_dest_src1.Is64Bit();
203     X86OpCode opcode = kX86Nop;
204     bool src2_must_be_cx = false;
205     switch (op) {
206         // X86 unary opcodes
207       case kOpMvn:
208         OpRegCopy(r_dest_src1, r_src2);
209         return OpReg(kOpNot, r_dest_src1);
210       case kOpNeg:
211         OpRegCopy(r_dest_src1, r_src2);
212         return OpReg(kOpNeg, r_dest_src1);
213       case kOpRev:
214         OpRegCopy(r_dest_src1, r_src2);
215         return OpReg(kOpRev, r_dest_src1);
216       case kOpRevsh:
217         OpRegCopy(r_dest_src1, r_src2);
218         OpReg(kOpRev, r_dest_src1);
219         return OpRegImm(kOpAsr, r_dest_src1, 16);
220         // X86 binary opcodes
221       case kOpSub: opcode = is64Bit ? kX86Sub64RR : kX86Sub32RR; break;
222       case kOpSbc: opcode = is64Bit ? kX86Sbb64RR : kX86Sbb32RR; break;
223       case kOpLsl: opcode = is64Bit ? kX86Sal64RC : kX86Sal32RC; src2_must_be_cx = true; break;
224       case kOpLsr: opcode = is64Bit ? kX86Shr64RC : kX86Shr32RC; src2_must_be_cx = true; break;
225       case kOpAsr: opcode = is64Bit ? kX86Sar64RC : kX86Sar32RC; src2_must_be_cx = true; break;
226       case kOpMov: opcode = is64Bit ? kX86Mov64RR : kX86Mov32RR; break;
227       case kOpCmp: opcode = is64Bit ? kX86Cmp64RR : kX86Cmp32RR; break;
228       case kOpAdd: opcode = is64Bit ? kX86Add64RR : kX86Add32RR; break;
229       case kOpAdc: opcode = is64Bit ? kX86Adc64RR : kX86Adc32RR; break;
230       case kOpAnd: opcode = is64Bit ? kX86And64RR : kX86And32RR; break;
231       case kOpOr:  opcode = is64Bit ? kX86Or64RR : kX86Or32RR; break;
232       case kOpXor: opcode = is64Bit ? kX86Xor64RR : kX86Xor32RR; break;
233       case kOp2Byte:
234         // TODO: there are several instances of this check.  A utility function perhaps?
235         // TODO: Similar to Arm's reg < 8 check.  Perhaps add attribute checks to RegStorage?
236         // Use shifts instead of a byte operand if the source can't be byte accessed.
237         if (r_src2.GetRegNum() >= rs_rX86_SP_32.GetRegNum()) {
238           NewLIR2(is64Bit ? kX86Mov64RR : kX86Mov32RR, r_dest_src1.GetReg(), r_src2.GetReg());
239           NewLIR2(is64Bit ? kX86Sal64RI : kX86Sal32RI, r_dest_src1.GetReg(), is64Bit ? 56 : 24);
240           return NewLIR2(is64Bit ? kX86Sar64RI : kX86Sar32RI, r_dest_src1.GetReg(),
241                          is64Bit ? 56 : 24);
242         } else {
243           opcode = is64Bit ? kX86Bkpt : kX86Movsx8RR;
244         }
245         break;
246       case kOp2Short: opcode = is64Bit ? kX86Bkpt : kX86Movsx16RR; break;
247       case kOp2Char: opcode = is64Bit ? kX86Bkpt : kX86Movzx16RR; break;
248       case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RR; break;
249       default:
250         LOG(FATAL) << "Bad case in OpRegReg " << op;
251         break;
252     }
253     CHECK(!src2_must_be_cx || r_src2.GetReg() == rs_rCX.GetReg());
254     return NewLIR2(opcode, r_dest_src1.GetReg(), r_src2.GetReg());
255 }
256 
OpMovRegMem(RegStorage r_dest,RegStorage r_base,int offset,MoveType move_type)257 LIR* X86Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset, MoveType move_type) {
258   DCHECK(!r_base.IsFloat());
259   X86OpCode opcode = kX86Nop;
260   int dest = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
261   switch (move_type) {
262     case kMov8GP:
263       CHECK(!r_dest.IsFloat());
264       opcode = kX86Mov8RM;
265       break;
266     case kMov16GP:
267       CHECK(!r_dest.IsFloat());
268       opcode = kX86Mov16RM;
269       break;
270     case kMov32GP:
271       CHECK(!r_dest.IsFloat());
272       opcode = kX86Mov32RM;
273       break;
274     case kMov32FP:
275       CHECK(r_dest.IsFloat());
276       opcode = kX86MovssRM;
277       break;
278     case kMov64FP:
279       CHECK(r_dest.IsFloat());
280       opcode = kX86MovsdRM;
281       break;
282     case kMovU128FP:
283       CHECK(r_dest.IsFloat());
284       opcode = kX86MovupsRM;
285       break;
286     case kMovA128FP:
287       CHECK(r_dest.IsFloat());
288       opcode = kX86MovapsRM;
289       break;
290     case kMovLo128FP:
291       CHECK(r_dest.IsFloat());
292       opcode = kX86MovlpsRM;
293       break;
294     case kMovHi128FP:
295       CHECK(r_dest.IsFloat());
296       opcode = kX86MovhpsRM;
297       break;
298     case kMov64GP:
299     case kMovLo64FP:
300     case kMovHi64FP:
301     default:
302       LOG(FATAL) << "Bad case in OpMovRegMem";
303       break;
304   }
305 
306   return NewLIR3(opcode, dest, r_base.GetReg(), offset);
307 }
308 
OpMovMemReg(RegStorage r_base,int offset,RegStorage r_src,MoveType move_type)309 LIR* X86Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src, MoveType move_type) {
310   DCHECK(!r_base.IsFloat());
311   int src = r_src.IsPair() ? r_src.GetLowReg() : r_src.GetReg();
312 
313   X86OpCode opcode = kX86Nop;
314   switch (move_type) {
315     case kMov8GP:
316       CHECK(!r_src.IsFloat());
317       opcode = kX86Mov8MR;
318       break;
319     case kMov16GP:
320       CHECK(!r_src.IsFloat());
