• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 
11 // C Includes
12 // C++ Includes
13 #include <list>
14 
15 #include "lldb/Core/Log.h"
16 #include "lldb/Core/Section.h"
17 #include "lldb/Core/ArchSpec.h"
18 #include "lldb/Core/Module.h"
19 #include "lldb/Core/Section.h"
20 #include "lldb/Core/Timer.h"
21 #include "lldb/Host/Host.h"
22 #include "lldb/Symbol/DWARFCallFrameInfo.h"
23 #include "lldb/Symbol/ObjectFile.h"
24 #include "lldb/Symbol/UnwindPlan.h"
25 #include "lldb/Target/RegisterContext.h"
26 #include "lldb/Target/Thread.h"
27 
28 using namespace lldb;
29 using namespace lldb_private;
30 
DWARFCallFrameInfo(ObjectFile & objfile,SectionSP & section_sp,lldb::RegisterKind reg_kind,bool is_eh_frame)31 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section_sp, lldb::RegisterKind reg_kind, bool is_eh_frame) :
32     m_objfile (objfile),
33     m_section_sp (section_sp),
34     m_reg_kind (reg_kind),  // The flavor of registers that the CFI data uses (enum RegisterKind)
35     m_flags (),
36     m_cie_map (),
37     m_cfi_data (),
38     m_cfi_data_initialized (false),
39     m_fde_index (),
40     m_fde_index_initialized (false),
41     m_is_eh_frame (is_eh_frame)
42 {
43 }
44 
~DWARFCallFrameInfo()45 DWARFCallFrameInfo::~DWARFCallFrameInfo()
46 {
47 }
48 
49 
50 bool
GetUnwindPlan(Address addr,UnwindPlan & unwind_plan)51 DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
52 {
53     FDEEntryMap::Entry fde_entry;
54 
55     // Make sure that the Address we're searching for is the same object file
56     // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
57     ModuleSP module_sp = addr.GetModule();
58     if (module_sp.get() == NULL || module_sp->GetObjectFile() == NULL || module_sp->GetObjectFile() != &m_objfile)
59         return false;
60 
61     if (GetFDEEntryByFileAddress (addr.GetFileAddress(), fde_entry) == false)
62         return false;
63     return FDEToUnwindPlan (fde_entry.data, addr, unwind_plan);
64 }
65 
66 bool
GetAddressRange(Address addr,AddressRange & range)67 DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
68 {
69 
70     // Make sure that the Address we're searching for is the same object file
71     // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
72     ModuleSP module_sp = addr.GetModule();
73     if (module_sp.get() == NULL || module_sp->GetObjectFile() == NULL || module_sp->GetObjectFile() != &m_objfile)
74         return false;
75 
76     if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
77         return false;
78     GetFDEIndex();
79     FDEEntryMap::Entry *fde_entry = m_fde_index.FindEntryThatContains (addr.GetFileAddress());
80     if (!fde_entry)
81         return false;
82 
83     range = AddressRange(fde_entry->base, fde_entry->size, m_objfile.GetSectionList());
84     return true;
85 }
86 
87 bool
GetFDEEntryByFileAddress(addr_t file_addr,FDEEntryMap::Entry & fde_entry)88 DWARFCallFrameInfo::GetFDEEntryByFileAddress (addr_t file_addr, FDEEntryMap::Entry &fde_entry)
89 {
90     if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
91         return false;
92 
93     GetFDEIndex();
94 
95     if (m_fde_index.IsEmpty())
96         return false;
97 
98     FDEEntryMap::Entry *fde = m_fde_index.FindEntryThatContains (file_addr);
99 
100     if (fde == NULL)
101         return false;
102 
103     fde_entry = *fde;
104     return true;
105 }
106 
107 void
GetFunctionAddressAndSizeVector(FunctionAddressAndSizeVector & function_info)108 DWARFCallFrameInfo::GetFunctionAddressAndSizeVector (FunctionAddressAndSizeVector &function_info)
109 {
110     GetFDEIndex();
111     const size_t count = m_fde_index.GetSize();
112     function_info.Clear();
113     if (count > 0)
114         function_info.Reserve(count);
115     for (size_t i = 0; i < count; ++i)
116     {
117         const FDEEntryMap::Entry *func_offset_data_entry = m_fde_index.GetEntryAtIndex (i);
118         if (func_offset_data_entry)
119         {
120             FunctionAddressAndSizeVector::Entry function_offset_entry (func_offset_data_entry->base, func_offset_data_entry->size);
121             function_info.Append (function_offset_entry);
122         }
123     }
124 }
125 
126 const DWARFCallFrameInfo::CIE*
GetCIE(dw_offset_t cie_offset)127 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
128 {
129     cie_map_t::iterator pos = m_cie_map.find(cie_offset);
130 
131     if (pos != m_cie_map.end())
132     {
133         // Parse and cache the CIE
134         if (pos->second.get() == NULL)
