• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements the Declaration portions of the Parser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Parse/Parser.h"
15 #include "RAIIObjectsForParser.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/DeclTemplate.h"
18 #include "clang/Basic/AddressSpaces.h"
19 #include "clang/Basic/Attributes.h"
20 #include "clang/Basic/CharInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/ParsedTemplate.h"
25 #include "clang/Sema/PrettyDeclStackTrace.h"
26 #include "clang/Sema/Scope.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/StringSwitch.h"
30 using namespace clang;
31 
32 //===----------------------------------------------------------------------===//
33 // C99 6.7: Declarations.
34 //===----------------------------------------------------------------------===//
35 
36 /// ParseTypeName
37 ///       type-name: [C99 6.7.6]
38 ///         specifier-qualifier-list abstract-declarator[opt]
39 ///
40 /// Called type-id in C++.
ParseTypeName(SourceRange * Range,Declarator::TheContext Context,AccessSpecifier AS,Decl ** OwnedType,ParsedAttributes * Attrs)41 TypeResult Parser::ParseTypeName(SourceRange *Range,
42                                  Declarator::TheContext Context,
43                                  AccessSpecifier AS,
44                                  Decl **OwnedType,
45                                  ParsedAttributes *Attrs) {
46   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
47   if (DSC == DSC_normal)
48     DSC = DSC_type_specifier;
49 
50   // Parse the common declaration-specifiers piece.
51   DeclSpec DS(AttrFactory);
52   if (Attrs)
53     DS.addAttributes(Attrs->getList());
54   ParseSpecifierQualifierList(DS, AS, DSC);
55   if (OwnedType)
56     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
57 
58   // Parse the abstract-declarator, if present.
59   Declarator DeclaratorInfo(DS, Context);
60   ParseDeclarator(DeclaratorInfo);
61   if (Range)
62     *Range = DeclaratorInfo.getSourceRange();
63 
64   if (DeclaratorInfo.isInvalidType())
65     return true;
66 
67   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
68 }
69 
70 
71 /// isAttributeLateParsed - Return true if the attribute has arguments that
72 /// require late parsing.
isAttributeLateParsed(const IdentifierInfo & II)73 static bool isAttributeLateParsed(const IdentifierInfo &II) {
74 #define CLANG_ATTR_LATE_PARSED_LIST
75     return llvm::StringSwitch<bool>(II.getName())
76 #include "clang/Parse/AttrParserStringSwitches.inc"
77         .Default(false);
78 #undef CLANG_ATTR_LATE_PARSED_LIST
79 }
80 
81 /// ParseGNUAttributes - Parse a non-empty attributes list.
82 ///
83 /// [GNU] attributes:
84 ///         attribute
85 ///         attributes attribute
86 ///
87 /// [GNU]  attribute:
88 ///          '__attribute__' '(' '(' attribute-list ')' ')'
89 ///
90 /// [GNU]  attribute-list:
91 ///          attrib
92 ///          attribute_list ',' attrib
93 ///
94 /// [GNU]  attrib:
95 ///          empty
96 ///          attrib-name
97 ///          attrib-name '(' identifier ')'
98 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
99 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
100 ///
101 /// [GNU]  attrib-name:
102 ///          identifier
103 ///          typespec
104 ///          typequal
105 ///          storageclass
106 ///
107 /// Whether an attribute takes an 'identifier' is determined by the
108 /// attrib-name. GCC's behavior here is not worth imitating:
109 ///
110 ///  * In C mode, if the attribute argument list starts with an identifier
111 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
112 ///    a type, it is parsed as an identifier. If the attribute actually
113 ///    wanted an expression, it's out of luck (but it turns out that no
114 ///    attributes work that way, because C constant expressions are very
115 ///    limited).
116 ///  * In C++ mode, if the attribute argument list starts with an identifier,
117 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
118 ///    At block scope, any additional tokens between the identifier and the
119 ///    ',' or ')' are ignored, otherwise they produce a parse error.
120 ///
121 /// We follow the C++ model, but don't allow junk after the identifier.
ParseGNUAttributes(ParsedAttributes & attrs,SourceLocation * endLoc,LateParsedAttrList * LateAttrs,Declarator * D)122 void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
123                                 SourceLocation *endLoc,
124                                 LateParsedAttrList *LateAttrs,
125                                 Declarator *D) {
126   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
127 
128   while (Tok.is(tok::kw___attribute)) {
129     ConsumeToken();
130     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
131                          "attribute")) {
132       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
133       return;
134     }
135     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
136       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
137       return;
138     }
139     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
140     while (true) {
141       // Allow empty/non-empty attributes. ((__vector_size__(16),,,,))
142       if (TryConsumeToken(tok::comma))
143         continue;
144 
145       // Expect an identifier or declaration specifier (const, int, etc.)
146       if (Tok.isAnnotation())
147         break;
148       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
149       if (!AttrName)
150         break;
151 
152       SourceLocation AttrNameLoc = ConsumeToken();
153 
154       if (Tok.isNot(tok::l_paren)) {
155         attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
156                      AttributeList::AS_GNU);
157         continue;
158       }
159 
160       // Handle "parameterized" attributes
161       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
162         ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr,
163                               SourceLocation(), AttributeList::AS_GNU, D);
164         continue;
165       }
166 
167       // Handle attributes with arguments that require late parsing.
168       LateParsedAttribute *LA =
169           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
170       LateAttrs->push_back(LA);
171 
172       // Attributes in a class are parsed at the end of the class, along
173       // with other late-parsed declarations.
174       if (!ClassStack.empty() && !LateAttrs->parseSoon())
175         getCurrentClass().LateParsedDeclarations.push_back(LA);
176 
177       // consume everything up to and including the matching right parens
178       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, true, false);
179 
180       Token Eof;
181       Eof.startToken();
182       Eof.setLocation(Tok.getLocation());
183       LA->Toks.push_back(Eof);
184     }
185 
186     if (ExpectAndConsume(tok::r_paren))
187       SkipUntil(tok::r_paren, StopAtSemi);
188     SourceLocation Loc = Tok.getLocation();
189     if (ExpectAndConsume(tok::r_paren))
190       SkipUntil(tok::r_paren, StopAtSemi);
191     if (endLoc)
192       *endLoc = Loc;
193   }
194 }
195 
196 /// \brief Normalizes an attribute name by dropping prefixed and suffixed __.
normalizeAttrName(StringRef Name)197 static StringRef normalizeAttrName(StringRef Name) {
198   if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
199     Name = Name.drop_front(2).drop_back(2);
200   return Name;
201 }
202 
203 /// \brief Determine whether the given attribute has an identifier argument.
attributeHasIdentifierArg(const IdentifierInfo & II)204 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
205 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
206   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
207 #include "clang/Parse/AttrParserStringSwitches.inc"
208            .Default(false);
209 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
210 }
211 
212 /// \brief Determine whether the given attribute parses a type argument.
attributeIsTypeArgAttr(const IdentifierInfo & II)213 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
214 #define CLANG_ATTR_TYPE_ARG_LIST
215   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
216 #include "clang/Parse/AttrParserStringSwitches.inc"
217            .Default(false);
218 #undef CLANG_ATTR_TYPE_ARG_LIST
219 }
220 
221 /// \brief Determine whether the given attribute requires parsing its arguments
222 /// in an unevaluated context or not.
attributeParsedArgsUnevaluated(const IdentifierInfo & II)223 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
224 #define CLANG_ATTR_ARG_CONTEXT_LIST
225   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
226 #include "clang/Parse/AttrParserStringSwitches.inc"
227            .Default(false);
228 #undef CLANG_ATTR_ARG_CONTEXT_LIST
229 }
230 
ParseIdentifierLoc()231 IdentifierLoc *Parser::ParseIdentifierLoc() {
232   assert(Tok.is(tok::identifier) && "expected an identifier");
233   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
234                                             Tok.getLocation(),
235                                             Tok.getIdentifierInfo());
236   ConsumeToken();
237   return IL;
238 }
239 
ParseAttributeWithTypeArg(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)240 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
241                                        SourceLocation AttrNameLoc,
242                                        ParsedAttributes &Attrs,
243                                        SourceLocation *EndLoc,
244                                        IdentifierInfo *ScopeName,
245                                        SourceLocation ScopeLoc,
246                                        AttributeList::Syntax Syntax) {
247   BalancedDelimiterTracker Parens(*this, tok::l_paren);
248   Parens.consumeOpen();
249 
250   TypeResult T;
251   if (Tok.isNot(tok::r_paren))
252     T = ParseTypeName();
253 
254   if (Parens.consumeClose())
255     return;
256 
257   if (T.isInvalid())
258     return;
259 
260   if (T.isUsable())
261     Attrs.addNewTypeAttr(&AttrName,
262                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
263                          ScopeName, ScopeLoc, T.get(), Syntax);
264   else
265     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
266                  ScopeName, ScopeLoc, nullptr, 0, Syntax);
267 }
268 
ParseAttributeArgsCommon(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)269 unsigned Parser::ParseAttributeArgsCommon(
270     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
271     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
272     SourceLocation ScopeLoc, AttributeList::Syntax Syntax) {
273   // Ignore the left paren location for now.
274   ConsumeParen();
275 
276   ArgsVector ArgExprs;
277   if (Tok.is(tok::identifier)) {
278     // If this attribute wants an 'identifier' argument, make it so.
279     bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName);
280     AttributeList::Kind AttrKind =
281         AttributeList::getKind(AttrName, ScopeName, Syntax);
282 
283     // If we don't know how to parse this attribute, but this is the only
284     // token in this argument, assume it's meant to be an identifier.
285     if (AttrKind == AttributeList::UnknownAttribute ||
286         AttrKind == AttributeList::IgnoredAttribute) {
287       const Token &Next = NextToken();
288       IsIdentifierArg = Next.is(tok::r_paren) || Next.is(tok::comma);
289     }
290 
291     if (IsIdentifierArg)
292       ArgExprs.push_back(ParseIdentifierLoc());
293   }
294 
295   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
296     // Eat the comma.
297     if (!ArgExprs.empty())
298       ConsumeToken();
299 
300     // Parse the non-empty comma-separated list of expressions.
301     do {
302       std::unique_ptr<EnterExpressionEvaluationContext> Unevaluated;
303       if (attributeParsedArgsUnevaluated(*AttrName))
304         Unevaluated.reset(
305             new EnterExpressionEvaluationContext(Actions, Sema::Unevaluated));
306 
307       ExprResult ArgExpr(
308           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
309       if (ArgExpr.isInvalid()) {
310         SkipUntil(tok::r_paren, StopAtSemi);
311         return 0;
312       }
313       ArgExprs.push_back(ArgExpr.get());
314       // Eat the comma, move to the next argument
315     } while (TryConsumeToken(tok::comma));
316   }
317 
318   SourceLocation RParen = Tok.getLocation();
319   if (!ExpectAndConsume(tok::r_paren)) {
320     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
321     Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
322                  ArgExprs.data(), ArgExprs.size(), Syntax);
323   }
324 
325   if (EndLoc)
326     *EndLoc = RParen;
327 
328   return static_cast<unsigned>(ArgExprs.size());
329 }
330 
331 /// Parse the arguments to a parameterized GNU attribute or
332 /// a C++11 attribute in "gnu" namespace.
ParseGNUAttributeArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax,Declarator * D)333 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
334                                    SourceLocation AttrNameLoc,
335                                    ParsedAttributes &Attrs,
336                                    SourceLocation *EndLoc,
337                                    IdentifierInfo *ScopeName,
338                                    SourceLocation ScopeLoc,
339                                    AttributeList::Syntax Syntax,
340                                    Declarator *D) {
341 
342   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
343 
344   AttributeList::Kind AttrKind =
345       AttributeList::getKind(AttrName, ScopeName, Syntax);
346 
347   if (AttrKind == AttributeList::AT_Availability) {
348     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
349                                ScopeLoc, Syntax);
350     return;
351   } else if (AttrKind == AttributeList::AT_ObjCBridgeRelated) {
352     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
353                                     ScopeName, ScopeLoc, Syntax);
354     return;
355   } else if (AttrKind == AttributeList::AT_TypeTagForDatatype) {
356     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
357                                      ScopeName, ScopeLoc, Syntax);
358     return;
359   } else if (attributeIsTypeArgAttr(*AttrName)) {
360     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
361                               ScopeLoc, Syntax);
362     return;
363   }
364 
365   // These may refer to the function arguments, but need to be parsed early to
366   // participate in determining whether it's a redeclaration.
367   std::unique_ptr<ParseScope> PrototypeScope;
368   if (AttrName->isStr("enable_if") && D && D->isFunctionDeclarator()) {
369     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
370     PrototypeScope.reset(new ParseScope(this, Scope::FunctionPrototypeScope |
371                                         Scope::FunctionDeclarationScope |
372                                         Scope::DeclScope));
373     for (unsigned i = 0; i != FTI.NumParams; ++i) {
374       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
375       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
376     }
377   }
378 
379   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
380                            ScopeLoc, Syntax);
381 }
382 
ParseMicrosoftDeclSpecArgs(IdentifierInfo * AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs)383 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
384                                         SourceLocation AttrNameLoc,
385                                         ParsedAttributes &Attrs) {
386   // If the attribute isn't known, we will not attempt to parse any
387   // arguments.
388   if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
389                     getTargetInfo().getTriple(), getLangOpts())) {
390     // Eat the left paren, then skip to the ending right paren.
391     ConsumeParen();
392     SkipUntil(tok::r_paren);
393     return false;
394   }
395 
396   SourceLocation OpenParenLoc = Tok.getLocation();
397 
398   if (AttrName->getName() == "property") {
399     // The property declspec is more complex in that it can take one or two
400     // assignment expressions as a parameter, but the lhs of the assignment
401     // must be named get or put.
402 
403     BalancedDelimiterTracker T(*this, tok::l_paren);
404     T.expectAndConsume(diag::err_expected_lparen_after,
405                        AttrName->getNameStart(), tok::r_paren);
406 
407     enum AccessorKind {
408       AK_Invalid = -1,
409       AK_Put = 0,
410       AK_Get = 1 // indices into AccessorNames
411     };
412     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
413     bool HasInvalidAccessor = false;
414 
415     // Parse the accessor specifications.
416     while (true) {
417       // Stop if this doesn't look like an accessor spec.
418       if (!Tok.is(tok::identifier)) {
419         // If the user wrote a completely empty list, use a special diagnostic.
420         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
421             AccessorNames[AK_Put] == nullptr &&
422             AccessorNames[AK_Get] == nullptr) {
423           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
424           break;
425         }
426 
427         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
428         break;
429       }
430 
431       AccessorKind Kind;
432       SourceLocation KindLoc = Tok.getLocation();
433       StringRef KindStr = Tok.getIdentifierInfo()->getName();
434       if (KindStr == "get") {
435         Kind = AK_Get;
436       } else if (KindStr == "put") {
437         Kind = AK_Put;
438 
439         // Recover from the common mistake of using 'set' instead of 'put'.
440       } else if (KindStr == "set") {
441         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
442             << FixItHint::CreateReplacement(KindLoc, "put");
443         Kind = AK_Put;
444 
445         // Handle the mistake of forgetting the accessor kind by skipping
446         // this accessor.
447       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
448         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
449         ConsumeToken();
450         HasInvalidAccessor = true;
451         goto next_property_accessor;
452 
453         // Otherwise, complain about the unknown accessor kind.
454       } else {
455         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
456         HasInvalidAccessor = true;
457         Kind = AK_Invalid;
458 
459         // Try to keep parsing unless it doesn't look like an accessor spec.
460         if (!NextToken().is(tok::equal))
461           break;
462       }
463 
464       // Consume the identifier.
465       ConsumeToken();
466 
467       // Consume the '='.
468       if (!TryConsumeToken(tok::equal)) {
469         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
470             << KindStr;
471         break;
472       }
473 
474       // Expect the method name.
475       if (!Tok.is(tok::identifier)) {
476         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
477         break;
478       }
479 
480       if (Kind == AK_Invalid) {
481         // Just drop invalid accessors.
482       } else if (AccessorNames[Kind] != nullptr) {
483         // Complain about the repeated accessor, ignore it, and keep parsing.
484         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
485       } else {
486         AccessorNames[Kind] = Tok.getIdentifierInfo();
487       }
488       ConsumeToken();
489 
490     next_property_accessor:
491       // Keep processing accessors until we run out.
492       if (TryConsumeToken(tok::comma))
493         continue;
494 
495       // If we run into the ')', stop without consuming it.
496       if (Tok.is(tok::r_paren))
497         break;
498 
499       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
500       break;
501     }
502 
503     // Only add the property attribute if it was well-formed.
504     if (!HasInvalidAccessor)
505       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
506                                AccessorNames[AK_Get], AccessorNames[AK_Put],
507                                AttributeList::AS_Declspec);
508     T.skipToEnd();
509     return !HasInvalidAccessor;
510   }
511 
512   unsigned NumArgs =
513       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
514                                SourceLocation(), AttributeList::AS_Declspec);
515 
516   // If this attribute's args were parsed, and it was expected to have
517   // arguments but none were provided, emit a diagnostic.
518   const AttributeList *Attr = Attrs.getList();
519   if (Attr && Attr->getMaxArgs() && !NumArgs) {
520     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
521     return false;
522   }
523   return true;
524 }
525 
526 /// [MS] decl-specifier:
527 ///             __declspec ( extended-decl-modifier-seq )
528 ///
529 /// [MS] extended-decl-modifier-seq:
530 ///             extended-decl-modifier[opt]
531 ///             extended-decl-modifier extended-decl-modifier-seq
ParseMicrosoftDeclSpec(ParsedAttributes & Attrs)532 void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &Attrs) {
533   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
534 
535   ConsumeToken();
536   BalancedDelimiterTracker T(*this, tok::l_paren);
537   if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
538                          tok::r_paren))
539     return;
540 
541   // An empty declspec is perfectly legal and should not warn.  Additionally,
542   // you can specify multiple attributes per declspec.
543   while (Tok.isNot(tok::r_paren)) {
544     // Attribute not present.
545     if (TryConsumeToken(tok::comma))
546       continue;
547 
548     // We expect either a well-known identifier or a generic string.  Anything
549     // else is a malformed declspec.
550     bool IsString = Tok.getKind() == tok::string_literal;
551     if (!IsString && Tok.getKind() != tok::identifier &&
552         Tok.getKind() != tok::kw_restrict) {
553       Diag(Tok, diag::err_ms_declspec_type);
554       T.skipToEnd();
555       return;
556     }
557 
558     IdentifierInfo *AttrName;
559     SourceLocation AttrNameLoc;
560     if (IsString) {
561       SmallString<8> StrBuffer;
562       bool Invalid = false;
563       StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
564       if (Invalid) {
565         T.skipToEnd();
566         return;
567       }
568       AttrName = PP.getIdentifierInfo(Str);
569       AttrNameLoc = ConsumeStringToken();
570     } else {
571       AttrName = Tok.getIdentifierInfo();
572       AttrNameLoc = ConsumeToken();
573     }
574 
575     bool AttrHandled = false;
576 
577     // Parse attribute arguments.
578     if (Tok.is(tok::l_paren))
579       AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
580     else if (AttrName->getName() == "property")
581       // The property attribute must have an argument list.
582       Diag(Tok.getLocation(), diag::err_expected_lparen_after)
583           << AttrName->getName();
584 
585     if (!AttrHandled)
586       Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
587                    AttributeList::AS_Declspec);
588   }
589   T.consumeClose();
590 }
591 
ParseMicrosoftTypeAttributes(ParsedAttributes & attrs)592 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
593   // Treat these like attributes
594   while (true) {
595     switch (Tok.getKind()) {
596     case tok::kw___fastcall:
597     case tok::kw___stdcall:
598     case tok::kw___thiscall:
599     case tok::kw___cdecl:
600     case tok::kw___vectorcall:
601     case tok::kw___ptr64:
602     case tok::kw___w64:
603     case tok::kw___ptr32:
604     case tok::kw___unaligned:
605     case tok::kw___sptr:
606     case tok::kw___uptr: {
607       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
608       SourceLocation AttrNameLoc = ConsumeToken();
609       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
610                    AttributeList::AS_Keyword);
611       break;
612     }
613     default:
614       return;
615     }
616   }
617 }
618 
DiagnoseAndSkipExtendedMicrosoftTypeAttributes()619 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
620   SourceLocation StartLoc = Tok.getLocation();
621   SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
622 
623   if (EndLoc.isValid()) {
624     SourceRange Range(StartLoc, EndLoc);
625     Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
626   }
627 }
628 
SkipExtendedMicrosoftTypeAttributes()629 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
630   SourceLocation EndLoc;
631 
632   while (true) {
633     switch (Tok.getKind()) {
634     case tok::kw_const:
635     case tok::kw_volatile:
636     case tok::kw___fastcall:
637     case tok::kw___stdcall:
638     case tok::kw___thiscall:
639     case tok::kw___cdecl:
640     case tok::kw___vectorcall:
641     case tok::kw___ptr32:
642     case tok::kw___ptr64:
643     case tok::kw___w64:
644     case tok::kw___unaligned:
645     case tok::kw___sptr:
646     case tok::kw___uptr:
647       EndLoc = ConsumeToken();
648       break;
649     default:
650       return EndLoc;
651     }
652   }
653 }
654 
ParseBorlandTypeAttributes(ParsedAttributes & attrs)655 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
656   // Treat these like attributes
657   while (Tok.is(tok::kw___pascal)) {
658     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
659     SourceLocation AttrNameLoc = ConsumeToken();
660     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
661                  AttributeList::AS_Keyword);
662   }
663 }
664 
ParseOpenCLAttributes(ParsedAttributes & attrs)665 void Parser::ParseOpenCLAttributes(ParsedAttributes &attrs) {
666   // Treat these like attributes
667   while (Tok.is(tok::kw___kernel)) {
668     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
669     SourceLocation AttrNameLoc = ConsumeToken();
670     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
671                  AttributeList::AS_Keyword);
672   }
673 }
674 
ParseOpenCLQualifiers(ParsedAttributes & Attrs)675 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
676   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
677   SourceLocation AttrNameLoc = Tok.getLocation();
678   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
679                AttributeList::AS_Keyword);
680 }
681 
VersionNumberSeparator(const char Separator)682 static bool VersionNumberSeparator(const char Separator) {
683   return (Separator == '.' || Separator == '_');
684 }
685 
686 /// \brief Parse a version number.
687 ///
688 /// version:
689 ///   simple-integer
690 ///   simple-integer ',' simple-integer
691 ///   simple-integer ',' simple-integer ',' simple-integer
ParseVersionTuple(SourceRange & Range)692 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
693   Range = Tok.getLocation();
694 
695   if (!Tok.is(tok::numeric_constant)) {
696     Diag(Tok, diag::err_expected_version);
697     SkipUntil(tok::comma, tok::r_paren,
698               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
699     return VersionTuple();
700   }
701 
702   // Parse the major (and possibly minor and subminor) versions, which
703   // are stored in the numeric constant. We utilize a quirk of the
704   // lexer, which is that it handles something like 1.2.3 as a single
705   // numeric constant, rather than two separate tokens.
706   SmallString<512> Buffer;
707   Buffer.resize(Tok.getLength()+1);
708   const char *ThisTokBegin = &Buffer[0];
709 
710   // Get the spelling of the token, which eliminates trigraphs, etc.
711   bool Invalid = false;
712   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
713   if (Invalid)
714     return VersionTuple();
715 
716   // Parse the major version.
717   unsigned AfterMajor = 0;
718   unsigned Major = 0;
719   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
720     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
721     ++AfterMajor;
722   }
723 
724   if (AfterMajor == 0) {
725     Diag(Tok, diag::err_expected_version);
726     SkipUntil(tok::comma, tok::r_paren,
727               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
728     return VersionTuple();
729   }
730 
731   if (AfterMajor == ActualLength) {
732     ConsumeToken();
733 
734     // We only had a single version component.