321       opcode = kX86Mov16MR;
322       break;
323     case kMov32GP:
324       CHECK(!r_src.IsFloat());
325       opcode = kX86Mov32MR;
326       break;
327     case kMov32FP:
328       CHECK(r_src.IsFloat());
329       opcode = kX86MovssMR;
330       break;
331     case kMov64FP:
332       CHECK(r_src.IsFloat());
333       opcode = kX86MovsdMR;
334       break;
335     case kMovU128FP:
336       CHECK(r_src.IsFloat());
337       opcode = kX86MovupsMR;
338       break;
339     case kMovA128FP:
340       CHECK(r_src.IsFloat());
341       opcode = kX86MovapsMR;
342       break;
343     case kMovLo128FP:
344       CHECK(r_src.IsFloat());
345       opcode = kX86MovlpsMR;
346       break;
347     case kMovHi128FP:
348       CHECK(r_src.IsFloat());
349       opcode = kX86MovhpsMR;
350       break;
351     case kMov64GP:
352     case kMovLo64FP:
353     case kMovHi64FP:
354     default:
355       LOG(FATAL) << "Bad case in OpMovMemReg";
356       break;
357   }
358 
359   return NewLIR3(opcode, r_base.GetReg(), offset, src);
360 }
361 
OpCondRegReg(OpKind op,ConditionCode cc,RegStorage r_dest,RegStorage r_src)362 LIR* X86Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
363   // The only conditional reg to reg operation supported is Cmov
364   DCHECK_EQ(op, kOpCmov);
365   DCHECK_EQ(r_dest.Is64Bit(), r_src.Is64Bit());
366   return NewLIR3(r_dest.Is64Bit() ? kX86Cmov64RRC : kX86Cmov32RRC, r_dest.GetReg(),
367                  r_src.GetReg(), X86ConditionEncoding(cc));
368 }
369 
OpRegMem(OpKind op,RegStorage r_dest,RegStorage r_base,int offset)370 LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegStorage r_base, int offset) {
371   bool is64Bit = r_dest.Is64Bit();
372   X86OpCode opcode = kX86Nop;
373   switch (op) {
374       // X86 binary opcodes
375     case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
376     case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
377     case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
378     case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
379     case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
380     case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
381     case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
382     case kOp2Byte: opcode = kX86Movsx8RM; break;
383     case kOp2Short: opcode = kX86Movsx16RM; break;
384     case kOp2Char: opcode = kX86Movzx16RM; break;
385     case kOpMul:
386     default:
387       LOG(FATAL) << "Bad case in OpRegMem " << op;
388       break;
389   }
390   LIR *l = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), offset);
391   if (mem_ref_type_ == ResourceMask::kDalvikReg) {
392     DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32);
393     AnnotateDalvikRegAccess(l, offset >> 2, true /* is_load */, false /* is_64bit */);
394   }
395   return l;
396 }
397 
OpMemReg(OpKind op,RegLocation rl_dest,int r_value)398 LIR* X86Mir2Lir::OpMemReg(OpKind op, RegLocation rl_dest, int r_value) {
399   DCHECK_NE(rl_dest.location, kLocPhysReg);
400   int displacement = SRegOffset(rl_dest.s_reg_low);
401   bool is64Bit = rl_dest.wide != 0;
402   X86OpCode opcode = kX86Nop;
403   switch (op) {
404     case kOpSub: opcode = is64Bit ? kX86Sub64MR : kX86Sub32MR; break;
405     case kOpMov: opcode = is64Bit ? kX86Mov64MR : kX86Mov32MR; break;
406     case kOpCmp: opcode = is64Bit ? kX86Cmp64MR : kX86Cmp32MR; break;
407     case kOpAdd: opcode = is64Bit ? kX86Add64MR : kX86Add32MR; break;
408     case kOpAnd: opcode = is64Bit ? kX86And64MR : kX86And32MR; break;
409     case kOpOr:  opcode = is64Bit ? kX86Or64MR : kX86Or32MR; break;
410     case kOpXor: opcode = is64Bit ? kX86Xor64MR : kX86Xor32MR; break;
411     case kOpLsl: opcode = is64Bit ? kX86Sal64MC : kX86Sal32MC; break;
412     case kOpLsr: opcode = is64Bit ? kX86Shr64MC : kX86Shr32MC; break;
413     case kOpAsr: opcode = is64Bit ? kX86Sar64MC : kX86Sar32MC; break;
414     default:
415       LOG(FATAL) << "Bad case in OpMemReg " << op;
416       break;
417   }
418   LIR *l = NewLIR3(opcode, rs_rX86_SP_32.GetReg(), displacement, r_value);
419   if (mem_ref_type_ == ResourceMask::kDalvikReg) {
420     AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
421     AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is64Bit /* is_64bit */);
422   }
423   return l;
424 }
425 
OpRegMem(OpKind op,RegStorage r_dest,RegLocation rl_value)426 LIR* X86Mir2Lir::OpRegMem(OpKind op, RegStorage r_dest, RegLocation rl_value) {
427   DCHECK_NE(rl_value.location, kLocPhysReg);
428   bool is64Bit = r_dest.Is64Bit();
429   int displacement = SRegOffset(rl_value.s_reg_low);
430   X86OpCode opcode = kX86Nop;
431   switch (op) {
432     case kOpSub: opcode = is64Bit ? kX86Sub64RM : kX86Sub32RM; break;
433     case kOpMov: opcode = is64Bit ? kX86Mov64RM : kX86Mov32RM; break;
434     case kOpCmp: opcode = is64Bit ? kX86Cmp64RM : kX86Cmp32RM; break;
435     case kOpAdd: opcode = is64Bit ? kX86Add64RM : kX86Add32RM; break;
436     case kOpAnd: opcode = is64Bit ? kX86And64RM : kX86And32RM; break;
