• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Provides the Expression parsing implementation.
12 ///
13 /// Expressions in C99 basically consist of a bunch of binary operators with
14 /// unary operators and other random stuff at the leaves.
15 ///
16 /// In the C99 grammar, these unary operators bind tightest and are represented
17 /// as the 'cast-expression' production.  Everything else is either a binary
18 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
19 /// handled by ParseCastExpression, the higher level pieces are handled by
20 /// ParseBinaryExpression.
21 ///
22 //===----------------------------------------------------------------------===//
23 
24 #include "clang/Parse/Parser.h"
25 #include "RAIIObjectsForParser.h"
26 #include "clang/AST/ASTContext.h"
27 #include "clang/Basic/PrettyStackTrace.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallString.h"
33 #include "llvm/ADT/SmallVector.h"
34 using namespace clang;
35 
36 /// \brief Simple precedence-based parser for binary/ternary operators.
37 ///
38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
39 /// production.  C99 specifies that the LHS of an assignment operator should be
40 /// parsed as a unary-expression, but consistency dictates that it be a
41 /// conditional-expession.  In practice, the important thing here is that the
42 /// LHS of an assignment has to be an l-value, which productions between
43 /// unary-expression and conditional-expression don't produce.  Because we want
44 /// consistency, we parse the LHS as a conditional-expression, then check for
45 /// l-value-ness in semantic analysis stages.
46 ///
47 /// \verbatim
48 ///       pm-expression: [C++ 5.5]
49 ///         cast-expression
50 ///         pm-expression '.*' cast-expression
51 ///         pm-expression '->*' cast-expression
52 ///
53 ///       multiplicative-expression: [C99 6.5.5]
54 ///     Note: in C++, apply pm-expression instead of cast-expression
55 ///         cast-expression
56 ///         multiplicative-expression '*' cast-expression
57 ///         multiplicative-expression '/' cast-expression
58 ///         multiplicative-expression '%' cast-expression
59 ///
60 ///       additive-expression: [C99 6.5.6]
61 ///         multiplicative-expression
62 ///         additive-expression '+' multiplicative-expression
63 ///         additive-expression '-' multiplicative-expression
64 ///
65 ///       shift-expression: [C99 6.5.7]
66 ///         additive-expression
67 ///         shift-expression '<<' additive-expression
68 ///         shift-expression '>>' additive-expression
69 ///
70 ///       relational-expression: [C99 6.5.8]
71 ///         shift-expression
72 ///         relational-expression '<' shift-expression
73 ///         relational-expression '>' shift-expression
74 ///         relational-expression '<=' shift-expression
75 ///         relational-expression '>=' shift-expression
76 ///
77 ///       equality-expression: [C99 6.5.9]
78 ///         relational-expression
79 ///         equality-expression '==' relational-expression
80 ///         equality-expression '!=' relational-expression
81 ///
82 ///       AND-expression: [C99 6.5.10]
83 ///         equality-expression
84 ///         AND-expression '&' equality-expression
85 ///
86 ///       exclusive-OR-expression: [C99 6.5.11]
87 ///         AND-expression
88 ///         exclusive-OR-expression '^' AND-expression
89 ///
90 ///       inclusive-OR-expression: [C99 6.5.12]
91 ///         exclusive-OR-expression
92 ///         inclusive-OR-expression '|' exclusive-OR-expression
93 ///
94 ///       logical-AND-expression: [C99 6.5.13]
95 ///         inclusive-OR-expression
96 ///         logical-AND-expression '&&' inclusive-OR-expression
97 ///
98 ///       logical-OR-expression: [C99 6.5.14]
99 ///         logical-AND-expression
100 ///         logical-OR-expression '||' logical-AND-expression
101 ///
102 ///       conditional-expression: [C99 6.5.15]
103 ///         logical-OR-expression
104 ///         logical-OR-expression '?' expression ':' conditional-expression
105 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
106 /// [C++] the third operand is an assignment-expression
107 ///
108 ///       assignment-expression: [C99 6.5.16]
109 ///         conditional-expression
110 ///         unary-expression assignment-operator assignment-expression
111 /// [C++]   throw-expression [C++ 15]
112 ///
113 ///       assignment-operator: one of
114 ///         = *= /= %= += -= <<= >>= &= ^= |=
115 ///
116 ///       expression: [C99 6.5.17]
117 ///         assignment-expression ...[opt]
118 ///         expression ',' assignment-expression ...[opt]
119 /// \endverbatim
ParseExpression(TypeCastState isTypeCast)120 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
121   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
122   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
123 }
124 
125 /// This routine is called when the '@' is seen and consumed.
126 /// Current token is an Identifier and is not a 'try'. This
127 /// routine is necessary to disambiguate \@try-statement from,
128 /// for example, \@encode-expression.
129 ///
130 ExprResult
ParseExpressionWithLeadingAt(SourceLocation AtLoc)131 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
132   ExprResult LHS(ParseObjCAtExpression(AtLoc));
133   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
134 }
135 
136 /// This routine is called when a leading '__extension__' is seen and
137 /// consumed.  This is necessary because the token gets consumed in the
138 /// process of disambiguating between an expression and a declaration.
139 ExprResult
ParseExpressionWithLeadingExtension(SourceLocation ExtLoc)140 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
141   ExprResult LHS(true);
142   {
143     // Silence extension warnings in the sub-expression
144     ExtensionRAIIObject O(Diags);
145 
146     LHS = ParseCastExpression(false);
147   }
148 
149   if (!LHS.isInvalid())
150     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
151                                LHS.get());
152 
153   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
154 }
155 
156 /// \brief Parse an expr that doesn't include (top-level) commas.
ParseAssignmentExpression(TypeCastState isTypeCast)157 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
158   if (Tok.is(tok::code_completion)) {
159     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
160     cutOffParsing();
161     return ExprError();
162   }
163 
164   if (Tok.is(tok::kw_throw))
165     return ParseThrowExpression();
166 
167   ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
168                                        /*isAddressOfOperand=*/false,
169                                        isTypeCast);
170   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
171 }
172 
173 /// \brief Parse an assignment expression where part of an Objective-C message
174 /// send has already been parsed.
175 ///
176 /// In this case \p LBracLoc indicates the location of the '[' of the message
177 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
178 /// the receiver of the message.
179 ///
180 /// Since this handles full assignment-expression's, it handles postfix
181 /// expressions and other binary operators for these expressions as well.
182 ExprResult
ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,SourceLocation SuperLoc,ParsedType ReceiverType,Expr * ReceiverExpr)183 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
184                                                     SourceLocation SuperLoc,
185                                                     ParsedType ReceiverType,
186                                                     Expr *ReceiverExpr) {
187   ExprResult R
188     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
189                                      ReceiverType, ReceiverExpr);
190   R = ParsePostfixExpressionSuffix(R);
191   return ParseRHSOfBinaryExpression(R, prec::Assignment);
192 }
193 
194 
ParseConstantExpression(TypeCastState isTypeCast)195 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
196   // C++03 [basic.def.odr]p2:
197   //   An expression is potentially evaluated unless it appears where an
198   //   integral constant expression is required (see 5.19) [...].
199   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
200   EnterExpressionEvaluationContext Unevaluated(Actions,
201                                                Sema::ConstantEvaluated);
202 
203   ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
204   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
205   return Actions.ActOnConstantExpression(Res);
206 }
207 
isNotExpressionStart()208 bool Parser::isNotExpressionStart() {
209   tok::TokenKind K = Tok.getKind();
210   if (K == tok::l_brace || K == tok::r_brace  ||
211       K == tok::kw_for  || K == tok::kw_while ||
212       K == tok::kw_if   || K == tok::kw_else  ||
213       K == tok::kw_goto || K == tok::kw_try)
214     return true;
215   // If this is a decl-specifier, we can't be at the start of an expression.
216   return isKnownToBeDeclarationSpecifier();
217 }
218 
isFoldOperator(prec::Level Level)219 static bool isFoldOperator(prec::Level Level) {
220   return Level > prec::Unknown && Level != prec::Conditional;
221 }
isFoldOperator(tok::TokenKind Kind)222 static bool isFoldOperator(tok::TokenKind Kind) {
223   return isFoldOperator(getBinOpPrecedence(Kind, false, true));
224 }
225 
226 /// \brief Parse a binary expression that starts with \p LHS and has a
227 /// precedence of at least \p MinPrec.
228 ExprResult
ParseRHSOfBinaryExpression(ExprResult LHS,prec::Level MinPrec)229 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
230   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
231                                                GreaterThanIsOperator,
232                                                getLangOpts().CPlusPlus11);
233   SourceLocation ColonLoc;
234 
235   while (1) {
236     // If this token has a lower precedence than we are allowed to parse (e.g.
237     // because we are called recursively, or because the token is not a binop),
238     // then we are done!
239     if (NextTokPrec < MinPrec)
240       return LHS;
241 
242     // Consume the operator, saving the operator token for error reporting.
243     Token OpToken = Tok;
244     ConsumeToken();
245 
246     // Bail out when encountering a comma followed by a token which can't
247     // possibly be the start of an expression. For instance:
248     //   int f() { return 1, }
249     // We can't do this before consuming the comma, because
250     // isNotExpressionStart() looks at the token stream.
251     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
252       PP.EnterToken(Tok);
253       Tok = OpToken;
254       return LHS;
255     }
256 
257     // If the next token is an ellipsis, then this is a fold-expression. Leave
258     // it alone so we can handle it in the paren expression.
259     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
260       // FIXME: We can't check this via lookahead before we consume the token
261       // because that tickles a lexer bug.
262       PP.EnterToken(Tok);
263       Tok = OpToken;
264       return LHS;
265     }
266 
267     // Special case handling for the ternary operator.
268     ExprResult TernaryMiddle(true);
269     if (NextTokPrec == prec::Conditional) {
270       if (Tok.isNot(tok::colon)) {
271         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
272         ColonProtectionRAIIObject X(*this);
273 
274         // Handle this production specially:
275         //   logical-OR-expression '?' expression ':' conditional-expression
276         // In particular, the RHS of the '?' is 'expression', not
277         // 'logical-OR-expression' as we might expect.
278         TernaryMiddle = ParseExpression();
279         if (TernaryMiddle.isInvalid()) {
280           Actions.CorrectDelayedTyposInExpr(LHS);
281           LHS = ExprError();
282           TernaryMiddle = nullptr;
283         }
284       } else {
285         // Special case handling of "X ? Y : Z" where Y is empty:
286         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
287         TernaryMiddle = nullptr;
288         Diag(Tok, diag::ext_gnu_conditional_expr);
289       }
290 
291       if (!TryConsumeToken(tok::colon, ColonLoc)) {
292         // Otherwise, we're missing a ':'.  Assume that this was a typo that
293         // the user forgot. If we're not in a macro expansion, we can suggest
294         // a fixit hint. If there were two spaces before the current token,
295         // suggest inserting the colon in between them, otherwise insert ": ".
296         SourceLocation FILoc = Tok.getLocation();
297         const char *FIText = ": ";
298         const SourceManager &SM = PP.getSourceManager();
299         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
300           assert(FILoc.isFileID());
301           bool IsInvalid = false;
302           const char *SourcePtr =
303             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
304           if (!IsInvalid && *SourcePtr == ' ') {
305             SourcePtr =
306               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
307             if (!IsInvalid && *SourcePtr == ' ') {
308               FILoc = FILoc.getLocWithOffset(-1);
309               FIText = ":";
310             }
311           }
312         }
313 
314         Diag(Tok, diag::err_expected)
315             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
316         Diag(OpToken, diag::note_matching) << tok::question;
317         ColonLoc = Tok.getLocation();
318       }
319     }
320 
321     // Code completion for the right-hand side of an assignment expression
322     // goes through a special hook that takes the left-hand side into account.
323     if (Tok.is(tok::code_completion) && NextTokPrec == prec::Assignment) {
324       Actions.CodeCompleteAssignmentRHS(getCurScope(), LHS.get());
325       cutOffParsing();
326       return ExprError();
327     }
328 
329     // Parse another leaf here for the RHS of the operator.
330     // ParseCastExpression works here because all RHS expressions in C have it
331     // as a prefix, at least. However, in C++, an assignment-expression could
332     // be a throw-expression, which is not a valid cast-expression.
333     // Therefore we need some special-casing here.
334     // Also note that the third operand of the conditional operator is
335     // an assignment-expression in C++, and in C++11, we can have a
336     // braced-init-list on the RHS of an assignment. For better diagnostics,
337     // parse as if we were allowed braced-init-lists everywhere, and check that
338     // they only appear on the RHS of assignments later.
339     ExprResult RHS;
340     bool RHSIsInitList = false;
341     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
342       RHS = ParseBraceInitializer();
343       RHSIsInitList = true;
344     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
345       RHS = ParseAssignmentExpression();
346     else
347       RHS = ParseCastExpression(false);
348 
349     if (RHS.isInvalid()) {
350       Actions.CorrectDelayedTyposInExpr(LHS);
351       LHS = ExprError();
352     }
353 
354     // Remember the precedence of this operator and get the precedence of the
355     // operator immediately to the right of the RHS.
356     prec::Level ThisPrec = NextTokPrec;
357     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
358                                      getLangOpts().CPlusPlus11);
359 
360     // Assignment and conditional expressions are right-associative.
361     bool isRightAssoc = ThisPrec == prec::Conditional ||
362                         ThisPrec == prec::Assignment;
363 
364     // Get the precedence of the operator to the right of the RHS.  If it binds
365     // more tightly with RHS than we do, evaluate it completely first.
366     if (ThisPrec < NextTokPrec ||
367         (ThisPrec == NextTokPrec && isRightAssoc)) {
368       if (!RHS.isInvalid() && RHSIsInitList) {
369         Diag(Tok, diag::err_init_list_bin_op)
370           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
371         RHS = ExprError();
372       }
373       // If this is left-associative, only parse things on the RHS that bind
374       // more tightly than the current operator.  If it is left-associative, it
375       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
376       // A=(B=(C=D)), where each paren is a level of recursion here.
377       // The function takes ownership of the RHS.
378       RHS = ParseRHSOfBinaryExpression(RHS,
379                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
380       RHSIsInitList = false;
381 
382       if (RHS.isInvalid()) {
383         Actions.CorrectDelayedTyposInExpr(LHS);
384         LHS = ExprError();
385       }
386 
387       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
388                                        getLangOpts().CPlusPlus11);
389     }
390 
391     if (!RHS.isInvalid() && RHSIsInitList) {
392       if (ThisPrec == prec::Assignment) {
393         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
394           << Actions.getExprRange(RHS.get());
395       } else {
396         Diag(OpToken, diag::err_init_list_bin_op)
397           << /*RHS*/1 << PP.getSpelling(OpToken)
398           << Actions.getExprRange(RHS.get());
399         LHS = ExprError();
400       }
401     }
402 
403     if (!LHS.isInvalid()) {
404       // Combine the LHS and RHS into the LHS (e.g. build AST).
405       if (TernaryMiddle.isInvalid()) {
406         // If we're using '>>' as an operator within a template
407         // argument list (in C++98), suggest the addition of
408         // parentheses so that the code remains well-formed in C++0x.
409         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
410           SuggestParentheses(OpToken.getLocation(),
411                              diag::warn_cxx11_right_shift_in_template_arg,
412                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
413                                      Actions.getExprRange(RHS.get()).getEnd()));
414 
415         LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
416                                  OpToken.getKind(), LHS.get(), RHS.get());
417       } else
418         LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
419                                          LHS.get(), TernaryMiddle.get(),
420                                          RHS.get());
421     } else
422       // Ensure potential typos in the RHS aren't left undiagnosed.
423       Actions.CorrectDelayedTyposInExpr(RHS);
424   }
425 }
426 
427 /// \brief Parse a cast-expression, or, if \p isUnaryExpression is true,
428 /// parse a unary-expression.
429 ///
430 /// \p isAddressOfOperand exists because an id-expression that is the
431 /// operand of address-of gets special treatment due to member pointers.
432 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,TypeCastState isTypeCast)433 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
434                                        bool isAddressOfOperand,
435                                        TypeCastState isTypeCast) {
436   bool NotCastExpr;
437   ExprResult Res = ParseCastExpression(isUnaryExpression,
438                                        isAddressOfOperand,
439                                        NotCastExpr,
440                                        isTypeCast);
441   if (NotCastExpr)
442     Diag(Tok, diag::err_expected_expression);
443   return Res;
444 }
445 
446 namespace {
447 class CastExpressionIdValidator : public CorrectionCandidateCallback {
448  public:
CastExpressionIdValidator(Token Next,bool AllowTypes,bool AllowNonTypes)449   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
450       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
451     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
452   }
453 
ValidateCandidate(const TypoCorrection & candidate)454   bool ValidateCandidate(const TypoCorrection &candidate) override {
455     NamedDecl *ND = candidate.getCorrectionDecl();
456     if (!ND)
457       return candidate.isKeyword();
458 
459     if (isa<TypeDecl>(ND))
460       return WantTypeSpecifiers;
461 
462     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
463       return false;
464 
465     if (!(NextToken.is(tok::equal) || NextToken.is(tok::arrow) ||
466           NextToken.is(tok::period)))
467       return true;
468 
469     for (auto *C : candidate) {
470       NamedDecl *ND = C->getUnderlyingDecl();
471       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
472         return true;
473     }
474     return false;
475   }
476 
477  private:
478   Token NextToken;
479   bool AllowNonTypes;
480 };
481 }
482 
483 /// \brief Parse a cast-expression, or, if \pisUnaryExpression is true, parse
484 /// a unary-expression.
485 ///
486 /// \p isAddressOfOperand exists because an id-expression that is the operand
487 /// of address-of gets special treatment due to member pointers. NotCastExpr
488 /// is set to true if the token is not the start of a cast-expression, and no
489 /// diagnostic is emitted in this case.
490 ///
491 /// \verbatim
492 ///       cast-expression: [C99 6.5.4]
493 ///         unary-expression
494 ///         '(' type-name ')' cast-expression
495 ///
496 ///       unary-expression:  [C99 6.5.3]
497 ///         postfix-expression
498 ///         '++' unary-expression
499 ///         '--' unary-expression
500 ///         unary-operator cast-expression
501 ///         'sizeof' unary-expression
502 ///         'sizeof' '(' type-name ')'
503 /// [C++11] 'sizeof' '...' '(' identifier ')'
504 /// [GNU]   '__alignof' unary-expression
505 /// [GNU]   '__alignof' '(' type-name ')'
506 /// [C11]   '_Alignof' '(' type-name ')'
507 /// [C++11] 'alignof' '(' type-id ')'
508 /// [GNU]   '&&' identifier
509 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
510 /// [C++]   new-expression
511 /// [C++]   delete-expression
512 ///
513 ///       unary-operator: one of
514 ///         '&'  '*'  '+'  '-'  '~'  '!'
515 /// [GNU]   '__extension__'  '__real'  '__imag'
516 ///
517 ///       primary-expression: [C99 6.5.1]
518 /// [C99]   identifier
519 /// [C++]   id-expression
520 ///         constant
521 ///         string-literal
522 /// [C++]   boolean-literal  [C++ 2.13.5]
523 /// [C++11] 'nullptr'        [C++11 2.14.7]
524 /// [C++11] user-defined-literal
525 ///         '(' expression ')'
526 /// [C11]   generic-selection
527 ///         '__func__'        [C99 6.4.2.2]
528 /// [GNU]   '__FUNCTION__'
529 /// [MS]    '__FUNCDNAME__'
530 /// [MS]    'L__FUNCTION__'
531 /// [GNU]   '__PRETTY_FUNCTION__'
532 /// [GNU]   '(' compound-statement ')'
533 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
534 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
535 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
536 ///                                     assign-expr ')'
537 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
538 /// [GNU]   '__null'
539 /// [OBJC]  '[' objc-message-expr ']'
540 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
541 /// [OBJC]  '\@protocol' '(' identifier ')'
542 /// [OBJC]  '\@encode' '(' type-name ')'
543 /// [OBJC]  objc-string-literal
544 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
545 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
546 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
547 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
548 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
549 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
550 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
551 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
552 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
553 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
554 /// [C++]   'this'          [C++ 9.3.2]
555 /// [G++]   unary-type-trait '(' type-id ')'
556 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
557 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
558 /// [clang] '^' block-literal
559 ///
560 ///       constant: [C99 6.4.4]
561 ///         integer-constant
562 ///         floating-constant
563 ///         enumeration-constant -> identifier
564 ///         character-constant
565 ///
566 ///       id-expression: [C++ 5.1]
567 ///                   unqualified-id
568 ///                   qualified-id
569 ///
570 ///       unqualified-id: [C++ 5.1]
571 ///                   identifier
572 ///                   operator-function-id
573 ///                   conversion-function-id
574 ///                   '~' class-name
575 ///                   template-id
576 ///
577 ///       new-expression: [C++ 5.3.4]
578 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
579 ///                                     new-initializer[opt]
580 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
581 ///                                     new-initializer[opt]
582 ///
583 ///       delete-expression: [C++ 5.3.5]
584 ///                   '::'[opt] 'delete' cast-expression
585 ///                   '::'[opt] 'delete' '[' ']' cast-expression
586 ///
587 /// [GNU/Embarcadero] unary-type-trait:
588 ///                   '__is_arithmetic'
589 ///                   '__is_floating_point'
590 ///                   '__is_integral'
591 ///                   '__is_lvalue_expr'
592 ///                   '__is_rvalue_expr'
593 ///                   '__is_complete_type'
594 ///                   '__is_void'
595 ///                   '__is_array'
596 ///                   '__is_function'
597 ///                   '__is_reference'
598 ///                   '__is_lvalue_reference'
599 ///                   '__is_rvalue_reference'
600 ///                   '__is_fundamental'
601 ///                   '__is_object'
602 ///                   '__is_scalar'
603 ///                   '__is_compound'
604 ///                   '__is_pointer'
605 ///                   '__is_member_object_pointer'
606 ///                   '__is_member_function_pointer'
607 ///                   '__is_member_pointer'
608 ///                   '__is_const'
609 ///                   '__is_volatile'
610 ///                   '__is_trivial'
611 ///                   '__is_standard_layout'
612 ///                   '__is_signed'
613 ///                   '__is_unsigned'
614 ///
615 /// [GNU] unary-type-trait:
616 ///                   '__has_nothrow_assign'
617 ///                   '__has_nothrow_copy'
618 ///                   '__has_nothrow_constructor'
619 ///                   '__has_trivial_assign'                  [TODO]
620 ///                   '__has_trivial_copy'                    [TODO]
621 ///                   '__has_trivial_constructor'
622 ///                   '__has_trivial_destructor'
623 ///                   '__has_virtual_destructor'
624 ///                   '__is_abstract'                         [TODO]
625 ///                   '__is_class'
626 ///                   '__is_empty'                            [TODO]
627 ///                   '__is_enum'
628 ///                   '__is_final'
629 ///                   '__is_pod'
630 ///                   '__is_polymorphic'
631 ///                   '__is_sealed'                           [MS]
632 ///                   '__is_trivial'
633 ///                   '__is_union'
634 ///
635 /// [Clang] unary-type-trait:
636 ///                   '__trivially_copyable'
637 ///
638 ///       binary-type-trait:
639 /// [GNU]             '__is_base_of'
640 /// [MS]              '__is_convertible_to'
641 ///                   '__is_convertible'
642 ///                   '__is_same'
643 ///
644 /// [Embarcadero] array-type-trait:
645 ///                   '__array_rank'
646 ///                   '__array_extent'
647 ///
648 /// [Embarcadero] expression-trait:
649 ///                   '__is_lvalue_expr'
650 ///                   '__is_rvalue_expr'
651 /// \endverbatim
652 ///
ParseCastExpression(bool isUnaryExpression,bool isAddressOfOperand,bool & NotCastExpr,TypeCastState isTypeCast)653 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
654                                        bool isAddressOfOperand,
655                                        bool &NotCastExpr,
656                                        TypeCastState isTypeCast) {
657   ExprResult Res;
658   tok::TokenKind SavedKind = Tok.getKind();
659   NotCastExpr = false;
660 
661   // This handles all of cast-expression, unary-expression, postfix-expression,
662   // and primary-expression.  We handle them together like this for efficiency
663   // and to simplify handling of an expression starting with a '(' token: which
664   // may be one of a parenthesized expression, cast-expression, compound literal
665   // expression, or statement expression.
666   //
667   // If the parsed tokens consist of a primary-expression, the cases below
668   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
669   // to handle the postfix expression suffixes.  Cases that cannot be followed
670   // by postfix exprs should return without invoking
671   // ParsePostfixExpressionSuffix.
672   switch (SavedKind) {
673   case tok::l_paren: {
674     // If this expression is limited to being a unary-expression, the parent can
675     // not start a cast expression.
676     ParenParseOption ParenExprType =
677         (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
678                                                         : CastExpr;
679     ParsedType CastTy;
680     SourceLocation RParenLoc;
681     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
682                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
683 
684     switch (ParenExprType) {
685     case SimpleExpr:   break;    // Nothing else to do.
686     case CompoundStmt: break;  // Nothing else to do.
687     case CompoundLiteral:
688       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
689       // postfix-expression exist, parse them now.
690       break;
691     case CastExpr:
692       // We have parsed the cast-expression and no postfix-expr pieces are
693       // following.
694       return Res;
695     }
696 
697     break;
698   }
699 
700     // primary-expression
701   case tok::numeric_constant:
702     // constant: integer-constant
703     // constant: floating-constant
704 
705     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
706     ConsumeToken();
707     break;
708 
709   case tok::kw_true:
710   case tok::kw_false:
711     return ParseCXXBoolLiteral();
712 
713   case tok::kw___objc_yes:
714   case tok::kw___objc_no:
715       return ParseObjCBoolLiteral();
716 
717   case tok::kw_nullptr:
718     Diag(Tok, diag::warn_cxx98_compat_nullptr);
719     return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
720 
721   case tok::annot_primary_expr:
722     assert(Res.get() == nullptr && "Stray primary-expression annotation?");
723     Res = getExprAnnotation(Tok);
724     ConsumeToken();
725     break;
726 
727   case tok::kw___super:
728   case tok::kw_decltype:
729     // Annotate the token and tail recurse.
730     if (TryAnnotateTypeOrScopeToken())
731       return ExprError();
732     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
733     return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
734 
735   case tok::identifier: {      // primary-expression: identifier
736                                // unqualified-id: identifier
737                                // constant: enumeration-constant
738     // Turn a potentially qualified name into a annot_typename or
739     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
740     if (getLangOpts().CPlusPlus) {
741       // Avoid the unnecessary parse-time lookup in the common case
742       // where the syntax forbids a type.
743       const Token &Next = NextToken();
744 
745       // If this identifier was reverted from a token ID, and the next token
746       // is a parenthesis, this is likely to be a use of a type trait. Check
747       // those tokens.
748       if (Next.is(tok::l_paren) &&
749           Tok.is(tok::identifier) &&
750           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
751         IdentifierInfo *II = Tok.getIdentifierInfo();
752         // Build up the mapping of revertible type traits, for future use.
753         if (RevertibleTypeTraits.empty()) {
754 #define RTT_JOIN(X,Y) X##Y
755 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
756           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
757             = RTT_JOIN(tok::kw_,Name)
758 
759           REVERTIBLE_TYPE_TRAIT(__is_abstract);
760           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
761           REVERTIBLE_TYPE_TRAIT(__is_array);
762           REVERTIBLE_TYPE_TRAIT(__is_base_of);
763           REVERTIBLE_TYPE_TRAIT(__is_class);
764           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
765           REVERTIBLE_TYPE_TRAIT(__is_compound);
766           REVERTIBLE_TYPE_TRAIT(__is_const);
767           REVERTIBLE_TYPE_TRAIT(__is_constructible);
768           REVERTIBLE_TYPE_TRAIT(__is_convertible);
769           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
770           REVERTIBLE_TYPE_TRAIT(__is_destructible);
771           REVERTIBLE_TYPE_TRAIT(__is_empty);
772           REVERTIBLE_TYPE_TRAIT(__is_enum);
773           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
774           REVERTIBLE_TYPE_TRAIT(__is_final);
775           REVERTIBLE_TYPE_TRAIT(__is_function);
776           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
777           REVERTIBLE_TYPE_TRAIT(__is_integral);
778           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
779           REVERTIBLE_TYPE_TRAIT(__is_literal);
780           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
781           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
782           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
783           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
784           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
785           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
786           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
787           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
788           REVERTIBLE_TYPE_TRAIT(__is_object);
789           REVERTIBLE_TYPE_TRAIT(__is_pod);
790           REVERTIBLE_TYPE_TRAIT(__is_pointer);
791           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
792           REVERTIBLE_TYPE_TRAIT(__is_reference);
793           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
794           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
795           REVERTIBLE_TYPE_TRAIT(__is_same);
796           REVERTIBLE_TYPE_TRAIT(__is_scalar);
797           REVERTIBLE_TYPE_TRAIT(__is_sealed);
798           REVERTIBLE_TYPE_TRAIT(__is_signed);
799           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
800           REVERTIBLE_TYPE_TRAIT(__is_trivial);
801           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
802           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
803           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
804           REVERTIBLE_TYPE_TRAIT(__is_union);
805           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
806           REVERTIBLE_TYPE_TRAIT(__is_void);
807           REVERTIBLE_TYPE_TRAIT(__is_volatile);
808 #undef REVERTIBLE_TYPE_TRAIT
809 #undef RTT_JOIN
810         }
811 
812         // If we find that this is in fact the name of a type trait,
813         // update the token kind in place and parse again to treat it as
814         // the appropriate kind of type trait.
815         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
816           = RevertibleTypeTraits.find(II);
817         if (Known != RevertibleTypeTraits.end()) {
818           Tok.setKind(Known->second);
819           return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
820                                      NotCastExpr, isTypeCast);
821         }
822       }
823 
824       if (Next.is(tok::coloncolon) ||
825           (!ColonIsSacred && Next.is(tok::colon)) ||
826           Next.is(tok::less) ||
827           Next.is(tok::l_paren) ||
828           Next.is(tok::l_brace)) {
829         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
830         if (TryAnnotateTypeOrScopeToken())
831           return ExprError();
832         if (!Tok.is(tok::identifier))
833           return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
834       }
835     }
836 
837     // Consume the identifier so that we can see if it is followed by a '(' or
838     // '.'.
839     IdentifierInfo &II = *Tok.getIdentifierInfo();
840     SourceLocation ILoc = ConsumeToken();
841 
842     // Support 'Class.property' and 'super.property' notation.
843     if (getLangOpts().ObjC1 && Tok.is(tok::period) &&
844         (Actions.getTypeName(II, ILoc, getCurScope()) ||
845          // Allow the base to be 'super' if in an objc-method.
846          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
847       ConsumeToken();
848 
849       // Allow either an identifier or the keyword 'class' (in C++).
850       if (Tok.isNot(tok::identifier) &&
851           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
852         Diag(Tok, diag::err_expected_property_name);
853         return ExprError();
854       }
855       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
856       SourceLocation PropertyLoc = ConsumeToken();
857 
858       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
859                                               ILoc, PropertyLoc);
860       break;
861     }
862 
863     // In an Objective-C method, if we have "super" followed by an identifier,
864     // the token sequence is ill-formed. However, if there's a ':' or ']' after
865     // that identifier, this is probably a message send with a missing open
866     // bracket. Treat it as such.
867     if (getLangOpts().ObjC1 && &II == Ident_super && !InMessageExpression &&
868         getCurScope()->isInObjcMethodScope() &&
869         ((Tok.is(tok::identifier) &&
870          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
871          Tok.is(tok::code_completion))) {
872       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, ParsedType(),
873                                            nullptr);
874       break;
875     }
876 
877     // If we have an Objective-C class name followed by an identifier
878     // and either ':' or ']', this is an Objective-C class message
879     // send that's missing the opening '['. Recovery
880     // appropriately. Also take this path if we're performing code
881     // completion after an Objective-C class name.
882     if (getLangOpts().ObjC1 &&
883         ((Tok.is(tok::identifier) && !InMessageExpression) ||
884          Tok.is(tok::code_completion))) {
885       const Token& Next = NextToken();
886       if (Tok.is(tok::code_completion) ||
887           Next.is(tok::colon) || Next.is(tok::r_square))
888         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
889           if (Typ.get()->isObjCObjectOrInterfaceType()) {
890             // Fake up a Declarator to use with ActOnTypeName.
891             DeclSpec DS(AttrFactory);
892             DS.SetRangeStart(ILoc);
893             DS.SetRangeEnd(ILoc);
894             const char *PrevSpec = nullptr;
895             unsigned DiagID;
896             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
897                                Actions.getASTContext().getPrintingPolicy());
898 
899             Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
900             TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
901                                                   DeclaratorInfo);
902             if (Ty.isInvalid())
903               break;
904 
905             Res = ParseObjCMessageExpressionBody(SourceLocation(),
906                                                  SourceLocation(),
907                                                  Ty.get(), nullptr);
908             break;
909           }
910     }
911 
912     // Make sure to pass down the right value for isAddressOfOperand.
913     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
914       isAddressOfOperand = false;
915 
916     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
917     // need to know whether or not this identifier is a function designator or
918     // not.
919     UnqualifiedId Name;
920     CXXScopeSpec ScopeSpec;
921     SourceLocation TemplateKWLoc;
922     Token Replacement;
923     auto Validator = llvm::make_unique<CastExpressionIdValidator>(
924         Tok, isTypeCast != NotTypeCast, isTypeCast != IsTypeCast);
925     Validator->IsAddressOfOperand = isAddressOfOperand;
926     Validator->WantRemainingKeywords = Tok.isNot(tok::r_paren);
927     Name.setIdentifier(&II, ILoc);
928     Res = Actions.ActOnIdExpression(
929         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
930         isAddressOfOperand, std::move(Validator),
931         /*IsInlineAsmIdentifier=*/false,
932         Tok.is(tok::r_paren) ? nullptr : &Replacement);
933     if (!Res.isInvalid() && !Res.get()) {
934       UnconsumeToken(Replacement);
935       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
936                                  NotCastExpr, isTypeCast);
937     }
938     break;
939   }
940   case tok::char_constant:     // constant: character-constant
941   case tok::wide_char_constant:
942   case tok::utf8_char_constant:
943   case tok::utf16_char_constant:
944   case tok::utf32_char_constant:
945     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
946     ConsumeToken();
947     break;
948   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
949   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
950   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
951   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
952   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
953   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
954     Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
955     ConsumeToken();
956     break;
957   case tok::string_literal:    // primary-expression: string-literal
958   case tok::wide_string_literal:
959   case tok::utf8_string_literal:
960   case tok::utf16_string_literal:
961   case tok::utf32_string_literal:
962     Res = ParseStringLiteralExpression(true);
963     break;
964   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
965     Res = ParseGenericSelectionExpression();
966     break;
967   case tok::kw___builtin_va_arg:
968   case tok::kw___builtin_offsetof:
969   case tok::kw___builtin_choose_expr:
970   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
971   case tok::kw___builtin_convertvector:
972     return ParseBuiltinPrimaryExpression();
973   case tok::kw___null:
974     return Actions.ActOnGNUNullExpr(ConsumeToken());
975 
976   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
977   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
978     // C++ [expr.unary] has:
979     //   unary-expression:
980     //     ++ cast-expression
981     //     -- cast-expression
982     SourceLocation SavedLoc = ConsumeToken();
983     // One special case is implicitly handled here: if the preceding tokens are
984     // an ambiguous cast expression, such as "(T())++", then we recurse to
985     // determine whether the '++' is prefix or postfix.
986     Res = ParseCastExpression(!getLangOpts().CPlusPlus,
987                               /*isAddressOfOperand*/false, NotCastExpr,
988                               NotTypeCast);
989     if (!Res.isInvalid())
990       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
991     return Res;
992   }
993   case tok::amp: {         // unary-expression: '&' cast-expression
994     // Special treatment because of member pointers
995     SourceLocation SavedLoc = ConsumeToken();
996     Res = ParseCastExpression(false, true);
997     if (!Res.isInvalid())
998       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
999     return Res;
1000   }
1001 
1002   case tok::star:          // unary-expression: '*' cast-expression
1003   case tok::plus:          // unary-expression: '+' cast-expression
1004   case tok::minus:         // unary-expression: '-' cast-expression
1005   case tok::tilde:         // unary-expression: '~' cast-expression
1006   case tok::exclaim:       // unary-expression: '!' cast-expression
1007   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
1008   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
1009     SourceLocation SavedLoc = ConsumeToken();
1010     Res = ParseCastExpression(false);
1011     if (!Res.isInvalid())
1012       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1013     return Res;
1014   }
1015 
1016   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1017     // __extension__ silences extension warnings in the subexpression.
1018     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1019     SourceLocation SavedLoc = ConsumeToken();
1020     Res = ParseCastExpression(false);
1021     if (!Res.isInvalid())
1022       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1023     return Res;
1024   }
1025   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1026     if (!getLangOpts().C11)
1027       Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
1028     // fallthrough
1029   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1030   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1031                            // unary-expression: '__alignof' '(' type-name ')'
1032   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1033                            // unary-expression: 'sizeof' '(' type-name ')'
1034   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1035     return ParseUnaryExprOrTypeTraitExpression();
1036   case tok::ampamp: {      // unary-expression: '&&' identifier
1037     SourceLocation AmpAmpLoc = ConsumeToken();
1038     if (Tok.isNot(tok::identifier))
1039       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1040 
1041     if (getCurScope()->getFnParent() == nullptr)
1042       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1043 
1044     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1045     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1046                                                 Tok.getLocation());
1047     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1048     ConsumeToken();
1049     return Res;
1050   }
1051   case tok::kw_const_cast:
1052   case tok::kw_dynamic_cast:
1053   case tok::kw_reinterpret_cast:
1054   case tok::kw_static_cast:
1055     Res = ParseCXXCasts();
1056     break;
1057   case tok::kw_typeid:
1058     Res = ParseCXXTypeid();
1059     break;
1060   case tok::kw___uuidof:
1061     Res = ParseCXXUuidof();
1062     break;
1063   case tok::kw_this:
1064     Res = ParseCXXThis();
1065     break;
1066 
1067   case tok::annot_typename:
1068     if (isStartOfObjCClassMessageMissingOpenBracket()) {
1069       ParsedType Type = getTypeAnnotation(Tok);
1070 
1071       // Fake up a Declarator to use with ActOnTypeName.
1072       DeclSpec DS(AttrFactory);
1073       DS.SetRangeStart(Tok.getLocation());
1074       DS.SetRangeEnd(Tok.getLastLoc());
1075 
1076       const char *PrevSpec = nullptr;
1077       unsigned DiagID;
1078       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1079                          PrevSpec, DiagID, Type,
1080                          Actions.getASTContext().getPrintingPolicy());
1081 
1082       Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1083       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1084       if (Ty.isInvalid())
1085         break;
1086 
1087       ConsumeToken();
1088       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1089                                            Ty.get(), nullptr);
1090       break;
1091     }
1092     // Fall through
1093 
1094   case tok::annot_decltype:
1095   case tok::kw_char:
1096   case tok::kw_wchar_t:
1097   case tok::kw_char16_t:
1098   case tok::kw_char32_t:
1099   case tok::kw_bool:
1100   case tok::kw_short:
1101   case tok::kw_int:
1102   case tok::kw_long:
1103   case tok::kw___int64:
1104   case tok::kw___int128:
1105   case tok::kw_signed:
1106   case tok::kw_unsigned:
1107   case tok::kw_half:
1108   case tok::kw_float:
1109   case tok::kw_double:
1110   case tok::kw_void:
1111   case tok::kw_typename:
1112   case tok::kw_typeof:
1113   case tok::kw___vector: {
1114     if (!getLangOpts().CPlusPlus) {
1115       Diag(Tok, diag::err_expected_expression);
1116       return ExprError();
1117     }
1118 
1119     if (SavedKind == tok::kw_typename) {
1120       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1121       //                     typename-specifier braced-init-list
1122       if (TryAnnotateTypeOrScopeToken())
1123         return ExprError();
1124 
1125       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1126         // We are trying to parse a simple-type-specifier but might not get such
1127         // a token after error recovery.
1128         return ExprError();
1129     }
1130 
1131     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1132     //                     simple-type-specifier braced-init-list
1133     //
1134     DeclSpec DS(AttrFactory);
1135 
1136     ParseCXXSimpleTypeSpecifier(DS);
1137     if (Tok.isNot(tok::l_paren) &&
1138         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1139       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1140                          << DS.getSourceRange());
1141 
1142     if (Tok.is(tok::l_brace))
1143       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1144 
1145     Res = ParseCXXTypeConstructExpression(DS);
1146     break;
1147   }
1148 
1149   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1150     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1151     // (We can end up in this situation after tentative parsing.)
1152     if (TryAnnotateTypeOrScopeToken())
1153       return ExprError();
1154     if (!Tok.is(tok::annot_cxxscope))
1155       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1156                                  NotCastExpr, isTypeCast);
1157 
1158     Token Next = NextToken();
1159     if (Next.is(tok::annot_template_id)) {
1160       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1161       if (TemplateId->Kind == TNK_Type_template) {
1162         // We have a qualified template-id that we know refers to a
1163         // type, translate it into a type and continue parsing as a
1164         // cast expression.
1165         CXXScopeSpec SS;
1166         ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
1167                                        /*EnteringContext=*/false);
1168         AnnotateTemplateIdTokenAsType();
1169         return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1170                                    NotCastExpr, isTypeCast);
1171       }
1172     }
1173 
1174     // Parse as an id-expression.
1175     Res = ParseCXXIdExpression(isAddressOfOperand);
1176     break;
1177   }
1178 
1179   case tok::annot_template_id: { // [C++]          template-id
1180     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1181     if (TemplateId->Kind == TNK_Type_template) {
1182       // We have a template-id that we know refers to a type,
1183       // translate it into a type and continue parsing as a cast
1184       // expression.
1185       AnnotateTemplateIdTokenAsType();
1186       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1187                                  NotCastExpr, isTypeCast);
1188     }
1189 
1190     // Fall through to treat the template-id as an id-expression.
1191   }
1192 
1193   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1194     Res = ParseCXXIdExpression(isAddressOfOperand);
1195     break;
1196 
1197   case tok::coloncolon: {
1198     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1199     // annotates the token, tail recurse.
1200     if (TryAnnotateTypeOrScopeToken())
1201       return ExprError();
1202     if (!Tok.is(tok::coloncolon))
1203       return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1204 
1205     // ::new -> [C++] new-expression
1206     // ::delete -> [C++] delete-expression
1207     SourceLocation CCLoc = ConsumeToken();
1208     if (Tok.is(tok::kw_new))
1209       return ParseCXXNewExpression(true, CCLoc);
1210     if (Tok.is(tok::kw_delete))
1211       return ParseCXXDeleteExpression(true, CCLoc);
1212 
1213     // This is not a type name or scope specifier, it is an invalid expression.
1214     Diag(CCLoc, diag::err_expected_expression);
1215     return ExprError();
1216   }
1217 
1218   case tok::kw_new: // [C++] new-expression
1219     return ParseCXXNewExpression(false, Tok.getLocation());
1220 
1221   case tok::kw_delete: // [C++] delete-expression
1222     return ParseCXXDeleteExpression(false, Tok.getLocation());
1223 
1224   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1225     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1226     SourceLocation KeyLoc = ConsumeToken();
1227     BalancedDelimiterTracker T(*this, tok::l_paren);
1228 
1229     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1230       return ExprError();
1231     // C++11 [expr.unary.noexcept]p1:
1232     //   The noexcept operator determines whether the evaluation of its operand,
1233     //   which is an unevaluated operand, can throw an exception.
1234     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1235     ExprResult Result = ParseExpression();
1236 
1237     T.consumeClose();
1238 
1239     if (!Result.isInvalid())
1240       Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1241                                          Result.get(), T.getCloseLocation());
1242     return Result;
1243   }
1244 
1245 #define TYPE_TRAIT(N,Spelling,K) \
1246   case tok::kw_##Spelling:
1247 #include "clang/Basic/TokenKinds.def"
1248     return ParseTypeTrait();
1249 
1250   case tok::kw___array_rank:
1251   case tok::kw___array_extent:
1252     return ParseArrayTypeTrait();
1253 
1254   case tok::kw___is_lvalue_expr:
1255   case tok::kw___is_rvalue_expr:
1256     return ParseExpressionTrait();
1257 
1258   case tok::at: {
1259     SourceLocation AtLoc = ConsumeToken();
1260     return ParseObjCAtExpression(AtLoc);
1261   }
1262   case tok::caret:
1263     Res = ParseBlockLiteralExpression();
1264     break;
1265   case tok::code_completion: {
1266     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
1267     cutOffParsing();
1268     return ExprError();
1269   }
1270   case tok::l_square:
1271     if (getLangOpts().CPlusPlus11) {
1272       if (getLangOpts().ObjC1) {
1273         // C++11 lambda expressions and Objective-C message sends both start with a
1274         // square bracket.  There are three possibilities here:
1275         // we have a valid lambda expression, we have an invalid lambda
1276         // expression, or we have something that doesn't appear to be a lambda.
1277         // If we're in the last case, we fall back to ParseObjCMessageExpression.
1278         Res = TryParseLambdaExpression();
1279         if (!Res.isInvalid() && !Res.get())
1280           Res = ParseObjCMessageExpression();
1281         break;
1282       }
1283       Res = ParseLambdaExpression();
1284       break;
1285     }
1286     if (getLangOpts().ObjC1) {
1287       Res = ParseObjCMessageExpression();
1288       break;
1289     }
1290     // FALL THROUGH.
1291   default:
1292     NotCastExpr = true;
1293     return ExprError();
1294   }
1295 
1296   // These can be followed by postfix-expr pieces.
1297   return ParsePostfixExpressionSuffix(Res);
1298 }
1299 
1300 /// \brief Once the leading part of a postfix-expression is parsed, this
1301 /// method parses any suffixes that apply.
1302 ///
1303 /// \verbatim
1304 ///       postfix-expression: [C99 6.5.2]
1305 ///         primary-expression
1306 ///         postfix-expression '[' expression ']'
1307 ///         postfix-expression '[' braced-init-list ']'
1308 ///         postfix-expression '(' argument-expression-list[opt] ')'
1309 ///         postfix-expression '.' identifier
1310 ///         postfix-expression '->' identifier
1311 ///         postfix-expression '++'
1312 ///         postfix-expression '--'
1313 ///         '(' type-name ')' '{' initializer-list '}'
1314 ///         '(' type-name ')' '{' initializer-list ',' '}'
1315 ///
1316 ///       argument-expression-list: [C99 6.5.2]
1317 ///         argument-expression ...[opt]
1318 ///         argument-expression-list ',' assignment-expression ...[opt]
1319 /// \endverbatim
1320 ExprResult
ParsePostfixExpressionSuffix(ExprResult LHS)1321 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1322   // Now that the primary-expression piece of the postfix-expression has been
1323   // parsed, see if there are any postfix-expression pieces here.
1324   SourceLocation Loc;
1325   while (1) {
1326     switch (Tok.getKind()) {
1327     case tok::code_completion:
1328       if (InMessageExpression)
1329         return LHS;
1330 
1331       Actions.CodeCompletePostfixExpression(getCurScope(), LHS);
1332       cutOffParsing();
1333       return ExprError();
1334 
1335     case tok::identifier:
1336       // If we see identifier: after an expression, and we're not already in a
1337       // message send, then this is probably a message send with a missing
1338       // opening bracket '['.
1339       if (getLangOpts().ObjC1 && !InMessageExpression &&
1340           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1341         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1342                                              ParsedType(), LHS.get());
1343         break;
1344       }
1345 
1346       // Fall through; this isn't a message send.
1347 
1348     default:  // Not a postfix-expression suffix.
1349       return LHS;
1350     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1351       // If we have a array postfix expression that starts on a new line and
1352       // Objective-C is enabled, it is highly likely that the user forgot a
1353       // semicolon after the base expression and that the array postfix-expr is
1354       // actually another message send.  In this case, do some look-ahead to see
1355       // if the contents of the square brackets are obviously not a valid
1356       // expression and recover by pretending there is no suffix.
1357       if (getLangOpts().ObjC1 && Tok.isAtStartOfLine() &&
1358           isSimpleObjCMessageExpression())
1359         return LHS;
1360 
1361       // Reject array indices starting with a lambda-expression. '[[' is
1362       // reserved for attributes.
1363       if (CheckProhibitedCXX11Attribute())
1364         return ExprError();
1365 
1366       BalancedDelimiterTracker T(*this, tok::l_square);
1367       T.consumeOpen();
1368       Loc = T.getOpenLocation();
1369       ExprResult Idx;
1370       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1371         Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1372         Idx = ParseBraceInitializer();
1373       } else
1374         Idx = ParseExpression();
1375 
1376       SourceLocation RLoc = Tok.getLocation();
1377 
1378       if (!LHS.isInvalid() && !Idx.isInvalid() && Tok.is(tok::r_square)) {
1379         LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1380                                               Idx.get(), RLoc);
1381       } else {
1382         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1383         (void)Actions.CorrectDelayedTyposInExpr(Idx);
1384         LHS = ExprError();
1385         Idx = ExprError();
1386       }
1387 
1388       // Match the ']'.
1389       T.consumeClose();
1390       break;
1391     }
1392 
1393     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1394     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1395                                //   '(' argument-expression-list[opt] ')'
1396       tok::TokenKind OpKind = Tok.getKind();
1397       InMessageExpressionRAIIObject InMessage(*this, false);
1398 
1399       Expr *ExecConfig = nullptr;
1400 
1401       BalancedDelimiterTracker PT(*this, tok::l_paren);
1402 
1403       if (OpKind == tok::lesslessless) {
1404         ExprVector ExecConfigExprs;
1405         CommaLocsTy ExecConfigCommaLocs;
1406         SourceLocation OpenLoc = ConsumeToken();
1407 
1408         if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1409           (void)Actions.CorrectDelayedTyposInExpr(LHS);
1410           LHS = ExprError();
1411         }
1412 
1413         SourceLocation CloseLoc;
1414         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1415         } else if (LHS.isInvalid()) {
1416           SkipUntil(tok::greatergreatergreater, StopAtSemi);
1417         } else {
1418           // There was an error closing the brackets
1419           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1420           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1421           SkipUntil(tok::greatergreatergreater, StopAtSemi);
1422           LHS = ExprError();
1423         }
1424 
1425         if (!LHS.isInvalid()) {
1426           if (ExpectAndConsume(tok::l_paren))
1427             LHS = ExprError();
1428           else
1429             Loc = PrevTokLocation;
1430         }
1431 
1432         if (!LHS.isInvalid()) {
1433           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1434                                     OpenLoc,
1435                                     ExecConfigExprs,
1436                                     CloseLoc);
1437           if (ECResult.isInvalid())
1438             LHS = ExprError();
1439           else
1440             ExecConfig = ECResult.get();
1441         }
1442       } else {
1443         PT.consumeOpen();
1444         Loc = PT.getOpenLocation();
1445       }
1446 
1447       ExprVector ArgExprs;
1448       CommaLocsTy CommaLocs;
1449 
1450       if (Tok.is(tok::code_completion)) {
1451         Actions.CodeCompleteCall(getCurScope(), LHS.get(), None);
1452         cutOffParsing();
1453         return ExprError();
1454       }
1455 
1456       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1457         if (Tok.isNot(tok::r_paren)) {
1458           if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
1459                 Actions.CodeCompleteCall(getCurScope(), LHS.get(), ArgExprs);
1460              })) {
1461             (void)Actions.CorrectDelayedTyposInExpr(LHS);
1462             LHS = ExprError();
1463           } else if (LHS.isInvalid()) {
1464             for (auto &E : ArgExprs)
1465               Actions.CorrectDelayedTyposInExpr(E);
1466           }
1467         }
1468       }
1469 
1470       // Match the ')'.
1471       if (LHS.isInvalid()) {
1472         SkipUntil(tok::r_paren, StopAtSemi);
1473       } else if (Tok.isNot(tok::r_paren)) {
1474         PT.consumeClose();
1475         LHS = ExprError();
1476       } else {
1477         assert((ArgExprs.size() == 0 ||
1478                 ArgExprs.size()-1 == CommaLocs.size())&&
1479                "Unexpected number of commas!");
1480         LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1481                                     ArgExprs, Tok.getLocation(),
1482                                     ExecConfig);
1483         PT.consumeClose();
1484       }
1485 
1486       break;
1487     }
1488     case tok::arrow:
1489     case tok::period: {
1490       // postfix-expression: p-e '->' template[opt] id-expression
1491       // postfix-expression: p-e '.' template[opt] id-expression
1492       tok::TokenKind OpKind = Tok.getKind();
1493       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
1494 
1495       CXXScopeSpec SS;
1496       ParsedType ObjectType;
1497       bool MayBePseudoDestructor = false;
1498       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1499         Expr *Base = LHS.get();
1500         const Type* BaseType = Base->getType().getTypePtrOrNull();
1501         if (BaseType && Tok.is(tok::l_paren) &&
1502             (BaseType->isFunctionType() ||
1503              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1504           Diag(OpLoc, diag::err_function_is_not_record)
1505               << OpKind << Base->getSourceRange()
1506               << FixItHint::CreateRemoval(OpLoc);
1507           return ParsePostfixExpressionSuffix(Base);
1508         }
1509 
1510         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1511                                                    OpLoc, OpKind, ObjectType,
1512                                                    MayBePseudoDestructor);
1513         if (LHS.isInvalid())
1514           break;
1515 
1516         ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1517                                        /*EnteringContext=*/false,
1518                                        &MayBePseudoDestructor);
1519         if (SS.isNotEmpty())
1520           ObjectType = ParsedType();
1521       }
1522 
1523       if (Tok.is(tok::code_completion)) {
1524         // Code completion for a member access expression.
1525         Actions.CodeCompleteMemberReferenceExpr(getCurScope(), LHS.get(),
1526                                                 OpLoc, OpKind == tok::arrow);
1527 
1528         cutOffParsing();
1529         return ExprError();
1530       }
1531 
1532       if (MayBePseudoDestructor && !LHS.isInvalid()) {
1533         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1534                                        ObjectType);
1535         break;
1536       }
1537 
1538       // Either the action has told us that this cannot be a
1539       // pseudo-destructor expression (based on the type of base
1540       // expression), or we didn't see a '~' in the right place. We
1541       // can still parse a destructor name here, but in that case it
1542       // names a real destructor.
1543       // Allow explicit constructor calls in Microsoft mode.
1544       // FIXME: Add support for explicit call of template constructor.
1545       SourceLocation TemplateKWLoc;
1546       UnqualifiedId Name;
1547       if (getLangOpts().ObjC2 && OpKind == tok::period &&
1548           Tok.is(tok::kw_class)) {
1549         // Objective-C++:
1550         //   After a '.' in a member access expression, treat the keyword
1551         //   'class' as if it were an identifier.
1552         //
1553         // This hack allows property access to the 'class' method because it is
1554         // such a common method name. For other C++ keywords that are
1555         // Objective-C method names, one must use the message send syntax.
1556         IdentifierInfo *Id = Tok.getIdentifierInfo();
1557         SourceLocation Loc = ConsumeToken();
1558         Name.setIdentifier(Id, Loc);
1559       } else if (ParseUnqualifiedId(SS,
1560                                     /*EnteringContext=*/false,
1561                                     /*AllowDestructorName=*/true,
1562                                     /*AllowConstructorName=*/
1563                                       getLangOpts().MicrosoftExt,
1564                                     ObjectType, TemplateKWLoc, Name)) {
1565         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1566         LHS = ExprError();
1567       }
1568 
1569       if (!LHS.isInvalid())
1570         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1571                                             OpKind, SS, TemplateKWLoc, Name,
1572                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1573                                                    : nullptr);
1574       break;
1575     }
1576     case tok::plusplus:    // postfix-expression: postfix-expression '++'
1577     case tok::minusminus:  // postfix-expression: postfix-expression '--'
1578       if (!LHS.isInvalid()) {
1579         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1580                                           Tok.getKind(), LHS.get());
1581       }
1582       ConsumeToken();
1583       break;
1584     }
1585   }
1586 }
1587 
1588 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1589 /// vec_step and we are at the start of an expression or a parenthesized
1590 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1591 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1592 ///
1593 /// \verbatim
1594 ///       unary-expression:  [C99 6.5.3]
1595 ///         'sizeof' unary-expression
1596 ///         'sizeof' '(' type-name ')'
1597 /// [GNU]   '__alignof' unary-expression
1598 /// [GNU]   '__alignof' '(' type-name ')'
1599 /// [C11]   '_Alignof' '(' type-name ')'
1600 /// [C++0x] 'alignof' '(' type-id ')'
1601 ///
1602 /// [GNU]   typeof-specifier:
1603 ///           typeof ( expressions )
1604 ///           typeof ( type-name )
1605 /// [GNU/C++] typeof unary-expression
1606 ///
1607 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1608 ///           vec_step ( expressions )
1609 ///           vec_step ( type-name )
1610 /// \endverbatim
1611 ExprResult
ParseExprAfterUnaryExprOrTypeTrait(const Token & OpTok,bool & isCastExpr,ParsedType & CastTy,SourceRange & CastRange)1612 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1613                                            bool &isCastExpr,
1614                                            ParsedType &CastTy,
1615                                            SourceRange &CastRange) {
1616 
1617   assert((OpTok.is(tok::kw_typeof)    || OpTok.is(tok::kw_sizeof) ||
1618           OpTok.is(tok::kw___alignof) || OpTok.is(tok::kw_alignof) ||
1619           OpTok.is(tok::kw__Alignof)  || OpTok.is(tok::kw_vec_step)) &&
1620           "Not a typeof/sizeof/alignof/vec_step expression!");
1621 
1622   ExprResult Operand;
1623 
1624   // If the operand doesn't start with an '(', it must be an expression.
1625   if (Tok.isNot(tok::l_paren)) {
1626     // If construct allows a form without parenthesis, user may forget to put
1627     // pathenthesis around type name.
1628     if (OpTok.is(tok::kw_sizeof)  || OpTok.is(tok::kw___alignof) ||
1629         OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof)) {
1630       if (isTypeIdUnambiguously()) {
1631         DeclSpec DS(AttrFactory);
1632         ParseSpecifierQualifierList(DS);
1633         Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1634         ParseDeclarator(DeclaratorInfo);
1635 
1636         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1637         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1638         Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1639           << OpTok.getName()
1640           << FixItHint::CreateInsertion(LParenLoc, "(")
1641           << FixItHint::CreateInsertion(RParenLoc, ")");
1642         isCastExpr = true;
1643         return ExprEmpty();
1644       }
1645     }
1646 
1647     isCastExpr = false;
1648     if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1649       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1650                                           << tok::l_paren;
1651       return ExprError();
1652     }
1653 
1654     Operand = ParseCastExpression(true/*isUnaryExpression*/);
1655   } else {
1656     // If it starts with a '(', we know that it is either a parenthesized
1657     // type-name, or it is a unary-expression that starts with a compound
1658     // literal, or starts with a primary-expression that is a parenthesized
1659     // expression.
1660     ParenParseOption ExprType = CastExpr;
1661     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1662 
1663     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1664                                    false, CastTy, RParenLoc);
1665     CastRange = SourceRange(LParenLoc, RParenLoc);
1666 
1667     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1668     // a type.
1669     if (ExprType == CastExpr) {
1670       isCastExpr = true;
1671       return ExprEmpty();
1672     }
1673 
1674     if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1675       // GNU typeof in C requires the expression to be parenthesized. Not so for
1676       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1677       // the start of a unary-expression, but doesn't include any postfix
1678       // pieces. Parse these now if present.
1679       if (!Operand.isInvalid())
1680         Operand = ParsePostfixExpressionSuffix(Operand.get());
1681     }
1682   }
1683 
1684   // If we get here, the operand to the typeof/sizeof/alignof was an expresion.
1685   isCastExpr = false;
1686   return Operand;
1687 }
1688 
1689 
1690 /// \brief Parse a sizeof or alignof expression.
1691 ///
1692 /// \verbatim
1693 ///       unary-expression:  [C99 6.5.3]
1694 ///         'sizeof' unary-expression
1695 ///         'sizeof' '(' type-name ')'
1696 /// [C++11] 'sizeof' '...' '(' identifier ')'
1697 /// [GNU]   '__alignof' unary-expression
1698 /// [GNU]   '__alignof' '(' type-name ')'
1699 /// [C11]   '_Alignof' '(' type-name ')'
1700 /// [C++11] 'alignof' '(' type-id ')'
1701 /// \endverbatim
ParseUnaryExprOrTypeTraitExpression()1702 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1703   assert((Tok.is(tok::kw_sizeof) || Tok.is(tok::kw___alignof) ||
1704           Tok.is(tok::kw_alignof) || Tok.is(tok::kw__Alignof) ||
1705           Tok.is(tok::kw_vec_step)) &&
1706          "Not a sizeof/alignof/vec_step expression!");
1707   Token OpTok = Tok;
1708   ConsumeToken();
1709 
1710   // [C++11] 'sizeof' '...' '(' identifier ')'
1711   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1712     SourceLocation EllipsisLoc = ConsumeToken();
1713     SourceLocation LParenLoc, RParenLoc;
1714     IdentifierInfo *Name = nullptr;
1715     SourceLocation NameLoc;
1716     if (Tok.is(tok::l_paren)) {
1717       BalancedDelimiterTracker T(*this, tok::l_paren);
1718       T.consumeOpen();
1719       LParenLoc = T.getOpenLocation();
1720       if (Tok.is(tok::identifier)) {
1721         Name = Tok.getIdentifierInfo();
1722         NameLoc = ConsumeToken();
1723         T.consumeClose();
1724         RParenLoc = T.getCloseLocation();
1725         if (RParenLoc.isInvalid())
1726           RParenLoc = PP.getLocForEndOfToken(NameLoc);
1727       } else {
1728         Diag(Tok, diag::err_expected_parameter_pack);
1729         SkipUntil(tok::r_paren, StopAtSemi);
1730       }
1731     } else if (Tok.is(tok::identifier)) {
1732       Name = Tok.getIdentifierInfo();
1733       NameLoc = ConsumeToken();
1734       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
1735       RParenLoc = PP.getLocForEndOfToken(NameLoc);
1736       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
1737         << Name
1738         << FixItHint::CreateInsertion(LParenLoc, "(")
1739         << FixItHint::CreateInsertion(RParenLoc, ")");
1740     } else {
1741       Diag(Tok, diag::err_sizeof_parameter_pack);
1742     }
1743 
1744     if (!Name)
1745       return ExprError();
1746 
1747     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1748                                                  Sema::ReuseLambdaContextDecl);
1749 
1750     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
1751                                                 OpTok.getLocation(),
1752                                                 *Name, NameLoc,
1753                                                 RParenLoc);
1754   }
1755 
1756   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1757     Diag(OpTok, diag::warn_cxx98_compat_alignof);
1758 
1759   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1760                                                Sema::ReuseLambdaContextDecl);
1761 
1762   bool isCastExpr;
1763   ParsedType CastTy;
1764   SourceRange CastRange;
1765   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
1766                                                           isCastExpr,
1767                                                           CastTy,
1768                                                           CastRange);
1769 
1770   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
1771   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw___alignof) ||
1772       OpTok.is(tok::kw__Alignof))
1773     ExprKind = UETT_AlignOf;
1774   else if (OpTok.is(tok::kw_vec_step))
1775     ExprKind = UETT_VecStep;
1776 
1777   if (isCastExpr)
1778     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1779                                                  ExprKind,
1780                                                  /*isType=*/true,
1781                                                  CastTy.getAsOpaquePtr(),
1782                                                  CastRange);
1783 
1784   if (OpTok.is(tok::kw_alignof) || OpTok.is(tok::kw__Alignof))
1785     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
1786 
1787   // If we get here, the operand to the sizeof/alignof was an expresion.
1788   if (!Operand.isInvalid())
1789     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
1790                                                     ExprKind,
1791                                                     /*isType=*/false,
1792                                                     Operand.get(),
1793                                                     CastRange);
1794   return Operand;
1795 }
1796 
1797 /// ParseBuiltinPrimaryExpression
1798 ///
1799 /// \verbatim
1800 ///       primary-expression: [C99 6.5.1]
1801 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
1802 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
1803 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
1804 ///                                     assign-expr ')'
1805 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
1806 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
1807 ///
1808 /// [GNU] offsetof-member-designator:
1809 /// [GNU]   identifier
1810 /// [GNU]   offsetof-member-designator '.' identifier
1811 /// [GNU]   offsetof-member-designator '[' expression ']'
1812 /// \endverbatim
ParseBuiltinPrimaryExpression()1813 ExprResult Parser::ParseBuiltinPrimaryExpression() {
1814   ExprResult Res;
1815   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1816 
1817   tok::TokenKind T = Tok.getKind();
1818   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
1819 
1820   // All of these start with an open paren.
1821   if (Tok.isNot(tok::l_paren))
1822     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
1823                                                          << tok::l_paren);
1824 
1825   BalancedDelimiterTracker PT(*this, tok::l_paren);
1826   PT.consumeOpen();
1827 
1828   // TODO: Build AST.
1829 
1830   switch (T) {
1831   default: llvm_unreachable("Not a builtin primary expression!");
1832   case tok::kw___builtin_va_arg: {
1833     ExprResult Expr(ParseAssignmentExpression());
1834 
1835     if (ExpectAndConsume(tok::comma)) {
1836       SkipUntil(tok::r_paren, StopAtSemi);
1837       Expr = ExprError();
1838     }
1839 
1840     TypeResult Ty = ParseTypeName();
1841 
1842     if (Tok.isNot(tok::r_paren)) {
1843       Diag(Tok, diag::err_expected) << tok::r_paren;
1844       Expr = ExprError();
1845     }
1846 
1847     if (Expr.isInvalid() || Ty.isInvalid())
1848       Res = ExprError();
1849     else
1850       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
1851     break;
1852   }
1853   case tok::kw___builtin_offsetof: {
1854     SourceLocation TypeLoc = Tok.getLocation();
1855     TypeResult Ty = ParseTypeName();
1856     if (Ty.isInvalid()) {
1857       SkipUntil(tok::r_paren, StopAtSemi);
1858       return ExprError();
1859     }
1860 
1861     if (ExpectAndConsume(tok::comma)) {
1862       SkipUntil(tok::r_paren, StopAtSemi);
1863       return ExprError();
1864     }
1865 
1866     // We must have at least one identifier here.
1867     if (Tok.isNot(tok::identifier)) {
1868       Diag(Tok, diag::err_expected) << tok::identifier;
1869       SkipUntil(tok::r_paren, StopAtSemi);
1870       return ExprError();
1871     }
1872 
1873     // Keep track of the various subcomponents we see.
1874     SmallVector<Sema::OffsetOfComponent, 4> Comps;
1875 
1876     Comps.push_back(Sema::OffsetOfComponent());
1877     Comps.back().isBrackets = false;
1878     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1879     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
1880 
1881     // FIXME: This loop leaks the index expressions on error.
1882     while (1) {
1883       if (Tok.is(tok::period)) {
1884         // offsetof-member-designator: offsetof-member-designator '.' identifier
1885         Comps.push_back(Sema::OffsetOfComponent());
1886         Comps.back().isBrackets = false;
1887         Comps.back().LocStart = ConsumeToken();
1888 
1889         if (Tok.isNot(tok::identifier)) {
1890           Diag(Tok, diag::err_expected) << tok::identifier;
1891           SkipUntil(tok::r_paren, StopAtSemi);
1892           return ExprError();
1893         }
1894         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
1895         Comps.back().LocEnd = ConsumeToken();
1896 
1897       } else if (Tok.is(tok::l_square)) {
1898         if (CheckProhibitedCXX11Attribute())
1899           return ExprError();
1900 
1901         // offsetof-member-designator: offsetof-member-design '[' expression ']'
1902         Comps.push_back(Sema::OffsetOfComponent());
1903         Comps.back().isBrackets = true;
1904         BalancedDelimiterTracker ST(*this, tok::l_square);
1905         ST.consumeOpen();
1906         Comps.back().LocStart = ST.getOpenLocation();
1907         Res = ParseExpression();
1908         if (Res.isInvalid()) {
1909           SkipUntil(tok::r_paren, StopAtSemi);
1910           return Res;
1911         }
1912         Comps.back().U.E = Res.get();
1913 
1914         ST.consumeClose();
1915         Comps.back().LocEnd = ST.getCloseLocation();
1916       } else {
1917         if (Tok.isNot(tok::r_paren)) {
1918           PT.consumeClose();
1919           Res = ExprError();
1920         } else if (Ty.isInvalid()) {
1921           Res = ExprError();
1922         } else {
1923           PT.consumeClose();
1924           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
1925                                              Ty.get(), &Comps[0], Comps.size(),
1926                                              PT.getCloseLocation());
1927         }
1928         break;
1929       }
1930     }
1931     break;
1932   }
1933   case tok::kw___builtin_choose_expr: {
1934     ExprResult Cond(ParseAssignmentExpression());
1935     if (Cond.isInvalid()) {
1936       SkipUntil(tok::r_paren, StopAtSemi);
1937       return Cond;
1938     }
1939     if (ExpectAndConsume(tok::comma)) {
1940       SkipUntil(tok::r_paren, StopAtSemi);
1941       return ExprError();
1942     }
1943 
1944     ExprResult Expr1(ParseAssignmentExpression());
1945     if (Expr1.isInvalid()) {
1946       SkipUntil(tok::r_paren, StopAtSemi);
1947       return Expr1;
1948     }
1949     if (ExpectAndConsume(tok::comma)) {
1950       SkipUntil(tok::r_paren, StopAtSemi);
1951       return ExprError();
1952     }
1953 
1954     ExprResult Expr2(ParseAssignmentExpression());
1955     if (Expr2.isInvalid()) {
1956       SkipUntil(tok::r_paren, StopAtSemi);
1957       return Expr2;
1958     }
1959     if (Tok.isNot(tok::r_paren)) {
1960       Diag(Tok, diag::err_expected) << tok::r_paren;
1961       return ExprError();
1962     }
1963     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
1964                                   Expr2.get(), ConsumeParen());
1965     break;
1966   }
1967   case tok::kw___builtin_astype: {
1968     // The first argument is an expression to be converted, followed by a comma.
1969     ExprResult Expr(ParseAssignmentExpression());
1970     if (Expr.isInvalid()) {
1971       SkipUntil(tok::r_paren, StopAtSemi);
1972       return ExprError();
1973     }
1974 
1975     if (ExpectAndConsume(tok::comma)) {
1976       SkipUntil(tok::r_paren, StopAtSemi);
1977       return ExprError();
1978     }
1979 
1980     // Second argument is the type to bitcast to.
1981     TypeResult DestTy = ParseTypeName();
1982     if (DestTy.isInvalid())
1983       return ExprError();
1984 
1985     // Attempt to consume the r-paren.
1986     if (Tok.isNot(tok::r_paren)) {
1987       Diag(Tok, diag::err_expected) << tok::r_paren;
1988       SkipUntil(tok::r_paren, StopAtSemi);
1989       return ExprError();
1990     }
1991 
1992     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
1993                                   ConsumeParen());
1994     break;
1995   }
1996   case tok::kw___builtin_convertvector: {
1997     // The first argument is an expression to be converted, followed by a comma.
1998     ExprResult Expr(ParseAssignmentExpression());
1999     if (Expr.isInvalid()) {
2000       SkipUntil(tok::r_paren, StopAtSemi);
2001       return ExprError();
2002     }
2003 
2004     if (ExpectAndConsume(tok::comma)) {
2005       SkipUntil(tok::r_paren, StopAtSemi);
2006       return ExprError();
2007     }
2008 
2009     // Second argument is the type to bitcast to.
2010     TypeResult DestTy = ParseTypeName();
2011     if (DestTy.isInvalid())
2012       return ExprError();
2013 
2014     // Attempt to consume the r-paren.
2015     if (Tok.isNot(tok::r_paren)) {
2016       Diag(Tok, diag::err_expected) << tok::r_paren;
2017       SkipUntil(tok::r_paren, StopAtSemi);
2018       return ExprError();
2019     }
2020 
2021     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2022                                          ConsumeParen());
2023     break;
2024   }
2025   }
2026 
2027   if (Res.isInvalid())
2028     return ExprError();
2029 
2030   // These can be followed by postfix-expr pieces because they are
2031   // primary-expressions.
2032   return ParsePostfixExpressionSuffix(Res.get());
2033 }
2034 
2035 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2036 /// based on what is allowed by ExprType.  The actual thing parsed is returned
2037 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2038 /// not the parsed cast-expression.
2039 ///
2040 /// \verbatim
2041 ///       primary-expression: [C99 6.5.1]
2042 ///         '(' expression ')'
2043 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2044 ///       postfix-expression: [C99 6.5.2]
2045 ///         '(' type-name ')' '{' initializer-list '}'
2046 ///         '(' type-name ')' '{' initializer-list ',' '}'
2047 ///       cast-expression: [C99 6.5.4]
2048 ///         '(' type-name ')' cast-expression
2049 /// [ARC]   bridged-cast-expression
2050 /// [ARC] bridged-cast-expression:
2051 ///         (__bridge type-name) cast-expression
2052 ///         (__bridge_transfer type-name) cast-expression
2053 ///         (__bridge_retained type-name) cast-expression
2054 ///       fold-expression: [C++1z]
2055 ///         '(' cast-expression fold-operator '...' ')'
2056 ///         '(' '...' fold-operator cast-expression ')'
2057 ///         '(' cast-expression fold-operator '...'
2058 ///                 fold-operator cast-expression ')'
2059 /// \endverbatim
2060 ExprResult
ParseParenExpression(ParenParseOption & ExprType,bool stopIfCastExpr,bool isTypeCast,ParsedType & CastTy,SourceLocation & RParenLoc)2061 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2062                              bool isTypeCast, ParsedType &CastTy,
2063                              SourceLocation &RParenLoc) {
2064   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2065   ColonProtectionRAIIObject ColonProtection(*this, false);
2066   BalancedDelimiterTracker T(*this, tok::l_paren);
2067   if (T.consumeOpen())
2068     return ExprError();
2069   SourceLocation OpenLoc = T.getOpenLocation();
2070 
2071   ExprResult Result(true);
2072   bool isAmbiguousTypeId;
2073   CastTy = ParsedType();
2074 
2075   if (Tok.is(tok::code_completion)) {
2076     Actions.CodeCompleteOrdinaryName(getCurScope(),
2077                  ExprType >= CompoundLiteral? Sema::PCC_ParenthesizedExpression
2078                                             : Sema::PCC_Expression);
2079     cutOffParsing();
2080     return ExprError();
2081   }
2082 
2083   // Diagnose use of bridge casts in non-arc mode.
2084   bool BridgeCast = (getLangOpts().ObjC2 &&
2085                      (Tok.is(tok::kw___bridge) ||
2086                       Tok.is(tok::kw___bridge_transfer) ||
2087                       Tok.is(tok::kw___bridge_retained) ||
2088                       Tok.is(tok::kw___bridge_retain)));
2089   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2090     if (!TryConsumeToken(tok::kw___bridge)) {
2091       StringRef BridgeCastName = Tok.getName();
2092       SourceLocation BridgeKeywordLoc = ConsumeToken();
2093       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2094         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2095           << BridgeCastName
2096           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2097     }
2098     BridgeCast = false;
2099   }
2100 
2101   // None of these cases should fall through with an invalid Result
2102   // unless they've already reported an error.
2103   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2104     Diag(Tok, diag::ext_gnu_statement_expr);
2105 
2106     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2107       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2108     } else {
2109       Actions.ActOnStartStmtExpr();
2110 
2111       StmtResult Stmt(ParseCompoundStatement(true));
2112       ExprType = CompoundStmt;
2113 
2114       // If the substmt parsed correctly, build the AST node.
2115       if (!Stmt.isInvalid()) {
2116         Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
2117       } else {
2118         Actions.ActOnStmtExprError();
2119       }
2120     }
2121   } else if (ExprType >= CompoundLiteral && BridgeCast) {
2122     tok::TokenKind tokenKind = Tok.getKind();
2123     SourceLocation BridgeKeywordLoc = ConsumeToken();
2124 
2125     // Parse an Objective-C ARC ownership cast expression.
2126     ObjCBridgeCastKind Kind;
2127     if (tokenKind == tok::kw___bridge)
2128       Kind = OBC_Bridge;
2129     else if (tokenKind == tok::kw___bridge_transfer)
2130       Kind = OBC_BridgeTransfer;
2131     else if (tokenKind == tok::kw___bridge_retained)
2132       Kind = OBC_BridgeRetained;
2133     else {
2134       // As a hopefully temporary workaround, allow __bridge_retain as
2135       // a synonym for __bridge_retained, but only in system headers.
2136       assert(tokenKind == tok::kw___bridge_retain);
2137       Kind = OBC_BridgeRetained;
2138       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2139         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2140           << FixItHint::CreateReplacement(BridgeKeywordLoc,
2141                                           "__bridge_retained");
2142     }
2143 
2144     TypeResult Ty = ParseTypeName();
2145     T.consumeClose();
2146     ColonProtection.restore();
2147     RParenLoc = T.getCloseLocation();
2148     ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2149 
2150     if (Ty.isInvalid() || SubExpr.isInvalid())
2151       return ExprError();
2152 
2153     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2154                                         BridgeKeywordLoc, Ty.get(),
2155                                         RParenLoc, SubExpr.get());
2156   } else if (ExprType >= CompoundLiteral &&
2157              isTypeIdInParens(isAmbiguousTypeId)) {
2158 
2159     // Otherwise, this is a compound literal expression or cast expression.
2160 
2161     // In C++, if the type-id is ambiguous we disambiguate based on context.
2162     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2163     // in which case we should treat it as type-id.
2164     // if stopIfCastExpr is false, we need to determine the context past the
2165     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2166     if (isAmbiguousTypeId && !stopIfCastExpr) {
2167       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2168                                                         ColonProtection);
2169       RParenLoc = T.getCloseLocation();
2170       return res;
2171     }
2172 
2173     // Parse the type declarator.
2174     DeclSpec DS(AttrFactory);
2175     ParseSpecifierQualifierList(DS);
2176     Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2177     ParseDeclarator(DeclaratorInfo);
2178 
2179     // If our type is followed by an identifier and either ':' or ']', then
2180     // this is probably an Objective-C message send where the leading '[' is
2181     // missing. Recover as if that were the case.
2182     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2183         !InMessageExpression && getLangOpts().ObjC1 &&
2184         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2185       TypeResult Ty;
2186       {
2187         InMessageExpressionRAIIObject InMessage(*this, false);
2188         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2189       }
2190       Result = ParseObjCMessageExpressionBody(SourceLocation(),
2191                                               SourceLocation(),
2192                                               Ty.get(), nullptr);
2193     } else {
2194       // Match the ')'.
2195       T.consumeClose();
2196       ColonProtection.restore();
2197       RParenLoc = T.getCloseLocation();
2198       if (Tok.is(tok::l_brace)) {
2199         ExprType = CompoundLiteral;
2200         TypeResult Ty;
2201         {
2202           InMessageExpressionRAIIObject InMessage(*this, false);
2203           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2204         }
2205         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2206       }
2207 
2208       if (ExprType == CastExpr) {
2209         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2210 
2211         if (DeclaratorInfo.isInvalidType())
2212           return ExprError();
2213 
2214         // Note that this doesn't parse the subsequent cast-expression, it just
2215         // returns the parsed type to the callee.
2216         if (stopIfCastExpr) {
2217           TypeResult Ty;
2218           {
2219             InMessageExpressionRAIIObject InMessage(*this, false);
2220             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2221           }
2222           CastTy = Ty.get();
2223           return ExprResult();
2224         }
2225 
2226         // Reject the cast of super idiom in ObjC.
2227         if (Tok.is(tok::identifier) && getLangOpts().ObjC1 &&
2228             Tok.getIdentifierInfo() == Ident_super &&
2229             getCurScope()->isInObjcMethodScope() &&
2230             GetLookAheadToken(1).isNot(tok::period)) {
2231           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2232             << SourceRange(OpenLoc, RParenLoc);
2233           return ExprError();
2234         }
2235 
2236         // Parse the cast-expression that follows it next.
2237         // TODO: For cast expression with CastTy.
2238         Result = ParseCastExpression(/*isUnaryExpression=*/false,
2239                                      /*isAddressOfOperand=*/false,
2240                                      /*isTypeCast=*/IsTypeCast);
2241         if (!Result.isInvalid()) {
2242           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2243                                          DeclaratorInfo, CastTy,
2244                                          RParenLoc, Result.get());
2245         }
2246         return Result;
2247       }
2248 
2249       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2250       return ExprError();
2251     }
2252   } else if (Tok.is(tok::ellipsis) &&
2253              isFoldOperator(NextToken().getKind())) {
2254     return ParseFoldExpression(ExprResult(), T);
2255   } else if (isTypeCast) {
2256     // Parse the expression-list.
2257     InMessageExpressionRAIIObject InMessage(*this, false);
2258 
2259     ExprVector ArgExprs;
2260     CommaLocsTy CommaLocs;
2261 
2262     if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2263       // FIXME: If we ever support comma expressions as operands to
2264       // fold-expressions, we'll need to allow multiple ArgExprs here.
2265       if (ArgExprs.size() == 1 && isFoldOperator(Tok.getKind()) &&
2266           NextToken().is(tok::ellipsis))
2267         return ParseFoldExpression(Result, T);
2268 
2269       ExprType = SimpleExpr;
2270       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2271                                           ArgExprs);
2272     }
2273   } else {
2274     InMessageExpressionRAIIObject InMessage(*this, false);
2275 
2276     Result = ParseExpression(MaybeTypeCast);
2277     ExprType = SimpleExpr;
2278 
2279     if (isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis))
2280       return ParseFoldExpression(Result, T);
2281 
2282     // Don't build a paren expression unless we actually match a ')'.
2283     if (!Result.isInvalid() && Tok.is(tok::r_paren))
2284       Result =
2285           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2286   }
2287 
2288   // Match the ')'.
2289   if (Result.isInvalid()) {
2290     SkipUntil(tok::r_paren, StopAtSemi);
2291     return ExprError();
2292   }
2293 
2294   T.consumeClose();
2295   RParenLoc = T.getCloseLocation();
2296   return Result;
2297 }
2298 
2299 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2300 /// and we are at the left brace.
2301 ///
2302 /// \verbatim
2303 ///       postfix-expression: [C99 6.5.2]
2304 ///         '(' type-name ')' '{' initializer-list '}'
2305 ///         '(' type-name ')' '{' initializer-list ',' '}'
2306 /// \endverbatim
2307 ExprResult
ParseCompoundLiteralExpression(ParsedType Ty,SourceLocation LParenLoc,SourceLocation RParenLoc)2308 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2309                                        SourceLocation LParenLoc,
2310                                        SourceLocation RParenLoc) {
2311   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2312   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
2313     Diag(LParenLoc, diag::ext_c99_compound_literal);
2314   ExprResult Result = ParseInitializer();
2315   if (!Result.isInvalid() && Ty)
2316     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2317   return Result;
2318 }
2319 
2320 /// ParseStringLiteralExpression - This handles the various token types that
2321 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2322 /// translation phase #6].
2323 ///
2324 /// \verbatim
2325 ///       primary-expression: [C99 6.5.1]
2326 ///         string-literal
2327 /// \verbatim
ParseStringLiteralExpression(bool AllowUserDefinedLiteral)2328 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2329   assert(isTokenStringLiteral() && "Not a string literal!");
2330 
2331   // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
2332   // considered to be strings for concatenation purposes.
2333   SmallVector<Token, 4> StringToks;
2334 
2335   do {
2336     StringToks.push_back(Tok);
2337     ConsumeStringToken();
2338   } while (isTokenStringLiteral());
2339 
2340   // Pass the set of string tokens, ready for concatenation, to the actions.
2341   return Actions.ActOnStringLiteral(StringToks,
2342                                     AllowUserDefinedLiteral ? getCurScope()
2343                                                             : nullptr);
2344 }
2345 
2346 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2347 /// [C11 6.5.1.1].
2348 ///
2349 /// \verbatim
2350 ///    generic-selection:
2351 ///           _Generic ( assignment-expression , generic-assoc-list )
2352 ///    generic-assoc-list:
2353 ///           generic-association
2354 ///           generic-assoc-list , generic-association
2355 ///    generic-association:
2356 ///           type-name : assignment-expression
2357 ///           default : assignment-expression
2358 /// \endverbatim
ParseGenericSelectionExpression()2359 ExprResult Parser::ParseGenericSelectionExpression() {
2360   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2361   SourceLocation KeyLoc = ConsumeToken();
2362 
2363   if (!getLangOpts().C11)
2364     Diag(KeyLoc, diag::ext_c11_generic_selection);
2365 
2366   BalancedDelimiterTracker T(*this, tok::l_paren);
2367   if (T.expectAndConsume())
2368     return ExprError();
2369 
2370   ExprResult ControllingExpr;
2371   {
2372     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2373     // not evaluated."
2374     EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
2375     ControllingExpr =
2376         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
2377     if (ControllingExpr.isInvalid()) {
2378       SkipUntil(tok::r_paren, StopAtSemi);
2379       return ExprError();
2380     }
2381   }
2382 
2383   if (ExpectAndConsume(tok::comma)) {
2384     SkipUntil(tok::r_paren, StopAtSemi);
2385     return ExprError();
2386   }
2387 
2388   SourceLocation DefaultLoc;
2389   TypeVector Types;
2390   ExprVector Exprs;
2391   do {
2392     ParsedType Ty;
2393     if (Tok.is(tok::kw_default)) {
2394       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2395       // generic association."
2396       if (!DefaultLoc.isInvalid()) {
2397         Diag(Tok, diag::err_duplicate_default_assoc);
2398         Diag(DefaultLoc, diag::note_previous_default_assoc);
2399         SkipUntil(tok::r_paren, StopAtSemi);
2400         return ExprError();
2401       }
2402       DefaultLoc = ConsumeToken();
2403       Ty = ParsedType();
2404     } else {
2405       ColonProtectionRAIIObject X(*this);
2406       TypeResult TR = ParseTypeName();
2407       if (TR.isInvalid()) {
2408         SkipUntil(tok::r_paren, StopAtSemi);
2409         return ExprError();
2410       }
2411       Ty = TR.get();
2412     }
2413     Types.push_back(Ty);
2414 
2415     if (ExpectAndConsume(tok::colon)) {
2416       SkipUntil(tok::r_paren, StopAtSemi);
2417       return ExprError();
2418     }
2419 
2420     // FIXME: These expressions should be parsed in a potentially potentially
2421     // evaluated context.
2422     ExprResult ER(
2423         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
2424     if (ER.isInvalid()) {
2425       SkipUntil(tok::r_paren, StopAtSemi);
2426       return ExprError();
2427     }
2428     Exprs.push_back(ER.get());
2429   } while (TryConsumeToken(tok::comma));
2430 
2431   T.consumeClose();
2432   if (T.getCloseLocation().isInvalid())
2433     return ExprError();
2434 
2435   return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2436                                            T.getCloseLocation(),
2437                                            ControllingExpr.get(),
2438                                            Types, Exprs);
2439 }
2440 
2441 /// \brief Parse A C++1z fold-expression after the opening paren and optional
2442 /// left-hand-side expression.
2443 ///
2444 /// \verbatim
2445 ///   fold-expression:
2446 ///       ( cast-expression fold-operator ... )
2447 ///       ( ... fold-operator cast-expression )
2448 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
ParseFoldExpression(ExprResult LHS,BalancedDelimiterTracker & T)2449 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
2450                                        BalancedDelimiterTracker &T) {
2451   if (LHS.isInvalid()) {
2452     T.skipToEnd();
2453     return true;
2454   }
2455 
2456   tok::TokenKind Kind = tok::unknown;
2457   SourceLocation FirstOpLoc;
2458   if (LHS.isUsable()) {
2459     Kind = Tok.getKind();
2460     assert(isFoldOperator(Kind) && "missing fold-operator");
2461     FirstOpLoc = ConsumeToken();
2462   }
2463 
2464   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
2465   SourceLocation EllipsisLoc = ConsumeToken();
2466 
2467   ExprResult RHS;
2468   if (Tok.isNot(tok::r_paren)) {
2469     if (!isFoldOperator(Tok.getKind()))
2470       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
2471 
2472     if (Kind != tok::unknown && Tok.getKind() != Kind)
2473       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
2474         << SourceRange(FirstOpLoc);
2475     Kind = Tok.getKind();
2476     ConsumeToken();
2477 
2478     RHS = ParseExpression();
2479     if (RHS.isInvalid()) {
2480       T.skipToEnd();
2481       return true;
2482     }
2483   }
2484 
2485   Diag(EllipsisLoc, getLangOpts().CPlusPlus1z
2486                         ? diag::warn_cxx14_compat_fold_expression
2487                         : diag::ext_fold_expression);
2488 
2489   T.consumeClose();
2490   return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
2491                                   EllipsisLoc, RHS.get(), T.getCloseLocation());
2492 }
2493 
2494 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2495 ///
2496 /// \verbatim
2497 ///       argument-expression-list:
2498 ///         assignment-expression
2499 ///         argument-expression-list , assignment-expression
2500 ///
2501 /// [C++] expression-list:
2502 /// [C++]   assignment-expression
2503 /// [C++]   expression-list , assignment-expression
2504 ///
2505 /// [C++0x] expression-list:
2506 /// [C++0x]   initializer-list
2507 ///
2508 /// [C++0x] initializer-list
2509 /// [C++0x]   initializer-clause ...[opt]
2510 /// [C++0x]   initializer-list , initializer-clause ...[opt]
2511 ///
2512 /// [C++0x] initializer-clause:
2513 /// [C++0x]   assignment-expression
2514 /// [C++0x]   braced-init-list
2515 /// \endverbatim
ParseExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs,std::function<void ()> Completer)2516 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
2517                                  SmallVectorImpl<SourceLocation> &CommaLocs,
2518                                  std::function<void()> Completer) {
2519   bool SawError = false;
2520   while (1) {
2521     if (Tok.is(tok::code_completion)) {
2522       if (Completer)
2523         Completer();
2524       else
2525         Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Expression);
2526       cutOffParsing();
2527       return true;
2528     }
2529 
2530     ExprResult Expr;
2531     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2532       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2533       Expr = ParseBraceInitializer();
2534     } else
2535       Expr = ParseAssignmentExpression();
2536 
2537     if (Tok.is(tok::ellipsis))
2538       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2539     if (Expr.isInvalid()) {
2540       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
2541       SawError = true;
2542     } else {
2543       Exprs.push_back(Expr.get());
2544     }
2545 
2546     if (Tok.isNot(tok::comma))
2547       break;
2548     // Move to the next argument, remember where the comma was.
2549     CommaLocs.push_back(ConsumeToken());
2550   }
2551   if (SawError) {
2552     // Ensure typos get diagnosed when errors were encountered while parsing the
2553     // expression list.
2554     for (auto &E : Exprs) {
2555       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
2556       if (Expr.isUsable()) E = Expr.get();
2557     }
2558   }
2559   return SawError;
2560 }
2561 
2562 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2563 /// used for misc language extensions.
2564 ///
2565 /// \verbatim
2566 ///       simple-expression-list:
2567 ///         assignment-expression
2568 ///         simple-expression-list , assignment-expression
2569 /// \endverbatim
2570 bool
ParseSimpleExpressionList(SmallVectorImpl<Expr * > & Exprs,SmallVectorImpl<SourceLocation> & CommaLocs)2571 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2572                                   SmallVectorImpl<SourceLocation> &CommaLocs) {
2573   while (1) {
2574     ExprResult Expr = ParseAssignmentExpression();
2575     if (Expr.isInvalid())
2576       return true;
2577 
2578     Exprs.push_back(Expr.get());
2579 
2580     if (Tok.isNot(tok::comma))
2581       return false;
2582 
2583     // Move to the next argument, remember where the comma was.
2584     CommaLocs.push_back(ConsumeToken());
2585   }
2586 }
2587 
2588 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2589 ///
2590 /// \verbatim
2591 /// [clang] block-id:
2592 /// [clang]   specifier-qualifier-list block-declarator
2593 /// \endverbatim
ParseBlockId(SourceLocation CaretLoc)2594 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2595   if (Tok.is(tok::code_completion)) {
2596     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2597     return cutOffParsing();
2598   }
2599 
2600   // Parse the specifier-qualifier-list piece.
2601   DeclSpec DS(AttrFactory);
2602   ParseSpecifierQualifierList(DS);
2603 
2604   // Parse the block-declarator.
2605   Declarator DeclaratorInfo(DS, Declarator::BlockLiteralContext);
2606   ParseDeclarator(DeclaratorInfo);
2607 
2608   // We do this for: ^ __attribute__((noreturn)) {, as DS has the attributes.
2609   DeclaratorInfo.takeAttributes(DS.getAttributes(), SourceLocation());
2610 
2611   MaybeParseGNUAttributes(DeclaratorInfo);
2612 
2613   // Inform sema that we are starting a block.
2614   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2615 }
2616 
2617 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2618 /// like ^(int x){ return x+1; }
2619 ///
2620 /// \verbatim
2621 ///         block-literal:
2622 /// [clang]   '^' block-args[opt] compound-statement
2623 /// [clang]   '^' block-id compound-statement
2624 /// [clang] block-args:
2625 /// [clang]   '(' parameter-list ')'
2626 /// \endverbatim
ParseBlockLiteralExpression()2627 ExprResult Parser::ParseBlockLiteralExpression() {
2628   assert(Tok.is(tok::caret) && "block literal starts with ^");
2629   SourceLocation CaretLoc = ConsumeToken();
2630 
2631   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
2632                                 "block literal parsing");
2633 
2634   // Enter a scope to hold everything within the block.  This includes the
2635   // argument decls, decls within the compound expression, etc.  This also
2636   // allows determining whether a variable reference inside the block is
2637   // within or outside of the block.
2638   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
2639                               Scope::DeclScope);
2640 
2641   // Inform sema that we are starting a block.
2642   Actions.ActOnBlockStart(CaretLoc, getCurScope());
2643 
2644   // Parse the return type if present.
2645   DeclSpec DS(AttrFactory);
2646   Declarator ParamInfo(DS, Declarator::BlockLiteralContext);
2647   // FIXME: Since the return type isn't actually parsed, it can't be used to
2648   // fill ParamInfo with an initial valid range, so do it manually.
2649   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
2650 
2651   // If this block has arguments, parse them.  There is no ambiguity here with
2652   // the expression case, because the expression case requires a parameter list.
2653   if (Tok.is(tok::l_paren)) {
2654     ParseParenDeclarator(ParamInfo);
2655     // Parse the pieces after the identifier as if we had "int(...)".
2656     // SetIdentifier sets the source range end, but in this case we're past
2657     // that location.
2658     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
2659     ParamInfo.SetIdentifier(nullptr, CaretLoc);
2660     ParamInfo.SetRangeEnd(Tmp);
2661     if (ParamInfo.isInvalidType()) {
2662       // If there was an error parsing the arguments, they may have
2663       // tried to use ^(x+y) which requires an argument list.  Just
2664       // skip the whole block literal.
2665       Actions.ActOnBlockError(CaretLoc, getCurScope());
2666       return ExprError();
2667     }
2668 
2669     MaybeParseGNUAttributes(ParamInfo);
2670 
2671     // Inform sema that we are starting a block.
2672     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2673   } else if (!Tok.is(tok::l_brace)) {
2674     ParseBlockId(CaretLoc);
2675   } else {
2676     // Otherwise, pretend we saw (void).
2677     ParsedAttributes attrs(AttrFactory);
2678     SourceLocation NoLoc;
2679     ParamInfo.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/true,
2680                                              /*IsAmbiguous=*/false,
2681                                              /*RParenLoc=*/NoLoc,
2682                                              /*ArgInfo=*/nullptr,
2683                                              /*NumArgs=*/0,
2684                                              /*EllipsisLoc=*/NoLoc,
2685                                              /*RParenLoc=*/NoLoc,
2686                                              /*TypeQuals=*/0,
2687                                              /*RefQualifierIsLvalueRef=*/true,
2688                                              /*RefQualifierLoc=*/NoLoc,
2689                                              /*ConstQualifierLoc=*/NoLoc,
2690                                              /*VolatileQualifierLoc=*/NoLoc,
2691                                              /*RestrictQualifierLoc=*/NoLoc,
2692                                              /*MutableLoc=*/NoLoc,
2693                                              EST_None,
2694                                              /*ESpecLoc=*/NoLoc,
2695                                              /*Exceptions=*/nullptr,
2696                                              /*ExceptionRanges=*/nullptr,
2697                                              /*NumExceptions=*/0,
2698                                              /*NoexceptExpr=*/nullptr,
2699                                              /*ExceptionSpecTokens=*/nullptr,
2700                                              CaretLoc, CaretLoc,
2701                                              ParamInfo),
2702                           attrs, CaretLoc);
2703 
2704     MaybeParseGNUAttributes(ParamInfo);
2705 
2706     // Inform sema that we are starting a block.
2707     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
2708   }
2709 
2710 
2711   ExprResult Result(true);
2712   if (!Tok.is(tok::l_brace)) {
2713     // Saw something like: ^expr
2714     Diag(Tok, diag::err_expected_expression);
2715     Actions.ActOnBlockError(CaretLoc, getCurScope());
2716     return ExprError();
2717   }
2718 
2719   StmtResult Stmt(ParseCompoundStatementBody());
2720   BlockScope.Exit();
2721   if (!Stmt.isInvalid())
2722     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
2723   else
2724     Actions.ActOnBlockError(CaretLoc, getCurScope());
2725   return Result;
2726 }
2727 
2728 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
2729 ///
2730 ///         '__objc_yes'
2731 ///         '__objc_no'
ParseObjCBoolLiteral()2732 ExprResult Parser::ParseObjCBoolLiteral() {
2733   tok::TokenKind Kind = Tok.getKind();
2734   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
2735 }
2736