• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains small standalone helper functions and enum definitions for
11 // the X86 target useful for the compiler back-end and the MC libraries.
12 // As such, it deliberately does not include references to LLVM core
13 // code gen types, passes, etc..
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18 #define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
19 
20 #include "X86MCTargetDesc.h"
21 #include "llvm/MC/MCInstrDesc.h"
22 #include "llvm/Support/DataTypes.h"
23 #include "llvm/Support/ErrorHandling.h"
24 
25 namespace llvm {
26 
27 namespace X86 {
28   // Enums for memory operand decoding.  Each memory operand is represented with
29   // a 5 operand sequence in the form:
30   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31   // These enums help decode this.
32   enum {
33     AddrBaseReg = 0,
34     AddrScaleAmt = 1,
35     AddrIndexReg = 2,
36     AddrDisp = 3,
37 
38     /// AddrSegmentReg - The operand # of the segment in the memory operand.
39     AddrSegmentReg = 4,
40 
41     /// AddrNumOperands - Total number of operands in a memory reference.
42     AddrNumOperands = 5
43   };
44 } // end namespace X86;
45 
46 /// X86II - This namespace holds all of the target specific flags that
47 /// instruction info tracks.
48 ///
49 namespace X86II {
50   /// Target Operand Flag enum.
51   enum TOF {
52     //===------------------------------------------------------------------===//
53     // X86 Specific MachineOperand flags.
54 
55     MO_NO_FLAG,
56 
57     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58     /// relocation of:
59     ///    SYMBOL_LABEL + [. - PICBASELABEL]
60     MO_GOT_ABSOLUTE_ADDRESS,
61 
62     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63     /// immediate should get the value of the symbol minus the PIC base label:
64     ///    SYMBOL_LABEL - PICBASELABEL
65     MO_PIC_BASE_OFFSET,
66 
67     /// MO_GOT - On a symbol operand this indicates that the immediate is the
68     /// offset to the GOT entry for the symbol name from the base of the GOT.
69     ///
70     /// See the X86-64 ELF ABI supplement for more details.
71     ///    SYMBOL_LABEL @GOT
72     MO_GOT,
73 
74     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75     /// the offset to the location of the symbol name from the base of the GOT.
76     ///
77     /// See the X86-64 ELF ABI supplement for more details.
78     ///    SYMBOL_LABEL @GOTOFF
79     MO_GOTOFF,
80 
81     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82     /// offset to the GOT entry for the symbol name from the current code
83     /// location.
84     ///
85     /// See the X86-64 ELF ABI supplement for more details.
86     ///    SYMBOL_LABEL @GOTPCREL
87     MO_GOTPCREL,
88 
89     /// MO_PLT - On a symbol operand this indicates that the immediate is
90     /// offset to the PLT entry of symbol name from the current code location.
91     ///
92     /// See the X86-64 ELF ABI supplement for more details.
93     ///    SYMBOL_LABEL @PLT
94     MO_PLT,
95 
96     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
97     /// the offset of the GOT entry with the TLS index structure that contains
98     /// the module number and variable offset for the symbol. Used in the
99     /// general dynamic TLS access model.
100     ///
101     /// See 'ELF Handling for Thread-Local Storage' for more details.
102     ///    SYMBOL_LABEL @TLSGD
103     MO_TLSGD,
104 
105     /// MO_TLSLD - On a symbol operand this indicates that the immediate is
106     /// the offset of the GOT entry with the TLS index for the module that
107     /// contains the symbol. When this index is passed to a call to
108     /// __tls_get_addr, the function will return the base address of the TLS
109     /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
110     ///
111     /// See 'ELF Handling for Thread-Local Storage' for more details.
112     ///    SYMBOL_LABEL @TLSLD
113     MO_TLSLD,
114 
115     /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
116     /// the offset of the GOT entry with the TLS index for the module that
117     /// contains the symbol. When this index is passed to a call to
118     /// ___tls_get_addr, the function will return the base address of the TLS
119     /// block for the symbol. Used in the IA32 local dynamic TLS access model.
120     ///
121     /// See 'ELF Handling for Thread-Local Storage' for more details.
122     ///    SYMBOL_LABEL @TLSLDM
123     MO_TLSLDM,
124 
125     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
126     /// the offset of the GOT entry with the thread-pointer offset for the
127     /// symbol. Used in the x86-64 initial exec TLS access model.
128     ///
129     /// See 'ELF Handling for Thread-Local Storage' for more details.
130     ///    SYMBOL_LABEL @GOTTPOFF
131     MO_GOTTPOFF,
132 
133     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
134     /// the absolute address of the GOT entry with the negative thread-pointer
135     /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
136     /// model.
137     ///
138     /// See 'ELF Handling for Thread-Local Storage' for more details.
139     ///    SYMBOL_LABEL @INDNTPOFF
140     MO_INDNTPOFF,
141 
142     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
143     /// the thread-pointer offset for the symbol. Used in the x86-64 local
144     /// exec TLS access model.
145     ///
146     /// See 'ELF Handling for Thread-Local Storage' for more details.
147     ///    SYMBOL_LABEL @TPOFF
148     MO_TPOFF,
149 
150     /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
151     /// the offset of the GOT entry with the TLS offset of the symbol. Used
152     /// in the local dynamic TLS access model.
153     ///
154     /// See 'ELF Handling for Thread-Local Storage' for more details.
155     ///    SYMBOL_LABEL @DTPOFF
156     MO_DTPOFF,
157 
158     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
159     /// the negative thread-pointer offset for the symbol. Used in the IA32
160     /// local exec TLS access model.
161     ///
162     /// See 'ELF Handling for Thread-Local Storage' for more details.
163     ///    SYMBOL_LABEL @NTPOFF
164     MO_NTPOFF,
165 
166     /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
167     /// the offset of the GOT entry with the negative thread-pointer offset for
168     /// the symbol. Used in the PIC IA32 initial exec TLS access model.
169     ///
170     /// See 'ELF Handling for Thread-Local Storage' for more details.
171     ///    SYMBOL_LABEL @GOTNTPOFF
172     MO_GOTNTPOFF,
173 
174     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
175     /// reference is actually to the "__imp_FOO" symbol.  This is used for
176     /// dllimport linkage on windows.
177     MO_DLLIMPORT,
178 
179     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
180     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
181     /// and jumps to external functions on Tiger and earlier.
182     MO_DARWIN_STUB,
183 
184     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
185     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
186     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
187     MO_DARWIN_NONLAZY,
188 
189     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
190     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
191     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
192     MO_DARWIN_NONLAZY_PIC_BASE,
193 
194     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
195     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
196     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
197     /// stub.
198     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
199 
200     /// MO_TLVP - On a symbol operand this indicates that the immediate is
201     /// some TLS offset.
202     ///
203     /// This is the TLS offset for the Darwin TLS mechanism.
204     MO_TLVP,
205 
206     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
207     /// is some TLS offset from the picbase.
208     ///
209     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
210     MO_TLVP_PIC_BASE,
211 
212     /// MO_SECREL - On a symbol operand this indicates that the immediate is
213     /// the offset from beginning of section.
214     ///
215     /// This is the TLS offset for the COFF/Windows TLS mechanism.
216     MO_SECREL
217   };
218 
219   enum : uint64_t {
220     //===------------------------------------------------------------------===//
221     // Instruction encodings.  These are the standard/most common forms for X86
222     // instructions.
223     //
224 
225     // PseudoFrm - This represents an instruction that is a pseudo instruction
226     // or one that has not been implemented yet.  It is illegal to code generate
227     // it, but tolerated for intermediate implementation stages.
228     Pseudo         = 0,
229 
230     /// Raw - This form is for instructions that don't have any operands, so
231     /// they are just a fixed opcode value, like 'leave'.
232     RawFrm         = 1,
233 
234     /// AddRegFrm - This form is used for instructions like 'push r32' that have
235     /// their one register operand added to their opcode.
236     AddRegFrm      = 2,
237 
238     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
239     /// to specify a destination, which in this case is a register.
240     ///
241     MRMDestReg     = 3,
242 
243     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
244     /// to specify a destination, which in this case is memory.
245     ///
246     MRMDestMem     = 4,
247 
248     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
249     /// to specify a source, which in this case is a register.
250     ///
251     MRMSrcReg      = 5,
252 
253     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
254     /// to specify a source, which in this case is memory.
255     ///
256     MRMSrcMem      = 6,
257 
258     /// RawFrmMemOffs - This form is for instructions that store an absolute
259     /// memory offset as an immediate with a possible segment override.
260     RawFrmMemOffs  = 7,
261 
262     /// RawFrmSrc - This form is for instructions that use the source index
263     /// register SI/ESI/RSI with a possible segment override.
264     RawFrmSrc      = 8,
265 
266     /// RawFrmDst - This form is for instructions that use the destination index
267     /// register DI/EDI/ESI.
268     RawFrmDst      = 9,
269 
270     /// RawFrmSrc - This form is for instructions that use the the source index
271     /// register SI/ESI/ERI with a possible segment override, and also the
272     /// destination index register DI/ESI/RDI.
273     RawFrmDstSrc   = 10,
274 
275     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
276     /// immediates, the first of which is a 16-bit immediate (specified by
277     /// the imm encoding) and the second is a 8-bit fixed value.
278     RawFrmImm8 = 11,
279 
280     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
281     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
282     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
283     /// manual, this operand is described as pntr16:32 and pntr16:16
284     RawFrmImm16 = 12,
285 
286     /// MRMX[rm] - The forms are used to represent instructions that use a
287     /// Mod/RM byte, and don't use the middle field for anything.
288     MRMXr = 14, MRMXm = 15,
289 
290     /// MRM[0-7][rm] - These forms are used to represent instructions that use
291     /// a Mod/RM byte, and use the middle field to hold extended opcode
292     /// information.  In the intel manual these are represented as /0, /1, ...
293     ///
294 
295     // First, instructions that operate on a register r/m operand...
296     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
297     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
298 
299     // Next, instructions that operate on a memory r/m operand...
300     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
301     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
302 
303     //// MRM_XX - A mod/rm byte of exactly 0xXX.
304     MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
305     MRM_C4 = 36, MRM_C5 = 37, MRM_C6 = 38, MRM_C7 = 39,
306     MRM_C8 = 40, MRM_C9 = 41, MRM_CA = 42, MRM_CB = 43,
307     MRM_CC = 44, MRM_CD = 45, MRM_CE = 46, MRM_CF = 47,
308     MRM_D0 = 48, MRM_D1 = 49, MRM_D2 = 50, MRM_D3 = 51,
309     MRM_D4 = 52, MRM_D5 = 53, MRM_D6 = 54, MRM_D7 = 55,
310     MRM_D8 = 56, MRM_D9 = 57, MRM_DA = 58, MRM_DB = 59,
311     MRM_DC = 60, MRM_DD = 61, MRM_DE = 62, MRM_DF = 63,
312     MRM_E0 = 64, MRM_E1 = 65, MRM_E2 = 66, MRM_E3 = 67,
313     MRM_E4 = 68, MRM_E5 = 69, MRM_E6 = 70, MRM_E7 = 71,
314     MRM_E8 = 72, MRM_E9 = 73, MRM_EA = 74, MRM_EB = 75,
315     MRM_EC = 76, MRM_ED = 77, MRM_EE = 78, MRM_EF = 79,
316     MRM_F0 = 80, MRM_F1 = 81, MRM_F2 = 82, MRM_F3 = 83,
317     MRM_F4 = 84, MRM_F5 = 85, MRM_F6 = 86, MRM_F7 = 87,
318     MRM_F8 = 88, MRM_F9 = 89, MRM_FA = 90, MRM_FB = 91,
319     MRM_FC = 92, MRM_FD = 93, MRM_FE = 94, MRM_FF = 95,
320 
321     FormMask       = 127,
322 
323     //===------------------------------------------------------------------===//
324     // Actual flags...
325 
326     // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
327     // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
328     // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
329     // prefix in 16-bit mode.
330     OpSizeShift = 7,
331     OpSizeMask = 0x3 << OpSizeShift,
332 
333     OpSizeFixed = 0 << OpSizeShift,
334     OpSize16    = 1 << OpSizeShift,
335     OpSize32    = 2 << OpSizeShift,
336 
337     // AsSize - AdSizeX implies this instruction determines its need of 0x67
338     // prefix from a normal ModRM memory operand. The other types indicate that
339     // an operand is encoded with a specific width and a prefix is needed if
340     // it differs from the current mode.
341     AdSizeShift = OpSizeShift + 2,
342     AdSizeMask  = 0x3 << AdSizeShift,
343 
344     AdSizeX  = 1 << AdSizeShift,
345     AdSize16 = 1 << AdSizeShift,
346     AdSize32 = 2 << AdSizeShift,
347     AdSize64 = 3 << AdSizeShift,
348 
349     //===------------------------------------------------------------------===//
350     // OpPrefix - There are several prefix bytes that are used as opcode
351     // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
352     // no prefix.
353     //
354     OpPrefixShift = AdSizeShift + 2,
355     OpPrefixMask  = 0x7 << OpPrefixShift,
356 
357     // PS, PD - Prefix code for packed single and double precision vector
358     // floating point operations performed in the SSE registers.
359     PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
360 
361     // XS, XD - These prefix codes are for single and double precision scalar
362     // floating point operations performed in the SSE registers.
363     XS = 3 << OpPrefixShift,  XD = 4 << OpPrefixShift,
364 
365     //===------------------------------------------------------------------===//
366     // OpMap - This field determines which opcode map this instruction
367     // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
368     //
369     OpMapShift = OpPrefixShift + 3,
370     OpMapMask  = 0x7 << OpMapShift,
371 
372     // OB - OneByte - Set if this instruction has a one byte opcode.
373     OB = 0 << OpMapShift,
374 
375     // TB - TwoByte - Set if this instruction has a two byte opcode, which
376     // starts with a 0x0F byte before the real opcode.
377     TB = 1 << OpMapShift,
378 
379     // T8, TA - Prefix after the 0x0F prefix.
380     T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
381 
382     // XOP8 - Prefix to include use of imm byte.
383     XOP8 = 4 << OpMapShift,
384 
385     // XOP9 - Prefix to exclude use of imm byte.
386     XOP9 = 5 << OpMapShift,
387 
388     // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
389     XOPA = 6 << OpMapShift,
390 
391     //===------------------------------------------------------------------===//
392     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
393     // They are used to specify GPRs and SSE registers, 64-bit operand size,
394     // etc. We only cares about REX.W and REX.R bits and only the former is
395     // statically determined.
396     //
397     REXShift    = OpMapShift + 3,
398     REX_W       = 1 << REXShift,
399 
400     //===------------------------------------------------------------------===//
401     // This three-bit field describes the size of an immediate operand.  Zero is
402     // unused so that we can tell if we forgot to set a value.
403     ImmShift = REXShift + 1,
404     ImmMask    = 15 << ImmShift,
405     Imm8       = 1 << ImmShift,
406     Imm8PCRel  = 2 << ImmShift,
407     Imm16      = 3 << ImmShift,
408     Imm16PCRel = 4 << ImmShift,
409     Imm32      = 5 << ImmShift,
410     Imm32PCRel = 6 << ImmShift,
411     Imm32S     = 7 << ImmShift,
412     Imm64      = 8 << ImmShift,
413 
414     //===------------------------------------------------------------------===//
415     // FP Instruction Classification...  Zero is non-fp instruction.
416 
417     // FPTypeMask - Mask for all of the FP types...
418     FPTypeShift = ImmShift + 4,
419     FPTypeMask  = 7 << FPTypeShift,
420 
421     // NotFP - The default, set for instructions that do not use FP registers.
422     NotFP      = 0 << FPTypeShift,
423 
424     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
425     ZeroArgFP  = 1 << FPTypeShift,
426 
427     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
428     OneArgFP   = 2 << FPTypeShift,
429 
430     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
431     // result back to ST(0).  For example, fcos, fsqrt, etc.
432     //
433     OneArgFPRW = 3 << FPTypeShift,
434 
435     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
436     // explicit argument, storing the result to either ST(0) or the implicit
437     // argument.  For example: fadd, fsub, fmul, etc...
438     TwoArgFP   = 4 << FPTypeShift,
439 
440     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
441     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
442     CompareFP  = 5 << FPTypeShift,
443 
444     // CondMovFP - "2 operand" floating point conditional move instructions.
445     CondMovFP  = 6 << FPTypeShift,
446 
447     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
448     SpecialFP  = 7 << FPTypeShift,
449 
450     // Lock prefix
451     LOCKShift = FPTypeShift + 3,
452     LOCK = 1 << LOCKShift,
453 
454     // REP prefix
455     REPShift = LOCKShift + 1,
456     REP = 1 << REPShift,
457 
458     // Execution domain for SSE instructions.
459     // 0 means normal, non-SSE instruction.
460     SSEDomainShift = REPShift + 1,
461 
462     // Encoding
463     EncodingShift = SSEDomainShift + 2,
464     EncodingMask = 0x3 << EncodingShift,
465 
466     // VEX - encoding using 0xC4/0xC5
467     VEX = 1 << EncodingShift,
468 
469     /// XOP - Opcode prefix used by XOP instructions.
470     XOP = 2 << EncodingShift,
471 
472     // VEX_EVEX - Specifies that this instruction use EVEX form which provides
473     // syntax support up to 32 512-bit register operands and up to 7 16-bit
474     // mask operands as well as source operand data swizzling/memory operand
475     // conversion, eviction hint, and rounding mode.
476     EVEX = 3 << EncodingShift,
477 
478     // Opcode
479     OpcodeShift   = EncodingShift + 2,
480 
481     /// VEX_W - Has a opcode specific functionality, but is used in the same
482     /// way as REX_W is for regular SSE instructions.
483     VEX_WShift  = OpcodeShift + 8,
484     VEX_W       = 1ULL << VEX_WShift,
485 
486     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
487     /// address instructions in SSE are represented as 3 address ones in AVX
488     /// and the additional register is encoded in VEX_VVVV prefix.
489     VEX_4VShift = VEX_WShift + 1,
490     VEX_4V      = 1ULL << VEX_4VShift,
491 
492     /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
493     /// operand 3 with VEX.vvvv.
494     VEX_4VOp3Shift = VEX_4VShift + 1,
495     VEX_4VOp3   = 1ULL << VEX_4VOp3Shift,
496 
497     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
498     /// must be encoded in the i8 immediate field. This usually happens in
499     /// instructions with 4 operands.
500     VEX_I8IMMShift = VEX_4VOp3Shift + 1,
501     VEX_I8IMM   = 1ULL << VEX_I8IMMShift,
502 
503     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
504     /// instruction uses 256-bit wide registers. This is usually auto detected
505     /// if a VR256 register is used, but some AVX instructions also have this
506     /// field marked when using a f256 memory references.
507     VEX_LShift = VEX_I8IMMShift + 1,
508     VEX_L       = 1ULL << VEX_LShift,
509 
510     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
511     // prefix. Usually used for scalar instructions. Needed by disassembler.
512     VEX_LIGShift = VEX_LShift + 1,
513     VEX_LIG     = 1ULL << VEX_LIGShift,
514 
515     // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
516     // with following encoding:
517     // - 00 V128
518     // - 01 V256
519     // - 10 V512
520     // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
521     // this will save 1 tsflag bit
522 
523     // EVEX_K - Set if this instruction requires masking
524     EVEX_KShift = VEX_LIGShift + 1,
525     EVEX_K      = 1ULL << EVEX_KShift,
526 
527     // EVEX_Z - Set if this instruction has EVEX.Z field set.
528     EVEX_ZShift = EVEX_KShift + 1,
529     EVEX_Z      = 1ULL << EVEX_ZShift,
530 
531     // EVEX_L2 - Set if this instruction has EVEX.L' field set.
532     EVEX_L2Shift = EVEX_ZShift + 1,
533     EVEX_L2     = 1ULL << EVEX_L2Shift,
534 
535     // EVEX_B - Set if this instruction has EVEX.B field set.
536     EVEX_BShift = EVEX_L2Shift + 1,
537     EVEX_B      = 1ULL << EVEX_BShift,
538 
539     // The scaling factor for the AVX512's 8-bit compressed displacement.
540     CD8_Scale_Shift = EVEX_BShift + 1,
541     CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
542 
543     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
544     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
545     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
546     /// storing a classifier in the imm8 field.  To simplify our implementation,
547     /// we handle this by storeing the classifier in the opcode field and using
548     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
549     Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
550     Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
551 
552     /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
553     /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
554     MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
555     MemOp4 = 1ULL << MemOp4Shift,
556 
557     /// Explicitly specified rounding control
558     EVEX_RCShift = MemOp4Shift + 1,
559     EVEX_RC = 1ULL << EVEX_RCShift
560   };
561 
562   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
563   // specified machine instruction.
564   //
getBaseOpcodeFor(uint64_t TSFlags)565   inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
566     return TSFlags >> X86II::OpcodeShift;
567   }
568 
hasImm(uint64_t TSFlags)569   inline bool hasImm(uint64_t TSFlags) {
570     return (TSFlags & X86II::ImmMask) != 0;
571   }
572 
573   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
574   /// of the specified instruction.
getSizeOfImm(uint64_t TSFlags)575   inline unsigned getSizeOfImm(uint64_t TSFlags) {
576     switch (TSFlags & X86II::ImmMask) {
577     default: llvm_unreachable("Unknown immediate size");
578     case X86II::Imm8:
579     case X86II::Imm8PCRel:  return 1;
580     case X86II::Imm16:
581     case X86II::Imm16PCRel: return 2;
582     case X86II::Imm32:
583     case X86II::Imm32S:
584     case X86II::Imm32PCRel: return 4;
585     case X86II::Imm64:      return 8;
586     }
587   }
588 
589   /// isImmPCRel - Return true if the immediate of the specified instruction's
590   /// TSFlags indicates that it is pc relative.
isImmPCRel(uint64_t TSFlags)591   inline unsigned isImmPCRel(uint64_t TSFlags) {
592     switch (TSFlags & X86II::ImmMask) {
593     default: llvm_unreachable("Unknown immediate size");
594     case X86II::Imm8PCRel:
595     case X86II::Imm16PCRel:
596     case X86II::Imm32PCRel:
597       return true;
598     case X86II::Imm8:
599     case X86II::Imm16:
600     case X86II::Imm32:
601     case X86II::Imm32S:
602     case X86II::Imm64:
603       return false;
604     }
605   }
606 
607   /// isImmSigned - Return true if the immediate of the specified instruction's
608   /// TSFlags indicates that it is signed.
isImmSigned(uint64_t TSFlags)609   inline unsigned isImmSigned(uint64_t TSFlags) {
610     switch (TSFlags & X86II::ImmMask) {
611     default: llvm_unreachable("Unknown immediate signedness");
612     case X86II::Imm32S:
613       return true;
614     case X86II::Imm8:
615     case X86II::Imm8PCRel:
616     case X86II::Imm16:
617     case X86II::Imm16PCRel:
618     case X86II::Imm32:
619     case X86II::Imm32PCRel:
620     case X86II::Imm64:
621       return false;
622     }
623   }
624 
625   /// getOperandBias - compute any additional adjustment needed to
626   ///                  the offset to the start of the memory operand
627   ///                  in this instruction.
628   /// If this is a two-address instruction,skip one of the register operands.
629   /// FIXME: This should be handled during MCInst lowering.
getOperandBias(const MCInstrDesc & Desc)630   inline int getOperandBias(const MCInstrDesc& Desc)
631   {
632     unsigned NumOps = Desc.getNumOperands();
633     unsigned CurOp = 0;
634     if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
635       ++CurOp;
636     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
637              Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
638       // Special case for AVX-512 GATHER with 2 TIED_TO operands
639       // Skip the first 2 operands: dst, mask_wb
640       CurOp += 2;
641     else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
642              Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
643       // Special case for GATHER with 2 TIED_TO operands
644       // Skip the first 2 operands: dst, mask_wb
645       CurOp += 2;
646     else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
647       // SCATTER
648       ++CurOp;
649     return CurOp;
650   }
651 
652   /// getMemoryOperandNo - The function returns the MCInst operand # for the
653   /// first field of the memory operand.  If the instruction doesn't have a
654   /// memory operand, this returns -1.
655   ///
656   /// Note that this ignores tied operands.  If there is a tied register which
657   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
658   /// counted as one operand.
659   ///
getMemoryOperandNo(uint64_t TSFlags,unsigned Opcode)660   inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
661     bool HasVEX_4V = TSFlags & X86II::VEX_4V;
662     bool HasMemOp4 = TSFlags & X86II::MemOp4;
663     bool HasEVEX_K = TSFlags & X86II::EVEX_K;
664 
665     switch (TSFlags & X86II::FormMask) {
666     default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
667     case X86II::Pseudo:
668     case X86II::RawFrm:
669     case X86II::AddRegFrm:
670     case X86II::MRMDestReg:
671     case X86II::MRMSrcReg:
672     case X86II::RawFrmImm8:
673     case X86II::RawFrmImm16:
674     case X86II::RawFrmMemOffs:
675     case X86II::RawFrmSrc:
676     case X86II::RawFrmDst:
677     case X86II::RawFrmDstSrc:
678        return -1;
679     case X86II::MRMDestMem:
680       return 0;
681     case X86II::MRMSrcMem:
682       // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
683       // mask register.
684       return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K;
685     case X86II::MRMXr:
686     case X86II::MRM0r: case X86II::MRM1r:
687     case X86II::MRM2r: case X86II::MRM3r:
688     case X86II::MRM4r: case X86II::MRM5r:
689     case X86II::MRM6r: case X86II::MRM7r:
690       return -1;
691     case X86II::MRMXm:
692     case X86II::MRM0m: case X86II::MRM1m:
693     case X86II::MRM2m: case X86II::MRM3m:
694     case X86II::MRM4m: case X86II::MRM5m:
695     case X86II::MRM6m: case X86II::MRM7m:
696       // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
697       return 0 + HasVEX_4V + HasEVEX_K;
698     case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
699     case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
700     case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
701     case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
702     case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6:
703     case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9:
704     case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
705     case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
706     case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2:
707     case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5:
708     case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA:
709     case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED:
710     case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1:
711     case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4:
712     case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7:
713     case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA:
714     case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD:
715     case X86II::MRM_FE: case X86II::MRM_FF:
716       return -1;
717     }
718   }
719 
720   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
721   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
isX86_64ExtendedReg(unsigned RegNo)722   inline bool isX86_64ExtendedReg(unsigned RegNo) {
723     if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
724         (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
725         (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
726         (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
727         (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
728         (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
729       return true;
730 
731     switch (RegNo) {
732     default: break;
733     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
734     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
735     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
736     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
737     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
738     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
739     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
740     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
741     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
742     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
743         return true;
744     }
745     return false;
746   }
747 
748   /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
749   /// registers? e.g. zmm21, etc.
is32ExtendedReg(unsigned RegNo)750   static inline bool is32ExtendedReg(unsigned RegNo) {
751     return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
752             (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
753             (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
754   }
755 
756 
isX86_64NonExtLowByteReg(unsigned reg)757   inline bool isX86_64NonExtLowByteReg(unsigned reg) {
758     return (reg == X86::SPL || reg == X86::BPL ||
759             reg == X86::SIL || reg == X86::DIL);
760   }
761 }
762 
763 } // end namespace llvm;
764 
765 #endif
766