437     case kOpOr:  opcode = is64Bit ? kX86Or64RM : kX86Or32RM; break;
438     case kOpXor: opcode = is64Bit ? kX86Xor64RM : kX86Xor32RM; break;
439     case kOpMul: opcode = is64Bit ? kX86Bkpt : kX86Imul32RM; break;
440     default:
441       LOG(FATAL) << "Bad case in OpRegMem " << op;
442       break;
443   }
444   LIR *l = NewLIR3(opcode, r_dest.GetReg(), rs_rX86_SP_32.GetReg(), displacement);
445   if (mem_ref_type_ == ResourceMask::kDalvikReg) {
446     AnnotateDalvikRegAccess(l, displacement >> 2, true /* is_load */, is64Bit /* is_64bit */);
447   }
448   return l;
449 }
450 
OpRegRegReg(OpKind op,RegStorage r_dest,RegStorage r_src1,RegStorage r_src2)451 LIR* X86Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
452                              RegStorage r_src2) {
453   bool is64Bit = r_dest.Is64Bit();
454   if (r_dest != r_src1 && r_dest != r_src2) {
455     if (op == kOpAdd) {  // lea special case, except can't encode rbp as base
456       if (r_src1 == r_src2) {
457         OpRegCopy(r_dest, r_src1);
458         return OpRegImm(kOpLsl, r_dest, 1);
459       } else if (r_src1 != rs_rBP) {
460         return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
461                        r_src1.GetReg() /* base */, r_src2.GetReg() /* index */,
462                        0 /* scale */, 0 /* disp */);
463       } else {
464         return NewLIR5(is64Bit ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
465                        r_src2.GetReg() /* base */, r_src1.GetReg() /* index */,
466                        0 /* scale */, 0 /* disp */);
467       }
468     } else {
469       OpRegCopy(r_dest, r_src1);
470       return OpRegReg(op, r_dest, r_src2);
471     }
472   } else if (r_dest == r_src1) {
473     return OpRegReg(op, r_dest, r_src2);
474   } else {  // r_dest == r_src2
475     switch (op) {
476       case kOpSub:  // non-commutative
477         OpReg(kOpNeg, r_dest);
478         op = kOpAdd;
479         break;
480       case kOpSbc:
481       case kOpLsl: case kOpLsr: case kOpAsr: case kOpRor: {
482         RegStorage t_reg = AllocTemp();
483         OpRegCopy(t_reg, r_src1);
484         OpRegReg(op, t_reg, r_src2);
485         LIR* res = OpRegCopyNoInsert(r_dest, t_reg);
486         AppendLIR(res);
487         FreeTemp(t_reg);
488         return res;
489       }
490       case kOpAdd:  // commutative
491       case kOpOr:
492       case kOpAdc:
493       case kOpAnd:
494       case kOpXor:
495       case kOpMul:
496         break;
497       default:
498         LOG(FATAL) << "Bad case in OpRegRegReg " << op;
499     }
500     return OpRegReg(op, r_dest, r_src1);
501   }
502 }
503 
OpRegRegImm(OpKind op,RegStorage r_dest,RegStorage r_src,int value)504 LIR* X86Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src, int value) {
505   if (op == kOpMul && !cu_->target64) {
506     X86OpCode opcode = IS_SIMM8(value) ? kX86Imul32RRI8 : kX86Imul32RRI;
507     return NewLIR3(opcode, r_dest.GetReg(), r_src.GetReg(), value);
508   } else if (op == kOpAnd && !cu_->target64) {
509     if (value == 0xFF && r_src.Low4()) {
510       return NewLIR2(kX86Movzx8RR, r_dest.GetReg(), r_src.GetReg());
511     } else if (value == 0xFFFF) {
512       return NewLIR2(kX86Movzx16RR, r_dest.GetReg(), r_src.GetReg());
513     }
514   }
515   if (r_dest != r_src) {
516     if ((false) && op == kOpLsl && value >= 0 && value <= 3) {  // lea shift special case
517       // TODO: fix bug in LEA encoding when disp == 0
518       return NewLIR5(kX86Lea32RA, r_dest.GetReg(),  r5sib_no_base /* base */,
519                      r_src.GetReg() /* index */, value /* scale */, 0 /* disp */);
520     } else if (op == kOpAdd) {  // lea add special case
521       return NewLIR5(r_dest.Is64Bit() ? kX86Lea64RA : kX86Lea32RA, r_dest.GetReg(),
522                      r_src.GetReg() /* base */, rs_rX86_SP_32.GetReg()/*r4sib_no_index*/ /* index */,
523                      0 /* scale */, value /* disp */);
524     }
525     OpRegCopy(r_dest, r_src);
526   }
527   return OpRegImm(op, r_dest, value);
528 }
529 
OpThreadMem(OpKind op,ThreadOffset<4> thread_offset)530 LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<4> thread_offset) {
531   DCHECK_EQ(kX86, cu_->instruction_set);
532   X86OpCode opcode = kX86Bkpt;
533   switch (op) {
534     case kOpBlx: opcode = kX86CallT;  break;
535     case kOpBx: opcode = kX86JmpT;  break;
536     default:
537       LOG(FATAL) << "Bad opcode: " << op;
538       break;
539   }
540   return NewLIR1(opcode, thread_offset.Int32Value());
541 }
542 
OpThreadMem(OpKind op,ThreadOffset<8> thread_offset)543 LIR* X86Mir2Lir::OpThreadMem(OpKind op, ThreadOffset<8> thread_offset) {
544   DCHECK_EQ(kX86_64, cu_->instruction_set);
545   X86OpCode opcode = kX86Bkpt;
546   switch (op) {
547     case kOpBlx: opcode = kX86CallT;  break;
548     case kOpBx: opcode = kX86JmpT;  break;
549     default:
550       LOG(FATAL) << "Bad opcode: " << op;
551       break;
552   }
553   return NewLIR1(opcode, thread_offset.Int32Value());
554 }
555 