735     if (Major == 0) {
736       Diag(Tok, diag::err_zero_version);
737       return VersionTuple();
738     }
739 
740     return VersionTuple(Major);
741   }
742 
743   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
744   if (!VersionNumberSeparator(AfterMajorSeparator)
745       || (AfterMajor + 1 == ActualLength)) {
746     Diag(Tok, diag::err_expected_version);
747     SkipUntil(tok::comma, tok::r_paren,
748               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
749     return VersionTuple();
750   }
751 
752   // Parse the minor version.
753   unsigned AfterMinor = AfterMajor + 1;
754   unsigned Minor = 0;
755   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
756     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
757     ++AfterMinor;
758   }
759 
760   if (AfterMinor == ActualLength) {
761     ConsumeToken();
762 
763     // We had major.minor.
764     if (Major == 0 && Minor == 0) {
765       Diag(Tok, diag::err_zero_version);
766       return VersionTuple();
767     }
768 
769     return VersionTuple(Major, Minor, (AfterMajorSeparator == '_'));
770   }
771 
772   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
773   // If what follows is not a '.' or '_', we have a problem.
774   if (!VersionNumberSeparator(AfterMinorSeparator)) {
775     Diag(Tok, diag::err_expected_version);
776     SkipUntil(tok::comma, tok::r_paren,
777               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
778     return VersionTuple();
779   }
780 
781   // Warn if separators, be it '.' or '_', do not match.
782   if (AfterMajorSeparator != AfterMinorSeparator)
783     Diag(Tok, diag::warn_expected_consistent_version_separator);
784 
785   // Parse the subminor version.
786   unsigned AfterSubminor = AfterMinor + 1;
787   unsigned Subminor = 0;
788   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
789     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
790     ++AfterSubminor;
791   }
792 
793   if (AfterSubminor != ActualLength) {
794     Diag(Tok, diag::err_expected_version);
795     SkipUntil(tok::comma, tok::r_paren,
796               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
797     return VersionTuple();
798   }
799   ConsumeToken();
800   return VersionTuple(Major, Minor, Subminor, (AfterMajorSeparator == '_'));
801 }
802 
803 /// \brief Parse the contents of the "availability" attribute.
804 ///
805 /// availability-attribute:
806 ///   'availability' '(' platform ',' version-arg-list, opt-message')'
807 ///
808 /// platform:
809 ///   identifier
810 ///
811 /// version-arg-list:
812 ///   version-arg
813 ///   version-arg ',' version-arg-list
814 ///
815 /// version-arg:
816 ///   'introduced' '=' version
817 ///   'deprecated' '=' version
818 ///   'obsoleted' = version
819 ///   'unavailable'
820 /// opt-message:
821 ///   'message' '=' <string>
ParseAvailabilityAttribute(IdentifierInfo & Availability,SourceLocation AvailabilityLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)822 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
823                                         SourceLocation AvailabilityLoc,
824                                         ParsedAttributes &attrs,
825                                         SourceLocation *endLoc,
826                                         IdentifierInfo *ScopeName,
827                                         SourceLocation ScopeLoc,
828                                         AttributeList::Syntax Syntax) {
829   enum { Introduced, Deprecated, Obsoleted, Unknown };
830   AvailabilityChange Changes[Unknown];
831   ExprResult MessageExpr;
832 
833   // Opening '('.
834   BalancedDelimiterTracker T(*this, tok::l_paren);
835   if (T.consumeOpen()) {
836     Diag(Tok, diag::err_expected) << tok::l_paren;
837     return;
838   }
839 
840   // Parse the platform name,
841   if (Tok.isNot(tok::identifier)) {
842     Diag(Tok, diag::err_availability_expected_platform);
843     SkipUntil(tok::r_paren, StopAtSemi);
844     return;
845   }
846   IdentifierLoc *Platform = ParseIdentifierLoc();
847 
848   // Parse the ',' following the platform name.
849   if (ExpectAndConsume(tok::comma)) {
850     SkipUntil(tok::r_paren, StopAtSemi);
851     return;
852   }
853 
854   // If we haven't grabbed the pointers for the identifiers
855   // "introduced", "deprecated", and "obsoleted", do so now.
856   if (!Ident_introduced) {
857     Ident_introduced = PP.getIdentifierInfo("introduced");
858     Ident_deprecated = PP.getIdentifierInfo("deprecated");
859     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
860     Ident_unavailable = PP.getIdentifierInfo("unavailable");
861     Ident_message = PP.getIdentifierInfo("message");
862   }
863 
864   // Parse the set of introductions/deprecations/removals.
865   SourceLocation UnavailableLoc;
866   do {
867     if (Tok.isNot(tok::identifier)) {
868       Diag(Tok, diag::err_availability_expected_change);
869       SkipUntil(tok::r_paren, StopAtSemi);
870       return;
871     }
872     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
873     SourceLocation KeywordLoc = ConsumeToken();
874 
875     if (Keyword == Ident_unavailable) {
876       if (UnavailableLoc.isValid()) {
877         Diag(KeywordLoc, diag::err_availability_redundant)
878           << Keyword << SourceRange(UnavailableLoc);
879       }
880       UnavailableLoc = KeywordLoc;
881       continue;
882     }
883 
884     if (Tok.isNot(tok::equal)) {
885       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
886       SkipUntil(tok::r_paren, StopAtSemi);
887       return;
888     }
889     ConsumeToken();
890     if (Keyword == Ident_message) {
891       if (Tok.isNot(tok::string_literal)) {
892         Diag(Tok, diag::err_expected_string_literal)
893           << /*Source='availability attribute'*/2;
894         SkipUntil(tok::r_paren, StopAtSemi);
895         return;
896       }
897       MessageExpr = ParseStringLiteralExpression();
898       // Also reject wide string literals.
899       if (StringLiteral *MessageStringLiteral =
900               cast_or_null<StringLiteral>(MessageExpr.get())) {
901         if (MessageStringLiteral->getCharByteWidth() != 1) {
902           Diag(MessageStringLiteral->getSourceRange().getBegin(),
903                diag::err_expected_string_literal)
904             << /*Source='availability attribute'*/ 2;
905           SkipUntil(tok::r_paren, StopAtSemi);
906           return;
907         }
908       }
909       break;
910     }
911 
912     // Special handling of 'NA' only when applied to introduced or
913     // deprecated.
914     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
915         Tok.is(tok::identifier)) {
916       IdentifierInfo *NA = Tok.getIdentifierInfo();
917       if (NA->getName() == "NA") {
918         ConsumeToken();
919         if (Keyword == Ident_introduced)
920           UnavailableLoc = KeywordLoc;
921         continue;
922       }
923     }
924 
925     SourceRange VersionRange;
926     VersionTuple Version = ParseVersionTuple(VersionRange);
927 
928     if (Version.empty()) {
929       SkipUntil(tok::r_paren, StopAtSemi);
930       return;
931     }
932 
933     unsigned Index;
934     if (Keyword == Ident_introduced)
935       Index = Introduced;
936     else if (Keyword == Ident_deprecated)
937       Index = Deprecated;
938     else if (Keyword == Ident_obsoleted)
939       Index = Obsoleted;
940     else
941       Index = Unknown;
942 
943     if (Index < Unknown) {
944       if (!Changes[Index].KeywordLoc.isInvalid()) {
945         Diag(KeywordLoc, diag::err_availability_redundant)
946           << Keyword
947           << SourceRange(Changes[Index].KeywordLoc,
948                          Changes[Index].VersionRange.getEnd());
949       }
950 
951       Changes[Index].KeywordLoc = KeywordLoc;
952       Changes[Index].Version = Version;
953       Changes[Index].VersionRange = VersionRange;
954     } else {
955       Diag(KeywordLoc, diag::err_availability_unknown_change)
956         << Keyword << VersionRange;
957     }
958 
959   } while (TryConsumeToken(tok::comma));
960 
961   // Closing ')'.
962   if (T.consumeClose())
963     return;
964 
965   if (endLoc)
966     *endLoc = T.getCloseLocation();
967 
968   // The 'unavailable' availability cannot be combined with any other
969   // availability changes. Make sure that hasn't happened.
970   if (UnavailableLoc.isValid()) {
971     bool Complained = false;
972     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
973       if (Changes[Index].KeywordLoc.isValid()) {
974         if (!Complained) {
975           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
976             << SourceRange(Changes[Index].KeywordLoc,
977                            Changes[Index].VersionRange.getEnd());
978           Complained = true;
979         }
980 
981         // Clear out the availability.
982         Changes[Index] = AvailabilityChange();
983       }
984     }
985   }
986 
987   // Record this attribute
988   attrs.addNew(&Availability,
989                SourceRange(AvailabilityLoc, T.getCloseLocation()),
990                ScopeName, ScopeLoc,
991                Platform,
992                Changes[Introduced],
993                Changes[Deprecated],
994                Changes[Obsoleted],
995                UnavailableLoc, MessageExpr.get(),
996                Syntax);
997 }
998 
999 /// \brief Parse the contents of the "objc_bridge_related" attribute.
1000 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1001 /// related_class:
1002 ///     Identifier
1003 ///
1004 /// opt-class_method:
1005 ///     Identifier: | <empty>
1006 ///
1007 /// opt-instance_method:
1008 ///     Identifier | <empty>
1009 ///
ParseObjCBridgeRelatedAttribute(IdentifierInfo & ObjCBridgeRelated,SourceLocation ObjCBridgeRelatedLoc,ParsedAttributes & attrs,SourceLocation * endLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1010 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
1011                                 SourceLocation ObjCBridgeRelatedLoc,
1012                                 ParsedAttributes &attrs,
1013                                 SourceLocation *endLoc,
1014                                 IdentifierInfo *ScopeName,
1015                                 SourceLocation ScopeLoc,
1016                                 AttributeList::Syntax Syntax) {
1017   // Opening '('.
1018   BalancedDelimiterTracker T(*this, tok::l_paren);
1019   if (T.consumeOpen()) {
1020     Diag(Tok, diag::err_expected) << tok::l_paren;
1021     return;
1022   }
1023 
1024   // Parse the related class name.
1025   if (Tok.isNot(tok::identifier)) {
1026     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1027     SkipUntil(tok::r_paren, StopAtSemi);
1028     return;
1029   }
1030   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1031   if (ExpectAndConsume(tok::comma)) {
1032     SkipUntil(tok::r_paren, StopAtSemi);
1033     return;
1034   }
1035 
1036   // Parse optional class method name.
1037   IdentifierLoc *ClassMethod = nullptr;
1038   if (Tok.is(tok::identifier)) {
1039     ClassMethod = ParseIdentifierLoc();
1040     if (!TryConsumeToken(tok::colon)) {
1041       Diag(Tok, diag::err_objcbridge_related_selector_name);
1042       SkipUntil(tok::r_paren, StopAtSemi);
1043       return;
1044     }
1045   }
1046   if (!TryConsumeToken(tok::comma)) {
1047     if (Tok.is(tok::colon))
1048       Diag(Tok, diag::err_objcbridge_related_selector_name);
1049     else
1050       Diag(Tok, diag::err_expected) << tok::comma;
1051     SkipUntil(tok::r_paren, StopAtSemi);
1052     return;
1053   }
1054 
1055   // Parse optional instance method name.
1056   IdentifierLoc *InstanceMethod = nullptr;
1057   if (Tok.is(tok::identifier))
1058     InstanceMethod = ParseIdentifierLoc();
1059   else if (Tok.isNot(tok::r_paren)) {
1060     Diag(Tok, diag::err_expected) << tok::r_paren;
1061     SkipUntil(tok::r_paren, StopAtSemi);
1062     return;
1063   }
1064 
1065   // Closing ')'.
1066   if (T.consumeClose())
1067     return;
1068 
1069   if (endLoc)
1070     *endLoc = T.getCloseLocation();
1071 
1072   // Record this attribute
1073   attrs.addNew(&ObjCBridgeRelated,
1074                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1075                ScopeName, ScopeLoc,
1076                RelatedClass,
1077                ClassMethod,
1078                InstanceMethod,
1079                Syntax);
1080 }
1081 
1082 // Late Parsed Attributes:
1083 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods
1084 
ParseLexedAttributes()1085 void Parser::LateParsedDeclaration::ParseLexedAttributes() {}
1086 
ParseLexedAttributes()1087 void Parser::LateParsedClass::ParseLexedAttributes() {
1088   Self->ParseLexedAttributes(*Class);
1089 }
1090 
ParseLexedAttributes()1091 void Parser::LateParsedAttribute::ParseLexedAttributes() {
1092   Self->ParseLexedAttribute(*this, true, false);
1093 }
1094 
1095 /// Wrapper class which calls ParseLexedAttribute, after setting up the
1096 /// scope appropriately.
ParseLexedAttributes(ParsingClass & Class)1097 void Parser::ParseLexedAttributes(ParsingClass &Class) {
1098   // Deal with templates
1099   // FIXME: Test cases to make sure this does the right thing for templates.
1100   bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
1101   ParseScope ClassTemplateScope(this, Scope::TemplateParamScope,
1102                                 HasTemplateScope);
1103   if (HasTemplateScope)
1104     Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
1105 
1106   // Set or update the scope flags.
1107   bool AlreadyHasClassScope = Class.TopLevelClass;
1108   unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope;
1109   ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope);
1110   ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope);
1111 
1112   // Enter the scope of nested classes
1113   if (!AlreadyHasClassScope)
1114     Actions.ActOnStartDelayedMemberDeclarations(getCurScope(),
1115                                                 Class.TagOrTemplate);
1116   if (!Class.LateParsedDeclarations.empty()) {
1117     for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){
1118       Class.LateParsedDeclarations[i]->ParseLexedAttributes();
1119     }
1120   }
1121 
1122   if (!AlreadyHasClassScope)
1123     Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(),
1124                                                  Class.TagOrTemplate);
1125 }
1126 
1127 
1128 /// \brief Parse all attributes in LAs, and attach them to Decl D.
ParseLexedAttributeList(LateParsedAttrList & LAs,Decl * D,bool EnterScope,bool OnDefinition)1129 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D,
1130                                      bool EnterScope, bool OnDefinition) {
1131   assert(LAs.parseSoon() &&
1132          "Attribute list should be marked for immediate parsing.");
1133   for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) {
1134     if (D)
1135       LAs[i]->addDecl(D);
1136     ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition);
1137     delete LAs[i];
1138   }
1139   LAs.clear();
1140 }
1141 
1142 
1143 /// \brief Finish parsing an attribute for which parsing was delayed.
1144 /// This will be called at the end of parsing a class declaration
1145 /// for each LateParsedAttribute. We consume the saved tokens and
1146 /// create an attribute with the arguments filled in. We add this
1147 /// to the Attribute list for the decl.
ParseLexedAttribute(LateParsedAttribute & LA,bool EnterScope,bool OnDefinition)1148 void Parser::ParseLexedAttribute(LateParsedAttribute &LA,
1149                                  bool EnterScope, bool OnDefinition) {
1150   // Create a fake EOF so that attribute parsing won't go off the end of the
1151   // attribute.
1152   Token AttrEnd;
1153   AttrEnd.startToken();
1154   AttrEnd.setKind(tok::eof);
1155   AttrEnd.setLocation(Tok.getLocation());
1156   AttrEnd.setEofData(LA.Toks.data());
1157   LA.Toks.push_back(AttrEnd);
1158 
1159   // Append the current token at the end of the new token stream so that it
1160   // doesn't get lost.
1161   LA.Toks.push_back(Tok);
1162   PP.EnterTokenStream(LA.Toks.data(), LA.Toks.size(), true, false);
1163   // Consume the previously pushed token.
1164   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
1165 
1166   ParsedAttributes Attrs(AttrFactory);
1167   SourceLocation endLoc;
1168 
1169   if (LA.Decls.size() > 0) {
1170     Decl *D = LA.Decls[0];
1171     NamedDecl *ND  = dyn_cast<NamedDecl>(D);
1172     RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext());
1173 
1174     // Allow 'this' within late-parsed attributes.
1175     Sema::CXXThisScopeRAII ThisScope(Actions, RD, /*TypeQuals=*/0,
1176                                      ND && ND->isCXXInstanceMember());
1177 
1178     if (LA.Decls.size() == 1) {
1179       // If the Decl is templatized, add template parameters to scope.
1180       bool HasTemplateScope = EnterScope && D->isTemplateDecl();
1181       ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope);
1182       if (HasTemplateScope)
1183         Actions.ActOnReenterTemplateScope(Actions.CurScope, D);
1184 
1185       // If the Decl is on a function, add function parameters to the scope.
1186       bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate();
1187       ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope, HasFunScope);
1188       if (HasFunScope)
1189         Actions.ActOnReenterFunctionContext(Actions.CurScope, D);
1190 
1191       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1192                             nullptr, SourceLocation(), AttributeList::AS_GNU,
1193                             nullptr);
1194 
1195       if (HasFunScope) {
1196         Actions.ActOnExitFunctionContext();
1197         FnScope.Exit();  // Pop scope, and remove Decls from IdResolver
1198       }
1199       if (HasTemplateScope) {
1200         TempScope.Exit();
1201       }
1202     } else {
1203       // If there are multiple decls, then the decl cannot be within the
1204       // function scope.
1205       ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc,
1206                             nullptr, SourceLocation(), AttributeList::AS_GNU,
1207                             nullptr);
1208     }
1209   } else {
1210     Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName();
1211   }
1212 
1213   const AttributeList *AL = Attrs.getList();
1214   if (OnDefinition && AL && !AL->isCXX11Attribute() &&
1215       AL->isKnownToGCC())
1216     Diag(Tok, diag::warn_attribute_on_function_definition)
1217       << &LA.AttrName;
1218 
1219   for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i)
1220     Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs);
1221 
1222   // Due to a parsing error, we either went over the cached tokens or
1223   // there are still cached tokens left, so we skip the leftover tokens.
1224   while (Tok.isNot(tok::eof))
1225     ConsumeAnyToken();
1226 
1227   if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
1228     ConsumeAnyToken();
1229 }
1230 
ParseTypeTagForDatatypeAttribute(IdentifierInfo & AttrName,SourceLocation AttrNameLoc,ParsedAttributes & Attrs,SourceLocation * EndLoc,IdentifierInfo * ScopeName,SourceLocation ScopeLoc,AttributeList::Syntax Syntax)1231 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
1232                                               SourceLocation AttrNameLoc,
1233                                               ParsedAttributes &Attrs,
1234                                               SourceLocation *EndLoc,
1235                                               IdentifierInfo *ScopeName,
1236                                               SourceLocation ScopeLoc,
1237                                               AttributeList::Syntax Syntax) {
1238   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1239 
1240   BalancedDelimiterTracker T(*this, tok::l_paren);
1241   T.consumeOpen();
1242 
1243   if (Tok.isNot(tok::identifier)) {
1244     Diag(Tok, diag::err_expected) << tok::identifier;
1245     T.skipToEnd();
1246     return;
1247   }
1248   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1249 
1250   if (ExpectAndConsume(tok::comma)) {
1251     T.skipToEnd();
1252     return;
1253   }
1254 
1255   SourceRange MatchingCTypeRange;
1256   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1257   if (MatchingCType.isInvalid()) {
1258     T.skipToEnd();
1259     return;
1260   }
1261 
1262   bool LayoutCompatible = false;
1263   bool MustBeNull = false;
1264   while (TryConsumeToken(tok::comma)) {
1265     if (Tok.isNot(tok::identifier)) {
1266       Diag(Tok, diag::err_expected) << tok::identifier;
1267       T.skipToEnd();
1268       return;
1269     }
1270     IdentifierInfo *Flag = Tok.getIdentifierInfo();
1271     if (Flag->isStr("layout_compatible"))
1272       LayoutCompatible = true;
1273     else if (Flag->isStr("must_be_null"))
1274       MustBeNull = true;
1275     else {
1276       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1277       T.skipToEnd();
1278       return;
1279     }
1280     ConsumeToken(); // consume flag
1281   }
1282 
1283   if (!T.consumeClose()) {
1284     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1285                                    ArgumentKind, MatchingCType.get(),
1286                                    LayoutCompatible, MustBeNull, Syntax);
1287   }
1288 
1289   if (EndLoc)
1290     *EndLoc = T.getCloseLocation();
1291 }
1292 
1293 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1294 /// of a C++11 attribute-specifier in a location where an attribute is not
1295 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1296 /// situation.
1297 ///
1298 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1299 /// this doesn't appear to actually be an attribute-specifier, and the caller
1300 /// should try to parse it.
DiagnoseProhibitedCXX11Attribute()1301 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1302   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1303 
1304   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1305   case CAK_NotAttributeSpecifier:
1306     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1307     return false;
1308 
1309   case CAK_InvalidAttributeSpecifier:
1310     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1311     return false;
1312 
1313   case CAK_AttributeSpecifier:
1314     // Parse and discard the attributes.
1315     SourceLocation BeginLoc = ConsumeBracket();
1316     ConsumeBracket();
1317     SkipUntil(tok::r_square);
1318     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1319     SourceLocation EndLoc = ConsumeBracket();
1320     Diag(BeginLoc, diag::err_attributes_not_allowed)
1321       << SourceRange(BeginLoc, EndLoc);
1322     return true;
1323   }
1324   llvm_unreachable("All cases handled above.");
1325 }
1326 
1327 /// \brief We have found the opening square brackets of a C++11
1328 /// attribute-specifier in a location where an attribute is not permitted, but
1329 /// we know where the attributes ought to be written. Parse them anyway, and
1330 /// provide a fixit moving them to the right place.
DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange & Attrs,SourceLocation CorrectLocation)1331 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
1332                                              SourceLocation CorrectLocation) {
1333   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1334          Tok.is(tok::kw_alignas));
1335 
1336   // Consume the attributes.
1337   SourceLocation Loc = Tok.getLocation();
1338   ParseCXX11Attributes(Attrs);
1339   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1340 
1341   Diag(Loc, diag::err_attributes_not_allowed)
1342     << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1343     << FixItHint::CreateRemoval(AttrRange);
1344 }
1345 
DiagnoseProhibitedAttributes(ParsedAttributesWithRange & attrs)1346 void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
1347   Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
1348     << attrs.Range;
1349 }
1350 
ProhibitCXX11Attributes(ParsedAttributesWithRange & attrs)1351 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &attrs) {
1352   AttributeList *AttrList = attrs.getList();
1353   while (AttrList) {
1354     if (AttrList->isCXX11Attribute()) {
1355       Diag(AttrList->getLoc(), diag::err_attribute_not_type_attr)
1356         << AttrList->getName();
1357       AttrList->setInvalid();
1358     }
1359     AttrList = AttrList->getNext();
1360   }
1361 }
1362 
1363 /// ParseDeclaration - Parse a full 'declaration', which consists of
1364 /// declaration-specifiers, some number of declarators, and a semicolon.
1365 /// 'Context' should be a Declarator::TheContext value.  This returns the
1366 /// location of the semicolon in DeclEnd.
1367 ///
1368 ///       declaration: [C99 6.7]
1369 ///         block-declaration ->
1370 ///           simple-declaration
1371 ///           others                   [FIXME]
1372 /// [C++]   template-declaration
1373 /// [C++]   namespace-definition
1374 /// [C++]   using-directive
1375 /// [C++]   using-declaration
1376 /// [C++11/C11] static_assert-declaration
1377 ///         others... [FIXME]
1378 ///
ParseDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & attrs)1379 Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
1380                                                 SourceLocation &DeclEnd,
1381                                           ParsedAttributesWithRange &attrs) {
1382   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1383   // Must temporarily exit the objective-c container scope for
1384   // parsing c none objective-c decls.
1385   ObjCDeclContextSwitch ObjCDC(*this);
1386 
1387   Decl *SingleDecl = nullptr;
1388   Decl *OwnedType = nullptr;
1389   switch (Tok.getKind()) {
1390   case tok::kw_template:
1391   case tok::kw_export:
1392     ProhibitAttributes(attrs);
1393     SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
1394     break;
1395   case tok::kw_inline:
1396     // Could be the start of an inline namespace. Allowed as an ext in C++03.