135             pos->second = ParseCIE (cie_offset);
136 
137         return pos->second.get();
138     }
139     return NULL;
140 }
141 
142 DWARFCallFrameInfo::CIESP
ParseCIE(const dw_offset_t cie_offset)143 DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
144 {
145     CIESP cie_sp(new CIE(cie_offset));
146     lldb::offset_t offset = cie_offset;
147     if (m_cfi_data_initialized == false)
148         GetCFIData();
149     const uint32_t length = m_cfi_data.GetU32(&offset);
150     const dw_offset_t cie_id = m_cfi_data.GetU32(&offset);
151     const dw_offset_t end_offset = cie_offset + length + 4;
152     if (length > 0 && ((!m_is_eh_frame && cie_id == UINT32_MAX) || (m_is_eh_frame && cie_id == 0ul)))
153     {
154         size_t i;
155         //    cie.offset = cie_offset;
156         //    cie.length = length;
157         //    cie.cieID = cieID;
158         cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
159         cie_sp->version = m_cfi_data.GetU8(&offset);
160 
161         for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
162         {
163             cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
164             if (cie_sp->augmentation[i] == '\0')
165             {
166                 // Zero out remaining bytes in augmentation string
167                 for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
168                     cie_sp->augmentation[j] = '\0';
169 
170                 break;
171             }
172         }
173 
174         if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
175         {
176             Host::SystemLog (Host::eSystemLogError, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
177             return cie_sp;
178         }
179         cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
180         cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
181         cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
182 
183         if (cie_sp->augmentation[0])
184         {
185             // Get the length of the eh_frame augmentation data
186             // which starts with a ULEB128 length in bytes
187             const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
188             const size_t aug_data_end = offset + aug_data_len;
189             const size_t aug_str_len = strlen(cie_sp->augmentation);
190             // A 'z' may be present as the first character of the string.
191             // If present, the Augmentation Data field shall be present.
192             // The contents of the Augmentation Data shall be intepreted
193             // according to other characters in the Augmentation String.
194             if (cie_sp->augmentation[0] == 'z')
195             {
196                 // Extract the Augmentation Data
197                 size_t aug_str_idx = 0;
198                 for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
199                 {
200                     char aug = cie_sp->augmentation[aug_str_idx];
201                     switch (aug)
202                     {
203                         case 'L':
204                             // Indicates the presence of one argument in the
205                             // Augmentation Data of the CIE, and a corresponding
206                             // argument in the Augmentation Data of the FDE. The
207                             // argument in the Augmentation Data of the CIE is
208                             // 1-byte and represents the pointer encoding used
209                             // for the argument in the Augmentation Data of the
210                             // FDE, which is the address of a language-specific
211                             // data area (LSDA). The size of the LSDA pointer is
212                             // specified by the pointer encoding used.
213                             m_cfi_data.GetU8(&offset);
214                             break;
215 
216                         case 'P':
217                             // Indicates the presence of two arguments in the
218                             // Augmentation Data of the cie_sp-> The first argument
219                             // is 1-byte and represents the pointer encoding
220                             // used for the second argument, which is the
221                             // address of a personality routine handler. The
222                             // size of the personality routine pointer is
223                             // specified by the pointer encoding used.
224                         {
225                             uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
226                             m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
227                         }
228                             break;
229 
230                         case 'R':
231                             // A 'R' may be present at any position after the
232                             // first character of the string. The Augmentation
233                             // Data shall include a 1 byte argument that
234                             // represents the pointer encoding for the address
235                             // pointers used in the FDE.
236                             // Example: 0x1B == DW_EH_PE_pcrel | DW_EH_PE_sdata4
237                             cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
238                             break;
239                     }
240                 }
241             }
242             else if (strcmp(cie_sp->augmentation, "eh") == 0)
243             {
244                 // If the Augmentation string has the value "eh", then
245                 // the EH Data field shall be present
246             }
247 
248             // Set the offset to be the end of the augmentation data just in case
249             // we didn't understand any of the data.
250             offset = (uint32_t)aug_data_end;
251         }
252 
253         if (end_offset > offset)
254         {
255             cie_sp->inst_offset = offset;
256             cie_sp->inst_length = end_offset - offset;
257         }
258         while (offset < end_offset)
259         {
260             uint8_t inst = m_cfi_data.GetU8(&offset);
261             uint8_t primary_opcode  = inst & 0xC0;
262             uint8_t extended_opcode = inst & 0x3F;
263 
264             if (extended_opcode == DW_CFA_def_cfa)
265             {
266                 // Takes two unsigned LEB128 operands representing a register
267                 // number and a (non-factored) offset. The required action
268                 // is to define the current CFA rule to use the provided
269                 // register and offset.
270                 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
271                 int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
272                 cie_sp->initial_row.SetCFARegister (reg_num);
273                 cie_sp->initial_row.SetCFAOffset (op_offset);
274                 continue;
275             }
276             if (primary_opcode == DW_CFA_offset)
277             {
278                 // 0x80 - high 2 bits are 0x2, lower 6 bits are register.
279                 // Takes two arguments: an unsigned LEB128 constant representing a
280                 // factored offset and a register number. The required action is to
281                 // change the rule for the register indicated by the register number
282                 // to be an offset(N) rule with a value of
283                 // (N = factored offset * data_align).
284                 uint32_t reg_num = extended_opcode;
285                 int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * cie_sp->data_align;
286                 UnwindPlan::Row::RegisterLocation reg_location;
287                 reg_location.SetAtCFAPlusOffset(op_offset);
288                 cie_sp->initial_row.SetRegisterInfo (reg_num, reg_location);
289                 continue;
290             }
291             if (extended_opcode == DW_CFA_nop)
292             {
293                 continue;
294             }
295             break;  // Stop if we hit an unrecognized opcode
296         }
297     }
298 
299     return cie_sp;
300 }
301 
302 void
GetCFIData()303 DWARFCallFrameInfo::GetCFIData()
304 {
305     if (m_cfi_data_initialized == false)
306     {
307         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
308         if (log)
309             m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
310         m_objfile.ReadSectionData (m_section_sp.get(), m_cfi_data);
311         m_cfi_data_initialized = true;
312     }
313 }
314 // Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
315 // of the functions and a pointer back to the function's FDE for later expansion.
316 // Internalize CIEs as we come across them.
317 
318 void
GetFDEIndex()319 DWARFCallFrameInfo::GetFDEIndex ()
320 {
321     if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
322         return;
323 
324     if (m_fde_index_initialized)
325         return;
326 
327     Mutex::Locker locker(m_fde_index_mutex);
328 
329     if (m_fde_index_initialized) // if two threads hit the locker
330         return;
331 
332     Timer scoped_timer (__PRETTY_FUNCTION__, "%s - %s", __PRETTY_FUNCTION__, m_objfile.GetFileSpec().GetFilename().AsCString(""));
333 
334     lldb::offset_t offset = 0;
335     if (m_cfi_data_initialized == false)
336         GetCFIData();
337     while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
338     {
339         const dw_offset_t current_entry = offset;
340         uint32_t len = m_cfi_data.GetU32 (&offset);
341         dw_offset_t next_entry = current_entry + len + 4;
342         dw_offset_t cie_id = m_cfi_data.GetU32 (&offset);
343 
344         if (cie_id == 0 || cie_id == UINT32_MAX)
345         {
346             m_cie_map[current_entry] = ParseCIE (current_entry);
347             offset = next_entry;
348             continue;
349         }
350 
351         const dw_offset_t cie_offset = current_entry + 4 - cie_id;
352         const CIE *cie = GetCIE (cie_offset);
353         if (cie)
354         {
355             const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
356             const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
357             const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
358 
359             lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
360             lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
361             FDEEntryMap::Entry fde (addr, length, current_entry);
362             m_fde_index.Append(fde);
363         }
364         else
365         {
366             Host::SystemLog (Host::eSystemLogError,
367                              "error: unable to find CIE at 0x%8.8x for cie_id = 0x%8.8x for entry at 0x%8.8x.\n",
368                              cie_offset,
369                              cie_id,
370                              current_entry);
371         }
372         offset = next_entry;
373     }
374     m_fde_index.Sort();
375     m_fde_index_initialized = true;
376 }
377 
378 bool
FDEToUnwindPlan(dw_offset_t dwarf_offset,Address startaddr,UnwindPlan & unwind_plan)379 DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t dwarf_offset, Address startaddr, UnwindPlan& unwind_plan)
380 {
381     lldb::offset_t offset = dwarf_offset;
382     lldb::offset_t current_entry = offset;
383 
384     if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
385         return false;
386 
387     if (m_cfi_data_initialized == false)
388         GetCFIData();
389 
390     uint32_t length = m_cfi_data.GetU32 (&offset);
391     dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);
392 
393     assert (cie_offset != 0 && cie_offset != UINT32_MAX);
394 
395     // Translate the CIE_id from the eh_frame format, which
396     // is relative to the FDE offset, into a __eh_frame section
397     // offset
398     if (m_is_eh_frame)
399     {
400         unwind_plan.SetSourceName ("eh_frame CFI");
401         cie_offset = current_entry + 4 - cie_offset;
402         unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
403     }
404     else
405     {
406         unwind_plan.SetSourceName ("DWARF CFI");
407         // In theory the debug_frame info should be valid at all call sites
408         // ("asynchronous unwind info" as it is sometimes called) but in practice
409         // gcc et al all emit call frame info for the prologue and call sites, but
410         // not for the epilogue or all the other locations during the function reliably.
411         unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
412     }
413     unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
414 
415     const CIE *cie = GetCIE (cie_offset);
416     assert (cie != NULL);
417 
418     const dw_offset_t end_offset = current_entry + length + 4;
419 
420     const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
421     const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
422     const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
423     lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
424     lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
425     AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
426     range.SetByteSize (range_len);
427 
428     if (cie->augmentation[0] == 'z')
429     {
430         uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
431         offset += aug_data_len;
432     }
433 
434     uint32_t reg_num = 0;
435     int32_t op_offset = 0;
436     uint32_t code_align = cie->code_align;
437     int32_t data_align = cie->data_align;
438 
439     unwind_plan.SetPlanValidAddressRange (range);
440     UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
441     *cie_initial_row = cie->initial_row;
442     UnwindPlan::RowSP row(cie_initial_row);
443 
444     unwind_plan.SetRegisterKind (m_reg_kind);
445     unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);
446 
447     UnwindPlan::Row::RegisterLocation reg_location;
448     while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
449     {
450         uint8_t inst = m_cfi_data.GetU8(&offset);
451         uint8_t primary_opcode  = inst & 0xC0;
452         uint8_t extended_opcode = inst & 0x3F;
453 
454         if (primary_opcode)
455         {
456             switch (primary_opcode)
457             {
458                 case DW_CFA_advance_loc :   // (Row Creation Instruction)
459                     {   // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
460                         // takes a single argument that represents a constant delta. The
461                         // required action is to create a new table row with a location
462                         // value that is computed by taking the current entry's location
463                         // value and adding (delta * code_align). All other
464                         // values in the new row are initially identical to the current row.
465                         unwind_plan.AppendRow(row);
466                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
467                         *newrow = *row.get();
468                         row.reset (newrow);
469                         row->SlideOffset(extended_opcode * code_align);
470                     }
471                     break;
472 
473                 case DW_CFA_offset      :
474                     {   // 0x80 - high 2 bits are 0x2, lower 6 bits are register
475                         // takes two arguments: an unsigned LEB128 constant representing a
476                         // factored offset and a register number. The required action is to
477                         // change the rule for the register indicated by the register number
478                         // to be an offset(N) rule with a value of
479                         // (N = factored offset * data_align).
480                         reg_num = extended_opcode;
481                         op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
482                         reg_location.SetAtCFAPlusOffset(op_offset);
483                         row->SetRegisterInfo (reg_num, reg_location);
484                     }
485                     break;
486 
487                 case DW_CFA_restore     :
488                     {   // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
489                         // takes a single argument that represents a register number. The
490                         // required action is to change the rule for the indicated register
491                         // to the rule assigned it by the initial_instructions in the CIE.
492                         reg_num = extended_opcode;
493                         // We only keep enough register locations around to
494                         // unwind what is in our thread, and these are organized
495                         // by the register index in that state, so we need to convert our
496                         // GCC register number from the EH frame info, to a register index
497 
498                         if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
499                             row->SetRegisterInfo (reg_num, reg_location);
500                     }
501                     break;
502             }
503         }
504         else
505         {
506             switch (extended_opcode)
507             {
508                 case DW_CFA_nop                 : // 0x0
509                     break;
510 
511                 case DW_CFA_set_loc             : // 0x1 (Row Creation Instruction)
512                     {
513                         // DW_CFA_set_loc takes a single argument that represents an address.
514                         // The required action is to create a new table row using the
515                         // specified address as the location. All other values in the new row
516                         // are initially identical to the current row. The new location value
517                         // should always be greater than the current one.
518                         unwind_plan.AppendRow(row);
519                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
520                         *newrow = *row.get();
521                         row.reset (newrow);
522                         row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
523                     }
524                     break;
525 
526                 case DW_CFA_advance_loc1        : // 0x2 (Row Creation Instruction)
527                     {
528                         // takes a single uword argument that represents a constant delta.
529                         // This instruction is identical to DW_CFA_advance_loc except for the
530                         // encoding and size of the delta argument.
531                         unwind_plan.AppendRow(row);
532                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
533                         *newrow = *row.get();
534                         row.reset (newrow);
535                         row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
536                     }
537                     break;
538 
539                 case DW_CFA_advance_loc2        : // 0x3 (Row Creation Instruction)
540                     {
541                         // takes a single uword argument that represents a constant delta.
542                         // This instruction is identical to DW_CFA_advance_loc except for the
543                         // encoding and size of the delta argument.
544                         unwind_plan.AppendRow(row);
545                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
546                         *newrow = *row.get();
547                         row.reset (newrow);
548                         row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
549                     }
550                     break;
551 
552                 case DW_CFA_advance_loc4        : // 0x4 (Row Creation Instruction)
553                     {
554                         // takes a single uword argument that represents a constant delta.
555                         // This instruction is identical to DW_CFA_advance_loc except for the
556                         // encoding and size of the delta argument.
557                         unwind_plan.AppendRow(row);
558                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
559                         *newrow = *row.get();
560                         row.reset (newrow);
561                         row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
562                     }
563                     break;
564 
565                 case DW_CFA_offset_extended     : // 0x5
566                     {
567                         // takes two unsigned LEB128 arguments representing a register number
568                         // and a factored offset. This instruction is identical to DW_CFA_offset
569                         // except for the encoding and size of the register argument.
570                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
571                         op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
572                         reg_location.SetAtCFAPlusOffset(op_offset);
573                         row->SetRegisterInfo (reg_num, reg_location);
574                     }
575                     break;
576 
577                 case DW_CFA_restore_extended    : // 0x6
578                     {
579                         // takes a single unsigned LEB128 argument that represents a register
580                         // number. This instruction is identical to DW_CFA_restore except for
581                         // the encoding and size of the register argument.