OpMem(OpKind op,RegStorage r_base,int disp)556 LIR* X86Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
557   X86OpCode opcode = kX86Bkpt;
558   switch (op) {
559     case kOpBlx: opcode = kX86CallM;  break;
560     default:
561       LOG(FATAL) << "Bad opcode: " << op;
562       break;
563   }
564   return NewLIR2(opcode, r_base.GetReg(), disp);
565 }
566 
LoadConstantWide(RegStorage r_dest,int64_t value)567 LIR* X86Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
568     int32_t val_lo = Low32Bits(value);
569     int32_t val_hi = High32Bits(value);
570     int32_t low_reg_val = r_dest.IsPair() ? r_dest.GetLowReg() : r_dest.GetReg();
571     LIR *res;
572     bool is_fp = r_dest.IsFloat();
573     // TODO: clean this up once we fully recognize 64-bit storage containers.
574     if (is_fp) {
575       DCHECK(r_dest.IsDouble());
576       if (value == 0) {
577         return NewLIR2(kX86XorpdRR, low_reg_val, low_reg_val);
578       } else if (pc_rel_base_reg_.Valid() || cu_->target64) {
579         // We will load the value from the literal area.
580         LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
581         if (data_target == nullptr) {
582           data_target = AddWideData(&literal_list_, val_lo, val_hi);
583         }
584 
585         // Load the proper value from the literal area.
586         // We don't know the proper offset for the value, so pick one that
587         // will force 4 byte offset.  We will fix this up in the assembler
588         // later to have the right value.
589         ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
590         if (cu_->target64) {
591           res = NewLIR3(kX86MovsdRM, low_reg_val, kRIPReg, 256 /* bogus */);
592         } else {
593           // Get the PC to a register and get the anchor.
594           LIR* anchor;
595           RegStorage r_pc = GetPcAndAnchor(&anchor);
596 
597           res = LoadBaseDisp(r_pc, kDummy32BitOffset, RegStorage::FloatSolo64(low_reg_val),
598                              kDouble, kNotVolatile);
599           res->operands[4] = WrapPointer(anchor);
600           if (IsTemp(r_pc)) {
601             FreeTemp(r_pc);
602           }
603         }
604         res->target = data_target;
605         res->flags.fixup = kFixupLoad;
606       } else {
607         if (r_dest.IsPair()) {
608           if (val_lo == 0) {
609             res = NewLIR2(kX86XorpsRR, low_reg_val, low_reg_val);
610           } else {
611             res = LoadConstantNoClobber(RegStorage::FloatSolo32(low_reg_val), val_lo);
612           }
613           if (val_hi != 0) {
614             RegStorage r_dest_hi = AllocTempDouble();
615             LoadConstantNoClobber(r_dest_hi, val_hi);
616             NewLIR2(kX86PunpckldqRR, low_reg_val, r_dest_hi.GetReg());
617             FreeTemp(r_dest_hi);
618           }
619         } else {
620           RegStorage r_temp = AllocTypedTempWide(false, kCoreReg);
621           res = LoadConstantWide(r_temp, value);
622           OpRegCopyWide(r_dest, r_temp);
623           FreeTemp(r_temp);
624         }
625       }
626     } else {
627       if (r_dest.IsPair()) {
628         res = LoadConstantNoClobber(r_dest.GetLow(), val_lo);
629         LoadConstantNoClobber(r_dest.GetHigh(), val_hi);
630       } else {
631         if (value == 0) {
632           res = NewLIR2(kX86Xor64RR, r_dest.GetReg(), r_dest.GetReg());
633         } else if (value >= INT_MIN && value <= INT_MAX) {
634           res = NewLIR2(kX86Mov64RI32, r_dest.GetReg(), val_lo);
635         } else {
636           res = NewLIR3(kX86Mov64RI64, r_dest.GetReg(), val_hi, val_lo);
637         }
638       }
639     }
640     return res;
641 }
642 
LoadBaseIndexedDisp(RegStorage r_base,RegStorage r_index,int scale,int displacement,RegStorage r_dest,OpSize size)643 LIR* X86Mir2Lir::LoadBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
644                                      int displacement, RegStorage r_dest, OpSize size) {
645   LIR *load = nullptr;
646   LIR *load2 = nullptr;
647   bool is_array = r_index.Valid();
648   bool pair = r_dest.IsPair();
649   bool is64bit = ((size == k64) || (size == kDouble));
650   X86OpCode opcode = kX86Nop;
651   switch (size) {
652     case k64:
653     case kDouble:
654       if (r_dest.IsFloat()) {
655         opcode = is_array ? kX86MovsdRA : kX86MovsdRM;
656       } else if (!pair) {
657         opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
658       } else {
659         opcode = is_array ? kX86Mov32RA  : kX86Mov32RM;
660       }
661       // TODO: double store is to unaligned address
662       DCHECK_EQ((displacement & 0x3), 0);
663       break;
664     case kWord:
665       if (cu_->target64) {
666         opcode = is_array ? kX86Mov64RA  : kX86Mov64RM;
667         CHECK_EQ(is_array, false);
668         CHECK_EQ(r_dest.IsFloat(), false);
669         break;
670       }
671       FALLTHROUGH_INTENDED;  // else fall-through to k32 case
672     case k32:
673     case kSingle:
674     case kReference:  // TODO: update for reference decompression on 64-bit targets.
675       opcode = is_array ? kX86Mov32RA : kX86Mov32RM;
676       if (r_dest.IsFloat()) {
677         opcode = is_array ? kX86MovssRA : kX86MovssRM;
678         DCHECK(r_dest.IsFloat());
679       }
680       DCHECK_EQ((displacement & 0x3), 0);
681       break;
682     case kUnsignedHalf:
683       opcode = is_array ? kX86Movzx16RA : kX86Movzx16RM;
684       DCHECK_EQ((displacement & 0x1), 0);
685       break;
686     case kSignedHalf:
687       opcode = is_array ? kX86Movsx16RA : kX86Movsx16RM;
688       DCHECK_EQ((displacement & 0x1), 0);
689       break;
690     case kUnsignedByte:
691       opcode = is_array ? kX86Movzx8RA : kX86Movzx8RM;
692       break;
693     case kSignedByte:
694       opcode = is_array ? kX86Movsx8RA : kX86Movsx8RM;
695       break;
696     default:
697       LOG(FATAL) << "Bad case in LoadBaseIndexedDispBody";
698   }
699 
700   if (!is_array) {
701     if (!pair) {
702       load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
703     } else {
704       DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
705       if (r_base == r_dest.GetLow()) {
706         load = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
707                         displacement + HIWORD_OFFSET);
708         load2 = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
709       } else {
710         load = NewLIR3(opcode, r_dest.GetLowReg(), r_base.GetReg(), displacement + LOWORD_OFFSET);
711         load2 = NewLIR3(opcode, r_dest.GetHighReg(), r_base.GetReg(),
712                         displacement + HIWORD_OFFSET);
713       }
714     }
715     if (mem_ref_type_ == ResourceMask::kDalvikReg) {
716       DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32);
717       AnnotateDalvikRegAccess(load, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
718                               true /* is_load */, is64bit);
719       if (pair) {
720         AnnotateDalvikRegAccess(load2, (displacement + HIWORD_OFFSET) >> 2,
721                                 true /* is_load */, is64bit);
722       }
723     }
724   } else {
725     if (!pair) {
726       load = NewLIR5(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
727                      displacement + LOWORD_OFFSET);
728     } else {
729       DCHECK(!r_dest.IsFloat());  // Make sure we're not still using a pair here.
730       if (r_base == r_dest.GetLow()) {
731         if (r_dest.GetHigh() == r_index) {
732           // We can't use either register for the first load.
733           RegStorage temp = AllocTemp();
734           load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
735                           displacement + HIWORD_OFFSET);
736           load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
737                          displacement + LOWORD_OFFSET);
738           OpRegCopy(r_dest.GetHigh(), temp);
739           FreeTemp(temp);
740         } else {
741           load = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
742                           displacement + HIWORD_OFFSET);
743           load2 = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
744                          displacement + LOWORD_OFFSET);
745         }
746       } else {
747         if (r_dest.GetLow() == r_index) {
748           // We can't use either register for the first load.
749           RegStorage temp = AllocTemp();
750           load = NewLIR5(opcode, temp.GetReg(), r_base.GetReg(), r_index.GetReg(), scale,
751                          displacement + LOWORD_OFFSET);
752           load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
753                           displacement + HIWORD_OFFSET);
754           OpRegCopy(r_dest.GetLow(), temp);
755           FreeTemp(temp);
756         } else {
757           load = NewLIR5(opcode, r_dest.GetLowReg(), r_base.GetReg(), r_index.GetReg(), scale,
758                          displacement + LOWORD_OFFSET);
759           load2 = NewLIR5(opcode, r_dest.GetHighReg(), r_base.GetReg(), r_index.GetReg(), scale,
760                           displacement + HIWORD_OFFSET);
761         }
762       }
763     }
764   }
765 
766   // Always return first load generated as this might cause a fault if base is null.