1397     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1398       ProhibitAttributes(attrs);
1399       SourceLocation InlineLoc = ConsumeToken();
1400       SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
1401       break;
1402     }
1403     return ParseSimpleDeclaration(Context, DeclEnd, attrs,
1404                                   true);
1405   case tok::kw_namespace:
1406     ProhibitAttributes(attrs);
1407     SingleDecl = ParseNamespace(Context, DeclEnd);
1408     break;
1409   case tok::kw_using:
1410     SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1411                                                   DeclEnd, attrs, &OwnedType);
1412     break;
1413   case tok::kw_static_assert:
1414   case tok::kw__Static_assert:
1415     ProhibitAttributes(attrs);
1416     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1417     break;
1418   default:
1419     return ParseSimpleDeclaration(Context, DeclEnd, attrs, true);
1420   }
1421 
1422   // This routine returns a DeclGroup, if the thing we parsed only contains a
1423   // single decl, convert it now. Alias declarations can also declare a type;
1424   // include that too if it is present.
1425   return Actions.ConvertDeclToDeclGroup(SingleDecl, OwnedType);
1426 }
1427 
1428 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1429 ///         declaration-specifiers init-declarator-list[opt] ';'
1430 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1431 ///             init-declarator-list ';'
1432 ///[C90/C++]init-declarator-list ';'                             [TODO]
1433 /// [OMP]   threadprivate-directive                              [TODO]
1434 ///
1435 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1436 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
1437 ///
1438 /// If RequireSemi is false, this does not check for a ';' at the end of the
1439 /// declaration.  If it is true, it checks for and eats it.
1440 ///
1441 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1442 /// of a simple-declaration. If we find that we are, we also parse the
1443 /// for-range-initializer, and place it here.
1444 Parser::DeclGroupPtrTy
ParseSimpleDeclaration(unsigned Context,SourceLocation & DeclEnd,ParsedAttributesWithRange & Attrs,bool RequireSemi,ForRangeInit * FRI)1445 Parser::ParseSimpleDeclaration(unsigned Context,
1446                                SourceLocation &DeclEnd,
1447                                ParsedAttributesWithRange &Attrs,
1448                                bool RequireSemi, ForRangeInit *FRI) {
1449   // Parse the common declaration-specifiers piece.
1450   ParsingDeclSpec DS(*this);
1451 
1452   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1453   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1454 
1455   // If we had a free-standing type definition with a missing semicolon, we
1456   // may get this far before the problem becomes obvious.
1457   if (DS.hasTagDefinition() &&
1458       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
1459     return DeclGroupPtrTy();
1460 
1461   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
1462   // declaration-specifiers init-declarator-list[opt] ';'
1463   if (Tok.is(tok::semi)) {
1464     ProhibitAttributes(Attrs);
1465     DeclEnd = Tok.getLocation();
1466     if (RequireSemi) ConsumeToken();
1467     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
1468                                                        DS);
1469     DS.complete(TheDecl);
1470     return Actions.ConvertDeclToDeclGroup(TheDecl);
1471   }
1472 
1473   DS.takeAttributesFrom(Attrs);
1474   return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
1475 }
1476 
1477 /// Returns true if this might be the start of a declarator, or a common typo
1478 /// for a declarator.
MightBeDeclarator(unsigned Context)1479 bool Parser::MightBeDeclarator(unsigned Context) {
1480   switch (Tok.getKind()) {
1481   case tok::annot_cxxscope:
1482   case tok::annot_template_id:
1483   case tok::caret:
1484   case tok::code_completion:
1485   case tok::coloncolon:
1486   case tok::ellipsis:
1487   case tok::kw___attribute:
1488   case tok::kw_operator:
1489   case tok::l_paren:
1490   case tok::star:
1491     return true;
1492 
1493   case tok::amp:
1494   case tok::ampamp:
1495     return getLangOpts().CPlusPlus;
1496 
1497   case tok::l_square: // Might be an attribute on an unnamed bit-field.
1498     return Context == Declarator::MemberContext && getLangOpts().CPlusPlus11 &&
1499            NextToken().is(tok::l_square);
1500 
1501   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
1502     return Context == Declarator::MemberContext || getLangOpts().CPlusPlus;
1503 
1504   case tok::identifier:
1505     switch (NextToken().getKind()) {
1506     case tok::code_completion:
1507     case tok::coloncolon:
1508     case tok::comma:
1509     case tok::equal:
1510     case tok::equalequal: // Might be a typo for '='.
1511     case tok::kw_alignas:
1512     case tok::kw_asm:
1513     case tok::kw___attribute:
1514     case tok::l_brace:
1515     case tok::l_paren:
1516     case tok::l_square:
1517     case tok::less:
1518     case tok::r_brace:
1519     case tok::r_paren:
1520     case tok::r_square:
1521     case tok::semi:
1522       return true;
1523 
1524     case tok::colon:
1525       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
1526       // and in block scope it's probably a label. Inside a class definition,
1527       // this is a bit-field.
1528       return Context == Declarator::MemberContext ||
1529              (getLangOpts().CPlusPlus && Context == Declarator::FileContext);
1530 
1531     case tok::identifier: // Possible virt-specifier.
1532       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
1533 
1534     default:
1535       return false;
1536     }
1537 
1538   default:
1539     return false;
1540   }
1541 }
1542 
1543 /// Skip until we reach something which seems like a sensible place to pick
1544 /// up parsing after a malformed declaration. This will sometimes stop sooner
1545 /// than SkipUntil(tok::r_brace) would, but will never stop later.
SkipMalformedDecl()1546 void Parser::SkipMalformedDecl() {
1547   while (true) {
1548     switch (Tok.getKind()) {
1549     case tok::l_brace:
1550       // Skip until matching }, then stop. We've probably skipped over
1551       // a malformed class or function definition or similar.
1552       ConsumeBrace();
1553       SkipUntil(tok::r_brace);
1554       if (Tok.is(tok::comma) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try)) {
1555         // This declaration isn't over yet. Keep skipping.
1556         continue;
1557       }
1558       TryConsumeToken(tok::semi);
1559       return;
1560 
1561     case tok::l_square:
1562       ConsumeBracket();
1563       SkipUntil(tok::r_square);
1564       continue;
1565 
1566     case tok::l_paren:
1567       ConsumeParen();
1568       SkipUntil(tok::r_paren);
1569       continue;
1570 
1571     case tok::r_brace:
1572       return;
1573 
1574     case tok::semi:
1575       ConsumeToken();
1576       return;
1577 
1578     case tok::kw_inline:
1579       // 'inline namespace' at the start of a line is almost certainly
1580       // a good place to pick back up parsing, except in an Objective-C
1581       // @interface context.
1582       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
1583           (!ParsingInObjCContainer || CurParsedObjCImpl))
1584         return;
1585       break;
1586 
1587     case tok::kw_namespace:
1588       // 'namespace' at the start of a line is almost certainly a good
1589       // place to pick back up parsing, except in an Objective-C
1590       // @interface context.
1591       if (Tok.isAtStartOfLine() &&
1592           (!ParsingInObjCContainer || CurParsedObjCImpl))
1593         return;
1594       break;
1595 
1596     case tok::at:
1597       // @end is very much like } in Objective-C contexts.
1598       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
1599           ParsingInObjCContainer)
1600         return;
1601       break;
1602 
1603     case tok::minus:
1604     case tok::plus:
1605       // - and + probably start new method declarations in Objective-C contexts.
1606       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
1607         return;
1608       break;
1609 
1610     case tok::eof:
1611     case tok::annot_module_begin:
1612     case tok::annot_module_end:
1613     case tok::annot_module_include:
1614       return;
1615 
1616     default:
1617       break;
1618     }
1619 
1620     ConsumeAnyToken();
1621   }
1622 }
1623 
1624 /// ParseDeclGroup - Having concluded that this is either a function
1625 /// definition or a group of object declarations, actually parse the
1626 /// result.
ParseDeclGroup(ParsingDeclSpec & DS,unsigned Context,SourceLocation * DeclEnd,ForRangeInit * FRI)1627 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
1628                                               unsigned Context,
1629                                               SourceLocation *DeclEnd,
1630                                               ForRangeInit *FRI) {
1631   // Parse the first declarator.
1632   ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
1633   ParseDeclarator(D);
1634 
1635   // Bail out if the first declarator didn't seem well-formed.
1636   if (!D.hasName() && !D.mayOmitIdentifier()) {
1637     SkipMalformedDecl();
1638     return DeclGroupPtrTy();
1639   }
1640 
1641   // Save late-parsed attributes for now; they need to be parsed in the
1642   // appropriate function scope after the function Decl has been constructed.
1643   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
1644   LateParsedAttrList LateParsedAttrs(true);
1645   if (D.isFunctionDeclarator()) {
1646     MaybeParseGNUAttributes(D, &LateParsedAttrs);
1647 
1648     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
1649     // attribute. If we find the keyword here, tell the user to put it
1650     // at the start instead.
1651     if (Tok.is(tok::kw__Noreturn)) {
1652       SourceLocation Loc = ConsumeToken();
1653       const char *PrevSpec;
1654       unsigned DiagID;
1655 
1656       // We can offer a fixit if it's valid to mark this function as _Noreturn
1657       // and we don't have any other declarators in this declaration.
1658       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
1659       MaybeParseGNUAttributes(D, &LateParsedAttrs);
1660       Fixit &= Tok.is(tok::semi) || Tok.is(tok::l_brace) || Tok.is(tok::kw_try);
1661 
1662       Diag(Loc, diag::err_c11_noreturn_misplaced)
1663           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
1664           << (Fixit ? FixItHint::CreateInsertion(D.getLocStart(), "_Noreturn ")
1665                     : FixItHint());
1666     }
1667   }
1668 
1669   // Check to see if we have a function *definition* which must have a body.
1670   if (D.isFunctionDeclarator() &&
1671       // Look at the next token to make sure that this isn't a function
1672       // declaration.  We have to check this because __attribute__ might be the
1673       // start of a function definition in GCC-extended K&R C.
1674       !isDeclarationAfterDeclarator()) {
1675 
1676     // Function definitions are only allowed at file scope and in C++ classes.
1677     // The C++ inline method definition case is handled elsewhere, so we only
1678     // need to handle the file scope definition case.
1679     if (Context == Declarator::FileContext) {
1680       if (isStartOfFunctionDefinition(D)) {
1681         if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1682           Diag(Tok, diag::err_function_declared_typedef);
1683 
1684           // Recover by treating the 'typedef' as spurious.
1685           DS.ClearStorageClassSpecs();
1686         }
1687 
1688         Decl *TheDecl =
1689           ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs);
1690         return Actions.ConvertDeclToDeclGroup(TheDecl);
1691       }
1692 
1693       if (isDeclarationSpecifier()) {
1694         // If there is an invalid declaration specifier right after the
1695         // function prototype, then we must be in a missing semicolon case
1696         // where this isn't actually a body.  Just fall through into the code
1697         // that handles it as a prototype, and let the top-level code handle
1698         // the erroneous declspec where it would otherwise expect a comma or
1699         // semicolon.
1700       } else {
1701         Diag(Tok, diag::err_expected_fn_body);
1702         SkipUntil(tok::semi);
1703         return DeclGroupPtrTy();
1704       }
1705     } else {
1706       if (Tok.is(tok::l_brace)) {
1707         Diag(Tok, diag::err_function_definition_not_allowed);
1708         SkipMalformedDecl();
1709         return DeclGroupPtrTy();
1710       }
1711     }
1712   }
1713 
1714   if (ParseAsmAttributesAfterDeclarator(D))
1715     return DeclGroupPtrTy();
1716 
1717   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
1718   // must parse and analyze the for-range-initializer before the declaration is
1719   // analyzed.
1720   //
1721   // Handle the Objective-C for-in loop variable similarly, although we
1722   // don't need to parse the container in advance.
1723   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
1724     bool IsForRangeLoop = false;
1725     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
1726       IsForRangeLoop = true;
1727       if (Tok.is(tok::l_brace))
1728         FRI->RangeExpr = ParseBraceInitializer();
1729       else
1730         FRI->RangeExpr = ParseExpression();
1731     }
1732 
1733     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1734     if (IsForRangeLoop)
1735       Actions.ActOnCXXForRangeDecl(ThisDecl);
1736     Actions.FinalizeDeclaration(ThisDecl);
1737     D.complete(ThisDecl);
1738     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
1739   }
1740 
1741   SmallVector<Decl *, 8> DeclsInGroup;
1742   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
1743       D, ParsedTemplateInfo(), FRI);
1744   if (LateParsedAttrs.size() > 0)
1745     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
1746   D.complete(FirstDecl);
1747   if (FirstDecl)
1748     DeclsInGroup.push_back(FirstDecl);
1749 
1750   bool ExpectSemi = Context != Declarator::ForContext;
1751 
1752   // If we don't have a comma, it is either the end of the list (a ';') or an
1753   // error, bail out.
1754   SourceLocation CommaLoc;
1755   while (TryConsumeToken(tok::comma, CommaLoc)) {
1756     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
1757       // This comma was followed by a line-break and something which can't be
1758       // the start of a declarator. The comma was probably a typo for a
1759       // semicolon.
1760       Diag(CommaLoc, diag::err_expected_semi_declaration)
1761         << FixItHint::CreateReplacement(CommaLoc, ";");
1762       ExpectSemi = false;
1763       break;
1764     }
1765 
1766     // Parse the next declarator.
1767     D.clear();
1768     D.setCommaLoc(CommaLoc);
1769 
1770     // Accept attributes in an init-declarator.  In the first declarator in a
1771     // declaration, these would be part of the declspec.  In subsequent
1772     // declarators, they become part of the declarator itself, so that they
1773     // don't apply to declarators after *this* one.  Examples:
1774     //    short __attribute__((common)) var;    -> declspec
1775     //    short var __attribute__((common));    -> declarator
1776     //    short x, __attribute__((common)) var;    -> declarator
1777     MaybeParseGNUAttributes(D);
1778 
1779     // MSVC parses but ignores qualifiers after the comma as an extension.
1780     if (getLangOpts().MicrosoftExt)
1781       DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
1782 
1783     ParseDeclarator(D);
1784     if (!D.isInvalidType()) {
1785       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
1786       D.complete(ThisDecl);
1787       if (ThisDecl)
1788         DeclsInGroup.push_back(ThisDecl);
1789     }
1790   }
1791 
1792   if (DeclEnd)
1793     *DeclEnd = Tok.getLocation();
1794 
1795   if (ExpectSemi &&
1796       ExpectAndConsumeSemi(Context == Declarator::FileContext
1797                            ? diag::err_invalid_token_after_toplevel_declarator
1798                            : diag::err_expected_semi_declaration)) {
1799     // Okay, there was no semicolon and one was expected.  If we see a
1800     // declaration specifier, just assume it was missing and continue parsing.
1801     // Otherwise things are very confused and we skip to recover.
1802     if (!isDeclarationSpecifier()) {
1803       SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
1804       TryConsumeToken(tok::semi);
1805     }
1806   }
1807 
1808   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
1809 }
1810 
1811 /// Parse an optional simple-asm-expr and attributes, and attach them to a
1812 /// declarator. Returns true on an error.
ParseAsmAttributesAfterDeclarator(Declarator & D)1813 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
1814   // If a simple-asm-expr is present, parse it.
1815   if (Tok.is(tok::kw_asm)) {
1816     SourceLocation Loc;
1817     ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1818     if (AsmLabel.isInvalid()) {
1819       SkipUntil(tok::semi, StopBeforeMatch);
1820       return true;
1821     }
1822 
1823     D.setAsmLabel(AsmLabel.get());
1824     D.SetRangeEnd(Loc);
1825   }
1826 
1827   MaybeParseGNUAttributes(D);
1828   return false;
1829 }
1830 
1831 /// \brief Parse 'declaration' after parsing 'declaration-specifiers
1832 /// declarator'. This method parses the remainder of the declaration
1833 /// (including any attributes or initializer, among other things) and
1834 /// finalizes the declaration.
1835 ///
1836 ///       init-declarator: [C99 6.7]
1837 ///         declarator
1838 ///         declarator '=' initializer
1839 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
1840 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
1841 /// [C++]   declarator initializer[opt]
1842 ///
1843 /// [C++] initializer:
1844 /// [C++]   '=' initializer-clause
1845 /// [C++]   '(' expression-list ')'
1846 /// [C++0x] '=' 'default'                                                [TODO]
1847 /// [C++0x] '=' 'delete'
1848 /// [C++0x] braced-init-list
1849 ///
1850 /// According to the standard grammar, =default and =delete are function
1851 /// definitions, but that definitely doesn't fit with the parser here.
1852 ///
ParseDeclarationAfterDeclarator(Declarator & D,const ParsedTemplateInfo & TemplateInfo)1853 Decl *Parser::ParseDeclarationAfterDeclarator(
1854     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
1855   if (ParseAsmAttributesAfterDeclarator(D))
1856     return nullptr;
1857 
1858   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
1859 }
1860 
ParseDeclarationAfterDeclaratorAndAttributes(Declarator & D,const ParsedTemplateInfo & TemplateInfo,ForRangeInit * FRI)1861 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
1862     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
1863   // Inform the current actions module that we just parsed this declarator.
1864   Decl *ThisDecl = nullptr;
1865   switch (TemplateInfo.Kind) {
1866   case ParsedTemplateInfo::NonTemplate:
1867     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1868     break;
1869 
1870   case ParsedTemplateInfo::Template:
1871   case ParsedTemplateInfo::ExplicitSpecialization: {
1872     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
1873                                                *TemplateInfo.TemplateParams,
1874                                                D);
1875     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl))
1876       // Re-direct this decl to refer to the templated decl so that we can
1877       // initialize it.
1878       ThisDecl = VT->getTemplatedDecl();
1879     break;
1880   }
1881   case ParsedTemplateInfo::ExplicitInstantiation: {
1882     if (Tok.is(tok::semi)) {
1883       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
1884           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
1885       if (ThisRes.isInvalid()) {
1886         SkipUntil(tok::semi, StopBeforeMatch);
1887         return nullptr;
1888       }
1889       ThisDecl = ThisRes.get();
1890     } else {
1891       // FIXME: This check should be for a variable template instantiation only.
1892 
1893       // Check that this is a valid instantiation
1894       if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
1895         // If the declarator-id is not a template-id, issue a diagnostic and
1896         // recover by ignoring the 'template' keyword.
1897         Diag(Tok, diag::err_template_defn_explicit_instantiation)
1898             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
1899         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
1900       } else {
1901         SourceLocation LAngleLoc =
1902             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1903         Diag(D.getIdentifierLoc(),
1904              diag::err_explicit_instantiation_with_definition)
1905             << SourceRange(TemplateInfo.TemplateLoc)
1906             << FixItHint::CreateInsertion(LAngleLoc, "<>");
1907 
1908         // Recover as if it were an explicit specialization.
1909         TemplateParameterLists FakedParamLists;
1910         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
1911             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, nullptr,
1912             0, LAngleLoc));
1913 
1914         ThisDecl =
1915             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
1916       }
1917     }
1918     break;
1919     }
1920   }
1921 
1922   bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1923 
1924   // Parse declarator '=' initializer.
1925   // If a '==' or '+=' is found, suggest a fixit to '='.
1926   if (isTokenEqualOrEqualTypo()) {
1927     SourceLocation EqualLoc = ConsumeToken();
1928 
1929     if (Tok.is(tok::kw_delete)) {
1930       if (D.isFunctionDeclarator())
1931         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1932           << 1 /* delete */;
1933       else
1934         Diag(ConsumeToken(), diag::err_deleted_non_function);
1935     } else if (Tok.is(tok::kw_default)) {
1936       if (D.isFunctionDeclarator())
1937         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
1938           << 0 /* default */;
1939       else
1940         Diag(ConsumeToken(), diag::err_default_special_members);
1941     } else {
1942       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1943         EnterScope(0);
1944         Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1945       }
1946 
1947       if (Tok.is(tok::code_completion)) {
1948         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
1949         Actions.FinalizeDeclaration(ThisDecl);
1950         cutOffParsing();
1951         return nullptr;
1952       }
1953 
1954       ExprResult Init(ParseInitializer());
1955 
1956       // If this is the only decl in (possibly) range based for statement,
1957       // our best guess is that the user meant ':' instead of '='.
1958       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
1959         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
1960             << FixItHint::CreateReplacement(EqualLoc, ":");
1961         // We are trying to stop parser from looking for ';' in this for
1962         // statement, therefore preventing spurious errors to be issued.
1963         FRI->ColonLoc = EqualLoc;
1964         Init = ExprError();
1965         FRI->RangeExpr = Init;
1966       }
1967 
1968       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1969         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
1970         ExitScope();
1971       }
1972 
1973       if (Init.isInvalid()) {
1974         SmallVector<tok::TokenKind, 2> StopTokens;
1975         StopTokens.push_back(tok::comma);
1976         if (D.getContext() == Declarator::ForContext)
1977           StopTokens.push_back(tok::r_paren);
1978         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
1979         Actions.ActOnInitializerError(ThisDecl);
1980       } else
1981         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
1982                                      /*DirectInit=*/false, TypeContainsAuto);
1983     }
1984   } else if (Tok.is(tok::l_paren)) {
1985     // Parse C++ direct initializer: '(' expression-list ')'
1986     BalancedDelimiterTracker T(*this, tok::l_paren);
1987     T.consumeOpen();
1988 
1989     ExprVector Exprs;
1990     CommaLocsTy CommaLocs;
1991 
1992     if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
1993       EnterScope(0);
1994       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
1995     }
1996 
1997     if (ParseExpressionList(Exprs, CommaLocs, [&] {
1998           Actions.CodeCompleteConstructor(getCurScope(),
1999                  cast<VarDecl>(ThisDecl)->getType()->getCanonicalTypeInternal(),
2000                                           ThisDecl->getLocation(), Exprs);
2001        })) {
2002       Actions.ActOnInitializerError(ThisDecl);
2003       SkipUntil(tok::r_paren, StopAtSemi);
2004 
2005       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2006         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2007         ExitScope();
2008       }
2009     } else {
2010       // Match the ')'.
2011       T.consumeClose();
2012 
2013       assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
2014              "Unexpected number of commas!");
2015 
2016       if (getLangOpts().CPlusPlus && D.getCXXScopeSpec().isSet()) {
2017         Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2018         ExitScope();
2019       }
2020 
2021       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2022                                                           T.getCloseLocation(),
2023                                                           Exprs);
2024       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2025                                    /*DirectInit=*/true, TypeContainsAuto);
2026     }
2027   } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2028              (!CurParsedObjCImpl || !D.isFunctionDeclarator())) {
2029     // Parse C++0x braced-init-list.
2030     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2031 
2032     if (D.getCXXScopeSpec().isSet()) {
2033       EnterScope(0);
2034       Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
2035     }
2036 
2037     ExprResult Init(ParseBraceInitializer());
2038 
2039     if (D.getCXXScopeSpec().isSet()) {
2040       Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
2041       ExitScope();
2042     }
2043 
2044     if (Init.isInvalid()) {
2045       Actions.ActOnInitializerError(ThisDecl);
2046     } else
2047       Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2048                                    /*DirectInit=*/true, TypeContainsAuto);
2049 
2050   } else {
2051     Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsAuto);
2052   }
2053 
2054   Actions.FinalizeDeclaration(ThisDecl);
2055 
2056   return ThisDecl;
2057 }
2058 
2059 /// ParseSpecifierQualifierList
2060 ///        specifier-qualifier-list:
2061 ///          type-specifier specifier-qualifier-list[opt]
2062 ///          type-qualifier specifier-qualifier-list[opt]
2063 /// [GNU]    attributes     specifier-qualifier-list[opt]
2064 ///
ParseSpecifierQualifierList(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSC)2065 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
2066                                          DeclSpecContext DSC) {
2067   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2068   /// parse declaration-specifiers and complain about extra stuff.