582                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
583                         if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
584                             row->SetRegisterInfo (reg_num, reg_location);
585                     }
586                     break;
587 
588                 case DW_CFA_undefined           : // 0x7
589                     {
590                         // takes a single unsigned LEB128 argument that represents a register
591                         // number. The required action is to set the rule for the specified
592                         // register to undefined.
593                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
594                         reg_location.SetUndefined();
595                         row->SetRegisterInfo (reg_num, reg_location);
596                     }
597                     break;
598 
599                 case DW_CFA_same_value          : // 0x8
600                     {
601                         // takes a single unsigned LEB128 argument that represents a register
602                         // number. The required action is to set the rule for the specified
603                         // register to same value.
604                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
605                         reg_location.SetSame();
606                         row->SetRegisterInfo (reg_num, reg_location);
607                     }
608                     break;
609 
610                 case DW_CFA_register            : // 0x9
611                     {
612                         // takes two unsigned LEB128 arguments representing register numbers.
613                         // The required action is to set the rule for the first register to be
614                         // the second register.
615 
616                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
617                         uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
618                         reg_location.SetInRegister(other_reg_num);
619                         row->SetRegisterInfo (reg_num, reg_location);
620                     }
621                     break;
622 
623                 case DW_CFA_remember_state      : // 0xA
624                     {
625                         // These instructions define a stack of information. Encountering the
626                         // DW_CFA_remember_state instruction means to save the rules for every
627                         // register on the current row on the stack. Encountering the
628                         // DW_CFA_restore_state instruction means to pop the set of rules off
629                         // the stack and place them in the current row. (This operation is
630                         // useful for compilers that move epilogue code into the body of a
631                         // function.)
632                         unwind_plan.AppendRow (row);
633                         UnwindPlan::Row *newrow = new UnwindPlan::Row;
634                         *newrow = *row.get();
635                         row.reset (newrow);
636                     }
637                     break;
638 
639                 case DW_CFA_restore_state       : // 0xB
640                     // These instructions define a stack of information. Encountering the
641                     // DW_CFA_remember_state instruction means to save the rules for every
642                     // register on the current row on the stack. Encountering the
643                     // DW_CFA_restore_state instruction means to pop the set of rules off
644                     // the stack and place them in the current row. (This operation is
645                     // useful for compilers that move epilogue code into the body of a
646                     // function.)
647                     {
648                         row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
649                     }
650                     break;
651 
652                 case DW_CFA_def_cfa             : // 0xC    (CFA Definition Instruction)
653                     {
654                         // Takes two unsigned LEB128 operands representing a register
655                         // number and a (non-factored) offset. The required action
656                         // is to define the current CFA rule to use the provided
657                         // register and offset.
658                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
659                         op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
660                         row->SetCFARegister (reg_num);
661                         row->SetCFAOffset (op_offset);
662                     }
663                     break;
664 
665                 case DW_CFA_def_cfa_register    : // 0xD    (CFA Definition Instruction)
666                     {
667                         // takes a single unsigned LEB128 argument representing a register
668                         // number. The required action is to define the current CFA rule to
669                         // use the provided register (but to keep the old offset).
670                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
671                         row->SetCFARegister (reg_num);
672                     }
673                     break;
674 
675                 case DW_CFA_def_cfa_offset      : // 0xE    (CFA Definition Instruction)
676                     {
677                         // Takes a single unsigned LEB128 operand representing a
678                         // (non-factored) offset. The required action is to define
679                         // the current CFA rule to use the provided offset (but
680                         // to keep the old register).
681                         op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
682                         row->SetCFAOffset (op_offset);
683                     }
684                     break;
685 
686                 case DW_CFA_def_cfa_expression  : // 0xF    (CFA Definition Instruction)
687                     {
688                         size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
689                         offset += (uint32_t)block_len;
690                     }
691                     break;
692 
693                 case DW_CFA_expression          : // 0x10
694                     {
695                         // Takes two operands: an unsigned LEB128 value representing
696                         // a register number, and a DW_FORM_block value representing a DWARF
697                         // expression. The required action is to change the rule for the
698                         // register indicated by the register number to be an expression(E)
699                         // rule where E is the DWARF expression. That is, the DWARF
700                         // expression computes the address. The value of the CFA is
701                         // pushed on the DWARF evaluation stack prior to execution of
702                         // the DWARF expression.
703                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
704                         uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
705                         const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);
706 
707                         reg_location.SetAtDWARFExpression(block_data, block_len);
708                         row->SetRegisterInfo (reg_num, reg_location);
709                     }
710                     break;
711 
712                 case DW_CFA_offset_extended_sf  : // 0x11
713                     {
714                         // takes two operands: an unsigned LEB128 value representing a
715                         // register number and a signed LEB128 factored offset. This
716                         // instruction is identical to DW_CFA_offset_extended except
717                         //that the second operand is signed and factored.
718                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
719                         op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
720                         reg_location.SetAtCFAPlusOffset(op_offset);
721                         row->SetRegisterInfo (reg_num, reg_location);
722                     }
723                     break;
724 
725                 case DW_CFA_def_cfa_sf          : // 0x12   (CFA Definition Instruction)
726                     {
727                         // Takes two operands: an unsigned LEB128 value representing
728                         // a register number and a signed LEB128 factored offset.
729                         // This instruction is identical to DW_CFA_def_cfa except
730                         // that the second operand is signed and factored.
731                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
732                         op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
733                         row->SetCFARegister (reg_num);
734                         row->SetCFAOffset (op_offset);
735                     }
736                     break;
737 
738                 case DW_CFA_def_cfa_offset_sf   : // 0x13   (CFA Definition Instruction)
739                     {
740                         // takes a signed LEB128 operand representing a factored
741                         // offset. This instruction is identical to  DW_CFA_def_cfa_offset
742                         // except that the operand is signed and factored.
743                         op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
744                         row->SetCFAOffset (op_offset);
745                     }
746                     break;
747 
748                 case DW_CFA_val_expression      :   // 0x16
749                     {
750                         // takes two operands: an unsigned LEB128 value representing a register
751                         // number, and a DW_FORM_block value representing a DWARF expression.
752                         // The required action is to change the rule for the register indicated
753                         // by the register number to be a val_expression(E) rule where E is the
754                         // DWARF expression. That is, the DWARF expression computes the value of
755                         // the given register. The value of the CFA is pushed on the DWARF
756                         // evaluation stack prior to execution of the DWARF expression.
757                         reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
758                         uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
759                         const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
760 //#if defined(__i386__) || defined(__x86_64__)
761 //                      // The EH frame info for EIP and RIP contains code that looks for traps to
762 //                      // be a specific type and increments the PC.
763 //                      // For i386:
764 //                      // DW_CFA_val_expression where:
765 //                      // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
766 //                      //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
767 //                      //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
768 //                      //       DW_OP_and, DW_OP_plus
769 //                      // This basically does a:
770 //                      // eip = ucontenxt.mcontext32->gpr.eip;
771 //                      // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
772 //                      //   eip++;
773 //                      //
774 //                      // For x86_64:
775 //                      // DW_CFA_val_expression where:
776 //                      // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
777 //                      //          DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
778 //                      //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
779 //                      // This basically does a:
780 //                      // rip = ucontenxt.mcontext64->gpr.rip;
781 //                      // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
782 //                      //   rip++;
783 //                      // The trap comparisons and increments are not needed as it hoses up the unwound PC which
784 //                      // is expected to point at least past the instruction that causes the fault/trap. So we
785 //                      // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
786 //                      if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
787 //                      {
788 //                          if (thread->Is64Bit())
789 //                          {
790 //                              if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
791 //                                  block_len = 8;
792 //                          }
793 //                          else
794 //                          {
795 //                              if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
796 //                                  block_len = 7;
797 //                          }
798 //                      }
799 //#endif
800                         reg_location.SetIsDWARFExpression(block_data, block_len);
801                         row->SetRegisterInfo (reg_num, reg_location);
802                     }
803                     break;
804 
805                 case DW_CFA_val_offset          :   // 0x14
806                 case DW_CFA_val_offset_sf       :   // 0x15
807                 default:
808                     break;
809             }
810         }
811     }
812     unwind_plan.AppendRow(row);
813 
814     return true;
815 }
816