767   return load;
768 }
769 
770 /* Load value from base + scaled index. */
LoadBaseIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_dest,int scale,OpSize size)771 LIR* X86Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
772                                  int scale, OpSize size) {
773   return LoadBaseIndexedDisp(r_base, r_index, scale, 0, r_dest, size);
774 }
775 
LoadBaseDisp(RegStorage r_base,int displacement,RegStorage r_dest,OpSize size,VolatileKind is_volatile)776 LIR* X86Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
777                               OpSize size, VolatileKind is_volatile) {
778   // LoadBaseDisp() will emit correct insn for atomic load on x86
779   // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
780 
781   LIR* load = LoadBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_dest,
782                                   size);
783 
784   if (UNLIKELY(is_volatile == kVolatile)) {
785     GenMemBarrier(kLoadAny);  // Only a scheduling barrier.
786   }
787 
788   return load;
789 }
790 
StoreBaseIndexedDisp(RegStorage r_base,RegStorage r_index,int scale,int displacement,RegStorage r_src,OpSize size,int opt_flags)791 LIR* X86Mir2Lir::StoreBaseIndexedDisp(RegStorage r_base, RegStorage r_index, int scale,
792                                       int displacement, RegStorage r_src, OpSize size,
793                                       int opt_flags) {
794   LIR *store = nullptr;
795   LIR *store2 = nullptr;
796   bool is_array = r_index.Valid();
797   bool pair = r_src.IsPair();
798   bool is64bit = (size == k64) || (size == kDouble);
799   bool consider_non_temporal = false;
800 
801   X86OpCode opcode = kX86Nop;
802   switch (size) {
803     case k64:
804       consider_non_temporal = true;
805       FALLTHROUGH_INTENDED;
806     case kDouble:
807       if (r_src.IsFloat()) {
808         opcode = is_array ? kX86MovsdAR : kX86MovsdMR;
809       } else if (!pair) {
810         opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
811       } else {
812         opcode = is_array ? kX86Mov32AR  : kX86Mov32MR;
813       }
814       // TODO: double store is to unaligned address
815       DCHECK_EQ((displacement & 0x3), 0);
816       break;
817     case kWord:
818       if (cu_->target64) {
819         opcode = is_array ? kX86Mov64AR  : kX86Mov64MR;
820         CHECK_EQ(is_array, false);
821         CHECK_EQ(r_src.IsFloat(), false);
822         consider_non_temporal = true;
823         break;
824       }
825       FALLTHROUGH_INTENDED;  // else fall-through to k32 case
826     case k32:
827     case kSingle:
828     case kReference:
829       opcode = is_array ? kX86Mov32AR : kX86Mov32MR;
830       if (r_src.IsFloat()) {
831         opcode = is_array ? kX86MovssAR : kX86MovssMR;
832         DCHECK(r_src.IsSingle());
833       }
834       DCHECK_EQ((displacement & 0x3), 0);
835       consider_non_temporal = true;
836       break;
837     case kUnsignedHalf:
838     case kSignedHalf:
839       opcode = is_array ? kX86Mov16AR : kX86Mov16MR;
840       DCHECK_EQ((displacement & 0x1), 0);
841       break;
842     case kUnsignedByte:
843     case kSignedByte:
844       opcode = is_array ? kX86Mov8AR : kX86Mov8MR;
845       break;
846     default:
847       LOG(FATAL) << "Bad case in StoreBaseIndexedDispBody";
848   }
849 
850   // Handle non temporal hint here.
851   if (consider_non_temporal && ((opt_flags & MIR_STORE_NON_TEMPORAL) != 0)) {
852     switch (opcode) {
853       // We currently only handle 32/64 bit moves here.
854       case kX86Mov64AR:
855         opcode = kX86Movnti64AR;
856         break;
857       case kX86Mov64MR:
858         opcode = kX86Movnti64MR;
859         break;
860       case kX86Mov32AR:
861         opcode = kX86Movnti32AR;
862         break;
863       case kX86Mov32MR:
864         opcode = kX86Movnti32MR;
865         break;
866       default:
867         // Do nothing here.
868         break;
869     }
870   }
871 
872   if (!is_array) {
873     if (!pair) {
874       store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetReg());
875     } else {
876       DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
877       store = NewLIR3(opcode, r_base.GetReg(), displacement + LOWORD_OFFSET, r_src.GetLowReg());
878       store2 = NewLIR3(opcode, r_base.GetReg(), displacement + HIWORD_OFFSET, r_src.GetHighReg());
879     }
880     if (mem_ref_type_ == ResourceMask::kDalvikReg) {
881       DCHECK_EQ(r_base, cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32);
882       AnnotateDalvikRegAccess(store, (displacement + (pair ? LOWORD_OFFSET : 0)) >> 2,
883                               false /* is_load */, is64bit);
884       if (pair) {
885         AnnotateDalvikRegAccess(store2, (displacement + HIWORD_OFFSET) >> 2,
886                                 false /* is_load */, is64bit);
887       }
888     }
889   } else {
890     if (!pair) {
891       store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
892                       displacement + LOWORD_OFFSET, r_src.GetReg());
893     } else {
894       DCHECK(!r_src.IsFloat());  // Make sure we're not still using a pair here.
895       store = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
896                       displacement + LOWORD_OFFSET, r_src.GetLowReg());
897       store2 = NewLIR5(opcode, r_base.GetReg(), r_index.GetReg(), scale,
898                        displacement + HIWORD_OFFSET, r_src.GetHighReg());
899     }
900   }
901   return store;
902 }
903 
904 /* store value base base + scaled index. */
StoreBaseIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_src,int scale,OpSize size)905 LIR* X86Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
906                                   int scale, OpSize size) {
907   return StoreBaseIndexedDisp(r_base, r_index, scale, 0, r_src, size);
908 }
909 
StoreBaseDisp(RegStorage r_base,int displacement,RegStorage r_src,OpSize size,VolatileKind is_volatile)910 LIR* X86Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src, OpSize size,
911                                VolatileKind is_volatile) {
912   if (UNLIKELY(is_volatile == kVolatile)) {
913     GenMemBarrier(kAnyStore);  // Only a scheduling barrier.
914   }
915 
916   // StoreBaseDisp() will emit correct insn for atomic store on x86
917   // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
918   // x86 only allows registers EAX-EDX to be used as byte registers, if the input src is not
919   // valid, allocate a temp.
920   bool allocated_temp = false;
921   if (size == kUnsignedByte || size == kSignedByte) {
922     if (!cu_->target64 && !r_src.Low4()) {
923       RegStorage r_input = r_src;
924       r_src = AllocateByteRegister();
925       OpRegCopy(r_src, r_input);
926       allocated_temp = true;
927     }
928   }
929 
930   LIR* store = StoreBaseIndexedDisp(r_base, RegStorage::InvalidReg(), 0, displacement, r_src, size);
931 
932   if (UNLIKELY(is_volatile == kVolatile)) {
933     // A volatile load might follow the volatile store so insert a StoreLoad barrier.
934     // This does require a fence, even on x86.
935     GenMemBarrier(kAnyAny);
936   }
937 
938   if (allocated_temp) {
939     FreeTemp(r_src);
940   }
941 
942   return store;
943 }
944 
OpCmpMemImmBranch(ConditionCode cond,RegStorage temp_reg,RegStorage base_reg,int offset,int check_value,LIR * target,LIR ** compare)945 LIR* X86Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
946                                    int offset, int check_value, LIR* target, LIR** compare) {
947   UNUSED(temp_reg);  // Comparison performed directly with memory.
948   LIR* inst = NewLIR3(IS_SIMM8(check_value) ? kX86Cmp32MI8 : kX86Cmp32MI, base_reg.GetReg(),
949       offset, check_value);
950   if (compare != nullptr) {
951     *compare = inst;
952   }
953   LIR* branch = OpCondBranch(cond, target);
954   return branch;
955 }
956 
AnalyzeMIR(RefCounts * core_counts,MIR * mir,uint32_t weight)957 void X86Mir2Lir::AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight) {
958   if (cu_->target64) {
959     Mir2Lir::AnalyzeMIR(core_counts, mir, weight);
960     return;
961   }
962 
963   int opcode = mir->dalvikInsn.opcode;
964   bool uses_pc_rel_load = false;
965   switch (opcode) {
966     // Instructions referencing doubles.
967     case Instruction::CMPL_DOUBLE:
968     case Instruction::CMPG_DOUBLE:
969     case Instruction::NEG_DOUBLE:
970     case Instruction::ADD_DOUBLE:
971     case Instruction::SUB_DOUBLE:
972     case Instruction::MUL_DOUBLE:
973     case Instruction::DIV_DOUBLE:
974     case Instruction::REM_DOUBLE:
975     case Instruction::ADD_DOUBLE_2ADDR:
976     case Instruction::SUB_DOUBLE_2ADDR:
977     case Instruction::MUL_DOUBLE_2ADDR:
978     case Instruction::DIV_DOUBLE_2ADDR:
979     case Instruction::REM_DOUBLE_2ADDR:
980     case kMirOpFusedCmplDouble:
981     case kMirOpFusedCmpgDouble:
982       uses_pc_rel_load = AnalyzeFPInstruction(opcode, mir);
983       break;
984 
985     // Packed switch needs the PC-relative pointer if it's large.
986     case Instruction::PACKED_SWITCH:
987       if (mir_graph_->GetTable(mir, mir->dalvikInsn.vB)[1] > kSmallSwitchThreshold) {
988         uses_pc_rel_load = true;
989       }
990       break;
991 
992     case kMirOpConstVector:
993       uses_pc_rel_load = true;
994       break;
995     case kMirOpPackedMultiply:
996     case kMirOpPackedShiftLeft:
997     case kMirOpPackedSignedShiftRight:
998     case kMirOpPackedUnsignedShiftRight:
999       {
1000         // Byte emulation requires constants from the literal pool.
1001         OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
1002         if (opsize == kSignedByte || opsize == kUnsignedByte) {
1003           uses_pc_rel_load = true;
1004         }
1005       }
1006       break;
1007 
1008     case Instruction::INVOKE_STATIC:
1009     case Instruction::INVOKE_STATIC_RANGE:
1010       if (mir_graph_->GetMethodLoweringInfo(mir).IsIntrinsic()) {
1011         uses_pc_rel_load = AnalyzeInvokeStaticIntrinsic(mir);
1012         break;
1013       }
1014       FALLTHROUGH_INTENDED;
1015     default:
1016       Mir2Lir::AnalyzeMIR(core_counts, mir, weight);
1017       break;
1018   }
1019 
1020   if (uses_pc_rel_load) {
1021     DCHECK(pc_rel_temp_ != nullptr);
1022     core_counts[SRegToPMap(pc_rel_temp_->s_reg_low)].count += weight;
1023   }
1024 }
1025 
AnalyzeFPInstruction(int opcode,MIR * mir)1026 bool X86Mir2Lir::AnalyzeFPInstruction(int opcode, MIR* mir) {
1027   DCHECK(!cu_->target64);
1028   // Look at all the uses, and see if they are double constants.
1029   uint64_t attrs = MIRGraph::GetDataFlowAttributes(static_cast<Instruction::Code>(opcode));
1030   int next_sreg = 0;
1031   if (attrs & DF_UA) {
1032     if (attrs & DF_A_WIDE) {
1033       if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) {
1034         return true;
1035       }
1036       next_sreg += 2;
1037     } else {
1038       next_sreg++;
1039     }
1040   }
1041   if (attrs & DF_UB) {
1042     if (attrs & DF_B_WIDE) {
1043       if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) {
1044         return true;
1045       }
1046       next_sreg += 2;
1047     } else {
1048       next_sreg++;
1049     }
1050   }
1051   if (attrs & DF_UC) {
1052     if (attrs & DF_C_WIDE) {
1053       if (AnalyzeDoubleUse(mir_graph_->GetSrcWide(mir, next_sreg))) {
1054         return true;
1055       }
1056     }
1057   }
1058   return false;
1059 }
1060 
AnalyzeDoubleUse(RegLocation use)1061 inline bool X86Mir2Lir::AnalyzeDoubleUse(RegLocation use) {
1062   // If this is a double literal, we will want it in the literal pool on 32b platforms.
1063   DCHECK(!cu_->target64);
1064   return use.is_const;
1065 }
1066 
AnalyzeInvokeStaticIntrinsic(MIR * mir)1067 bool X86Mir2Lir::AnalyzeInvokeStaticIntrinsic(MIR* mir) {
1068   // 64 bit RIP addressing doesn't need this analysis.
1069   DCHECK(!cu_->target64);
1070 
1071   // Retrieve the type of the intrinsic.
1072   MethodReference method_ref = mir_graph_->GetMethodLoweringInfo(mir).GetTargetMethod();
1073   DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1074   DexFileMethodInliner* method_inliner =
1075     cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(method_ref.dex_file);
1076   InlineMethod method;
1077   bool is_intrinsic = method_inliner->IsIntrinsic(method_ref.dex_method_index, &method);
1078   DCHECK(is_intrinsic);
1079 
1080   switch (method.opcode) {
1081     case kIntrinsicAbsDouble:
1082     case kIntrinsicMinMaxDouble:
1083       return true;
1084     default:
1085       return false;
1086   }
1087 }
1088 
UpdateLocTyped(RegLocation loc)1089 RegLocation X86Mir2Lir::UpdateLocTyped(RegLocation loc) {
1090   loc = UpdateLoc(loc);
1091   if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1092     if (GetRegInfo(loc.reg)->IsTemp()) {
1093       Clobber(loc.reg);
1094       FreeTemp(loc.reg);
1095       loc.reg = RegStorage::InvalidReg();
1096       loc.location = kLocDalvikFrame;
1097     }
1098   }
1099   DCHECK(CheckCorePoolSanity());
1100   return loc;
1101 }
1102 
UpdateLocWideTyped(RegLocation loc)1103 RegLocation X86Mir2Lir::UpdateLocWideTyped(RegLocation loc) {
1104   loc = UpdateLocWide(loc);
1105   if ((loc.location == kLocPhysReg) && (loc.fp != loc.reg.IsFloat())) {
1106     if (GetRegInfo(loc.reg)->IsTemp()) {
1107       Clobber(loc.reg);
1108       FreeTemp(loc.reg);
1109       loc.reg = RegStorage::InvalidReg();
1110       loc.location = kLocDalvikFrame;
1111     }
1112   }
1113   DCHECK(CheckCorePoolSanity());
1114   return loc;
1115 }
1116 
InvokeTrampoline(OpKind op,RegStorage r_tgt,QuickEntrypointEnum trampoline)1117 LIR* X86Mir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) {
1118   UNUSED(r_tgt);  // Call to absolute memory location doesn't need a temporary target register.
1119   if (cu_->target64) {
1120     return OpThreadMem(op, GetThreadOffset<8>(trampoline));
1121   } else {
1122     return OpThreadMem(op, GetThreadOffset<4>(trampoline));
1123   }
1124 }
1125 
CountRefs(RefCounts * core_counts,RefCounts * fp_counts,size_t num_regs)1126 void X86Mir2Lir::CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs) {
1127   // Start with the default counts.
1128   Mir2Lir::CountRefs(core_counts, fp_counts, num_regs);
1129 
1130   if (pc_rel_temp_ != nullptr) {
1131     // Now, if the dex cache array base temp is used only once outside any loops (weight = 1),
1132     // avoid the promotion, otherwise boost the weight by factor 2 because the full PC-relative
1133     // load sequence is 3 instructions long and by promoting the PC base we save 2 instructions
1134     // per use.
1135     int p_map_idx = SRegToPMap(pc_rel_temp_->s_reg_low);
1136     if (core_counts[p_map_idx].count == 1) {
1137       core_counts[p_map_idx].count = 0;
1138     } else {
1139       core_counts[p_map_idx].count *= 2;
1140     }
1141   }
1142 }
1143 
DoPromotion()1144 void X86Mir2Lir::DoPromotion() {
1145   if (!cu_->target64) {
1146     pc_rel_temp_ = mir_graph_->GetNewCompilerTemp(kCompilerTempBackend, false);
1147   }
1148 
1149   Mir2Lir::DoPromotion();
1150 
1151   if (pc_rel_temp_ != nullptr) {
1152     // Now, if the dex cache array base temp is promoted, remember the register but
1153     // always remove the temp's stack location to avoid unnecessarily bloating the stack.
1154     pc_rel_base_reg_ = mir_graph_->reg_location_[pc_rel_temp_->s_reg_low].reg;
1155     DCHECK(!pc_rel_base_reg_.Valid() || !pc_rel_base_reg_.IsFloat());
1156     mir_graph_->RemoveLastCompilerTemp(kCompilerTempBackend, false, pc_rel_temp_);
1157     pc_rel_temp_ = nullptr;
1158   }
1159 }
1160 
1161 }  // namespace art
1162