2069   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2070   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
2071 
2072   // Validate declspec for type-name.
2073   unsigned Specs = DS.getParsedSpecifiers();
2074   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2075     Diag(Tok, diag::err_expected_type);
2076     DS.SetTypeSpecError();
2077   } else if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
2078              !DS.hasAttributes()) {
2079     Diag(Tok, diag::err_typename_requires_specqual);
2080     if (!DS.hasTypeSpecifier())
2081       DS.SetTypeSpecError();
2082   }
2083 
2084   // Issue diagnostic and remove storage class if present.
2085   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2086     if (DS.getStorageClassSpecLoc().isValid())
2087       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2088     else
2089       Diag(DS.getThreadStorageClassSpecLoc(),
2090            diag::err_typename_invalid_storageclass);
2091     DS.ClearStorageClassSpecs();
2092   }
2093 
2094   // Issue diagnostic and remove function specfier if present.
2095   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2096     if (DS.isInlineSpecified())
2097       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2098     if (DS.isVirtualSpecified())
2099       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2100     if (DS.isExplicitSpecified())
2101       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2102     DS.ClearFunctionSpecs();
2103   }
2104 
2105   // Issue diagnostic and remove constexpr specfier if present.
2106   if (DS.isConstexprSpecified()) {
2107     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr);
2108     DS.ClearConstexprSpec();
2109   }
2110 }
2111 
2112 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2113 /// specified token is valid after the identifier in a declarator which
2114 /// immediately follows the declspec.  For example, these things are valid:
2115 ///
2116 ///      int x   [             4];         // direct-declarator
2117 ///      int x   (             int y);     // direct-declarator
2118 ///  int(int x   )                         // direct-declarator
2119 ///      int x   ;                         // simple-declaration
2120 ///      int x   =             17;         // init-declarator-list
2121 ///      int x   ,             y;          // init-declarator-list
2122 ///      int x   __asm__       ("foo");    // init-declarator-list
2123 ///      int x   :             4;          // struct-declarator
2124 ///      int x   {             5};         // C++'0x unified initializers
2125 ///
2126 /// This is not, because 'x' does not immediately follow the declspec (though
2127 /// ')' happens to be valid anyway).
2128 ///    int (x)
2129 ///
isValidAfterIdentifierInDeclarator(const Token & T)2130 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2131   return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
2132          T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
2133          T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
2134 }
2135 
2136 
2137 /// ParseImplicitInt - This method is called when we have an non-typename
2138 /// identifier in a declspec (which normally terminates the decl spec) when
2139 /// the declspec has no type specifier.  In this case, the declspec is either
2140 /// malformed or is "implicit int" (in K&R and C89).
2141 ///
2142 /// This method handles diagnosing this prettily and returns false if the
2143 /// declspec is done being processed.  If it recovers and thinks there may be
2144 /// other pieces of declspec after it, it returns true.
2145 ///
ParseImplicitInt(DeclSpec & DS,CXXScopeSpec * SS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC,ParsedAttributesWithRange & Attrs)2146 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2147                               const ParsedTemplateInfo &TemplateInfo,
2148                               AccessSpecifier AS, DeclSpecContext DSC,
2149                               ParsedAttributesWithRange &Attrs) {
2150   assert(Tok.is(tok::identifier) && "should have identifier");
2151 
2152   SourceLocation Loc = Tok.getLocation();
2153   // If we see an identifier that is not a type name, we normally would
2154   // parse it as the identifer being declared.  However, when a typename
2155   // is typo'd or the definition is not included, this will incorrectly
2156   // parse the typename as the identifier name and fall over misparsing
2157   // later parts of the diagnostic.
2158   //
2159   // As such, we try to do some look-ahead in cases where this would
2160   // otherwise be an "implicit-int" case to see if this is invalid.  For
2161   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2162   // an identifier with implicit int, we'd get a parse error because the
2163   // next token is obviously invalid for a type.  Parse these as a case
2164   // with an invalid type specifier.
2165   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2166 
2167   // Since we know that this either implicit int (which is rare) or an
2168   // error, do lookahead to try to do better recovery. This never applies
2169   // within a type specifier. Outside of C++, we allow this even if the
2170   // language doesn't "officially" support implicit int -- we support
2171   // implicit int as an extension in C99 and C11.
2172   if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
2173       isValidAfterIdentifierInDeclarator(NextToken())) {
2174     // If this token is valid for implicit int, e.g. "static x = 4", then
2175     // we just avoid eating the identifier, so it will be parsed as the
2176     // identifier in the declarator.
2177     return false;
2178   }
2179 
2180   if (getLangOpts().CPlusPlus &&
2181       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2182     // Don't require a type specifier if we have the 'auto' storage class
2183     // specifier in C++98 -- we'll promote it to a type specifier.
2184     if (SS)
2185       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2186     return false;
2187   }
2188 
2189   // Otherwise, if we don't consume this token, we are going to emit an
2190   // error anyway.  Try to recover from various common problems.  Check
2191   // to see if this was a reference to a tag name without a tag specified.
2192   // This is a common problem in C (saying 'foo' instead of 'struct foo').
2193   //
2194   // C++ doesn't need this, and isTagName doesn't take SS.
2195   if (SS == nullptr) {
2196     const char *TagName = nullptr, *FixitTagName = nullptr;
2197     tok::TokenKind TagKind = tok::unknown;
2198 
2199     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2200       default: break;
2201       case DeclSpec::TST_enum:
2202         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2203       case DeclSpec::TST_union:
2204         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2205       case DeclSpec::TST_struct:
2206         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2207       case DeclSpec::TST_interface:
2208         TagName="__interface"; FixitTagName = "__interface ";
2209         TagKind=tok::kw___interface;break;
2210       case DeclSpec::TST_class:
2211         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2212     }
2213 
2214     if (TagName) {
2215       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2216       LookupResult R(Actions, TokenName, SourceLocation(),
2217                      Sema::LookupOrdinaryName);
2218 
2219       Diag(Loc, diag::err_use_of_tag_name_without_tag)
2220         << TokenName << TagName << getLangOpts().CPlusPlus
2221         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2222 
2223       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2224         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2225              I != IEnd; ++I)
2226           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2227             << TokenName << TagName;
2228       }
2229 
2230       // Parse this as a tag as if the missing tag were present.
2231       if (TagKind == tok::kw_enum)
2232         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSC_normal);
2233       else
2234         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2235                             /*EnteringContext*/ false, DSC_normal, Attrs);
2236       return true;
2237     }
2238   }
2239 
2240   // Determine whether this identifier could plausibly be the name of something
2241   // being declared (with a missing type).
2242   if (!isTypeSpecifier(DSC) &&
2243       (!SS || DSC == DSC_top_level || DSC == DSC_class)) {
2244     // Look ahead to the next token to try to figure out what this declaration
2245     // was supposed to be.
2246     switch (NextToken().getKind()) {
2247     case tok::l_paren: {
2248       // static x(4); // 'x' is not a type
2249       // x(int n);    // 'x' is not a type
2250       // x (*p)[];    // 'x' is a type
2251       //
2252       // Since we're in an error case, we can afford to perform a tentative
2253       // parse to determine which case we're in.
2254       TentativeParsingAction PA(*this);
2255       ConsumeToken();
2256       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2257       PA.Revert();
2258 
2259       if (TPR != TPResult::False) {
2260         // The identifier is followed by a parenthesized declarator.
2261         // It's supposed to be a type.
2262         break;
2263       }
2264 
2265       // If we're in a context where we could be declaring a constructor,
2266       // check whether this is a constructor declaration with a bogus name.
2267       if (DSC == DSC_class || (DSC == DSC_top_level && SS)) {
2268         IdentifierInfo *II = Tok.getIdentifierInfo();
2269         if (Actions.isCurrentClassNameTypo(II, SS)) {
2270           Diag(Loc, diag::err_constructor_bad_name)
2271             << Tok.getIdentifierInfo() << II
2272             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2273           Tok.setIdentifierInfo(II);
2274         }
2275       }
2276       // Fall through.
2277     }
2278     case tok::comma:
2279     case tok::equal:
2280     case tok::kw_asm:
2281     case tok::l_brace:
2282     case tok::l_square:
2283     case tok::semi:
2284       // This looks like a variable or function declaration. The type is
2285       // probably missing. We're done parsing decl-specifiers.
2286       if (SS)
2287         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2288       return false;
2289 
2290     default:
2291       // This is probably supposed to be a type. This includes cases like:
2292       //   int f(itn);
2293       //   struct S { unsinged : 4; };
2294       break;
2295     }
2296   }
2297 
2298   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2299   // and attempt to recover.
2300   ParsedType T;
2301   IdentifierInfo *II = Tok.getIdentifierInfo();
2302   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2303                                   getLangOpts().CPlusPlus &&
2304                                       NextToken().is(tok::less));
2305   if (T) {
2306     // The action has suggested that the type T could be used. Set that as
2307     // the type in the declaration specifiers, consume the would-be type
2308     // name token, and we're done.
2309     const char *PrevSpec;
2310     unsigned DiagID;
2311     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2312                        Actions.getASTContext().getPrintingPolicy());
2313     DS.SetRangeEnd(Tok.getLocation());
2314     ConsumeToken();
2315     // There may be other declaration specifiers after this.
2316     return true;
2317   } else if (II != Tok.getIdentifierInfo()) {
2318     // If no type was suggested, the correction is to a keyword
2319     Tok.setKind(II->getTokenID());
2320     // There may be other declaration specifiers after this.
2321     return true;
2322   }
2323 
2324   // Otherwise, the action had no suggestion for us.  Mark this as an error.
2325   DS.SetTypeSpecError();
2326   DS.SetRangeEnd(Tok.getLocation());
2327   ConsumeToken();
2328 
2329   // TODO: Could inject an invalid typedef decl in an enclosing scope to
2330   // avoid rippling error messages on subsequent uses of the same type,
2331   // could be useful if #include was forgotten.
2332   return false;
2333 }
2334 
2335 /// \brief Determine the declaration specifier context from the declarator
2336 /// context.
2337 ///
2338 /// \param Context the declarator context, which is one of the
2339 /// Declarator::TheContext enumerator values.
2340 Parser::DeclSpecContext
getDeclSpecContextFromDeclaratorContext(unsigned Context)2341 Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
2342   if (Context == Declarator::MemberContext)
2343     return DSC_class;
2344   if (Context == Declarator::FileContext)
2345     return DSC_top_level;
2346   if (Context == Declarator::TemplateTypeArgContext)
2347     return DSC_template_type_arg;
2348   if (Context == Declarator::TrailingReturnContext)
2349     return DSC_trailing;
2350   if (Context == Declarator::AliasDeclContext ||
2351       Context == Declarator::AliasTemplateContext)
2352     return DSC_alias_declaration;
2353   return DSC_normal;
2354 }
2355 
2356 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
2357 ///
2358 /// FIXME: Simply returns an alignof() expression if the argument is a
2359 /// type. Ideally, the type should be propagated directly into Sema.
2360 ///
2361 /// [C11]   type-id
2362 /// [C11]   constant-expression
2363 /// [C++0x] type-id ...[opt]
2364 /// [C++0x] assignment-expression ...[opt]
ParseAlignArgument(SourceLocation Start,SourceLocation & EllipsisLoc)2365 ExprResult Parser::ParseAlignArgument(SourceLocation Start,
2366                                       SourceLocation &EllipsisLoc) {
2367   ExprResult ER;
2368   if (isTypeIdInParens()) {
2369     SourceLocation TypeLoc = Tok.getLocation();
2370     ParsedType Ty = ParseTypeName().get();
2371     SourceRange TypeRange(Start, Tok.getLocation());
2372     ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true,
2373                                                Ty.getAsOpaquePtr(), TypeRange);
2374   } else
2375     ER = ParseConstantExpression();
2376 
2377   if (getLangOpts().CPlusPlus11)
2378     TryConsumeToken(tok::ellipsis, EllipsisLoc);
2379 
2380   return ER;
2381 }
2382 
2383 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
2384 /// attribute to Attrs.
2385 ///
2386 /// alignment-specifier:
2387 /// [C11]   '_Alignas' '(' type-id ')'
2388 /// [C11]   '_Alignas' '(' constant-expression ')'
2389 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
2390 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
ParseAlignmentSpecifier(ParsedAttributes & Attrs,SourceLocation * EndLoc)2391 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
2392                                      SourceLocation *EndLoc) {
2393   assert((Tok.is(tok::kw_alignas) || Tok.is(tok::kw__Alignas)) &&
2394          "Not an alignment-specifier!");
2395 
2396   IdentifierInfo *KWName = Tok.getIdentifierInfo();
2397   SourceLocation KWLoc = ConsumeToken();
2398 
2399   BalancedDelimiterTracker T(*this, tok::l_paren);
2400   if (T.expectAndConsume())
2401     return;
2402 
2403   SourceLocation EllipsisLoc;
2404   ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc);
2405   if (ArgExpr.isInvalid()) {
2406     T.skipToEnd();
2407     return;
2408   }
2409 
2410   T.consumeClose();
2411   if (EndLoc)
2412     *EndLoc = T.getCloseLocation();
2413 
2414   ArgsVector ArgExprs;
2415   ArgExprs.push_back(ArgExpr.get());
2416   Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1,
2417                AttributeList::AS_Keyword, EllipsisLoc);
2418 }
2419 
2420 /// Determine whether we're looking at something that might be a declarator
2421 /// in a simple-declaration. If it can't possibly be a declarator, maybe
2422 /// diagnose a missing semicolon after a prior tag definition in the decl
2423 /// specifier.
2424 ///
2425 /// \return \c true if an error occurred and this can't be any kind of
2426 /// declaration.
2427 bool
DiagnoseMissingSemiAfterTagDefinition(DeclSpec & DS,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2428 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
2429                                               DeclSpecContext DSContext,
2430                                               LateParsedAttrList *LateAttrs) {
2431   assert(DS.hasTagDefinition() && "shouldn't call this");
2432 
2433   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2434 
2435   if (getLangOpts().CPlusPlus &&
2436       (Tok.is(tok::identifier) || Tok.is(tok::coloncolon) ||
2437        Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id)) &&
2438       TryAnnotateCXXScopeToken(EnteringContext)) {
2439     SkipMalformedDecl();
2440     return true;
2441   }
2442 
2443   bool HasScope = Tok.is(tok::annot_cxxscope);
2444   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
2445   Token AfterScope = HasScope ? NextToken() : Tok;
2446 
2447   // Determine whether the following tokens could possibly be a
2448   // declarator.
2449   bool MightBeDeclarator = true;
2450   if (Tok.is(tok::kw_typename) || Tok.is(tok::annot_typename)) {
2451     // A declarator-id can't start with 'typename'.
2452     MightBeDeclarator = false;
2453   } else if (AfterScope.is(tok::annot_template_id)) {
2454     // If we have a type expressed as a template-id, this cannot be a
2455     // declarator-id (such a type cannot be redeclared in a simple-declaration).
2456     TemplateIdAnnotation *Annot =
2457         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
2458     if (Annot->Kind == TNK_Type_template)
2459       MightBeDeclarator = false;
2460   } else if (AfterScope.is(tok::identifier)) {
2461     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
2462 
2463     // These tokens cannot come after the declarator-id in a
2464     // simple-declaration, and are likely to come after a type-specifier.
2465     if (Next.is(tok::star) || Next.is(tok::amp) || Next.is(tok::ampamp) ||
2466         Next.is(tok::identifier) || Next.is(tok::annot_cxxscope) ||
2467         Next.is(tok::coloncolon)) {
2468       // Missing a semicolon.
2469       MightBeDeclarator = false;
2470     } else if (HasScope) {
2471       // If the declarator-id has a scope specifier, it must redeclare a
2472       // previously-declared entity. If that's a type (and this is not a
2473       // typedef), that's an error.
2474       CXXScopeSpec SS;
2475       Actions.RestoreNestedNameSpecifierAnnotation(
2476           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
2477       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
2478       Sema::NameClassification Classification = Actions.ClassifyName(
2479           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
2480           /*IsAddressOfOperand*/false);
2481       switch (Classification.getKind()) {
2482       case Sema::NC_Error:
2483         SkipMalformedDecl();
2484         return true;
2485 
2486       case Sema::NC_Keyword:
2487       case Sema::NC_NestedNameSpecifier:
2488         llvm_unreachable("typo correction and nested name specifiers not "
2489                          "possible here");
2490 
2491       case Sema::NC_Type:
2492       case Sema::NC_TypeTemplate:
2493         // Not a previously-declared non-type entity.
2494         MightBeDeclarator = false;
2495         break;
2496 
2497       case Sema::NC_Unknown:
2498       case Sema::NC_Expression:
2499       case Sema::NC_VarTemplate:
2500       case Sema::NC_FunctionTemplate:
2501         // Might be a redeclaration of a prior entity.
2502         break;
2503       }
2504     }
2505   }
2506 
2507   if (MightBeDeclarator)
2508     return false;
2509 
2510   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
2511   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getLocEnd()),
2512        diag::err_expected_after)
2513       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
2514 
2515   // Try to recover from the typo, by dropping the tag definition and parsing
2516   // the problematic tokens as a type.
2517   //
2518   // FIXME: Split the DeclSpec into pieces for the standalone
2519   // declaration and pieces for the following declaration, instead
2520   // of assuming that all the other pieces attach to new declaration,
2521   // and call ParsedFreeStandingDeclSpec as appropriate.
2522   DS.ClearTypeSpecType();
2523   ParsedTemplateInfo NotATemplate;
2524   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
2525   return false;
2526 }
2527 
2528 /// ParseDeclarationSpecifiers
2529 ///       declaration-specifiers: [C99 6.7]
2530 ///         storage-class-specifier declaration-specifiers[opt]
2531 ///         type-specifier declaration-specifiers[opt]
2532 /// [C99]   function-specifier declaration-specifiers[opt]
2533 /// [C11]   alignment-specifier declaration-specifiers[opt]
2534 /// [GNU]   attributes declaration-specifiers[opt]
2535 /// [Clang] '__module_private__' declaration-specifiers[opt]
2536 ///
2537 ///       storage-class-specifier: [C99 6.7.1]
2538 ///         'typedef'
2539 ///         'extern'
2540 ///         'static'
2541 ///         'auto'
2542 ///         'register'
2543 /// [C++]   'mutable'
2544 /// [C++11] 'thread_local'
2545 /// [C11]   '_Thread_local'
2546 /// [GNU]   '__thread'
2547 ///       function-specifier: [C99 6.7.4]
2548 /// [C99]   'inline'
2549 /// [C++]   'virtual'
2550 /// [C++]   'explicit'
2551 /// [OpenCL] '__kernel'
2552 ///       'friend': [C++ dcl.friend]
2553 ///       'constexpr': [C++0x dcl.constexpr]
2554 
2555 ///
ParseDeclarationSpecifiers(DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSContext,LateParsedAttrList * LateAttrs)2556 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
2557                                         const ParsedTemplateInfo &TemplateInfo,
2558                                         AccessSpecifier AS,
2559                                         DeclSpecContext DSContext,
2560                                         LateParsedAttrList *LateAttrs) {
2561   if (DS.getSourceRange().isInvalid()) {
2562     // Start the range at the current token but make the end of the range
2563     // invalid.  This will make the entire range invalid unless we successfully
2564     // consume a token.
2565     DS.SetRangeStart(Tok.getLocation());
2566     DS.SetRangeEnd(SourceLocation());
2567   }
2568 
2569   bool EnteringContext = (DSContext == DSC_class || DSContext == DSC_top_level);
2570   bool AttrsLastTime = false;
2571   ParsedAttributesWithRange attrs(AttrFactory);
2572   // We use Sema's policy to get bool macros right.
2573   const PrintingPolicy &Policy = Actions.getPrintingPolicy();
2574   while (1) {
2575     bool isInvalid = false;
2576     bool isStorageClass = false;
2577     const char *PrevSpec = nullptr;
2578     unsigned DiagID = 0;
2579 
2580     SourceLocation Loc = Tok.getLocation();
2581 
2582     switch (Tok.getKind()) {
2583     default:
2584     DoneWithDeclSpec:
2585       if (!AttrsLastTime)
2586         ProhibitAttributes(attrs);
2587       else {
2588         // Reject C++11 attributes that appertain to decl specifiers as
2589         // we don't support any C++11 attributes that appertain to decl
2590         // specifiers. This also conforms to what g++ 4.8 is doing.
2591         ProhibitCXX11Attributes(attrs);
2592 
2593         DS.takeAttributesFrom(attrs);
2594       }
2595 
2596       // If this is not a declaration specifier token, we're done reading decl
2597       // specifiers.  First verify that DeclSpec's are consistent.
2598       DS.Finish(Diags, PP, Policy);
2599       return;
2600 
2601     case tok::l_square:
2602     case tok::kw_alignas:
2603       if (!getLangOpts().CPlusPlus11 || !isCXX11AttributeSpecifier())
2604         goto DoneWithDeclSpec;
2605 
2606       ProhibitAttributes(attrs);
2607       // FIXME: It would be good to recover by accepting the attributes,
2608       //        but attempting to do that now would cause serious
2609       //        madness in terms of diagnostics.
2610       attrs.clear();
2611       attrs.Range = SourceRange();
2612 
2613       ParseCXX11Attributes(attrs);
2614       AttrsLastTime = true;
2615       continue;
2616 
2617     case tok::code_completion: {
2618       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
2619       if (DS.hasTypeSpecifier()) {
2620         bool AllowNonIdentifiers
2621           = (getCurScope()->getFlags() & (Scope::ControlScope |
2622                                           Scope::BlockScope |
2623                                           Scope::TemplateParamScope |
2624                                           Scope::FunctionPrototypeScope |
2625                                           Scope::AtCatchScope)) == 0;
2626         bool AllowNestedNameSpecifiers
2627           = DSContext == DSC_top_level ||
2628             (DSContext == DSC_class && DS.isFriendSpecified());
2629 
2630         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
2631                                      AllowNonIdentifiers,
2632                                      AllowNestedNameSpecifiers);
2633         return cutOffParsing();
2634       }
2635 
2636       if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
2637         CCC = Sema::PCC_LocalDeclarationSpecifiers;
2638       else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
2639         CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
2640                                     : Sema::PCC_Template;
2641       else if (DSContext == DSC_class)
2642         CCC = Sema::PCC_Class;
2643       else if (CurParsedObjCImpl)
2644         CCC = Sema::PCC_ObjCImplementation;
2645 
2646       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
2647       return cutOffParsing();
2648     }
2649 
2650     case tok::coloncolon: // ::foo::bar
2651       // C++ scope specifier.  Annotate and loop, or bail out on error.
2652       if (TryAnnotateCXXScopeToken(EnteringContext)) {
2653         if (!DS.hasTypeSpecifier())
2654           DS.SetTypeSpecError();
2655         goto DoneWithDeclSpec;
2656       }
2657       if (Tok.is(tok::coloncolon)) // ::new or ::delete
2658         goto DoneWithDeclSpec;
2659       continue;
2660 
2661     case tok::annot_cxxscope: {
2662       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
2663         goto DoneWithDeclSpec;
2664 
2665       CXXScopeSpec SS;
2666       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
2667                                                    Tok.getAnnotationRange(),
2668                                                    SS);
2669 
2670       // We are looking for a qualified typename.
2671       Token Next = NextToken();
2672       if (Next.is(tok::annot_template_id) &&
2673           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
2674             ->Kind == TNK_Type_template) {
2675         // We have a qualified template-id, e.g., N::A<int>
2676 
2677         // C++ [class.qual]p2:
2678         //   In a lookup in which the constructor is an acceptable lookup
2679         //   result and the nested-name-specifier nominates a class C:
2680         //
2681         //     - if the name specified after the
2682         //       nested-name-specifier, when looked up in C, is the
2683         //       injected-class-name of C (Clause 9), or
2684         //
2685         //     - if the name specified after the nested-name-specifier
2686         //       is the same as the identifier or the
2687         //       simple-template-id's template-name in the last
2688         //       component of the nested-name-specifier,
2689         //
2690         //   the name is instead considered to name the constructor of
2691         //   class C.
2692         //
2693         // Thus, if the template-name is actually the constructor
2694         // name, then the code is ill-formed; this interpretation is
2695         // reinforced by the NAD status of core issue 635.
2696         TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
2697         if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2698             TemplateId->Name &&
2699             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2700           if (isConstructorDeclarator(/*Unqualified*/false)) {
2701             // The user meant this to be an out-of-line constructor
2702             // definition, but template arguments are not allowed
2703             // there.  Just allow this as a constructor; we'll
2704             // complain about it later.
2705             goto DoneWithDeclSpec;
2706           }
2707 
2708           // The user meant this to name a type, but it actually names
2709           // a constructor with some extraneous template
2710           // arguments. Complain, then parse it as a type as the user
2711           // intended.
2712           Diag(TemplateId->TemplateNameLoc,
2713                diag::err_out_of_line_template_id_names_constructor)
2714             << TemplateId->Name;
2715         }
2716 
2717         DS.getTypeSpecScope() = SS;
2718         ConsumeToken(); // The C++ scope.
2719         assert(Tok.is(tok::annot_template_id) &&
2720                "ParseOptionalCXXScopeSpecifier not working");
2721         AnnotateTemplateIdTokenAsType();
2722         continue;
2723       }
2724 
2725       if (Next.is(tok::annot_typename)) {
2726         DS.getTypeSpecScope() = SS;
2727         ConsumeToken(); // The C++ scope.
2728         if (Tok.getAnnotationValue()) {
2729           ParsedType T = getTypeAnnotation(Tok);
2730           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
2731                                          Tok.getAnnotationEndLoc(),
2732                                          PrevSpec, DiagID, T, Policy);
2733           if (isInvalid)
2734             break;
2735         }
2736         else
2737           DS.SetTypeSpecError();
2738         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2739         ConsumeToken(); // The typename
2740       }
2741 
2742       if (Next.isNot(tok::identifier))
2743         goto DoneWithDeclSpec;
2744 
2745       // If we're in a context where the identifier could be a class name,
2746       // check whether this is a constructor declaration.
2747       if ((DSContext == DSC_top_level || DSContext == DSC_class) &&
2748           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
2749                                      &SS)) {
2750         if (isConstructorDeclarator(/*Unqualified*/false))
2751           goto DoneWithDeclSpec;
2752 
2753         // As noted in C++ [class.qual]p2 (cited above), when the name
2754         // of the class is qualified in a context where it could name
2755         // a constructor, its a constructor name. However, we've
2756         // looked at the declarator, and the user probably meant this
2757         // to be a type. Complain that it isn't supposed to be treated
2758         // as a type, then proceed to parse it as a type.
2759         Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
2760           << Next.getIdentifierInfo();
2761       }
2762 
2763       ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
2764                                                Next.getLocation(),
2765                                                getCurScope(), &SS,
2766                                                false, false, ParsedType(),
2767                                                /*IsCtorOrDtorName=*/false,
2768                                                /*NonTrivialSourceInfo=*/true);
2769 
2770       // If the referenced identifier is not a type, then this declspec is
2771       // erroneous: We already checked about that it has no type specifier, and
2772       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
2773       // typename.
2774       if (!TypeRep) {
2775         ConsumeToken();   // Eat the scope spec so the identifier is current.
2776         ParsedAttributesWithRange Attrs(AttrFactory);
2777         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
2778           if (!Attrs.empty()) {
2779             AttrsLastTime = true;
2780             attrs.takeAllFrom(Attrs);
2781           }
2782           continue;
2783         }
2784         goto DoneWithDeclSpec;
2785       }
2786 
2787       DS.getTypeSpecScope() = SS;
2788       ConsumeToken(); // The C++ scope.
2789 
2790       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2791                                      DiagID, TypeRep, Policy);
2792       if (isInvalid)
2793         break;
2794 
2795       DS.SetRangeEnd(Tok.getLocation());
2796       ConsumeToken(); // The typename.
2797 
2798       continue;
2799     }
2800 
2801     case tok::annot_typename: {
2802       // If we've previously seen a tag definition, we were almost surely
2803       // missing a semicolon after it.
2804       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
2805         goto DoneWithDeclSpec;
2806 
2807       if (Tok.getAnnotationValue()) {
2808         ParsedType T = getTypeAnnotation(Tok);
2809         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2810                                        DiagID, T, Policy);
2811       } else
2812         DS.SetTypeSpecError();
2813 
2814       if (isInvalid)
2815         break;
2816 
2817       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2818       ConsumeToken(); // The typename
2819 
2820       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2821       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2822       // Objective-C interface.
2823       if (Tok.is(tok::less) && getLangOpts().ObjC1)
2824         ParseObjCProtocolQualifiers(DS);
2825 
2826       continue;
2827     }
2828 
2829     case tok::kw___is_signed:
2830       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
2831       // typically treats it as a trait. If we see __is_signed as it appears
2832       // in libstdc++, e.g.,
2833       //
2834       //   static const bool __is_signed;
2835       //
2836       // then treat __is_signed as an identifier rather than as a keyword.
2837       if (DS.getTypeSpecType() == TST_bool &&
2838           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
2839           DS.getStorageClassSpec() == DeclSpec::SCS_static)
2840         TryKeywordIdentFallback(true);
2841 
2842       // We're done with the declaration-specifiers.
2843       goto DoneWithDeclSpec;
2844 
2845       // typedef-name
2846     case tok::kw___super:
2847     case tok::kw_decltype:
2848     case tok::identifier: {
2849       // This identifier can only be a typedef name if we haven't already seen
2850       // a type-specifier.  Without this check we misparse:
2851       //  typedef int X; struct Y { short X; };  as 'short int'.
2852       if (DS.hasTypeSpecifier())
2853         goto DoneWithDeclSpec;
2854 
2855       // In C++, check to see if this is a scope specifier like foo::bar::, if
2856       // so handle it as such.  This is important for ctor parsing.
2857       if (getLangOpts().CPlusPlus) {
2858         if (TryAnnotateCXXScopeToken(EnteringContext)) {
2859           DS.SetTypeSpecError();
2860           goto DoneWithDeclSpec;
2861         }
2862         if (!Tok.is(tok::identifier))
2863           continue;
2864       }
2865 
2866       // Check for need to substitute AltiVec keyword tokens.
2867       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
2868         break;
2869 
2870       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
2871       //                allow the use of a typedef name as a type specifier.
2872       if (DS.isTypeAltiVecVector())
2873         goto DoneWithDeclSpec;
2874 
2875       ParsedType TypeRep =
2876         Actions.getTypeName(*Tok.getIdentifierInfo(),
2877                             Tok.getLocation(), getCurScope());
2878 
2879       // MSVC: If we weren't able to parse a default template argument, and it's
2880       // just a simple identifier, create a DependentNameType.  This will allow
2881       // us to defer the name lookup to template instantiation time, as long we
2882       // forge a NestedNameSpecifier for the current context.
2883       if (!TypeRep && DSContext == DSC_template_type_arg &&
2884           getLangOpts().MSVCCompat && getCurScope()->isTemplateParamScope()) {
2885         TypeRep = Actions.ActOnDelayedDefaultTemplateArg(
2886             *Tok.getIdentifierInfo(), Tok.getLocation());
2887       }
2888 
2889       // If this is not a typedef name, don't parse it as part of the declspec,
2890       // it must be an implicit int or an error.
2891       if (!TypeRep) {
2892         ParsedAttributesWithRange Attrs(AttrFactory);
2893         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
2894           if (!Attrs.empty()) {
2895             AttrsLastTime = true;
2896             attrs.takeAllFrom(Attrs);
2897           }
2898           continue;
2899         }
2900         goto DoneWithDeclSpec;
2901       }
2902 
2903       // If we're in a context where the identifier could be a class name,
2904       // check whether this is a constructor declaration.
2905       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2906           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
2907           isConstructorDeclarator(/*Unqualified*/true))
2908         goto DoneWithDeclSpec;
2909 
2910       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
2911                                      DiagID, TypeRep, Policy);
2912       if (isInvalid)
2913         break;
2914 
2915       DS.SetRangeEnd(Tok.getLocation());
2916       ConsumeToken(); // The identifier
2917 
2918       // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
2919       // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
2920       // Objective-C interface.
2921       if (Tok.is(tok::less) && getLangOpts().ObjC1)
2922         ParseObjCProtocolQualifiers(DS);
2923 
2924       // Need to support trailing type qualifiers (e.g. "id<p> const").
2925       // If a type specifier follows, it will be diagnosed elsewhere.
2926       continue;
2927     }
2928 
2929       // type-name
2930     case tok::annot_template_id: {
2931       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2932       if (TemplateId->Kind != TNK_Type_template) {
2933         // This template-id does not refer to a type name, so we're
2934         // done with the type-specifiers.
2935         goto DoneWithDeclSpec;
2936       }
2937 
2938       // If we're in a context where the template-id could be a
2939       // constructor name or specialization, check whether this is a
2940       // constructor declaration.
2941       if (getLangOpts().CPlusPlus && DSContext == DSC_class &&
2942           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
2943           isConstructorDeclarator(TemplateId->SS.isEmpty()))
2944         goto DoneWithDeclSpec;
2945 
2946       // Turn the template-id annotation token into a type annotation
2947       // token, then try again to parse it as a type-specifier.
2948       AnnotateTemplateIdTokenAsType();
2949       continue;
2950     }
2951 
2952     // GNU attributes support.
2953     case tok::kw___attribute:
2954       ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs);
2955       continue;
2956 
2957     // Microsoft declspec support.
2958     case tok::kw___declspec:
2959       ParseMicrosoftDeclSpec(DS.getAttributes());
2960       continue;
2961 
2962     // Microsoft single token adornments.
2963     case tok::kw___forceinline: {
2964       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
2965       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
2966       SourceLocation AttrNameLoc = Tok.getLocation();
2967       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
2968                                 nullptr, 0, AttributeList::AS_Keyword);
2969       break;
2970     }
2971 
2972     case tok::kw___sptr:
2973     case tok::kw___uptr:
2974     case tok::kw___ptr64:
2975     case tok::kw___ptr32:
2976     case tok::kw___w64:
2977     case tok::kw___cdecl:
2978     case tok::kw___stdcall:
2979     case tok::kw___fastcall:
2980     case tok::kw___thiscall:
2981     case tok::kw___vectorcall:
2982     case tok::kw___unaligned:
2983       ParseMicrosoftTypeAttributes(DS.getAttributes());
2984       continue;
2985 
2986     // Borland single token adornments.
2987     case tok::kw___pascal:
2988       ParseBorlandTypeAttributes(DS.getAttributes());
2989       continue;
2990 
2991     // OpenCL single token adornments.
2992     case tok::kw___kernel:
2993       ParseOpenCLAttributes(DS.getAttributes());
2994       continue;
2995 
2996     // storage-class-specifier
2997     case tok::kw_typedef:
2998       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
2999                                          PrevSpec, DiagID, Policy);
3000       isStorageClass = true;
3001       break;
3002     case tok::kw_extern:
3003       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3004         Diag(Tok, diag::ext_thread_before) << "extern";
3005       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
3006                                          PrevSpec, DiagID, Policy);
3007       isStorageClass = true;
3008       break;
3009     case tok::kw___private_extern__:
3010       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
3011                                          Loc, PrevSpec, DiagID, Policy);
3012       isStorageClass = true;
3013       break;
3014     case tok::kw_static:
3015       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
3016         Diag(Tok, diag::ext_thread_before) << "static";
3017       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
3018                                          PrevSpec, DiagID, Policy);
3019       isStorageClass = true;
3020       break;
3021     case tok::kw_auto:
3022       if (getLangOpts().CPlusPlus11) {
3023         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
3024           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3025                                              PrevSpec, DiagID, Policy);
3026           if (!isInvalid)
3027             Diag(Tok, diag::ext_auto_storage_class)
3028               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3029         } else
3030           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
3031                                          DiagID, Policy);
3032       } else
3033         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
3034                                            PrevSpec, DiagID, Policy);
3035       isStorageClass = true;
3036       break;
3037     case tok::kw_register:
3038       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
3039                                          PrevSpec, DiagID, Policy);
3040       isStorageClass = true;
3041       break;
3042     case tok::kw_mutable:
3043       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
3044                                          PrevSpec, DiagID, Policy);
3045       isStorageClass = true;
3046       break;
3047     case tok::kw___thread:
3048       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
3049                                                PrevSpec, DiagID);
3050       isStorageClass = true;
3051       break;
3052     case tok::kw_thread_local:
3053       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc,
3054                                                PrevSpec, DiagID);
3055       break;
3056     case tok::kw__Thread_local:
3057       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
3058                                                Loc, PrevSpec, DiagID);
3059       isStorageClass = true;
3060       break;
3061 
3062     // function-specifier
3063     case tok::kw_inline:
3064       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
3065       break;
3066     case tok::kw_virtual:
3067       isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
3068       break;
3069     case tok::kw_explicit:
3070       isInvalid = DS.setFunctionSpecExplicit(Loc, PrevSpec, DiagID);
3071       break;
3072     case tok::kw__Noreturn:
3073       if (!getLangOpts().C11)
3074         Diag(Loc, diag::ext_c11_noreturn);
3075       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
3076       break;
3077 
3078     // alignment-specifier
3079     case tok::kw__Alignas:
3080       if (!getLangOpts().C11)
3081         Diag(Tok, diag::ext_c11_alignment) << Tok.getName();
3082       ParseAlignmentSpecifier(DS.getAttributes());
3083       continue;
3084 
3085     // friend
3086     case tok::kw_friend:
3087       if (DSContext == DSC_class)
3088         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
3089       else {
3090         PrevSpec = ""; // not actually used by the diagnostic
3091         DiagID = diag::err_friend_invalid_in_context;
3092         isInvalid = true;
3093       }
3094       break;
3095 
3096     // Modules
3097     case tok::kw___module_private__:
3098       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
3099       break;
3100 
3101     // constexpr
3102     case tok::kw_constexpr:
3103       isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
3104       break;
3105 
3106     // type-specifier
3107     case tok::kw_short:
3108       isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
3109                                       DiagID, Policy);
3110       break;
3111     case tok::kw_long:
3112       if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
3113         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
3114                                         DiagID, Policy);
3115       else
3116         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3117                                         DiagID, Policy);
3118       break;
3119     case tok::kw___int64:
3120         isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
3121                                         DiagID, Policy);
3122       break;
3123     case tok::kw_signed:
3124       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
3125                                      DiagID);
3126       break;
3127     case tok::kw_unsigned:
3128       isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
3129                                      DiagID);
3130       break;
3131     case tok::kw__Complex:
3132       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
3133                                         DiagID);
3134       break;
3135     case tok::kw__Imaginary:
3136       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
3137                                         DiagID);
3138       break;
3139     case tok::kw_void:
3140       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
3141                                      DiagID, Policy);
3142       break;
3143     case tok::kw_char:
3144       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
3145                                      DiagID, Policy);
3146       break;
3147     case tok::kw_int:
3148       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
3149                                      DiagID, Policy);
3150       break;
3151     case tok::kw___int128:
3152       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
3153                                      DiagID, Policy);
3154       break;
3155     case tok::kw_half:
3156       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
3157                                      DiagID, Policy);
3158       break;
3159     case tok::kw_float:
3160       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
3161                                      DiagID, Policy);
3162       break;
3163     case tok::kw_double:
3164       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
3165                                      DiagID, Policy);
3166       break;
3167     case tok::kw_wchar_t:
3168       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
3169                                      DiagID, Policy);
3170       break;
3171     case tok::kw_char16_t:
3172       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
3173                                      DiagID, Policy);
3174       break;
3175     case tok::kw_char32_t:
3176       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
3177                                      DiagID, Policy);
3178       break;
3179     case tok::kw_bool:
3180     case tok::kw__Bool:
3181       if (Tok.is(tok::kw_bool) &&
3182           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
3183           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
3184         PrevSpec = ""; // Not used by the diagnostic.
3185         DiagID = diag::err_bool_redeclaration;
3186         // For better error recovery.
3187         Tok.setKind(tok::identifier);
3188         isInvalid = true;
3189       } else {
3190         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
3191                                        DiagID, Policy);
3192       }
3193       break;
3194     case tok::kw__Decimal32:
3195       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
3196                                      DiagID, Policy);
3197       break;
3198     case tok::kw__Decimal64:
3199       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
3200                                      DiagID, Policy);
3201       break;
3202     case tok::kw__Decimal128:
3203       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
3204                                      DiagID, Policy);
3205       break;
3206     case tok::kw___vector:
3207       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
3208       break;
3209     case tok::kw___pixel:
3210       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
3211       break;
3212     case tok::kw___bool:
3213       isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
3214       break;
3215     case tok::kw___unknown_anytype:
3216       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
3217                                      PrevSpec, DiagID, Policy);
3218       break;
3219 
3220     // class-specifier:
3221     case tok::kw_class:
3222     case tok::kw_struct:
3223     case tok::kw___interface:
3224     case tok::kw_union: {
3225       tok::TokenKind Kind = Tok.getKind();
3226       ConsumeToken();
3227 
3228       // These are attributes following class specifiers.
3229       // To produce better diagnostic, we parse them when
3230       // parsing class specifier.
3231       ParsedAttributesWithRange Attributes(AttrFactory);
3232       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
3233                           EnteringContext, DSContext, Attributes);
3234 
3235       // If there are attributes following class specifier,
3236       // take them over and handle them here.
3237       if (!Attributes.empty()) {
3238         AttrsLastTime = true;
3239         attrs.takeAllFrom(Attributes);
3240       }
3241       continue;
3242     }
3243 
3244     // enum-specifier:
3245     case tok::kw_enum:
3246       ConsumeToken();
3247       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
3248       continue;
3249 
3250     // cv-qualifier:
3251     case tok::kw_const:
3252       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
3253                                  getLangOpts());
3254       break;
3255     case tok::kw_volatile:
3256       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
3257                                  getLangOpts());
3258       break;
3259     case tok::kw_restrict:
3260       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
3261                                  getLangOpts());
3262       break;
3263 
3264     // C++ typename-specifier:
3265     case tok::kw_typename:
3266       if (TryAnnotateTypeOrScopeToken()) {
3267         DS.SetTypeSpecError();
3268         goto DoneWithDeclSpec;
3269       }
3270       if (!Tok.is(tok::kw_typename))
3271         continue;
3272       break;
3273 
3274     // GNU typeof support.
3275     case tok::kw_typeof:
3276       ParseTypeofSpecifier(DS);
3277       continue;
3278 
3279     case tok::annot_decltype:
3280       ParseDecltypeSpecifier(DS);
3281       continue;
3282 
3283     case tok::kw___underlying_type:
3284       ParseUnderlyingTypeSpecifier(DS);
3285       continue;
3286 
3287     case tok::kw__Atomic:
3288       // C11 6.7.2.4/4:
3289       //   If the _Atomic keyword is immediately followed by a left parenthesis,
3290       //   it is interpreted as a type specifier (with a type name), not as a
3291       //   type qualifier.
3292       if (NextToken().is(tok::l_paren)) {
3293         ParseAtomicSpecifier(DS);
3294         continue;
3295       }
3296       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
3297                                  getLangOpts());
3298       break;
3299 
3300     // OpenCL qualifiers:
3301     case tok::kw___generic:
3302       // generic address space is introduced only in OpenCL v2.0
3303       // see OpenCL C Spec v2.0 s6.5.5
3304       if (Actions.getLangOpts().OpenCLVersion < 200) {
3305         DiagID = diag::err_opencl_unknown_type_specifier;
3306         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
3307         isInvalid = true;
3308         break;
3309       };
3310     case tok::kw___private:
3311     case tok::kw___global:
3312     case tok::kw___local:
3313     case tok::kw___constant:
3314     case tok::kw___read_only:
3315     case tok::kw___write_only:
3316     case tok::kw___read_write:
3317       ParseOpenCLQualifiers(DS.getAttributes());
3318       break;
3319 
3320     case tok::less:
3321       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
3322       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
3323       // but we support it.
3324       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC1)
3325         goto DoneWithDeclSpec;
3326 
3327       if (!ParseObjCProtocolQualifiers(DS))
3328         Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
3329           << FixItHint::CreateInsertion(Loc, "id")
3330           << SourceRange(Loc, DS.getSourceRange().getEnd());
3331 
3332       // Need to support trailing type qualifiers (e.g. "id<p> const").
3333       // If a type specifier follows, it will be diagnosed elsewhere.
3334       continue;
3335     }
3336     // If the specifier wasn't legal, issue a diagnostic.
3337     if (isInvalid) {
3338       assert(PrevSpec && "Method did not return previous specifier!");
3339       assert(DiagID);
3340 
3341       if (DiagID == diag::ext_duplicate_declspec)
3342         Diag(Tok, DiagID)
3343           << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
3344       else if (DiagID == diag::err_opencl_unknown_type_specifier)
3345         Diag(Tok, DiagID) << PrevSpec << isStorageClass;
3346       else
3347         Diag(Tok, DiagID) << PrevSpec;
3348     }
3349 
3350     DS.SetRangeEnd(Tok.getLocation());
3351     if (DiagID != diag::err_bool_redeclaration)
3352       ConsumeToken();
3353 
3354     AttrsLastTime = false;
3355   }
3356 }
3357 
3358 /// ParseStructDeclaration - Parse a struct declaration without the terminating
3359 /// semicolon.
3360 ///
3361 ///       struct-declaration:
3362 ///         specifier-qualifier-list struct-declarator-list
3363 /// [GNU]   __extension__ struct-declaration
3364 /// [GNU]   specifier-qualifier-list
3365 ///       struct-declarator-list:
3366 ///         struct-declarator
3367 ///         struct-declarator-list ',' struct-declarator
3368 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
3369 ///       struct-declarator:
3370 ///         declarator
3371 /// [GNU]   declarator attributes[opt]
3372 ///         declarator[opt] ':' constant-expression
3373 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
3374 ///
ParseStructDeclaration(ParsingDeclSpec & DS,llvm::function_ref<void (ParsingFieldDeclarator &)> FieldsCallback)3375 void Parser::ParseStructDeclaration(
3376     ParsingDeclSpec &DS,
3377     llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
3378 
3379   if (Tok.is(tok::kw___extension__)) {
3380     // __extension__ silences extension warnings in the subexpression.
3381     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
3382     ConsumeToken();
3383     return ParseStructDeclaration(DS, FieldsCallback);
3384   }
3385 
3386   // Parse the common specifier-qualifiers-list piece.
3387   ParseSpecifierQualifierList(DS);
3388 
3389   // If there are no declarators, this is a free-standing declaration
3390   // specifier. Let the actions module cope with it.
3391   if (Tok.is(tok::semi)) {
3392     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
3393                                                        DS);
3394     DS.complete(TheDecl);
3395     return;
3396   }
3397 
3398   // Read struct-declarators until we find the semicolon.
3399   bool FirstDeclarator = true;
3400   SourceLocation CommaLoc;
3401   while (1) {
3402     ParsingFieldDeclarator DeclaratorInfo(*this, DS);
3403     DeclaratorInfo.D.setCommaLoc(CommaLoc);
3404 
3405     // Attributes are only allowed here on successive declarators.
3406     if (!FirstDeclarator)
3407       MaybeParseGNUAttributes(DeclaratorInfo.D);
3408 
3409     /// struct-declarator: declarator
3410     /// struct-declarator: declarator[opt] ':' constant-expression
3411     if (Tok.isNot(tok::colon)) {
3412       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
3413       ColonProtectionRAIIObject X(*this);
3414       ParseDeclarator(DeclaratorInfo.D);
3415     } else
3416       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
3417 
3418     if (TryConsumeToken(tok::colon)) {
3419       ExprResult Res(ParseConstantExpression());
3420       if (Res.isInvalid())
3421         SkipUntil(tok::semi, StopBeforeMatch);
3422       else
3423         DeclaratorInfo.BitfieldSize = Res.get();
3424     }
3425 
3426     // If attributes exist after the declarator, parse them.
3427     MaybeParseGNUAttributes(DeclaratorInfo.D);
3428 
3429     // We're done with this declarator;  invoke the callback.
3430     FieldsCallback(DeclaratorInfo);
3431 
3432     // If we don't have a comma, it is either the end of the list (a ';')
3433     // or an error, bail out.
3434     if (!TryConsumeToken(tok::comma, CommaLoc))
3435       return;
3436 
3437     FirstDeclarator = false;
3438   }
3439 }
3440 
3441 /// ParseStructUnionBody
3442 ///       struct-contents:
3443 ///         struct-declaration-list
3444 /// [EXT]   empty
3445 /// [GNU]   "struct-declaration-list" without terminatoring ';'
3446 ///       struct-declaration-list:
3447 ///         struct-declaration
3448 ///         struct-declaration-list struct-declaration
3449 /// [OBC]   '@' 'defs' '(' class-name ')'
3450 ///
ParseStructUnionBody(SourceLocation RecordLoc,unsigned TagType,Decl * TagDecl)3451 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
3452                                   unsigned TagType, Decl *TagDecl) {
3453   PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
3454                                       "parsing struct/union body");
3455   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
3456 
3457   BalancedDelimiterTracker T(*this, tok::l_brace);
3458   if (T.consumeOpen())
3459     return;
3460 
3461   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
3462   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
3463 
3464   SmallVector<Decl *, 32> FieldDecls;
3465 
3466   // While we still have something to read, read the declarations in the struct.
3467   while (Tok.isNot(tok::r_brace) && !isEofOrEom()) {
3468     // Each iteration of this loop reads one struct-declaration.
3469 
3470     // Check for extraneous top-level semicolon.
3471     if (Tok.is(tok::semi)) {
3472       ConsumeExtraSemi(InsideStruct, TagType);
3473       continue;
3474     }
3475 
3476     // Parse _Static_assert declaration.
3477     if (Tok.is(tok::kw__Static_assert)) {
3478       SourceLocation DeclEnd;
3479       ParseStaticAssertDeclaration(DeclEnd);
3480       continue;
3481     }
3482 
3483     if (Tok.is(tok::annot_pragma_pack)) {
3484       HandlePragmaPack();
3485       continue;
3486     }
3487 
3488     if (Tok.is(tok::annot_pragma_align)) {
3489       HandlePragmaAlign();
3490       continue;
3491     }
3492 
3493     if (!Tok.is(tok::at)) {
3494       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
3495         // Install the declarator into the current TagDecl.
3496         Decl *Field =
3497             Actions.ActOnField(getCurScope(), TagDecl,
3498                                FD.D.getDeclSpec().getSourceRange().getBegin(),
3499                                FD.D, FD.BitfieldSize);
3500         FieldDecls.push_back(Field);
3501         FD.complete(Field);
3502       };
3503 
3504       // Parse all the comma separated declarators.
3505       ParsingDeclSpec DS(*this);
3506       ParseStructDeclaration(DS, CFieldCallback);
3507     } else { // Handle @defs
3508       ConsumeToken();
3509       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
3510         Diag(Tok, diag::err_unexpected_at);
3511         SkipUntil(tok::semi);
3512         continue;
3513       }
3514       ConsumeToken();
3515       ExpectAndConsume(tok::l_paren);
3516       if (!Tok.is(tok::identifier)) {
3517         Diag(Tok, diag::err_expected) << tok::identifier;
3518         SkipUntil(tok::semi);
3519         continue;
3520       }
3521       SmallVector<Decl *, 16> Fields;
3522       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
3523                         Tok.getIdentifierInfo(), Fields);
3524       FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
3525       ConsumeToken();
3526       ExpectAndConsume(tok::r_paren);
3527     }
3528 
3529     if (TryConsumeToken(tok::semi))
3530       continue;
3531 
3532     if (Tok.is(tok::r_brace)) {
3533       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
3534       break;
3535     }
3536 
3537     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
3538     // Skip to end of block or statement to avoid ext-warning on extra ';'.
3539     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
3540     // If we stopped at a ';', eat it.
3541     TryConsumeToken(tok::semi);
3542   }
3543 
3544   T.consumeClose();
3545 
3546   ParsedAttributes attrs(AttrFactory);
3547   // If attributes exist after struct contents, parse them.
3548   MaybeParseGNUAttributes(attrs);
3549 
3550   Actions.ActOnFields(getCurScope(),
3551                       RecordLoc, TagDecl, FieldDecls,
3552                       T.getOpenLocation(), T.getCloseLocation(),
3553                       attrs.getList());
3554   StructScope.Exit();
3555   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
3556                                    T.getCloseLocation());
3557 }
3558 
3559 /// ParseEnumSpecifier
3560 ///       enum-specifier: [C99 6.7.2.2]
3561 ///         'enum' identifier[opt] '{' enumerator-list '}'
3562 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
3563 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
3564 ///                                                 '}' attributes[opt]
3565 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
3566 ///                                                 '}'
3567 ///         'enum' identifier
3568 /// [GNU]   'enum' attributes[opt] identifier
3569 ///
3570 /// [C++11] enum-head '{' enumerator-list[opt] '}'
3571 /// [C++11] enum-head '{' enumerator-list ','  '}'
3572 ///
3573 ///       enum-head: [C++11]
3574 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
3575 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
3576 ///             identifier enum-base[opt]
3577 ///
3578 ///       enum-key: [C++11]
3579 ///         'enum'
3580 ///         'enum' 'class'
3581 ///         'enum' 'struct'
3582 ///
3583 ///       enum-base: [C++11]
3584 ///         ':' type-specifier-seq
3585 ///
3586 /// [C++] elaborated-type-specifier:
3587 /// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
3588 ///
ParseEnumSpecifier(SourceLocation StartLoc,DeclSpec & DS,const ParsedTemplateInfo & TemplateInfo,AccessSpecifier AS,DeclSpecContext DSC)3589 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
3590                                 const ParsedTemplateInfo &TemplateInfo,
3591                                 AccessSpecifier AS, DeclSpecContext DSC) {
3592   // Parse the tag portion of this.
3593   if (Tok.is(tok::code_completion)) {
3594     // Code completion for an enum name.
3595     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
3596     return cutOffParsing();
3597   }
3598 
3599   // If attributes exist after tag, parse them.
3600   ParsedAttributesWithRange attrs(AttrFactory);
3601   MaybeParseGNUAttributes(attrs);
3602   MaybeParseCXX11Attributes(attrs);
3603 
3604   // If declspecs exist after tag, parse them.
3605   while (Tok.is(tok::kw___declspec))
3606     ParseMicrosoftDeclSpec(attrs);
3607 
3608   SourceLocation ScopedEnumKWLoc;
3609   bool IsScopedUsingClassTag = false;
3610 
3611   // In C++11, recognize 'enum class' and 'enum struct'.
3612   if (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct)) {
3613     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
3614                                         : diag::ext_scoped_enum);
3615     IsScopedUsingClassTag = Tok.is(tok::kw_class);
3616     ScopedEnumKWLoc = ConsumeToken();
3617 
3618     // Attributes are not allowed between these keywords.  Diagnose,
3619     // but then just treat them like they appeared in the right place.
3620     ProhibitAttributes(attrs);
3621 
3622     // They are allowed afterwards, though.
3623     MaybeParseGNUAttributes(attrs);
3624     MaybeParseCXX11Attributes(attrs);
3625     while (Tok.is(tok::kw___declspec))
3626       ParseMicrosoftDeclSpec(attrs);
3627   }
3628 
3629   // C++11 [temp.explicit]p12:
3630   //   The usual access controls do not apply to names used to specify
3631   //   explicit instantiations.
3632   // We extend this to also cover explicit specializations.  Note that
3633   // we don't suppress if this turns out to be an elaborated type
3634   // specifier.
3635   bool shouldDelayDiagsInTag =
3636     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3637      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3638   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
3639 
3640   // Enum definitions should not be parsed in a trailing-return-type.
3641   bool AllowDeclaration = DSC != DSC_trailing;
3642 
3643   bool AllowFixedUnderlyingType = AllowDeclaration &&
3644     (getLangOpts().CPlusPlus11 || getLangOpts().MicrosoftExt ||
3645      getLangOpts().ObjC2);
3646 
3647   CXXScopeSpec &SS = DS.getTypeSpecScope();
3648   if (getLangOpts().CPlusPlus) {
3649     // "enum foo : bar;" is not a potential typo for "enum foo::bar;"
3650     // if a fixed underlying type is allowed.
3651     ColonProtectionRAIIObject X(*this, AllowFixedUnderlyingType);
3652 
3653     CXXScopeSpec Spec;
3654     if (ParseOptionalCXXScopeSpecifier(Spec, ParsedType(),
3655                                        /*EnteringContext=*/true))
3656       return;
3657 
3658     if (Spec.isSet() && Tok.isNot(tok::identifier)) {
3659       Diag(Tok, diag::err_expected) << tok::identifier;
3660       if (Tok.isNot(tok::l_brace)) {
3661         // Has no name and is not a definition.
3662         // Skip the rest of this declarator, up until the comma or semicolon.
3663         SkipUntil(tok::comma, StopAtSemi);
3664         return;
3665       }
3666     }
3667 
3668     SS = Spec;
3669   }
3670 
3671   // Must have either 'enum name' or 'enum {...}'.
3672   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
3673       !(AllowFixedUnderlyingType && Tok.is(tok::colon))) {
3674     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
3675 
3676     // Skip the rest of this declarator, up until the comma or semicolon.
3677     SkipUntil(tok::comma, StopAtSemi);
3678     return;
3679   }
3680 
3681   // If an identifier is present, consume and remember it.
3682   IdentifierInfo *Name = nullptr;
3683   SourceLocation NameLoc;
3684   if (Tok.is(tok::identifier)) {
3685     Name = Tok.getIdentifierInfo();
3686     NameLoc = ConsumeToken();
3687   }
3688 
3689   if (!Name && ScopedEnumKWLoc.isValid()) {
3690     // C++0x 7.2p2: The optional identifier shall not be omitted in the
3691     // declaration of a scoped enumeration.
3692     Diag(Tok, diag::err_scoped_enum_missing_identifier);
3693     ScopedEnumKWLoc = SourceLocation();
3694     IsScopedUsingClassTag = false;
3695   }
3696 
3697   // Okay, end the suppression area.  We'll decide whether to emit the
3698   // diagnostics in a second.
3699   if (shouldDelayDiagsInTag)
3700     diagsFromTag.done();
3701 
3702   TypeResult BaseType;
3703 
3704   // Parse the fixed underlying type.
3705   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
3706   if (AllowFixedUnderlyingType && Tok.is(tok::colon)) {
3707     bool PossibleBitfield = false;
3708     if (CanBeBitfield) {
3709       // If we're in class scope, this can either be an enum declaration with
3710       // an underlying type, or a declaration of a bitfield member. We try to
3711       // use a simple disambiguation scheme first to catch the common cases
3712       // (integer literal, sizeof); if it's still ambiguous, we then consider
3713       // anything that's a simple-type-specifier followed by '(' as an
3714       // expression. This suffices because function types are not valid
3715       // underlying types anyway.
3716       EnterExpressionEvaluationContext Unevaluated(Actions,
3717                                                    Sema::ConstantEvaluated);
3718       TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
3719       // If the next token starts an expression, we know we're parsing a
3720       // bit-field. This is the common case.
3721       if (TPR == TPResult::True)
3722         PossibleBitfield = true;
3723       // If the next token starts a type-specifier-seq, it may be either a
3724       // a fixed underlying type or the start of a function-style cast in C++;
3725       // lookahead one more token to see if it's obvious that we have a
3726       // fixed underlying type.
3727       else if (TPR == TPResult::False &&
3728                GetLookAheadToken(2).getKind() == tok::semi) {
3729         // Consume the ':'.
3730         ConsumeToken();
3731       } else {
3732         // We have the start of a type-specifier-seq, so we have to perform
3733         // tentative parsing to determine whether we have an expression or a
3734         // type.
3735         TentativeParsingAction TPA(*this);
3736 
3737         // Consume the ':'.
3738         ConsumeToken();
3739 
3740         // If we see a type specifier followed by an open-brace, we have an
3741         // ambiguity between an underlying type and a C++11 braced
3742         // function-style cast. Resolve this by always treating it as an
3743         // underlying type.
3744         // FIXME: The standard is not entirely clear on how to disambiguate in
3745         // this case.
3746         if ((getLangOpts().CPlusPlus &&
3747              isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) ||
3748             (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) {
3749           // We'll parse this as a bitfield later.
3750           PossibleBitfield = true;
3751           TPA.Revert();
3752         } else {
3753           // We have a type-specifier-seq.
3754           TPA.Commit();
3755         }
3756       }
3757     } else {
3758       // Consume the ':'.
3759       ConsumeToken();
3760     }
3761 
3762     if (!PossibleBitfield) {
3763       SourceRange Range;
3764       BaseType = ParseTypeName(&Range);
3765 
3766       if (getLangOpts().CPlusPlus11) {
3767         Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type);
3768       } else if (!getLangOpts().ObjC2) {
3769         if (getLangOpts().CPlusPlus)
3770           Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type) << Range;
3771         else
3772           Diag(StartLoc, diag::ext_c_enum_fixed_underlying_type) << Range;
3773       }
3774     }
3775   }
3776 
3777   // There are four options here.  If we have 'friend enum foo;' then this is a
3778   // friend declaration, and cannot have an accompanying definition. If we have
3779   // 'enum foo;', then this is a forward declaration.  If we have
3780   // 'enum foo {...' then this is a definition. Otherwise we have something
3781   // like 'enum foo xyz', a reference.
3782   //
3783   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
3784   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
3785   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
3786   //
3787   Sema::TagUseKind TUK;
3788   if (!AllowDeclaration) {
3789     TUK = Sema::TUK_Reference;
3790   } else if (Tok.is(tok::l_brace)) {
3791     if (DS.isFriendSpecified()) {
3792       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
3793         << SourceRange(DS.getFriendSpecLoc());
3794       ConsumeBrace();
3795       SkipUntil(tok::r_brace, StopAtSemi);
3796       TUK = Sema::TUK_Friend;
3797     } else {
3798       TUK = Sema::TUK_Definition;
3799     }
3800   } else if (!isTypeSpecifier(DSC) &&
3801              (Tok.is(tok::semi) ||
3802               (Tok.isAtStartOfLine() &&
3803                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
3804     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
3805     if (Tok.isNot(tok::semi)) {
3806       // A semicolon was missing after this declaration. Diagnose and recover.
3807       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
3808       PP.EnterToken(Tok);
3809       Tok.setKind(tok::semi);
3810     }
3811   } else {
3812     TUK = Sema::TUK_Reference;
3813   }
3814 
3815   // If this is an elaborated type specifier, and we delayed
3816   // diagnostics before, just merge them into the current pool.
3817   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
3818     diagsFromTag.redelay();
3819   }
3820 
3821   MultiTemplateParamsArg TParams;
3822   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
3823       TUK != Sema::TUK_Reference) {
3824     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
3825       // Skip the rest of this declarator, up until the comma or semicolon.
3826       Diag(Tok, diag::err_enum_template);
3827       SkipUntil(tok::comma, StopAtSemi);
3828       return;
3829     }
3830 
3831     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
3832       // Enumerations can't be explicitly instantiated.
3833       DS.SetTypeSpecError();
3834       Diag(StartLoc, diag::err_explicit_instantiation_enum);
3835       return;
3836     }
3837 
3838     assert(TemplateInfo.TemplateParams && "no template parameters");
3839     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
3840                                      TemplateInfo.TemplateParams->size());
3841   }
3842 
3843   if (TUK == Sema::TUK_Reference)
3844     ProhibitAttributes(attrs);
3845 
3846   if (!Name && TUK != Sema::TUK_Definition) {
3847     Diag(Tok, diag::err_enumerator_unnamed_no_def);
3848 
3849     // Skip the rest of this declarator, up until the comma or semicolon.
3850     SkipUntil(tok::comma, StopAtSemi);
3851     return;
3852   }
3853 
3854   bool Owned = false;
3855   bool IsDependent = false;
3856   const char *PrevSpec = nullptr;
3857   unsigned DiagID;
3858   Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
3859                                    StartLoc, SS, Name, NameLoc, attrs.getList(),
3860                                    AS, DS.getModulePrivateSpecLoc(), TParams,
3861                                    Owned, IsDependent, ScopedEnumKWLoc,
3862                                    IsScopedUsingClassTag, BaseType,
3863                                    DSC == DSC_type_specifier);
3864 
3865   if (IsDependent) {
3866     // This enum has a dependent nested-name-specifier. Handle it as a
3867     // dependent tag.
3868     if (!Name) {
3869       DS.SetTypeSpecError();
3870       Diag(Tok, diag::err_expected_type_name_after_typename);
3871       return;
3872     }
3873 
3874     TypeResult Type = Actions.ActOnDependentTag(
3875         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
3876     if (Type.isInvalid()) {
3877       DS.SetTypeSpecError();
3878       return;
3879     }
3880 
3881     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
3882                            NameLoc.isValid() ? NameLoc : StartLoc,
3883                            PrevSpec, DiagID, Type.get(),
3884                            Actions.getASTContext().getPrintingPolicy()))
3885       Diag(StartLoc, DiagID) << PrevSpec;
3886 
3887     return;
3888   }
3889 
3890   if (!TagDecl) {
3891     // The action failed to produce an enumeration tag. If this is a
3892     // definition, consume the entire definition.
3893     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
3894       ConsumeBrace();
3895       SkipUntil(tok::r_brace, StopAtSemi);
3896     }
3897 
3898     DS.SetTypeSpecError();
3899     return;
3900   }
3901 
3902   if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference)
3903     ParseEnumBody(StartLoc, TagDecl);
3904 
3905   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
3906                          NameLoc.isValid() ? NameLoc : StartLoc,
3907                          PrevSpec, DiagID, TagDecl, Owned,
3908                          Actions.getASTContext().getPrintingPolicy()))
3909     Diag(StartLoc, DiagID) << PrevSpec;
3910 }
3911 
3912 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
3913 ///       enumerator-list:
3914 ///         enumerator
3915 ///         enumerator-list ',' enumerator
3916 ///       enumerator:
3917 ///         enumeration-constant attributes[opt]
3918 ///         enumeration-constant attributes[opt] '=' constant-expression
3919 ///       enumeration-constant:
3920 ///         identifier
3921 ///
ParseEnumBody(SourceLocation StartLoc,Decl * EnumDecl)3922 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
3923   // Enter the scope of the enum body and start the definition.
3924   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
3925   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
3926 
3927   BalancedDelimiterTracker T(*this, tok::l_brace);
3928   T.consumeOpen();
3929 
3930   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
3931   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
3932     Diag(Tok, diag::error_empty_enum);
3933 
3934   SmallVector<Decl *, 32> EnumConstantDecls;
3935 
3936   Decl *LastEnumConstDecl = nullptr;
3937 
3938   // Parse the enumerator-list.
3939   while (Tok.isNot(tok::r_brace)) {
3940     // Parse enumerator. If failed, try skipping till the start of the next
3941     // enumerator definition.
3942     if (Tok.isNot(tok::identifier)) {
3943       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
3944       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
3945           TryConsumeToken(tok::comma))
3946         continue;
3947       break;
3948     }
3949     IdentifierInfo *Ident = Tok.getIdentifierInfo();
3950     SourceLocation IdentLoc = ConsumeToken();
3951 
3952     // If attributes exist after the enumerator, parse them.
3953     ParsedAttributesWithRange attrs(AttrFactory);
3954     MaybeParseGNUAttributes(attrs);
3955     ProhibitAttributes(attrs); // GNU-style attributes are prohibited.
3956     if (getLangOpts().CPlusPlus11 && isCXX11AttributeSpecifier()) {
3957       if (!getLangOpts().CPlusPlus1z)
3958         Diag(Tok.getLocation(), diag::warn_cxx14_compat_attribute)
3959             << 1 /*enumerator*/;
3960       ParseCXX11Attributes(attrs);
3961     }
3962 
3963     SourceLocation EqualLoc;
3964     ExprResult AssignedVal;
3965     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
3966 
3967     if (TryConsumeToken(tok::equal, EqualLoc)) {
3968       AssignedVal = ParseConstantExpression();
3969       if (AssignedVal.isInvalid())
3970         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
3971     }
3972 
3973     // Install the enumerator constant into EnumDecl.
3974     Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
3975                                                     LastEnumConstDecl,
3976                                                     IdentLoc, Ident,
3977                                                     attrs.getList(), EqualLoc,
3978                                                     AssignedVal.get());
3979     PD.complete(EnumConstDecl);
3980 
3981     EnumConstantDecls.push_back(EnumConstDecl);
3982     LastEnumConstDecl = EnumConstDecl;
3983 
3984     if (Tok.is(tok::identifier)) {
3985       // We're missing a comma between enumerators.
3986       SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
3987       Diag(Loc, diag::err_enumerator_list_missing_comma)
3988         << FixItHint::CreateInsertion(Loc, ", ");
3989       continue;
3990     }
3991 
3992     // Emumerator definition must be finished, only comma or r_brace are
3993     // allowed here.
3994     SourceLocation CommaLoc;
3995     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
3996       if (EqualLoc.isValid())
3997         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
3998                                                            << tok::comma;
3999       else
4000         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
4001       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
4002         if (TryConsumeToken(tok::comma, CommaLoc))
4003           continue;
4004       } else {
4005         break;
4006       }
4007     }
4008 
4009     // If comma is followed by r_brace, emit appropriate warning.
4010     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
4011       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
4012         Diag(CommaLoc, getLangOpts().CPlusPlus ?
4013                diag::ext_enumerator_list_comma_cxx :
4014                diag::ext_enumerator_list_comma_c)
4015           << FixItHint::CreateRemoval(CommaLoc);
4016       else if (getLangOpts().CPlusPlus11)
4017         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
4018           << FixItHint::CreateRemoval(CommaLoc);
4019       break;
4020     }
4021   }
4022 
4023   // Eat the }.
4024   T.consumeClose();
4025 
4026   // If attributes exist after the identifier list, parse them.
4027   ParsedAttributes attrs(AttrFactory);
4028   MaybeParseGNUAttributes(attrs);
4029 
4030   Actions.ActOnEnumBody(StartLoc, T.getOpenLocation(), T.getCloseLocation(),
4031                         EnumDecl, EnumConstantDecls,
4032                         getCurScope(),
4033                         attrs.getList());
4034 
4035   EnumScope.Exit();
4036   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl,
4037                                    T.getCloseLocation());
4038 
4039   // The next token must be valid after an enum definition. If not, a ';'
4040   // was probably forgotten.
4041   bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope;
4042   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
4043     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
4044     // Push this token back into the preprocessor and change our current token
4045     // to ';' so that the rest of the code recovers as though there were an
4046     // ';' after the definition.
4047     PP.EnterToken(Tok);
4048     Tok.setKind(tok::semi);
4049   }
4050 }
4051 
4052 /// isTypeSpecifierQualifier - Return true if the current token could be the
4053 /// start of a type-qualifier-list.
isTypeQualifier() const4054 bool Parser::isTypeQualifier() const {
4055   switch (Tok.getKind()) {
4056   default: return false;
4057   // type-qualifier
4058   case tok::kw_const:
4059   case tok::kw_volatile:
4060   case tok::kw_restrict:
4061   case tok::kw___private:
4062   case tok::kw___local:
4063   case tok::kw___global:
4064   case tok::kw___constant:
4065   case tok::kw___generic:
4066   case tok::kw___read_only:
4067   case tok::kw___read_write:
4068   case tok::kw___write_only:
4069     return true;
4070   }
4071 }
4072 
4073 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
4074 /// is definitely a type-specifier.  Return false if it isn't part of a type
4075 /// specifier or if we're not sure.
isKnownToBeTypeSpecifier(const Token & Tok) const4076 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
4077   switch (Tok.getKind()) {
4078   default: return false;
4079     // type-specifiers
4080   case tok::kw_short:
4081   case tok::kw_long:
4082   case tok::kw___int64:
4083   case tok::kw___int128:
4084   case tok::kw_signed:
4085   case tok::kw_unsigned:
4086   case tok::kw__Complex:
4087   case tok::kw__Imaginary:
4088   case tok::kw_void:
4089   case tok::kw_char:
4090   case tok::kw_wchar_t:
4091   case tok::kw_char16_t:
4092   case tok::kw_char32_t:
4093   case tok::kw_int:
4094   case tok::kw_half:
4095   case tok::kw_float:
4096   case tok::kw_double:
4097   case tok::kw_bool:
4098   case tok::kw__Bool:
4099   case tok::kw__Decimal32:
4100   case tok::kw__Decimal64:
4101   case tok::kw__Decimal128:
4102   case tok::kw___vector:
4103 
4104     // struct-or-union-specifier (C99) or class-specifier (C++)
4105   case tok::kw_class:
4106   case tok::kw_struct:
4107   case tok::kw___interface:
4108   case tok::kw_union:
4109     // enum-specifier
4110   case tok::kw_enum:
4111 
4112     // typedef-name
4113   case tok::annot_typename:
4114     return true;
4115   }
4116 }
4117 
4118 /// isTypeSpecifierQualifier - Return true if the current token could be the
4119 /// start of a specifier-qualifier-list.
isTypeSpecifierQualifier()4120 bool Parser::isTypeSpecifierQualifier() {
4121   switch (Tok.getKind()) {
4122   default: return false;
4123 
4124   case tok::identifier:   // foo::bar
4125     if (TryAltiVecVectorToken())
4126       return true;
4127     // Fall through.
4128   case tok::kw_typename:  // typename T::type
4129     // Annotate typenames and C++ scope specifiers.  If we get one, just
4130     // recurse to handle whatever we get.
4131     if (TryAnnotateTypeOrScopeToken())
4132       return true;
4133     if (Tok.is(tok::identifier))
4134       return false;
4135     return isTypeSpecifierQualifier();
4136 
4137   case tok::coloncolon:   // ::foo::bar
4138     if (NextToken().is(tok::kw_new) ||    // ::new
4139         NextToken().is(tok::kw_delete))   // ::delete
4140       return false;
4141 
4142     if (TryAnnotateTypeOrScopeToken())
4143       return true;
4144     return isTypeSpecifierQualifier();
4145 
4146     // GNU attributes support.
4147   case tok::kw___attribute:
4148     // GNU typeof support.
4149   case tok::kw_typeof:
4150 
4151     // type-specifiers
4152   case tok::kw_short:
4153   case tok::kw_long:
4154   case tok::kw___int64:
4155   case tok::kw___int128:
4156   case tok::kw_signed:
4157   case tok::kw_unsigned:
4158   case tok::kw__Complex:
4159   case tok::kw__Imaginary:
4160   case tok::kw_void:
4161   case tok::kw_char:
4162   case tok::kw_wchar_t:
4163   case tok::kw_char16_t:
4164   case tok::kw_char32_t:
4165   case tok::kw_int:
4166   case tok::kw_half:
4167   case tok::kw_float:
4168   case tok::kw_double:
4169   case tok::kw_bool:
4170   case tok::kw__Bool:
4171   case tok::kw__Decimal32:
4172   case tok::kw__Decimal64:
4173   case tok::kw__Decimal128:
4174   case tok::kw___vector:
4175 
4176     // struct-or-union-specifier (C99) or class-specifier (C++)
4177   case tok::kw_class:
4178   case tok::kw_struct:
4179   case tok::kw___interface:
4180   case tok::kw_union:
4181     // enum-specifier
4182   case tok::kw_enum:
4183 
4184     // type-qualifier
4185   case tok::kw_const:
4186   case tok::kw_volatile:
4187   case tok::kw_restrict:
4188 
4189     // Debugger support.
4190   case tok::kw___unknown_anytype:
4191 
4192     // typedef-name
4193   case tok::annot_typename:
4194     return true;
4195 
4196     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4197   case tok::less:
4198     return getLangOpts().ObjC1;
4199 
4200   case tok::kw___cdecl:
4201   case tok::kw___stdcall:
4202   case tok::kw___fastcall:
4203   case tok::kw___thiscall:
4204   case tok::kw___vectorcall:
4205   case tok::kw___w64:
4206   case tok::kw___ptr64:
4207   case tok::kw___ptr32:
4208   case tok::kw___pascal:
4209   case tok::kw___unaligned:
4210 
4211   case tok::kw___private:
4212   case tok::kw___local:
4213   case tok::kw___global:
4214   case tok::kw___constant:
4215   case tok::kw___generic:
4216   case tok::kw___read_only:
4217   case tok::kw___read_write:
4218   case tok::kw___write_only:
4219 
4220     return true;
4221 
4222   // C11 _Atomic
4223   case tok::kw__Atomic:
4224     return true;
4225   }
4226 }
4227 
4228 /// isDeclarationSpecifier() - Return true if the current token is part of a
4229 /// declaration specifier.
4230 ///
4231 /// \param DisambiguatingWithExpression True to indicate that the purpose of
4232 /// this check is to disambiguate between an expression and a declaration.
isDeclarationSpecifier(bool DisambiguatingWithExpression)4233 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
4234   switch (Tok.getKind()) {
4235   default: return false;
4236 
4237   case tok::identifier:   // foo::bar
4238     // Unfortunate hack to support "Class.factoryMethod" notation.
4239     if (getLangOpts().ObjC1 && NextToken().is(tok::period))
4240       return false;
4241     if (TryAltiVecVectorToken())
4242       return true;
4243     // Fall through.
4244   case tok::kw_decltype: // decltype(T())::type
4245   case tok::kw_typename: // typename T::type
4246     // Annotate typenames and C++ scope specifiers.  If we get one, just
4247     // recurse to handle whatever we get.
4248     if (TryAnnotateTypeOrScopeToken())
4249       return true;
4250     if (Tok.is(tok::identifier))
4251       return false;
4252 
4253     // If we're in Objective-C and we have an Objective-C class type followed
4254     // by an identifier and then either ':' or ']', in a place where an
4255     // expression is permitted, then this is probably a class message send
4256     // missing the initial '['. In this case, we won't consider this to be
4257     // the start of a declaration.
4258     if (DisambiguatingWithExpression &&
4259         isStartOfObjCClassMessageMissingOpenBracket())
4260       return false;
4261 
4262     return isDeclarationSpecifier();
4263 
4264   case tok::coloncolon:   // ::foo::bar
4265     if (NextToken().is(tok::kw_new) ||    // ::new
4266         NextToken().is(tok::kw_delete))   // ::delete
4267       return false;
4268 
4269     // Annotate typenames and C++ scope specifiers.  If we get one, just
4270     // recurse to handle whatever we get.
4271     if (TryAnnotateTypeOrScopeToken())
4272       return true;
4273     return isDeclarationSpecifier();
4274 
4275     // storage-class-specifier
4276   case tok::kw_typedef:
4277   case tok::kw_extern:
4278   case tok::kw___private_extern__:
4279   case tok::kw_static:
4280   case tok::kw_auto:
4281   case tok::kw_register:
4282   case tok::kw___thread:
4283   case tok::kw_thread_local:
4284   case tok::kw__Thread_local:
4285 
4286     // Modules
4287   case tok::kw___module_private__:
4288 
4289     // Debugger support
4290   case tok::kw___unknown_anytype:
4291 
4292     // type-specifiers
4293   case tok::kw_short:
4294   case tok::kw_long:
4295   case tok::kw___int64:
4296   case tok::kw___int128:
4297   case tok::kw_signed:
4298   case tok::kw_unsigned:
4299   case tok::kw__Complex:
4300   case tok::kw__Imaginary:
4301   case tok::kw_void:
4302   case tok::kw_char:
4303   case tok::kw_wchar_t:
4304   case tok::kw_char16_t:
4305   case tok::kw_char32_t:
4306 
4307   case tok::kw_int:
4308   case tok::kw_half:
4309   case tok::kw_float:
4310   case tok::kw_double:
4311   case tok::kw_bool:
4312   case tok::kw__Bool:
4313   case tok::kw__Decimal32:
4314   case tok::kw__Decimal64:
4315   case tok::kw__Decimal128:
4316   case tok::kw___vector:
4317 
4318     // struct-or-union-specifier (C99) or class-specifier (C++)
4319   case tok::kw_class:
4320   case tok::kw_struct:
4321   case tok::kw_union:
4322   case tok::kw___interface:
4323     // enum-specifier
4324   case tok::kw_enum:
4325 
4326     // type-qualifier
4327   case tok::kw_const:
4328   case tok::kw_volatile:
4329   case tok::kw_restrict:
4330 
4331     // function-specifier
4332   case tok::kw_inline:
4333   case tok::kw_virtual:
4334   case tok::kw_explicit:
4335   case tok::kw__Noreturn:
4336 
4337     // alignment-specifier
4338   case tok::kw__Alignas:
4339 
4340     // friend keyword.
4341   case tok::kw_friend:
4342 
4343     // static_assert-declaration
4344   case tok::kw__Static_assert:
4345 
4346     // GNU typeof support.
4347   case tok::kw_typeof:
4348 
4349     // GNU attributes.
4350   case tok::kw___attribute:
4351 
4352     // C++11 decltype and constexpr.
4353   case tok::annot_decltype:
4354   case tok::kw_constexpr:
4355 
4356     // C11 _Atomic
4357   case tok::kw__Atomic:
4358     return true;
4359 
4360     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
4361   case tok::less:
4362     return getLangOpts().ObjC1;
4363 
4364     // typedef-name
4365   case tok::annot_typename:
4366     return !DisambiguatingWithExpression ||
4367            !isStartOfObjCClassMessageMissingOpenBracket();
4368 
4369   case tok::kw___declspec:
4370   case tok::kw___cdecl:
4371   case tok::kw___stdcall:
4372   case tok::kw___fastcall:
4373   case tok::kw___thiscall:
4374   case tok::kw___vectorcall:
4375   case tok::kw___w64:
4376   case tok::kw___sptr:
4377   case tok::kw___uptr:
4378   case tok::kw___ptr64:
4379   case tok::kw___ptr32:
4380   case tok::kw___forceinline:
4381   case tok::kw___pascal:
4382   case tok::kw___unaligned:
4383 
4384   case tok::kw___private:
4385   case tok::kw___local:
4386   case tok::kw___global:
4387   case tok::kw___constant:
4388   case tok::kw___generic:
4389   case tok::kw___read_only:
4390   case tok::kw___read_write:
4391   case tok::kw___write_only:
4392 
4393     return true;
4394   }
4395 }
4396 
isConstructorDeclarator(bool IsUnqualified)4397 bool Parser::isConstructorDeclarator(bool IsUnqualified) {
4398   TentativeParsingAction TPA(*this);
4399 
4400   // Parse the C++ scope specifier.
4401   CXXScopeSpec SS;
4402   if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(),
4403                                      /*EnteringContext=*/true)) {
4404     TPA.Revert();
4405     return false;
4406   }
4407 
4408   // Parse the constructor name.
4409   if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
4410     // We already know that we have a constructor name; just consume
4411     // the token.
4412     ConsumeToken();
4413   } else {
4414     TPA.Revert();
4415     return false;
4416   }
4417 
4418   // Current class name must be followed by a left parenthesis.
4419   if (Tok.isNot(tok::l_paren)) {
4420     TPA.Revert();
4421     return false;
4422   }
4423   ConsumeParen();
4424 
4425   // A right parenthesis, or ellipsis followed by a right parenthesis signals
4426   // that we have a constructor.
4427   if (Tok.is(tok::r_paren) ||
4428       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
4429     TPA.Revert();
4430     return true;
4431   }
4432 
4433   // A C++11 attribute here signals that we have a constructor, and is an
4434   // attribute on the first constructor parameter.
4435   if (getLangOpts().CPlusPlus11 &&
4436       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
4437                                 /*OuterMightBeMessageSend*/ true)) {
4438     TPA.Revert();
4439     return true;
4440   }
4441 
4442   // If we need to, enter the specified scope.
4443   DeclaratorScopeObj DeclScopeObj(*this, SS);
4444   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
4445     DeclScopeObj.EnterDeclaratorScope();
4446 
4447   // Optionally skip Microsoft attributes.
4448   ParsedAttributes Attrs(AttrFactory);
4449   MaybeParseMicrosoftAttributes(Attrs);
4450 
4451   // Check whether the next token(s) are part of a declaration
4452   // specifier, in which case we have the start of a parameter and,
4453   // therefore, we know that this is a constructor.
4454   bool IsConstructor = false;
4455   if (isDeclarationSpecifier())
4456     IsConstructor = true;
4457   else if (Tok.is(tok::identifier) ||
4458            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
4459     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
4460     // This might be a parenthesized member name, but is more likely to
4461     // be a constructor declaration with an invalid argument type. Keep
4462     // looking.
4463     if (Tok.is(tok::annot_cxxscope))
4464       ConsumeToken();
4465     ConsumeToken();
4466 
4467     // If this is not a constructor, we must be parsing a declarator,
4468     // which must have one of the following syntactic forms (see the
4469     // grammar extract at the start of ParseDirectDeclarator):
4470     switch (Tok.getKind()) {
4471     case tok::l_paren:
4472       // C(X   (   int));
4473     case tok::l_square:
4474       // C(X   [   5]);
4475       // C(X   [   [attribute]]);
4476     case tok::coloncolon:
4477       // C(X   ::   Y);
4478       // C(X   ::   *p);
4479       // Assume this isn't a constructor, rather than assuming it's a
4480       // constructor with an unnamed parameter of an ill-formed type.
4481       break;
4482 
4483     case tok::r_paren:
4484       // C(X   )
4485       if (NextToken().is(tok::colon) || NextToken().is(tok::kw_try)) {
4486         // Assume these were meant to be constructors:
4487         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
4488         //   C(X)   try  (this is otherwise ill-formed).
4489         IsConstructor = true;
4490       }
4491       if (NextToken().is(tok::semi) || NextToken().is(tok::l_brace)) {
4492         // If we have a constructor name within the class definition,
4493         // assume these were meant to be constructors:
4494         //   C(X)   {
4495         //   C(X)   ;
4496         // ... because otherwise we would be declaring a non-static data
4497         // member that is ill-formed because it's of the same type as its
4498         // surrounding class.
4499         //
4500         // FIXME: We can actually do this whether or not the name is qualified,
4501         // because if it is qualified in this context it must be being used as
4502         // a constructor name. However, we do not implement that rule correctly
4503         // currently, so we're somewhat conservative here.
4504         IsConstructor = IsUnqualified;
4505       }
4506       break;
4507 
4508     default:
4509       IsConstructor = true;
4510       break;
4511     }
4512   }
4513 
4514   TPA.Revert();
4515   return IsConstructor;
4516 }
4517 
4518 /// ParseTypeQualifierListOpt
4519 ///          type-qualifier-list: [C99 6.7.5]
4520 ///            type-qualifier
4521 /// [vendor]   attributes
4522 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
4523 ///            type-qualifier-list type-qualifier
4524 /// [vendor]   type-qualifier-list attributes
4525 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
4526 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
4527 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
4528 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
4529 /// AttrRequirements bitmask values.
ParseTypeQualifierListOpt(DeclSpec & DS,unsigned AttrReqs,bool AtomicAllowed,bool IdentifierRequired)4530 void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, unsigned AttrReqs,
4531                                        bool AtomicAllowed,
4532                                        bool IdentifierRequired) {
4533   if (getLangOpts().CPlusPlus11 && (AttrReqs & AR_CXX11AttributesParsed) &&
4534       isCXX11AttributeSpecifier()) {
4535     ParsedAttributesWithRange attrs(AttrFactory);
4536     ParseCXX11Attributes(attrs);
4537     DS.takeAttributesFrom(attrs);
4538   }
4539 
4540   SourceLocation EndLoc;
4541 
4542   while (1) {
4543     bool isInvalid = false;
4544     const char *PrevSpec = nullptr;
4545     unsigned DiagID = 0;
4546     SourceLocation Loc = Tok.getLocation();
4547 
4548     switch (Tok.getKind()) {
4549     case tok::code_completion:
4550       Actions.CodeCompleteTypeQualifiers(DS);
4551       return cutOffParsing();
4552 
4553     case tok::kw_const:
4554       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
4555                                  getLangOpts());
4556       break;
4557     case tok::kw_volatile:
4558       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4559                                  getLangOpts());
4560       break;
4561     case tok::kw_restrict:
4562       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4563                                  getLangOpts());
4564       break;
4565     case tok::kw__Atomic:
4566       if (!AtomicAllowed)
4567         goto DoneWithTypeQuals;
4568       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4569                                  getLangOpts());
4570       break;
4571 
4572     // OpenCL qualifiers:
4573     case tok::kw___private:
4574     case tok::kw___global:
4575     case tok::kw___local:
4576     case tok::kw___constant:
4577     case tok::kw___generic:
4578     case tok::kw___read_only:
4579     case tok::kw___write_only:
4580     case tok::kw___read_write:
4581       ParseOpenCLQualifiers(DS.getAttributes());
4582       break;
4583 
4584     case tok::kw___uptr:
4585       // GNU libc headers in C mode use '__uptr' as an identifer which conflicts
4586       // with the MS modifier keyword.
4587       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
4588           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
4589         if (TryKeywordIdentFallback(false))
4590           continue;
4591       }
4592     case tok::kw___sptr:
4593     case tok::kw___w64:
4594     case tok::kw___ptr64:
4595     case tok::kw___ptr32:
4596     case tok::kw___cdecl:
4597     case tok::kw___stdcall:
4598     case tok::kw___fastcall:
4599     case tok::kw___thiscall:
4600     case tok::kw___vectorcall:
4601     case tok::kw___unaligned:
4602       if (AttrReqs & AR_DeclspecAttributesParsed) {
4603         ParseMicrosoftTypeAttributes(DS.getAttributes());
4604         continue;
4605       }
4606       goto DoneWithTypeQuals;
4607     case tok::kw___pascal:
4608       if (AttrReqs & AR_VendorAttributesParsed) {
4609         ParseBorlandTypeAttributes(DS.getAttributes());
4610         continue;
4611       }
4612       goto DoneWithTypeQuals;
4613     case tok::kw___attribute:
4614       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
4615         // When GNU attributes are expressly forbidden, diagnose their usage.
4616         Diag(Tok, diag::err_attributes_not_allowed);
4617 
4618       // Parse the attributes even if they are rejected to ensure that error
4619       // recovery is graceful.
4620       if (AttrReqs & AR_GNUAttributesParsed ||
4621           AttrReqs & AR_GNUAttributesParsedAndRejected) {
4622         ParseGNUAttributes(DS.getAttributes());
4623         continue; // do *not* consume the next token!
4624       }
4625       // otherwise, FALL THROUGH!
4626     default:
4627       DoneWithTypeQuals:
4628       // If this is not a type-qualifier token, we're done reading type
4629       // qualifiers.  First verify that DeclSpec's are consistent.
4630       DS.Finish(Diags, PP, Actions.getASTContext().getPrintingPolicy());
4631       if (EndLoc.isValid())
4632         DS.SetRangeEnd(EndLoc);
4633       return;
4634     }
4635 
4636     // If the specifier combination wasn't legal, issue a diagnostic.
4637     if (isInvalid) {
4638       assert(PrevSpec && "Method did not return previous specifier!");
4639       Diag(Tok, DiagID) << PrevSpec;
4640     }
4641     EndLoc = ConsumeToken();
4642   }
4643 }
4644 
4645 
4646 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
4647 ///
ParseDeclarator(Declarator & D)4648 void Parser::ParseDeclarator(Declarator &D) {
4649   /// This implements the 'declarator' production in the C grammar, then checks
4650   /// for well-formedness and issues diagnostics.
4651   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
4652 }
4653 
isPtrOperatorToken(tok::TokenKind Kind,const LangOptions & Lang,unsigned TheContext)4654 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
4655                                unsigned TheContext) {
4656   if (Kind == tok::star || Kind == tok::caret)
4657     return true;
4658 
4659   if (!Lang.CPlusPlus)
4660     return false;
4661 
4662   if (Kind == tok::amp)
4663     return true;
4664 
4665   // We parse rvalue refs in C++03, because otherwise the errors are scary.
4666   // But we must not parse them in conversion-type-ids and new-type-ids, since
4667   // those can be legitimately followed by a && operator.
4668   // (The same thing can in theory happen after a trailing-return-type, but
4669   // since those are a C++11 feature, there is no rejects-valid issue there.)
4670   if (Kind == tok::ampamp)
4671     return Lang.CPlusPlus11 || (TheContext != Declarator::ConversionIdContext &&
4672                                 TheContext != Declarator::CXXNewContext);
4673 
4674   return false;
4675 }
4676 
4677 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
4678 /// is parsed by the function passed to it. Pass null, and the direct-declarator
4679 /// isn't parsed at all, making this function effectively parse the C++
4680 /// ptr-operator production.
4681 ///
4682 /// If the grammar of this construct is extended, matching changes must also be
4683 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
4684 /// isConstructorDeclarator.
4685 ///
4686 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
4687 /// [C]     pointer[opt] direct-declarator
4688 /// [C++]   direct-declarator
4689 /// [C++]   ptr-operator declarator
4690 ///
4691 ///       pointer: [C99 6.7.5]
4692 ///         '*' type-qualifier-list[opt]
4693 ///         '*' type-qualifier-list[opt] pointer
4694 ///
4695 ///       ptr-operator:
4696 ///         '*' cv-qualifier-seq[opt]
4697 ///         '&'
4698 /// [C++0x] '&&'
4699 /// [GNU]   '&' restrict[opt] attributes[opt]
4700 /// [GNU?]  '&&' restrict[opt] attributes[opt]
4701 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
ParseDeclaratorInternal(Declarator & D,DirectDeclParseFunction DirectDeclParser)4702 void Parser::ParseDeclaratorInternal(Declarator &D,
4703                                      DirectDeclParseFunction DirectDeclParser) {
4704   if (Diags.hasAllExtensionsSilenced())
4705     D.setExtension();
4706 
4707   // C++ member pointers start with a '::' or a nested-name.
4708   // Member pointers get special handling, since there's no place for the
4709   // scope spec in the generic path below.
4710   if (getLangOpts().CPlusPlus &&
4711       (Tok.is(tok::coloncolon) ||
4712        (Tok.is(tok::identifier) &&
4713         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
4714        Tok.is(tok::annot_cxxscope))) {
4715     bool EnteringContext = D.getContext() == Declarator::FileContext ||
4716                            D.getContext() == Declarator::MemberContext;
4717     CXXScopeSpec SS;
4718     ParseOptionalCXXScopeSpecifier(SS, ParsedType(), EnteringContext);
4719 
4720     if (SS.isNotEmpty()) {
4721       if (Tok.isNot(tok::star)) {
4722         // The scope spec really belongs to the direct-declarator.
4723         if (D.mayHaveIdentifier())
4724           D.getCXXScopeSpec() = SS;
4725         else
4726           AnnotateScopeToken(SS, true);
4727 
4728         if (DirectDeclParser)
4729           (this->*DirectDeclParser)(D);
4730         return;
4731       }
4732 
4733       SourceLocation Loc = ConsumeToken();
4734       D.SetRangeEnd(Loc);
4735       DeclSpec DS(AttrFactory);
4736       ParseTypeQualifierListOpt(DS);
4737       D.ExtendWithDeclSpec(DS);
4738 
4739       // Recurse to parse whatever is left.
4740       ParseDeclaratorInternal(D, DirectDeclParser);
4741 
4742       // Sema will have to catch (syntactically invalid) pointers into global
4743       // scope. It has to catch pointers into namespace scope anyway.
4744       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
4745                                                       DS.getLocEnd()),
4746                     DS.getAttributes(),
4747                     /* Don't replace range end. */SourceLocation());
4748       return;
4749     }
4750   }
4751 
4752   tok::TokenKind Kind = Tok.getKind();
4753   // Not a pointer, C++ reference, or block.
4754   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
4755     if (DirectDeclParser)
4756       (this->*DirectDeclParser)(D);
4757     return;
4758   }
4759 
4760   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
4761   // '&&' -> rvalue reference
4762   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
4763   D.SetRangeEnd(Loc);
4764 
4765   if (Kind == tok::star || Kind == tok::caret) {
4766     // Is a pointer.
4767     DeclSpec DS(AttrFactory);
4768 
4769     // GNU attributes are not allowed here in a new-type-id, but Declspec and
4770     // C++11 attributes are allowed.
4771     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
4772                             ((D.getContext() != Declarator::CXXNewContext)
4773                                  ? AR_GNUAttributesParsed
4774                                  : AR_GNUAttributesParsedAndRejected);
4775     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
4776     D.ExtendWithDeclSpec(DS);
4777 
4778     // Recursively parse the declarator.
4779     ParseDeclaratorInternal(D, DirectDeclParser);
4780     if (Kind == tok::star)
4781       // Remember that we parsed a pointer type, and remember the type-quals.
4782       D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
4783                                                 DS.getConstSpecLoc(),
4784                                                 DS.getVolatileSpecLoc(),
4785                                                 DS.getRestrictSpecLoc(),
4786                                                 DS.getAtomicSpecLoc()),
4787                     DS.getAttributes(),
4788                     SourceLocation());
4789     else
4790       // Remember that we parsed a Block type, and remember the type-quals.
4791       D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
4792                                                      Loc),
4793                     DS.getAttributes(),
4794                     SourceLocation());
4795   } else {
4796     // Is a reference
4797     DeclSpec DS(AttrFactory);
4798 
4799     // Complain about rvalue references in C++03, but then go on and build
4800     // the declarator.
4801     if (Kind == tok::ampamp)
4802       Diag(Loc, getLangOpts().CPlusPlus11 ?
4803            diag::warn_cxx98_compat_rvalue_reference :
4804            diag::ext_rvalue_reference);
4805 
4806     // GNU-style and C++11 attributes are allowed here, as is restrict.
4807     ParseTypeQualifierListOpt(DS);
4808     D.ExtendWithDeclSpec(DS);
4809 
4810     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
4811     // cv-qualifiers are introduced through the use of a typedef or of a
4812     // template type argument, in which case the cv-qualifiers are ignored.
4813     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
4814       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4815         Diag(DS.getConstSpecLoc(),
4816              diag::err_invalid_reference_qualifier_application) << "const";
4817       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4818         Diag(DS.getVolatileSpecLoc(),
4819              diag::err_invalid_reference_qualifier_application) << "volatile";
4820       // 'restrict' is permitted as an extension.
4821       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4822         Diag(DS.getAtomicSpecLoc(),
4823              diag::err_invalid_reference_qualifier_application) << "_Atomic";
4824     }
4825 
4826     // Recursively parse the declarator.
4827     ParseDeclaratorInternal(D, DirectDeclParser);
4828 
4829     if (D.getNumTypeObjects() > 0) {
4830       // C++ [dcl.ref]p4: There shall be no references to references.
4831       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
4832       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
4833         if (const IdentifierInfo *II = D.getIdentifier())
4834           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4835            << II;
4836         else
4837           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
4838             << "type name";
4839 
4840         // Once we've complained about the reference-to-reference, we
4841         // can go ahead and build the (technically ill-formed)
4842         // declarator: reference collapsing will take care of it.
4843       }
4844     }
4845 
4846     // Remember that we parsed a reference type.
4847     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
4848                                                 Kind == tok::amp),
4849                   DS.getAttributes(),
4850                   SourceLocation());
4851   }
4852 }
4853 
4854 // When correcting from misplaced brackets before the identifier, the location
4855 // is saved inside the declarator so that other diagnostic messages can use
4856 // them.  This extracts and returns that location, or returns the provided
4857 // location if a stored location does not exist.
getMissingDeclaratorIdLoc(Declarator & D,SourceLocation Loc)4858 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
4859                                                 SourceLocation Loc) {
4860   if (D.getName().StartLocation.isInvalid() &&
4861       D.getName().EndLocation.isValid())
4862     return D.getName().EndLocation;
4863 
4864   return Loc;
4865 }
4866 
4867 /// ParseDirectDeclarator
4868 ///       direct-declarator: [C99 6.7.5]
4869 /// [C99]   identifier
4870 ///         '(' declarator ')'
4871 /// [GNU]   '(' attributes declarator ')'
4872 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
4873 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
4874 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
4875 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
4876 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
4877 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
4878 ///                    attribute-specifier-seq[opt]
4879 ///         direct-declarator '(' parameter-type-list ')'
4880 ///         direct-declarator '(' identifier-list[opt] ')'
4881 /// [GNU]   direct-declarator '(' parameter-forward-declarations
4882 ///                    parameter-type-list[opt] ')'
4883 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
4884 ///                    cv-qualifier-seq[opt] exception-specification[opt]
4885 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
4886 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
4887 ///                    ref-qualifier[opt] exception-specification[opt]
4888 /// [C++]   declarator-id
4889 /// [C++11] declarator-id attribute-specifier-seq[opt]
4890 ///
4891 ///       declarator-id: [C++ 8]
4892 ///         '...'[opt] id-expression
4893 ///         '::'[opt] nested-name-specifier[opt] type-name
4894 ///
4895 ///       id-expression: [C++ 5.1]
4896 ///         unqualified-id
4897 ///         qualified-id
4898 ///
4899 ///       unqualified-id: [C++ 5.1]
4900 ///         identifier
4901 ///         operator-function-id
4902 ///         conversion-function-id
4903 ///          '~' class-name
4904 ///         template-id
4905 ///
4906 /// Note, any additional constructs added here may need corresponding changes
4907 /// in isConstructorDeclarator.
ParseDirectDeclarator(Declarator & D)4908 void Parser::ParseDirectDeclarator(Declarator &D) {
4909   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
4910 
4911   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
4912     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
4913     // this context it is a bitfield. Also in range-based for statement colon
4914     // may delimit for-range-declaration.
4915     ColonProtectionRAIIObject X(*this,
4916                                 D.getContext() == Declarator::MemberContext ||
4917                                     (D.getContext() == Declarator::ForContext &&
4918                                      getLangOpts().CPlusPlus11));
4919 
4920     // ParseDeclaratorInternal might already have parsed the scope.
4921     if (D.getCXXScopeSpec().isEmpty()) {
4922       bool EnteringContext = D.getContext() == Declarator::FileContext ||
4923                              D.getContext() == Declarator::MemberContext;
4924       ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(),
4925                                      EnteringContext);
4926     }
4927 
4928     if (D.getCXXScopeSpec().isValid()) {
4929       if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
4930                                              D.getCXXScopeSpec()))
4931         // Change the declaration context for name lookup, until this function
4932         // is exited (and the declarator has been parsed).
4933         DeclScopeObj.EnterDeclaratorScope();
4934     }
4935 
4936     // C++0x [dcl.fct]p14:
4937     //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
4938     //   parameter-declaration-clause without a preceding comma. In this case,
4939     //   the ellipsis is parsed as part of the abstract-declarator if the type
4940     //   of the parameter either names a template parameter pack that has not
4941     //   been expanded or contains auto; otherwise, it is parsed as part of the
4942     //   parameter-declaration-clause.
4943     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
4944         !((D.getContext() == Declarator::PrototypeContext ||
4945            D.getContext() == Declarator::LambdaExprParameterContext ||
4946            D.getContext() == Declarator::BlockLiteralContext) &&
4947           NextToken().is(tok::r_paren) &&
4948           !D.hasGroupingParens() &&
4949           !Actions.containsUnexpandedParameterPacks(D) &&
4950           D.getDeclSpec().getTypeSpecType() != TST_auto)) {
4951       SourceLocation EllipsisLoc = ConsumeToken();
4952       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
4953         // The ellipsis was put in the wrong place. Recover, and explain to
4954         // the user what they should have done.
4955         ParseDeclarator(D);
4956         if (EllipsisLoc.isValid())
4957           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
4958         return;
4959       } else
4960         D.setEllipsisLoc(EllipsisLoc);
4961 
4962       // The ellipsis can't be followed by a parenthesized declarator. We
4963       // check for that in ParseParenDeclarator, after we have disambiguated
4964       // the l_paren token.
4965     }
4966 
4967     if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
4968         Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
4969       // We found something that indicates the start of an unqualified-id.
4970       // Parse that unqualified-id.
4971       bool AllowConstructorName;
4972       if (D.getDeclSpec().hasTypeSpecifier())
4973         AllowConstructorName = false;
4974       else if (D.getCXXScopeSpec().isSet())
4975         AllowConstructorName =
4976           (D.getContext() == Declarator::FileContext ||
4977            D.getContext() == Declarator::MemberContext);
4978       else
4979         AllowConstructorName = (D.getContext() == Declarator::MemberContext);
4980 
4981       SourceLocation TemplateKWLoc;
4982       bool HadScope = D.getCXXScopeSpec().isValid();
4983       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
4984                              /*EnteringContext=*/true,
4985                              /*AllowDestructorName=*/true,
4986                              AllowConstructorName,
4987                              ParsedType(),
4988                              TemplateKWLoc,
4989                              D.getName()) ||
4990           // Once we're past the identifier, if the scope was bad, mark the
4991           // whole declarator bad.
4992           D.getCXXScopeSpec().isInvalid()) {
4993         D.SetIdentifier(nullptr, Tok.getLocation());
4994         D.setInvalidType(true);
4995       } else {
4996         // ParseUnqualifiedId might have parsed a scope specifier during error
4997         // recovery. If it did so, enter that scope.
4998         if (!HadScope && D.getCXXScopeSpec().isValid() &&
4999             Actions.ShouldEnterDeclaratorScope(getCurScope(),
5000                                                D.getCXXScopeSpec()))
5001           DeclScopeObj.EnterDeclaratorScope();
5002 
5003         // Parsed the unqualified-id; update range information and move along.
5004         if (D.getSourceRange().getBegin().isInvalid())
5005           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
5006         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
5007       }
5008       goto PastIdentifier;
5009     }
5010   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
5011     assert(!getLangOpts().CPlusPlus &&
5012            "There's a C++-specific check for tok::identifier above");
5013     assert(Tok.getIdentifierInfo() && "Not an identifier?");
5014     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
5015     D.SetRangeEnd(Tok.getLocation());
5016     ConsumeToken();
5017     goto PastIdentifier;
5018   } else if (Tok.is(tok::identifier) && D.diagnoseIdentifier()) {
5019     // A virt-specifier isn't treated as an identifier if it appears after a
5020     // trailing-return-type.
5021     if (D.getContext() != Declarator::TrailingReturnContext ||
5022         !isCXX11VirtSpecifier(Tok)) {
5023       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
5024         << FixItHint::CreateRemoval(Tok.getLocation());
5025       D.SetIdentifier(nullptr, Tok.getLocation());
5026       ConsumeToken();
5027       goto PastIdentifier;
5028     }
5029   }
5030 
5031   if (Tok.is(tok::l_paren)) {
5032     // direct-declarator: '(' declarator ')'
5033     // direct-declarator: '(' attributes declarator ')'
5034     // Example: 'char (*X)'   or 'int (*XX)(void)'
5035     ParseParenDeclarator(D);
5036 
5037     // If the declarator was parenthesized, we entered the declarator
5038     // scope when parsing the parenthesized declarator, then exited
5039     // the scope already. Re-enter the scope, if we need to.
5040     if (D.getCXXScopeSpec().isSet()) {
5041       // If there was an error parsing parenthesized declarator, declarator
5042       // scope may have been entered before. Don't do it again.
5043       if (!D.isInvalidType() &&
5044           Actions.ShouldEnterDeclaratorScope(getCurScope(),
5045                                              D.getCXXScopeSpec()))
5046         // Change the declaration context for name lookup, until this function
5047         // is exited (and the declarator has been parsed).
5048         DeclScopeObj.EnterDeclaratorScope();
5049     }
5050   } else if (D.mayOmitIdentifier()) {
5051     // This could be something simple like "int" (in which case the declarator
5052     // portion is empty), if an abstract-declarator is allowed.
5053     D.SetIdentifier(nullptr, Tok.getLocation());
5054 
5055     // The grammar for abstract-pack-declarator does not allow grouping parens.
5056     // FIXME: Revisit this once core issue 1488 is resolved.
5057     if (D.hasEllipsis() && D.hasGroupingParens())
5058       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
5059            diag::ext_abstract_pack_declarator_parens);
5060   } else {
5061     if (Tok.getKind() == tok::annot_pragma_parser_crash)
5062       LLVM_BUILTIN_TRAP;
5063     if (Tok.is(tok::l_square))
5064       return ParseMisplacedBracketDeclarator(D);
5065     if (D.getContext() == Declarator::MemberContext) {
5066       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5067            diag::err_expected_member_name_or_semi)
5068           << (D.getDeclSpec().isEmpty() ? SourceRange()
5069                                         : D.getDeclSpec().getSourceRange());
5070     } else if (getLangOpts().CPlusPlus) {
5071       if (Tok.is(tok::period) || Tok.is(tok::arrow))
5072         Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
5073       else {
5074         SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
5075         if (Tok.isAtStartOfLine() && Loc.isValid())
5076           Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
5077               << getLangOpts().CPlusPlus;
5078         else
5079           Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5080                diag::err_expected_unqualified_id)
5081               << getLangOpts().CPlusPlus;
5082       }
5083     } else {
5084       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
5085            diag::err_expected_either)
5086           << tok::identifier << tok::l_paren;
5087     }
5088     D.SetIdentifier(nullptr, Tok.getLocation());
5089     D.setInvalidType(true);
5090   }
5091 
5092  PastIdentifier:
5093   assert(D.isPastIdentifier() &&
5094          "Haven't past the location of the identifier yet?");
5095 
5096   // Don't parse attributes unless we have parsed an unparenthesized name.
5097   if (D.hasName() && !D.getNumTypeObjects())
5098     MaybeParseCXX11Attributes(D);
5099 
5100   while (1) {
5101     if (Tok.is(tok::l_paren)) {
5102       // Enter function-declaration scope, limiting any declarators to the
5103       // function prototype scope, including parameter declarators.
5104       ParseScope PrototypeScope(this,
5105                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
5106                                 (D.isFunctionDeclaratorAFunctionDeclaration()
5107                                    ? Scope::FunctionDeclarationScope : 0));
5108 
5109       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
5110       // In such a case, check if we actually have a function declarator; if it
5111       // is not, the declarator has been fully parsed.
5112       bool IsAmbiguous = false;
5113       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
5114         // The name of the declarator, if any, is tentatively declared within
5115         // a possible direct initializer.
5116         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
5117         bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous);
5118         TentativelyDeclaredIdentifiers.pop_back();
5119         if (!IsFunctionDecl)
5120           break;
5121       }
5122       ParsedAttributes attrs(AttrFactory);
5123       BalancedDelimiterTracker T(*this, tok::l_paren);
5124       T.consumeOpen();
5125       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
5126       PrototypeScope.Exit();
5127     } else if (Tok.is(tok::l_square)) {
5128       ParseBracketDeclarator(D);
5129     } else {
5130       break;
5131     }
5132   }
5133 }
5134 
5135 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
5136 /// only called before the identifier, so these are most likely just grouping
5137 /// parens for precedence.  If we find that these are actually function
5138 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
5139 ///
5140 ///       direct-declarator:
5141 ///         '(' declarator ')'
5142 /// [GNU]   '(' attributes declarator ')'
5143 ///         direct-declarator '(' parameter-type-list ')'
5144 ///         direct-declarator '(' identifier-list[opt] ')'
5145 /// [GNU]   direct-declarator '(' parameter-forward-declarations
5146 ///                    parameter-type-list[opt] ')'
5147 ///
ParseParenDeclarator(Declarator & D)5148 void Parser::ParseParenDeclarator(Declarator &D) {
5149   BalancedDelimiterTracker T(*this, tok::l_paren);
5150   T.consumeOpen();
5151 
5152   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
5153 
5154   // Eat any attributes before we look at whether this is a grouping or function
5155   // declarator paren.  If this is a grouping paren, the attribute applies to
5156   // the type being built up, for example:
5157   //     int (__attribute__(()) *x)(long y)
5158   // If this ends up not being a grouping paren, the attribute applies to the
5159   // first argument, for example:
5160   //     int (__attribute__(()) int x)
5161   // In either case, we need to eat any attributes to be able to determine what
5162   // sort of paren this is.
5163   //
5164   ParsedAttributes attrs(AttrFactory);
5165   bool RequiresArg = false;
5166   if (Tok.is(tok::kw___attribute)) {
5167     ParseGNUAttributes(attrs);
5168 
5169     // We require that the argument list (if this is a non-grouping paren) be
5170     // present even if the attribute list was empty.
5171     RequiresArg = true;
5172   }
5173 
5174   // Eat any Microsoft extensions.
5175   ParseMicrosoftTypeAttributes(attrs);
5176 
5177   // Eat any Borland extensions.
5178   if  (Tok.is(tok::kw___pascal))
5179     ParseBorlandTypeAttributes(attrs);
5180 
5181   // If we haven't past the identifier yet (or where the identifier would be
5182   // stored, if this is an abstract declarator), then this is probably just
5183   // grouping parens. However, if this could be an abstract-declarator, then
5184   // this could also be the start of function arguments (consider 'void()').
5185   bool isGrouping;
5186 
5187   if (!D.mayOmitIdentifier()) {
5188     // If this can't be an abstract-declarator, this *must* be a grouping
5189     // paren, because we haven't seen the identifier yet.
5190     isGrouping = true;
5191   } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
5192              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
5193               NextToken().is(tok::r_paren)) || // C++ int(...)
5194              isDeclarationSpecifier() ||       // 'int(int)' is a function.
5195              isCXX11AttributeSpecifier()) {    // 'int([[]]int)' is a function.
5196     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
5197     // considered to be a type, not a K&R identifier-list.
5198     isGrouping = false;
5199   } else {
5200     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
5201     isGrouping = true;
5202   }
5203 
5204   // If this is a grouping paren, handle:
5205   // direct-declarator: '(' declarator ')'
5206   // direct-declarator: '(' attributes declarator ')'
5207   if (isGrouping) {
5208     SourceLocation EllipsisLoc = D.getEllipsisLoc();
5209     D.setEllipsisLoc(SourceLocation());
5210 
5211     bool hadGroupingParens = D.hasGroupingParens();
5212     D.setGroupingParens(true);
5213     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5214     // Match the ')'.
5215     T.consumeClose();
5216     D.AddTypeInfo(DeclaratorChunk::getParen(T.getOpenLocation(),
5217                                             T.getCloseLocation()),
5218                   attrs, T.getCloseLocation());
5219 
5220     D.setGroupingParens(hadGroupingParens);
5221 
5222     // An ellipsis cannot be placed outside parentheses.
5223     if (EllipsisLoc.isValid())
5224       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
5225 
5226     return;
5227   }
5228 
5229   // Okay, if this wasn't a grouping paren, it must be the start of a function
5230   // argument list.  Recognize that this declarator will never have an
5231   // identifier (and remember where it would have been), then call into
5232   // ParseFunctionDeclarator to handle of argument list.
5233   D.SetIdentifier(nullptr, Tok.getLocation());
5234 
5235   // Enter function-declaration scope, limiting any declarators to the
5236   // function prototype scope, including parameter declarators.
5237   ParseScope PrototypeScope(this,
5238                             Scope::FunctionPrototypeScope | Scope::DeclScope |
5239                             (D.isFunctionDeclaratorAFunctionDeclaration()
5240                                ? Scope::FunctionDeclarationScope : 0));
5241   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
5242   PrototypeScope.Exit();
5243 }
5244 
5245 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
5246 /// declarator D up to a paren, which indicates that we are parsing function
5247 /// arguments.
5248 ///
5249 /// If FirstArgAttrs is non-null, then the caller parsed those arguments
5250 /// immediately after the open paren - they should be considered to be the
5251 /// first argument of a parameter.
5252 ///
5253 /// If RequiresArg is true, then the first argument of the function is required
5254 /// to be present and required to not be an identifier list.
5255 ///
5256 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
5257 /// (C++11) ref-qualifier[opt], exception-specification[opt],
5258 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt].
5259 ///
5260 /// [C++11] exception-specification:
5261 ///           dynamic-exception-specification
5262 ///           noexcept-specification
5263 ///
ParseFunctionDeclarator(Declarator & D,ParsedAttributes & FirstArgAttrs,BalancedDelimiterTracker & Tracker,bool IsAmbiguous,bool RequiresArg)5264 void Parser::ParseFunctionDeclarator(Declarator &D,
5265                                      ParsedAttributes &FirstArgAttrs,
5266                                      BalancedDelimiterTracker &Tracker,
5267                                      bool IsAmbiguous,
5268                                      bool RequiresArg) {
5269   assert(getCurScope()->isFunctionPrototypeScope() &&
5270          "Should call from a Function scope");
5271   // lparen is already consumed!
5272   assert(D.isPastIdentifier() && "Should not call before identifier!");
5273 
5274   // This should be true when the function has typed arguments.
5275   // Otherwise, it is treated as a K&R-style function.
5276   bool HasProto = false;
5277   // Build up an array of information about the parsed arguments.
5278   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
5279   // Remember where we see an ellipsis, if any.
5280   SourceLocation EllipsisLoc;
5281 
5282   DeclSpec DS(AttrFactory);
5283   bool RefQualifierIsLValueRef = true;
5284   SourceLocation RefQualifierLoc;
5285   SourceLocation ConstQualifierLoc;
5286   SourceLocation VolatileQualifierLoc;
5287   SourceLocation RestrictQualifierLoc;
5288   ExceptionSpecificationType ESpecType = EST_None;
5289   SourceRange ESpecRange;
5290   SmallVector<ParsedType, 2> DynamicExceptions;
5291   SmallVector<SourceRange, 2> DynamicExceptionRanges;
5292   ExprResult NoexceptExpr;
5293   CachedTokens *ExceptionSpecTokens = 0;
5294   ParsedAttributes FnAttrs(AttrFactory);
5295   TypeResult TrailingReturnType;
5296 
5297   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
5298      EndLoc is the end location for the function declarator.
5299      They differ for trailing return types. */
5300   SourceLocation StartLoc, LocalEndLoc, EndLoc;
5301   SourceLocation LParenLoc, RParenLoc;
5302   LParenLoc = Tracker.getOpenLocation();
5303   StartLoc = LParenLoc;
5304 
5305   if (isFunctionDeclaratorIdentifierList()) {
5306     if (RequiresArg)
5307       Diag(Tok, diag::err_argument_required_after_attribute);
5308 
5309     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
5310 
5311     Tracker.consumeClose();
5312     RParenLoc = Tracker.getCloseLocation();
5313     LocalEndLoc = RParenLoc;
5314     EndLoc = RParenLoc;
5315   } else {
5316     if (Tok.isNot(tok::r_paren))
5317       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo,
5318                                       EllipsisLoc);
5319     else if (RequiresArg)
5320       Diag(Tok, diag::err_argument_required_after_attribute);
5321 
5322     HasProto = ParamInfo.size() || getLangOpts().CPlusPlus;
5323 
5324     // If we have the closing ')', eat it.
5325     Tracker.consumeClose();
5326     RParenLoc = Tracker.getCloseLocation();
5327     LocalEndLoc = RParenLoc;
5328     EndLoc = RParenLoc;
5329 
5330     if (getLangOpts().CPlusPlus) {
5331       // FIXME: Accept these components in any order, and produce fixits to
5332       // correct the order if the user gets it wrong. Ideally we should deal
5333       // with the pure-specifier in the same way.
5334 
5335       // