• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "codegen_arm64.h"
18 
19 #include "arm64_lir.h"
20 #include "base/logging.h"
21 #include "dex/quick/mir_to_lir-inl.h"
22 #include "dex/reg_storage_eq.h"
23 
24 namespace art {
25 
26 /* This file contains codegen for the A64 ISA. */
27 
EncodeImmSingle(uint32_t bits)28 int32_t Arm64Mir2Lir::EncodeImmSingle(uint32_t bits) {
29   /*
30    * Valid values will have the form:
31    *
32    *   aBbb.bbbc.defg.h000.0000.0000.0000.0000
33    *
34    * where B = not(b). In other words, if b == 1, then B == 0 and viceversa.
35    */
36 
37   // bits[19..0] are cleared.
38   if ((bits & 0x0007ffff) != 0)
39     return -1;
40 
41   // bits[29..25] are all set or all cleared.
42   uint32_t b_pattern = (bits >> 16) & 0x3e00;
43   if (b_pattern != 0 && b_pattern != 0x3e00)
44     return -1;
45 
46   // bit[30] and bit[29] are opposite.
47   if (((bits ^ (bits << 1)) & 0x40000000) == 0)
48     return -1;
49 
50   // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
51   // bit7: a000.0000
52   uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
53   // bit6: 0b00.0000
54   uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
55   // bit5_to_0: 00cd.efgh
56   uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
57   return (bit7 | bit6 | bit5_to_0);
58 }
59 
EncodeImmDouble(uint64_t bits)60 int32_t Arm64Mir2Lir::EncodeImmDouble(uint64_t bits) {
61   /*
62    * Valid values will have the form:
63    *
64    *   aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
65    *   0000.0000.0000.0000.0000.0000.0000.0000
66    *
67    * where B = not(b).
68    */
69 
70   // bits[47..0] are cleared.
71   if ((bits & UINT64_C(0xffffffffffff)) != 0)
72     return -1;
73 
74   // bits[61..54] are all set or all cleared.
75   uint32_t b_pattern = (bits >> 48) & 0x3fc0;
76   if (b_pattern != 0 && b_pattern != 0x3fc0)
77     return -1;
78 
79   // bit[62] and bit[61] are opposite.
80   if (((bits ^ (bits << 1)) & UINT64_C(0x4000000000000000)) == 0)
81     return -1;
82 
83   // bit7: a000.0000
84   uint32_t bit7 = ((bits >> 63) & 0x1) << 7;
85   // bit6: 0b00.0000
86   uint32_t bit6 = ((bits >> 61) & 0x1) << 6;
87   // bit5_to_0: 00cd.efgh
88   uint32_t bit5_to_0 = (bits >> 48) & 0x3f;
89   return (bit7 | bit6 | bit5_to_0);
90 }
91 
GetLoadStoreSize(LIR * lir)92 size_t Arm64Mir2Lir::GetLoadStoreSize(LIR* lir) {
93   bool opcode_is_wide = IS_WIDE(lir->opcode);
94   A64Opcode opcode = UNWIDE(lir->opcode);
95   DCHECK(!IsPseudoLirOp(opcode));
96   const A64EncodingMap *encoder = &EncodingMap[opcode];
97   uint32_t bits = opcode_is_wide ? encoder->xskeleton : encoder->wskeleton;
98   return (bits >> 30);
99 }
100 
GetInstructionOffset(LIR * lir)101 size_t Arm64Mir2Lir::GetInstructionOffset(LIR* lir) {
102   size_t offset = lir->operands[2];
103   uint64_t check_flags = GetTargetInstFlags(lir->opcode);
104   DCHECK((check_flags & IS_LOAD) || (check_flags & IS_STORE));
105   if (check_flags & SCALED_OFFSET_X0) {
106     DCHECK(check_flags & IS_TERTIARY_OP);
107     offset = offset * (1 << GetLoadStoreSize(lir));
108   }
109   return offset;
110 }
111 
LoadFPConstantValue(RegStorage r_dest,int32_t value)112 LIR* Arm64Mir2Lir::LoadFPConstantValue(RegStorage r_dest, int32_t value) {
113   DCHECK(r_dest.IsSingle());
114   if (value == 0) {
115     return NewLIR2(kA64Fmov2sw, r_dest.GetReg(), rwzr);
116   } else {
117     int32_t encoded_imm = EncodeImmSingle((uint32_t)value);
118     if (encoded_imm >= 0) {
119       return NewLIR2(kA64Fmov2fI, r_dest.GetReg(), encoded_imm);
120     }
121   }
122 
123   LIR* data_target = ScanLiteralPool(literal_list_, value, 0);
124   if (data_target == nullptr) {
125     // Wide, as we need 8B alignment.
126     data_target = AddWideData(&literal_list_, value, 0);
127   }
128 
129   ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
130   LIR* load_pc_rel = RawLIR(current_dalvik_offset_, kA64Ldr2fp,
131                             r_dest.GetReg(), 0, 0, 0, 0, data_target);
132   AppendLIR(load_pc_rel);
133   return load_pc_rel;
134 }
135 
LoadFPConstantValueWide(RegStorage r_dest,int64_t value)136 LIR* Arm64Mir2Lir::LoadFPConstantValueWide(RegStorage r_dest, int64_t value) {
137   DCHECK(r_dest.IsDouble());
138   if (value == 0) {
139     return NewLIR2(kA64Fmov2Sx, r_dest.GetReg(), rxzr);
140   } else {
141     int32_t encoded_imm = EncodeImmDouble(value);
142     if (encoded_imm >= 0) {
143       return NewLIR2(WIDE(kA64Fmov2fI), r_dest.GetReg(), encoded_imm);
144     }
145   }
146 
147   // No short form - load from the literal pool.
148   int32_t val_lo = Low32Bits(value);
149   int32_t val_hi = High32Bits(value);
150   LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
151   if (data_target == nullptr) {
152     data_target = AddWideData(&literal_list_, val_lo, val_hi);
153   }
154 
155   ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
156   LIR* load_pc_rel = RawLIR(current_dalvik_offset_, WIDE(kA64Ldr2fp),
157                             r_dest.GetReg(), 0, 0, 0, 0, data_target);
158   AppendLIR(load_pc_rel);
159   return load_pc_rel;
160 }
161 
CountLeadingZeros(bool is_wide,uint64_t value)162 static int CountLeadingZeros(bool is_wide, uint64_t value) {
163   return (is_wide) ? __builtin_clzll(value) : __builtin_clz((uint32_t)value);
164 }
165 
CountTrailingZeros(bool is_wide,uint64_t value)166 static int CountTrailingZeros(bool is_wide, uint64_t value) {
167   return (is_wide) ? __builtin_ctzll(value) : __builtin_ctz((uint32_t)value);
168 }
169 
CountSetBits(bool is_wide,uint64_t value)170 static int CountSetBits(bool is_wide, uint64_t value) {
171   return ((is_wide) ?
172           __builtin_popcountll(value) : __builtin_popcount((uint32_t)value));
173 }
174 
175 /**
176  * @brief Try encoding an immediate in the form required by logical instructions.
177  *
178  * @param is_wide Whether @p value is a 64-bit (as opposed to 32-bit) value.
179  * @param value An integer to be encoded. This is interpreted as 64-bit if @p is_wide is true and as
180  *   32-bit if @p is_wide is false.
181  * @return A non-negative integer containing the encoded immediate or -1 if the encoding failed.
182  * @note This is the inverse of Arm64Mir2Lir::DecodeLogicalImmediate().
183  */
EncodeLogicalImmediate(bool is_wide,uint64_t value)184 int Arm64Mir2Lir::EncodeLogicalImmediate(bool is_wide, uint64_t value) {
185   unsigned n, imm_s, imm_r;
186 
187   // Logical immediates are encoded using parameters n, imm_s and imm_r using
188   // the following table:
189   //
190   //  N   imms    immr    size        S             R
191   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
192   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
193   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
194   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
195   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
196   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
197   // (s bits must not be all set)
198   //
199   // A pattern is constructed of size bits, where the least significant S+1
200   // bits are set. The pattern is rotated right by R, and repeated across a
201   // 32 or 64-bit value, depending on destination register width.
202   //
203   // To test if an arbitary immediate can be encoded using this scheme, an
204   // iterative algorithm is used.
205   //
206 
207   // 1. If the value has all set or all clear bits, it can't be encoded.
208   if (value == 0 || value == ~UINT64_C(0) ||
209       (!is_wide && (uint32_t)value == ~UINT32_C(0))) {
210     return -1;
211   }
212 
213   unsigned lead_zero  = CountLeadingZeros(is_wide, value);
214   unsigned lead_one   = CountLeadingZeros(is_wide, ~value);
215   unsigned trail_zero = CountTrailingZeros(is_wide, value);
216   unsigned trail_one  = CountTrailingZeros(is_wide, ~value);
217   unsigned set_bits   = CountSetBits(is_wide, value);
218 
219   // The fixed bits in the immediate s field.
220   // If width == 64 (X reg), start at 0xFFFFFF80.
221   // If width == 32 (W reg), start at 0xFFFFFFC0, as the iteration for 64-bit
222   // widths won't be executed.
223   unsigned width = (is_wide) ? 64 : 32;
224   int imm_s_fixed = (is_wide) ? -128 : -64;
225   int imm_s_mask = 0x3f;
226 
227   for (;;) {
228     // 2. If the value is two bits wide, it can be encoded.
229     if (width == 2) {
230       n = 0;
231       imm_s = 0x3C;
232       imm_r = (value & 3) - 1;
233       break;
234     }
235 
236     n = (width == 64) ? 1 : 0;
237     imm_s = ((imm_s_fixed | (set_bits - 1)) & imm_s_mask);
238     if ((lead_zero + set_bits) == width) {
239       imm_r = 0;
240     } else {
241       imm_r = (lead_zero > 0) ? (width - trail_zero) : lead_one;
242     }
243 
244     // 3. If the sum of leading zeros, trailing zeros and set bits is
245     //    equal to the bit width of the value, it can be encoded.
246     if (lead_zero + trail_zero + set_bits == width) {
247       break;
248     }
249 
250     // 4. If the sum of leading ones, trailing ones and unset bits in the
251     //    value is equal to the bit width of the value, it can be encoded.
252     if (lead_one + trail_one + (width - set_bits) == width) {
253       break;
254     }
255 
256     // 5. If the most-significant half of the bitwise value is equal to
257     //    the least-significant half, return to step 2 using the
258     //    least-significant half of the value.
259     uint64_t mask = (UINT64_C(1) << (width >> 1)) - 1;
260     if ((value & mask) == ((value >> (width >> 1)) & mask)) {
261       width >>= 1;
262       set_bits >>= 1;
263       imm_s_fixed >>= 1;
264       continue;
265     }
266 
267     // 6. Otherwise, the value can't be encoded.
268     return -1;
269   }
270 
271   return (n << 12 | imm_r << 6 | imm_s);
272 }
273 
274 // Maximum number of instructions to use for encoding the immediate.
275 static const int max_num_ops_per_const_load = 2;
276 
277 /**
278  * @brief Return the number of fast halfwords in the given uint64_t integer.
279  * @details The input integer is split into 4 halfwords (bits 0-15, 16-31, 32-47, 48-63). The
280  *   number of fast halfwords (halfwords that are either 0 or 0xffff) is returned. See below for
281  *   a more accurate description.
282  * @param value The input 64-bit integer.
283  * @return Return @c retval such that (retval & 0x7) is the maximum between n and m, where n is
284  *   the number of halfwords with all bits unset (0) and m is the number of halfwords with all bits
285  *   set (0xffff). Additionally (retval & 0x8) is set when m > n.
286  */
GetNumFastHalfWords(uint64_t value)287 static int GetNumFastHalfWords(uint64_t value) {
288   unsigned int num_0000_halfwords = 0;
289   unsigned int num_ffff_halfwords = 0;
290   for (int shift = 0; shift < 64; shift += 16) {
291     uint16_t halfword = static_cast<uint16_t>(value >> shift);
292     if (halfword == 0)
293       num_0000_halfwords++;
294     else if (halfword == UINT16_C(0xffff))
295       num_ffff_halfwords++;
296   }
297   if (num_0000_halfwords >= num_ffff_halfwords) {
298     DCHECK_LE(num_0000_halfwords, 4U);
299     return num_0000_halfwords;
300   } else {
301     DCHECK_LE(num_ffff_halfwords, 4U);
302     return num_ffff_halfwords | 0x8;
303   }
304 }
305 
306 // The InexpensiveConstantXXX variants below are used in the promotion algorithm to determine how a
307 // constant is considered for promotion. If the constant is "inexpensive" then the promotion
308 // algorithm will give it a low priority for promotion, even when it is referenced many times in
309 // the code.
310 
InexpensiveConstantInt(int32_t value ATTRIBUTE_UNUSED)311 bool Arm64Mir2Lir::InexpensiveConstantInt(int32_t value ATTRIBUTE_UNUSED) {
312   // A 32-bit int can always be loaded with 2 instructions (and without using the literal pool).
313   // We therefore return true and give it a low priority for promotion.
314   return true;
315 }
316 
InexpensiveConstantFloat(int32_t value)317 bool Arm64Mir2Lir::InexpensiveConstantFloat(int32_t value) {
318   return EncodeImmSingle(value) >= 0;
319 }
320 
InexpensiveConstantLong(int64_t value)321 bool Arm64Mir2Lir::InexpensiveConstantLong(int64_t value) {
322   int num_slow_halfwords = 4 - (GetNumFastHalfWords(value) & 0x7);
323   if (num_slow_halfwords <= max_num_ops_per_const_load) {
324     return true;
325   }
326   return (EncodeLogicalImmediate(/*is_wide=*/true, value) >= 0);
327 }
328 
InexpensiveConstantDouble(int64_t value)329 bool Arm64Mir2Lir::InexpensiveConstantDouble(int64_t value) {
330   return EncodeImmDouble(value) >= 0;
331 }
332 
333 // The InexpensiveConstantXXX variants below are used to determine which A64 instructions to use
334 // when one of the operands is an immediate (e.g. register version or immediate version of add).
335 
InexpensiveConstantInt(int32_t value,Instruction::Code opcode)336 bool Arm64Mir2Lir::InexpensiveConstantInt(int32_t value, Instruction::Code opcode) {
337   switch (opcode) {
338   case Instruction::IF_EQ:
339   case Instruction::IF_NE:
340   case Instruction::IF_LT:
341   case Instruction::IF_GE:
342   case Instruction::IF_GT:
343   case Instruction::IF_LE:
344   case Instruction::ADD_INT:
345   case Instruction::ADD_INT_2ADDR:
346   case Instruction::SUB_INT:
347   case Instruction::SUB_INT_2ADDR:
348     // The code below is consistent with the implementation of OpRegRegImm().
349     {
350       uint32_t abs_value = (value == INT_MIN) ? value : std::abs(value);
351       if (abs_value < 0x1000) {
352         return true;
353       } else if ((abs_value & UINT64_C(0xfff)) == 0 && ((abs_value >> 12) < 0x1000)) {
354         return true;
355       }
356       return false;
357     }
358   case Instruction::SHL_INT:
359   case Instruction::SHL_INT_2ADDR:
360   case Instruction::SHR_INT:
361   case Instruction::SHR_INT_2ADDR:
362   case Instruction::USHR_INT:
363   case Instruction::USHR_INT_2ADDR:
364     return true;
365   case Instruction::AND_INT:
366   case Instruction::AND_INT_2ADDR:
367   case Instruction::AND_INT_LIT16:
368   case Instruction::AND_INT_LIT8:
369   case Instruction::OR_INT:
370   case Instruction::OR_INT_2ADDR:
371   case Instruction::OR_INT_LIT16:
372   case Instruction::OR_INT_LIT8:
373   case Instruction::XOR_INT:
374   case Instruction::XOR_INT_2ADDR:
375   case Instruction::XOR_INT_LIT16:
376   case Instruction::XOR_INT_LIT8:
377     if (value == 0 || value == INT32_C(-1)) {
378       return true;
379     }
380     return (EncodeLogicalImmediate(/*is_wide=*/false, value) >= 0);
381   default:
382     return false;
383   }
384 }
385 
386 /*
387  * Load a immediate using one single instruction when possible; otherwise
388  * use a pair of movz and movk instructions.
389  *
390  * No additional register clobbering operation performed. Use this version when
391  * 1) r_dest is freshly returned from AllocTemp or
392  * 2) The codegen is under fixed register usage
393  */
LoadConstantNoClobber(RegStorage r_dest,int value)394 LIR* Arm64Mir2Lir::LoadConstantNoClobber(RegStorage r_dest, int value) {
395   LIR* res;
396 
397   if (r_dest.IsFloat()) {
398     return LoadFPConstantValue(r_dest, value);
399   }
400 
401   if (r_dest.Is64Bit()) {
402     return LoadConstantWide(r_dest, value);
403   }
404 
405   // Loading SP/ZR with an immediate is not supported.
406   DCHECK(!A64_REG_IS_SP(r_dest.GetReg()));
407   DCHECK(!A64_REG_IS_ZR(r_dest.GetReg()));
408 
409   // Compute how many movk, movz instructions are needed to load the value.
410   uint16_t high_bits = High16Bits(value);
411   uint16_t low_bits = Low16Bits(value);
412 
413   bool low_fast = ((uint16_t)(low_bits + 1) <= 1);
414   bool high_fast = ((uint16_t)(high_bits + 1) <= 1);
415 
416   if (LIKELY(low_fast || high_fast)) {
417     // 1 instruction is enough to load the immediate.
418     if (LIKELY(low_bits == high_bits)) {
419       // Value is either 0 or -1: we can just use wzr.
420       A64Opcode opcode = LIKELY(low_bits == 0) ? kA64Mov2rr : kA64Mvn2rr;
421       res = NewLIR2(opcode, r_dest.GetReg(), rwzr);
422     } else {
423       uint16_t uniform_bits, useful_bits;
424       int shift;
425 
426       if (LIKELY(high_fast)) {
427         shift = 0;
428         uniform_bits = high_bits;
429         useful_bits = low_bits;
430       } else {
431         shift = 1;
432         uniform_bits = low_bits;
433         useful_bits = high_bits;
434       }
435 
436       if (UNLIKELY(uniform_bits != 0)) {
437         res = NewLIR3(kA64Movn3rdM, r_dest.GetReg(), ~useful_bits, shift);
438       } else {
439         res = NewLIR3(kA64Movz3rdM, r_dest.GetReg(), useful_bits, shift);
440       }
441     }
442   } else {
443     // movk, movz require 2 instructions. Try detecting logical immediates.
444     int log_imm = EncodeLogicalImmediate(/*is_wide=*/false, value);
445     if (log_imm >= 0) {
446       res = NewLIR3(kA64Orr3Rrl, r_dest.GetReg(), rwzr, log_imm);
447     } else {
448       // Use 2 instructions.
449       res = NewLIR3(kA64Movz3rdM, r_dest.GetReg(), low_bits, 0);
450       NewLIR3(kA64Movk3rdM, r_dest.GetReg(), high_bits, 1);
451     }
452   }
453 
454   return res;
455 }
456 
457 // TODO: clean up the names. LoadConstantWide() should really be LoadConstantNoClobberWide().
LoadConstantWide(RegStorage r_dest,int64_t value)458 LIR* Arm64Mir2Lir::LoadConstantWide(RegStorage r_dest, int64_t value) {
459   if (r_dest.IsFloat()) {
460     return LoadFPConstantValueWide(r_dest, value);
461   }
462 
463   DCHECK(r_dest.Is64Bit());
464 
465   // Loading SP/ZR with an immediate is not supported.
466   DCHECK(!A64_REG_IS_SP(r_dest.GetReg()));
467   DCHECK(!A64_REG_IS_ZR(r_dest.GetReg()));
468 
469   if (LIKELY(value == INT64_C(0) || value == INT64_C(-1))) {
470     // value is either 0 or -1: we can just use xzr.
471     A64Opcode opcode = LIKELY(value == 0) ? WIDE(kA64Mov2rr) : WIDE(kA64Mvn2rr);
472     return NewLIR2(opcode, r_dest.GetReg(), rxzr);
473   }
474 
475   // At least one in value's halfwords is not 0x0, nor 0xffff: find out how many.
476   uint64_t uvalue = static_cast<uint64_t>(value);
477   int num_fast_halfwords = GetNumFastHalfWords(uvalue);
478   int num_slow_halfwords = 4 - (num_fast_halfwords & 0x7);
479   bool more_ffff_halfwords = (num_fast_halfwords & 0x8) != 0;
480 
481   if (num_slow_halfwords > 1) {
482     // A single movz/movn is not enough. Try the logical immediate route.
483     int log_imm = EncodeLogicalImmediate(/*is_wide=*/true, value);
484     if (log_imm >= 0) {
485       return NewLIR3(WIDE(kA64Orr3Rrl), r_dest.GetReg(), rxzr, log_imm);
486     }
487   }
488 
489   if (num_slow_halfwords <= max_num_ops_per_const_load) {
490     // We can encode the number using a movz/movn followed by one or more movk.
491     A64Opcode op;
492     uint16_t background;
493     LIR* res = nullptr;
494 
495     // Decide whether to use a movz or a movn.
496     if (more_ffff_halfwords) {
497       op = WIDE(kA64Movn3rdM);
498       background = 0xffff;
499     } else {
500       op = WIDE(kA64Movz3rdM);
501       background = 0;
502     }
503 
504     // Emit the first instruction (movz, movn).
505     int shift;
506     for (shift = 0; shift < 4; shift++) {
507       uint16_t halfword = static_cast<uint16_t>(uvalue >> (shift << 4));
508       if (halfword != background) {
509         res = NewLIR3(op, r_dest.GetReg(), halfword ^ background, shift);
510         break;
511       }
512     }
513 
514     // Emit the movk instructions.
515     for (shift++; shift < 4; shift++) {
516       uint16_t halfword = static_cast<uint16_t>(uvalue >> (shift << 4));
517       if (halfword != background) {
518         NewLIR3(WIDE(kA64Movk3rdM), r_dest.GetReg(), halfword, shift);
519       }
520     }
521     return res;
522   }
523 
524   // Use the literal pool.
525   int32_t val_lo = Low32Bits(value);
526   int32_t val_hi = High32Bits(value);
527   LIR* data_target = ScanLiteralPoolWide(literal_list_, val_lo, val_hi);
528   if (data_target == nullptr) {
529     data_target = AddWideData(&literal_list_, val_lo, val_hi);
530   }
531 
532   ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
533   LIR *res = RawLIR(current_dalvik_offset_, WIDE(kA64Ldr2rp),
534                     r_dest.GetReg(), 0, 0, 0, 0, data_target);
535   AppendLIR(res);
536   return res;
537 }
538 
OpUnconditionalBranch(LIR * target)539 LIR* Arm64Mir2Lir::OpUnconditionalBranch(LIR* target) {
540   LIR* res = NewLIR1(kA64B1t, 0 /* offset to be patched  during assembly */);
541   res->target = target;
542   return res;
543 }
544 
OpCondBranch(ConditionCode cc,LIR * target)545 LIR* Arm64Mir2Lir::OpCondBranch(ConditionCode cc, LIR* target) {
546   LIR* branch = NewLIR2(kA64B2ct, ArmConditionEncoding(cc),
547                         0 /* offset to be patched */);
548   branch->target = target;
549   return branch;
550 }
551 
OpReg(OpKind op,RegStorage r_dest_src)552 LIR* Arm64Mir2Lir::OpReg(OpKind op, RegStorage r_dest_src) {
553   A64Opcode opcode = kA64Brk1d;
554   switch (op) {
555     case kOpBlx:
556       opcode = kA64Blr1x;
557       break;
558     default:
559       LOG(FATAL) << "Bad opcode " << op;
560   }
561   return NewLIR1(opcode, r_dest_src.GetReg());
562 }
563 
OpRegRegShift(OpKind op,RegStorage r_dest_src1,RegStorage r_src2,int shift)564 LIR* Arm64Mir2Lir::OpRegRegShift(OpKind op, RegStorage r_dest_src1, RegStorage r_src2, int shift) {
565   A64Opcode wide = (r_dest_src1.Is64Bit()) ? WIDE(0) : UNWIDE(0);
566   CHECK_EQ(r_dest_src1.Is64Bit(), r_src2.Is64Bit());
567   A64Opcode opcode = kA64Brk1d;
568 
569   switch (op) {
570     case kOpCmn:
571       opcode = kA64Cmn3rro;
572       break;
573     case kOpCmp:
574       opcode = kA64Cmp3rro;
575       break;
576     case kOpMov:
577       opcode = kA64Mov2rr;
578       break;
579     case kOpMvn:
580       opcode = kA64Mvn2rr;
581       break;
582     case kOpNeg:
583       opcode = kA64Neg3rro;
584       break;
585     case kOpTst:
586       opcode = kA64Tst3rro;
587       break;
588     case kOpRev:
589       DCHECK_EQ(shift, 0);
590       // Binary, but rm is encoded twice.
591       return NewLIR2(kA64Rev2rr | wide, r_dest_src1.GetReg(), r_src2.GetReg());
592     case kOpRevsh:
593       // Binary, but rm is encoded twice.
594       NewLIR2(kA64Rev162rr | wide, r_dest_src1.GetReg(), r_src2.GetReg());
595       // "sxth r1, r2" is "sbfm r1, r2, #0, #15"
596       return NewLIR4(kA64Sbfm4rrdd | wide, r_dest_src1.GetReg(), r_dest_src1.GetReg(), 0, 15);
597     case kOp2Byte:
598       DCHECK_EQ(shift, ENCODE_NO_SHIFT);
599       // "sbfx r1, r2, #imm1, #imm2" is "sbfm r1, r2, #imm1, #(imm1 + imm2 - 1)".
600       // For now we use sbfm directly.
601       return NewLIR4(kA64Sbfm4rrdd | wide, r_dest_src1.GetReg(), r_src2.GetReg(), 0, 7);
602     case kOp2Short:
603       DCHECK_EQ(shift, ENCODE_NO_SHIFT);
604       // For now we use sbfm rather than its alias, sbfx.
605       return NewLIR4(kA64Sbfm4rrdd | wide, r_dest_src1.GetReg(), r_src2.GetReg(), 0, 15);
606     case kOp2Char:
607       // "ubfx r1, r2, #imm1, #imm2" is "ubfm r1, r2, #imm1, #(imm1 + imm2 - 1)".
608       // For now we use ubfm directly.
609       DCHECK_EQ(shift, ENCODE_NO_SHIFT);
610       return NewLIR4(kA64Ubfm4rrdd | wide, r_dest_src1.GetReg(), r_src2.GetReg(), 0, 15);
611     default:
612       return OpRegRegRegShift(op, r_dest_src1, r_dest_src1, r_src2, shift);
613   }
614 
615   DCHECK(!IsPseudoLirOp(opcode));
616   if (EncodingMap[opcode].flags & IS_BINARY_OP) {
617     DCHECK_EQ(shift, ENCODE_NO_SHIFT);
618     return NewLIR2(opcode | wide, r_dest_src1.GetReg(), r_src2.GetReg());
619   } else if (EncodingMap[opcode].flags & IS_TERTIARY_OP) {
620     A64EncodingKind kind = EncodingMap[opcode].field_loc[2].kind;
621     if (kind == kFmtShift) {
622       return NewLIR3(opcode | wide, r_dest_src1.GetReg(), r_src2.GetReg(), shift);
623     }
624   }
625 
626   LOG(FATAL) << "Unexpected encoding operand count";
627   return nullptr;
628 }
629 
OpRegRegExtend(OpKind op,RegStorage r_dest_src1,RegStorage r_src2,A64RegExtEncodings ext,uint8_t amount)630 LIR* Arm64Mir2Lir::OpRegRegExtend(OpKind op, RegStorage r_dest_src1, RegStorage r_src2,
631                                   A64RegExtEncodings ext, uint8_t amount) {
632   A64Opcode wide = (r_dest_src1.Is64Bit()) ? WIDE(0) : UNWIDE(0);
633   A64Opcode opcode = kA64Brk1d;
634 
635   switch (op) {
636     case kOpCmn:
637       opcode = kA64Cmn3Rre;
638       break;
639     case kOpCmp:
640       opcode = kA64Cmp3Rre;
641       break;
642     case kOpAdd:
643       // Note: intentional fallthrough
644     case kOpSub:
645       return OpRegRegRegExtend(op, r_dest_src1, r_dest_src1, r_src2, ext, amount);
646     default:
647       LOG(FATAL) << "Bad Opcode: " << opcode;
648       UNREACHABLE();
649   }
650 
651   DCHECK(!IsPseudoLirOp(opcode));
652   if (EncodingMap[opcode].flags & IS_TERTIARY_OP) {
653     A64EncodingKind kind = EncodingMap[opcode].field_loc[2].kind;
654     if (kind == kFmtExtend) {
655       return NewLIR3(opcode | wide, r_dest_src1.GetReg(), r_src2.GetReg(),
656                      EncodeExtend(ext, amount));
657     }
658   }
659 
660   LOG(FATAL) << "Unexpected encoding operand count";
661   return nullptr;
662 }
663 
OpRegReg(OpKind op,RegStorage r_dest_src1,RegStorage r_src2)664 LIR* Arm64Mir2Lir::OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) {
665   /* RegReg operations with SP in first parameter need extended register instruction form.
666    * Only CMN, CMP, ADD & SUB instructions are implemented.
667    */
668   if (r_dest_src1 == rs_sp) {
669     return OpRegRegExtend(op, r_dest_src1, r_src2, kA64Uxtx, 0);
670   } else {
671     return OpRegRegShift(op, r_dest_src1, r_src2, ENCODE_NO_SHIFT);
672   }
673 }
674 
OpMovRegMem(RegStorage r_dest,RegStorage r_base,int offset,MoveType move_type)675 LIR* Arm64Mir2Lir::OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
676                                MoveType move_type) {
677   UNUSED(r_dest, r_base, offset, move_type);
678   UNIMPLEMENTED(FATAL);
679   UNREACHABLE();
680 }
681 
OpMovMemReg(RegStorage r_base,int offset,RegStorage r_src,MoveType move_type)682 LIR* Arm64Mir2Lir::OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
683                                MoveType move_type) {
684   UNUSED(r_base, offset, r_src, move_type);
685   UNIMPLEMENTED(FATAL);
686   return nullptr;
687 }
688 
OpCondRegReg(OpKind op,ConditionCode cc,RegStorage r_dest,RegStorage r_src)689 LIR* Arm64Mir2Lir::OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) {
690   UNUSED(op, cc, r_dest, r_src);
691   LOG(FATAL) << "Unexpected use of OpCondRegReg for Arm64";
692   UNREACHABLE();
693 }
694 
OpRegRegRegShift(OpKind op,RegStorage r_dest,RegStorage r_src1,RegStorage r_src2,int shift)695 LIR* Arm64Mir2Lir::OpRegRegRegShift(OpKind op, RegStorage r_dest, RegStorage r_src1,
696                                     RegStorage r_src2, int shift) {
697   A64Opcode opcode = kA64Brk1d;
698 
699   switch (op) {
700     case kOpAdd:
701       opcode = kA64Add4rrro;
702       break;
703     case kOpSub:
704       opcode = kA64Sub4rrro;
705       break;
706     // case kOpRsub:
707     //   opcode = kA64RsubWWW;
708     //   break;
709     case kOpAdc:
710       opcode = kA64Adc3rrr;
711       break;
712     case kOpAnd:
713       opcode = kA64And4rrro;
714       break;
715     case kOpXor:
716       opcode = kA64Eor4rrro;
717       break;
718     case kOpMul:
719       opcode = kA64Mul3rrr;
720       break;
721     case kOpDiv:
722       opcode = kA64Sdiv3rrr;
723       break;
724     case kOpOr:
725       opcode = kA64Orr4rrro;
726       break;
727     case kOpSbc:
728       opcode = kA64Sbc3rrr;
729       break;
730     case kOpLsl:
731       opcode = kA64Lsl3rrr;
732       break;
733     case kOpLsr:
734       opcode = kA64Lsr3rrr;
735       break;
736     case kOpAsr:
737       opcode = kA64Asr3rrr;
738       break;
739     case kOpRor:
740       opcode = kA64Ror3rrr;
741       break;
742     default:
743       LOG(FATAL) << "Bad opcode: " << op;
744       break;
745   }
746 
747   // The instructions above belong to two kinds:
748   // - 4-operands instructions, where the last operand is a shift/extend immediate,
749   // - 3-operands instructions with no shift/extend.
750   A64Opcode widened_opcode = r_dest.Is64Bit() ? WIDE(opcode) : opcode;
751   CHECK_EQ(r_dest.Is64Bit(), r_src1.Is64Bit());
752   CHECK_EQ(r_dest.Is64Bit(), r_src2.Is64Bit());
753   if (EncodingMap[opcode].flags & IS_QUAD_OP) {
754     DCHECK(!IsExtendEncoding(shift));
755     return NewLIR4(widened_opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg(), shift);
756   } else {
757     DCHECK(EncodingMap[opcode].flags & IS_TERTIARY_OP);
758     DCHECK_EQ(shift, ENCODE_NO_SHIFT);
759     return NewLIR3(widened_opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg());
760   }
761 }
762 
OpRegRegRegExtend(OpKind op,RegStorage r_dest,RegStorage r_src1,RegStorage r_src2,A64RegExtEncodings ext,uint8_t amount)763 LIR* Arm64Mir2Lir::OpRegRegRegExtend(OpKind op, RegStorage r_dest, RegStorage r_src1,
764                                      RegStorage r_src2, A64RegExtEncodings ext, uint8_t amount) {
765   A64Opcode opcode = kA64Brk1d;
766 
767   switch (op) {
768     case kOpAdd:
769       opcode = kA64Add4RRre;
770       break;
771     case kOpSub:
772       opcode = kA64Sub4RRre;
773       break;
774     default:
775       UNIMPLEMENTED(FATAL) << "Unimplemented opcode: " << op;
776       UNREACHABLE();
777   }
778   A64Opcode widened_opcode = r_dest.Is64Bit() ? WIDE(opcode) : opcode;
779 
780   if (r_dest.Is64Bit()) {
781     CHECK(r_src1.Is64Bit());
782 
783     // dest determines whether the op is wide or not. Up-convert src2 when necessary.
784     // Note: this is not according to aarch64 specifications, but our encoding.
785     if (!r_src2.Is64Bit()) {
786       r_src2 = As64BitReg(r_src2);
787     }
788   } else {
789     CHECK(!r_src1.Is64Bit());
790     CHECK(!r_src2.Is64Bit());
791   }
792 
793   // Sanity checks.
794   //    1) Amount is in the range 0..4
795   CHECK_LE(amount, 4);
796 
797   return NewLIR4(widened_opcode, r_dest.GetReg(), r_src1.GetReg(), r_src2.GetReg(),
798                  EncodeExtend(ext, amount));
799 }
800 
OpRegRegReg(OpKind op,RegStorage r_dest,RegStorage r_src1,RegStorage r_src2)801 LIR* Arm64Mir2Lir::OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1, RegStorage r_src2) {
802   return OpRegRegRegShift(op, r_dest, r_src1, r_src2, ENCODE_NO_SHIFT);
803 }
804 
OpRegRegImm(OpKind op,RegStorage r_dest,RegStorage r_src1,int value)805 LIR* Arm64Mir2Lir::OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) {
806   return OpRegRegImm64(op, r_dest, r_src1, static_cast<int64_t>(value));
807 }
808 
OpRegRegImm64(OpKind op,RegStorage r_dest,RegStorage r_src1,int64_t value)809 LIR* Arm64Mir2Lir::OpRegRegImm64(OpKind op, RegStorage r_dest, RegStorage r_src1, int64_t value) {
810   LIR* res;
811   bool neg = (value < 0);
812   uint64_t abs_value = (neg & !(value == LLONG_MIN)) ? -value : value;
813   A64Opcode opcode = kA64Brk1d;
814   A64Opcode alt_opcode = kA64Brk1d;
815   bool is_logical = false;
816   bool is_wide = r_dest.Is64Bit();
817   A64Opcode wide = (is_wide) ? WIDE(0) : UNWIDE(0);
818   int info = 0;
819 
820   switch (op) {
821     case kOpLsl: {
822       // "lsl w1, w2, #imm" is an alias of "ubfm w1, w2, #(-imm MOD 32), #(31-imm)"
823       // and "lsl x1, x2, #imm" of "ubfm x1, x2, #(-imm MOD 64), #(63-imm)".
824       // For now, we just use ubfm directly.
825       int max_value = (is_wide) ? 63 : 31;
826       return NewLIR4(kA64Ubfm4rrdd | wide, r_dest.GetReg(), r_src1.GetReg(),
827                      (-value) & max_value, max_value - value);
828     }
829     case kOpLsr:
830       return NewLIR3(kA64Lsr3rrd | wide, r_dest.GetReg(), r_src1.GetReg(), value);
831     case kOpAsr:
832       return NewLIR3(kA64Asr3rrd | wide, r_dest.GetReg(), r_src1.GetReg(), value);
833     case kOpRor:
834       // "ror r1, r2, #imm" is an alias of "extr r1, r2, r2, #imm".
835       // For now, we just use extr directly.
836       return NewLIR4(kA64Extr4rrrd | wide, r_dest.GetReg(), r_src1.GetReg(), r_src1.GetReg(),
837                      value);
838     case kOpAdd:
839       neg = !neg;
840       FALLTHROUGH_INTENDED;
841     case kOpSub:
842       // Add and sub below read/write sp rather than xzr.
843       if (abs_value < 0x1000) {
844         opcode = (neg) ? kA64Add4RRdT : kA64Sub4RRdT;
845         return NewLIR4(opcode | wide, r_dest.GetReg(), r_src1.GetReg(), abs_value, 0);
846       } else if ((abs_value & UINT64_C(0xfff)) == 0 && ((abs_value >> 12) < 0x1000)) {
847         opcode = (neg) ? kA64Add4RRdT : kA64Sub4RRdT;
848         return NewLIR4(opcode | wide, r_dest.GetReg(), r_src1.GetReg(), abs_value >> 12, 1);
849       } else {
850         alt_opcode = (op == kOpAdd) ? kA64Add4RRre : kA64Sub4RRre;
851         info = EncodeExtend(is_wide ? kA64Uxtx : kA64Uxtw, 0);
852       }
853       break;
854     case kOpAdc:
855       alt_opcode = kA64Adc3rrr;
856       break;
857     case kOpSbc:
858       alt_opcode = kA64Sbc3rrr;
859       break;
860     case kOpOr:
861       is_logical = true;
862       opcode = kA64Orr3Rrl;
863       alt_opcode = kA64Orr4rrro;
864       break;
865     case kOpAnd:
866       is_logical = true;
867       opcode = kA64And3Rrl;
868       alt_opcode = kA64And4rrro;
869       break;
870     case kOpXor:
871       is_logical = true;
872       opcode = kA64Eor3Rrl;
873       alt_opcode = kA64Eor4rrro;
874       break;
875     case kOpMul:
876       // TUNING: power of 2, shift & add
877       alt_opcode = kA64Mul3rrr;
878       break;
879     default:
880       LOG(FATAL) << "Bad opcode: " << op;
881   }
882 
883   if (is_logical) {
884     int log_imm = EncodeLogicalImmediate(is_wide, value);
885     if (log_imm >= 0) {
886       return NewLIR3(opcode | wide, r_dest.GetReg(), r_src1.GetReg(), log_imm);
887     } else {
888       // When the immediate is either 0 or ~0, the logical operation can be trivially reduced
889       // to a - possibly negated - assignment.
890       if (value == 0) {
891         switch (op) {
892           case kOpOr:
893           case kOpXor:
894             // Or/Xor by zero reduces to an assignment.
895             return NewLIR2(kA64Mov2rr | wide, r_dest.GetReg(), r_src1.GetReg());
896           default:
897             // And by zero reduces to a `mov rdest, xzr'.
898             DCHECK(op == kOpAnd);
899             return NewLIR2(kA64Mov2rr | wide, r_dest.GetReg(), (is_wide) ? rxzr : rwzr);
900         }
901       } else if (value == INT64_C(-1)
902                  || (!is_wide && static_cast<uint32_t>(value) == ~UINT32_C(0))) {
903         switch (op) {
904           case kOpAnd:
905             // And by -1 reduces to an assignment.
906             return NewLIR2(kA64Mov2rr | wide, r_dest.GetReg(), r_src1.GetReg());
907           case kOpXor:
908             // Xor by -1 reduces to an `mvn rdest, rsrc'.
909             return NewLIR2(kA64Mvn2rr | wide, r_dest.GetReg(), r_src1.GetReg());
910           default:
911             // Or by -1 reduces to a `mvn rdest, xzr'.
912             DCHECK(op == kOpOr);
913             return NewLIR2(kA64Mvn2rr | wide, r_dest.GetReg(), (is_wide) ? rxzr : rwzr);
914         }
915       }
916     }
917   }
918 
919   RegStorage r_scratch;
920   if (is_wide) {
921     r_scratch = AllocTempWide();
922     LoadConstantWide(r_scratch, value);
923   } else {
924     r_scratch = AllocTemp();
925     LoadConstant(r_scratch, value);
926   }
927   if (EncodingMap[alt_opcode].flags & IS_QUAD_OP)
928     res = NewLIR4(alt_opcode | wide, r_dest.GetReg(), r_src1.GetReg(), r_scratch.GetReg(), info);
929   else
930     res = NewLIR3(alt_opcode | wide, r_dest.GetReg(), r_src1.GetReg(), r_scratch.GetReg());
931   FreeTemp(r_scratch);
932   return res;
933 }
934 
OpRegImm(OpKind op,RegStorage r_dest_src1,int value)935 LIR* Arm64Mir2Lir::OpRegImm(OpKind op, RegStorage r_dest_src1, int value) {
936   return OpRegImm64(op, r_dest_src1, static_cast<int64_t>(value));
937 }
938 
OpRegImm64(OpKind op,RegStorage r_dest_src1,int64_t value)939 LIR* Arm64Mir2Lir::OpRegImm64(OpKind op, RegStorage r_dest_src1, int64_t value) {
940   A64Opcode wide = (r_dest_src1.Is64Bit()) ? WIDE(0) : UNWIDE(0);
941   A64Opcode opcode = kA64Brk1d;
942   A64Opcode neg_opcode = kA64Brk1d;
943   bool shift;
944   bool neg = (value < 0);
945   uint64_t abs_value = (neg & !(value == LLONG_MIN)) ? -value : value;
946 
947   if (LIKELY(abs_value < 0x1000)) {
948     // abs_value is a 12-bit immediate.
949     shift = false;
950   } else if ((abs_value & UINT64_C(0xfff)) == 0 && ((abs_value >> 12) < 0x1000)) {
951     // abs_value is a shifted 12-bit immediate.
952     shift = true;
953     abs_value >>= 12;
954   } else if (LIKELY(abs_value < 0x1000000 && (op == kOpAdd || op == kOpSub))) {
955     // Note: It is better to use two ADD/SUB instead of loading a number to a temp register.
956     // This works for both normal registers and SP.
957     // For a frame size == 0x2468, it will be encoded as:
958     //   sub sp, #0x2000
959     //   sub sp, #0x468
960     if (neg) {
961       op = (op == kOpAdd) ? kOpSub : kOpAdd;
962     }
963     OpRegImm64(op, r_dest_src1, abs_value & (~INT64_C(0xfff)));
964     return OpRegImm64(op, r_dest_src1, abs_value & 0xfff);
965   } else {
966     RegStorage r_tmp;
967     LIR* res;
968     if (IS_WIDE(wide)) {
969       r_tmp = AllocTempWide();
970       res = LoadConstantWide(r_tmp, value);
971     } else {
972       r_tmp = AllocTemp();
973       res = LoadConstant(r_tmp, value);
974     }
975     OpRegReg(op, r_dest_src1, r_tmp);
976     FreeTemp(r_tmp);
977     return res;
978   }
979 
980   switch (op) {
981     case kOpAdd:
982       neg_opcode = kA64Sub4RRdT;
983       opcode = kA64Add4RRdT;
984       break;
985     case kOpSub:
986       neg_opcode = kA64Add4RRdT;
987       opcode = kA64Sub4RRdT;
988       break;
989     case kOpCmp:
990       neg_opcode = kA64Cmn3RdT;
991       opcode = kA64Cmp3RdT;
992       break;
993     default:
994       LOG(FATAL) << "Bad op-kind in OpRegImm: " << op;
995       break;
996   }
997 
998   if (UNLIKELY(neg))
999     opcode = neg_opcode;
1000 
1001   if (EncodingMap[opcode].flags & IS_QUAD_OP)
1002     return NewLIR4(opcode | wide, r_dest_src1.GetReg(), r_dest_src1.GetReg(), abs_value,
1003                    (shift) ? 1 : 0);
1004   else
1005     return NewLIR3(opcode | wide, r_dest_src1.GetReg(), abs_value, (shift) ? 1 : 0);
1006 }
1007 
EncodeShift(int shift_type,int amount)1008 int Arm64Mir2Lir::EncodeShift(int shift_type, int amount) {
1009   DCHECK_EQ(shift_type & 0x3, shift_type);
1010   DCHECK_EQ(amount & 0x3f, amount);
1011   return ((shift_type & 0x3) << 7) | (amount & 0x3f);
1012 }
1013 
EncodeExtend(int extend_type,int amount)1014 int Arm64Mir2Lir::EncodeExtend(int extend_type, int amount) {
1015   DCHECK_EQ(extend_type & 0x7, extend_type);
1016   DCHECK_EQ(amount & 0x7, amount);
1017   return  (1 << 6) | ((extend_type & 0x7) << 3) | (amount & 0x7);
1018 }
1019 
IsExtendEncoding(int encoded_value)1020 bool Arm64Mir2Lir::IsExtendEncoding(int encoded_value) {
1021   return ((1 << 6) & encoded_value) != 0;
1022 }
1023 
LoadBaseIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_dest,int scale,OpSize size)1024 LIR* Arm64Mir2Lir::LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
1025                                    int scale, OpSize size) {
1026   LIR* load;
1027   int expected_scale = 0;
1028   A64Opcode opcode = kA64Brk1d;
1029   r_base = Check64BitReg(r_base);
1030 
1031   // TODO(Arm64): The sign extension of r_index should be carried out by using an extended
1032   //   register offset load (rather than doing the sign extension in a separate instruction).
1033   if (r_index.Is32Bit()) {
1034     // Assemble: ``sxtw xN, wN''.
1035     r_index = As64BitReg(r_index);
1036     NewLIR4(WIDE(kA64Sbfm4rrdd), r_index.GetReg(), r_index.GetReg(), 0, 31);
1037   }
1038 
1039   if (r_dest.IsFloat()) {
1040     if (r_dest.IsDouble()) {
1041       DCHECK(size == k64 || size == kDouble);
1042       expected_scale = 3;
1043       opcode = WIDE(kA64Ldr4fXxG);
1044     } else {
1045       DCHECK(r_dest.IsSingle());
1046       DCHECK(size == k32 || size == kSingle);
1047       expected_scale = 2;
1048       opcode = kA64Ldr4fXxG;
1049     }
1050 
1051     DCHECK(scale == 0 || scale == expected_scale);
1052     return NewLIR4(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(),
1053                    (scale != 0) ? 1 : 0);
1054   }
1055 
1056   switch (size) {
1057     case kDouble:
1058     case kWord:
1059     case k64:
1060       r_dest = Check64BitReg(r_dest);
1061       opcode = WIDE(kA64Ldr4rXxG);
1062       expected_scale = 3;
1063       break;
1064     case kReference:
1065       r_dest = As32BitReg(r_dest);
1066       FALLTHROUGH_INTENDED;
1067     case kSingle:     // Intentional fall-through.
1068     case k32:
1069       r_dest = Check32BitReg(r_dest);
1070       opcode = kA64Ldr4rXxG;
1071       expected_scale = 2;
1072       break;
1073     case kUnsignedHalf:
1074       r_dest = Check32BitReg(r_dest);
1075       opcode = kA64Ldrh4wXxd;
1076       expected_scale = 1;
1077       break;
1078     case kSignedHalf:
1079       r_dest = Check32BitReg(r_dest);
1080       opcode = kA64Ldrsh4rXxd;
1081       expected_scale = 1;
1082       break;
1083     case kUnsignedByte:
1084       r_dest = Check32BitReg(r_dest);
1085       opcode = kA64Ldrb3wXx;
1086       break;
1087     case kSignedByte:
1088       r_dest = Check32BitReg(r_dest);
1089       opcode = kA64Ldrsb3rXx;
1090       break;
1091     default:
1092       LOG(FATAL) << "Bad size: " << size;
1093   }
1094 
1095   if (UNLIKELY(expected_scale == 0)) {
1096     // This is a tertiary op (e.g. ldrb, ldrsb), it does not not support scale.
1097     DCHECK_NE(EncodingMap[UNWIDE(opcode)].flags & IS_TERTIARY_OP, 0U);
1098     DCHECK_EQ(scale, 0);
1099     load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg());
1100   } else {
1101     DCHECK(scale == 0 || scale == expected_scale);
1102     load = NewLIR4(opcode, r_dest.GetReg(), r_base.GetReg(), r_index.GetReg(),
1103                    (scale != 0) ? 1 : 0);
1104   }
1105 
1106   return load;
1107 }
1108 
StoreBaseIndexed(RegStorage r_base,RegStorage r_index,RegStorage r_src,int scale,OpSize size)1109 LIR* Arm64Mir2Lir::StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
1110                                     int scale, OpSize size) {
1111   LIR* store;
1112   int expected_scale = 0;
1113   A64Opcode opcode = kA64Brk1d;
1114   r_base = Check64BitReg(r_base);
1115 
1116   // TODO(Arm64): The sign extension of r_index should be carried out by using an extended
1117   //   register offset store (rather than doing the sign extension in a separate instruction).
1118   if (r_index.Is32Bit()) {
1119     // Assemble: ``sxtw xN, wN''.
1120     r_index = As64BitReg(r_index);
1121     NewLIR4(WIDE(kA64Sbfm4rrdd), r_index.GetReg(), r_index.GetReg(), 0, 31);
1122   }
1123 
1124   if (r_src.IsFloat()) {
1125     if (r_src.IsDouble()) {
1126       DCHECK(size == k64 || size == kDouble);
1127       expected_scale = 3;
1128       opcode = WIDE(kA64Str4fXxG);
1129     } else {
1130       DCHECK(r_src.IsSingle());
1131       DCHECK(size == k32 || size == kSingle);
1132       expected_scale = 2;
1133       opcode = kA64Str4fXxG;
1134     }
1135 
1136     DCHECK(scale == 0 || scale == expected_scale);
1137     return NewLIR4(opcode, r_src.GetReg(), r_base.GetReg(), r_index.GetReg(),
1138                    (scale != 0) ? 1 : 0);
1139   }
1140 
1141   switch (size) {
1142     case kDouble:     // Intentional fall-trough.
1143     case kWord:       // Intentional fall-trough.
1144     case k64:
1145       r_src = Check64BitReg(r_src);
1146       opcode = WIDE(kA64Str4rXxG);
1147       expected_scale = 3;
1148       break;
1149     case kReference:
1150       r_src = As32BitReg(r_src);
1151       FALLTHROUGH_INTENDED;
1152     case kSingle:     // Intentional fall-trough.
1153     case k32:
1154       r_src = Check32BitReg(r_src);
1155       opcode = kA64Str4rXxG;
1156       expected_scale = 2;
1157       break;
1158     case kUnsignedHalf:
1159     case kSignedHalf:
1160       r_src = Check32BitReg(r_src);
1161       opcode = kA64Strh4wXxd;
1162       expected_scale = 1;
1163       break;
1164     case kUnsignedByte:
1165     case kSignedByte:
1166       r_src = Check32BitReg(r_src);
1167       opcode = kA64Strb3wXx;
1168       break;
1169     default:
1170       LOG(FATAL) << "Bad size: " << size;
1171   }
1172 
1173   if (UNLIKELY(expected_scale == 0)) {
1174     // This is a tertiary op (e.g. strb), it does not not support scale.
1175     DCHECK_NE(EncodingMap[UNWIDE(opcode)].flags & IS_TERTIARY_OP, 0U);
1176     DCHECK_EQ(scale, 0);
1177     store = NewLIR3(opcode, r_src.GetReg(), r_base.GetReg(), r_index.GetReg());
1178   } else {
1179     store = NewLIR4(opcode, r_src.GetReg(), r_base.GetReg(), r_index.GetReg(),
1180                     (scale != 0) ? 1 : 0);
1181   }
1182 
1183   return store;
1184 }
1185 
1186 /*
1187  * Load value from base + displacement.  Optionally perform null check
1188  * on base (which must have an associated s_reg and MIR).  If not
1189  * performing null check, incoming MIR can be null.
1190  */
LoadBaseDispBody(RegStorage r_base,int displacement,RegStorage r_dest,OpSize size)1191 LIR* Arm64Mir2Lir::LoadBaseDispBody(RegStorage r_base, int displacement, RegStorage r_dest,
1192                                     OpSize size) {
1193   LIR* load = nullptr;
1194   A64Opcode opcode = kA64Brk1d;
1195   A64Opcode alt_opcode = kA64Brk1d;
1196   int scale = 0;
1197 
1198   switch (size) {
1199     case kDouble:     // Intentional fall-through.
1200     case kWord:       // Intentional fall-through.
1201     case k64:
1202       r_dest = Check64BitReg(r_dest);
1203       scale = 3;
1204       if (r_dest.IsFloat()) {
1205         DCHECK(r_dest.IsDouble());
1206         opcode = WIDE(kA64Ldr3fXD);
1207         alt_opcode = WIDE(kA64Ldur3fXd);
1208       } else {
1209         opcode = WIDE(kA64Ldr3rXD);
1210         alt_opcode = WIDE(kA64Ldur3rXd);
1211       }
1212       break;
1213     case kReference:
1214       r_dest = As32BitReg(r_dest);
1215       FALLTHROUGH_INTENDED;
1216     case kSingle:     // Intentional fall-through.
1217     case k32:
1218       r_dest = Check32BitReg(r_dest);
1219       scale = 2;
1220       if (r_dest.IsFloat()) {
1221         DCHECK(r_dest.IsSingle());
1222         opcode = kA64Ldr3fXD;
1223       } else {
1224         opcode = kA64Ldr3rXD;
1225       }
1226       break;
1227     case kUnsignedHalf:
1228       scale = 1;
1229       opcode = kA64Ldrh3wXF;
1230       break;
1231     case kSignedHalf:
1232       scale = 1;
1233       opcode = kA64Ldrsh3rXF;
1234       break;
1235     case kUnsignedByte:
1236       opcode = kA64Ldrb3wXd;
1237       break;
1238     case kSignedByte:
1239       opcode = kA64Ldrsb3rXd;
1240       break;
1241     default:
1242       LOG(FATAL) << "Bad size: " << size;
1243   }
1244 
1245   bool displacement_is_aligned = (displacement & ((1 << scale) - 1)) == 0;
1246   int scaled_disp = displacement >> scale;
1247   if (displacement_is_aligned && scaled_disp >= 0 && scaled_disp < 4096) {
1248     // Can use scaled load.
1249     load = NewLIR3(opcode, r_dest.GetReg(), r_base.GetReg(), scaled_disp);
1250   } else if (alt_opcode != kA64Brk1d && IS_SIGNED_IMM9(displacement)) {
1251     // Can use unscaled load.
1252     load = NewLIR3(alt_opcode, r_dest.GetReg(), r_base.GetReg(), displacement);
1253   } else {
1254     // Use long sequence.
1255     // TODO: cleaner support for index/displacement registers?  Not a reference, but must match width.
1256     RegStorage r_scratch = AllocTempWide();
1257     LoadConstantWide(r_scratch, displacement);
1258     load = LoadBaseIndexed(r_base, r_scratch,
1259                            (size == kReference) ? As64BitReg(r_dest) : r_dest,
1260                            0, size);
1261     FreeTemp(r_scratch);
1262   }
1263 
1264   // TODO: in future may need to differentiate Dalvik accesses w/ spills
1265   if (mem_ref_type_ == ResourceMask::kDalvikReg) {
1266     DCHECK_EQ(r_base, rs_sp);
1267     AnnotateDalvikRegAccess(load, displacement >> 2, true /* is_load */, r_dest.Is64Bit());
1268   }
1269   return load;
1270 }
1271 
LoadBaseDisp(RegStorage r_base,int displacement,RegStorage r_dest,OpSize size,VolatileKind is_volatile)1272 LIR* Arm64Mir2Lir::LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
1273                                 OpSize size, VolatileKind is_volatile) {
1274   // LoadBaseDisp() will emit correct insn for atomic load on arm64
1275   // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
1276 
1277   LIR* load = LoadBaseDispBody(r_base, displacement, r_dest, size);
1278 
1279   if (UNLIKELY(is_volatile == kVolatile)) {
1280     // TODO: This should generate an acquire load instead of the barrier.
1281     GenMemBarrier(kLoadAny);
1282   }
1283 
1284   return load;
1285 }
1286 
StoreBaseDispBody(RegStorage r_base,int displacement,RegStorage r_src,OpSize size)1287 LIR* Arm64Mir2Lir::StoreBaseDispBody(RegStorage r_base, int displacement, RegStorage r_src,
1288                                      OpSize size) {
1289   LIR* store = nullptr;
1290   A64Opcode opcode = kA64Brk1d;
1291   A64Opcode alt_opcode = kA64Brk1d;
1292   int scale = 0;
1293 
1294   switch (size) {
1295     case kDouble:     // Intentional fall-through.
1296     case kWord:       // Intentional fall-through.
1297     case k64:
1298       r_src = Check64BitReg(r_src);
1299       scale = 3;
1300       if (r_src.IsFloat()) {
1301         DCHECK(r_src.IsDouble());
1302         opcode = WIDE(kA64Str3fXD);
1303         alt_opcode = WIDE(kA64Stur3fXd);
1304       } else {
1305         opcode = WIDE(kA64Str3rXD);
1306         alt_opcode = WIDE(kA64Stur3rXd);
1307       }
1308       break;
1309     case kReference:
1310       r_src = As32BitReg(r_src);
1311       FALLTHROUGH_INTENDED;
1312     case kSingle:     // Intentional fall-through.
1313     case k32:
1314       r_src = Check32BitReg(r_src);
1315       scale = 2;
1316       if (r_src.IsFloat()) {
1317         DCHECK(r_src.IsSingle());
1318         opcode = kA64Str3fXD;
1319       } else {
1320         opcode = kA64Str3rXD;
1321       }
1322       break;
1323     case kUnsignedHalf:
1324     case kSignedHalf:
1325       scale = 1;
1326       opcode = kA64Strh3wXF;
1327       break;
1328     case kUnsignedByte:
1329     case kSignedByte:
1330       opcode = kA64Strb3wXd;
1331       break;
1332     default:
1333       LOG(FATAL) << "Bad size: " << size;
1334   }
1335 
1336   bool displacement_is_aligned = (displacement & ((1 << scale) - 1)) == 0;
1337   int scaled_disp = displacement >> scale;
1338   if (displacement_is_aligned && scaled_disp >= 0 && scaled_disp < 4096) {
1339     // Can use scaled store.
1340     store = NewLIR3(opcode, r_src.GetReg(), r_base.GetReg(), scaled_disp);
1341   } else if (alt_opcode != kA64Brk1d && IS_SIGNED_IMM9(displacement)) {
1342     // Can use unscaled store.
1343     store = NewLIR3(alt_opcode, r_src.GetReg(), r_base.GetReg(), displacement);
1344   } else {
1345     // Use long sequence.
1346     RegStorage r_scratch = AllocTempWide();
1347     LoadConstantWide(r_scratch, displacement);
1348     store = StoreBaseIndexed(r_base, r_scratch,
1349                              (size == kReference) ? As64BitReg(r_src) : r_src,
1350                              0, size);
1351     FreeTemp(r_scratch);
1352   }
1353 
1354   // TODO: In future, may need to differentiate Dalvik & spill accesses.
1355   if (mem_ref_type_ == ResourceMask::kDalvikReg) {
1356     DCHECK_EQ(r_base, rs_sp);
1357     AnnotateDalvikRegAccess(store, displacement >> 2, false /* is_load */, r_src.Is64Bit());
1358   }
1359   return store;
1360 }
1361 
StoreBaseDisp(RegStorage r_base,int displacement,RegStorage r_src,OpSize size,VolatileKind is_volatile)1362 LIR* Arm64Mir2Lir::StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
1363                                  OpSize size, VolatileKind is_volatile) {
1364   // TODO: This should generate a release store and no barriers.
1365   if (UNLIKELY(is_volatile == kVolatile)) {
1366     // Ensure that prior accesses become visible to other threads first.
1367     GenMemBarrier(kAnyStore);
1368   }
1369 
1370   // StoreBaseDisp() will emit correct insn for atomic store on arm64
1371   // assuming r_dest is correctly prepared using RegClassForFieldLoadStore().
1372 
1373   LIR* store = StoreBaseDispBody(r_base, displacement, r_src, size);
1374 
1375   if (UNLIKELY(is_volatile == kVolatile)) {
1376     // Preserve order with respect to any subsequent volatile loads.
1377     // We need StoreLoad, but that generally requires the most expensive barrier.
1378     GenMemBarrier(kAnyAny);
1379   }
1380 
1381   return store;
1382 }
1383 
OpFpRegCopy(RegStorage r_dest,RegStorage r_src)1384 LIR* Arm64Mir2Lir::OpFpRegCopy(RegStorage r_dest, RegStorage r_src) {
1385   UNUSED(r_dest, r_src);
1386   LOG(FATAL) << "Unexpected use of OpFpRegCopy for Arm64";
1387   UNREACHABLE();
1388 }
1389 
OpMem(OpKind op,RegStorage r_base,int disp)1390 LIR* Arm64Mir2Lir::OpMem(OpKind op, RegStorage r_base, int disp) {
1391   UNUSED(op, r_base, disp);
1392   LOG(FATAL) << "Unexpected use of OpMem for Arm64";
1393   UNREACHABLE();
1394 }
1395 
InvokeTrampoline(OpKind op,RegStorage r_tgt,QuickEntrypointEnum trampoline ATTRIBUTE_UNUSED)1396 LIR* Arm64Mir2Lir::InvokeTrampoline(OpKind op, RegStorage r_tgt,
1397                                     QuickEntrypointEnum trampoline ATTRIBUTE_UNUSED) {
1398   // The address of the trampoline is already loaded into r_tgt.
1399   return OpReg(op, r_tgt);
1400 }
1401 
1402 }  // namespace art
1403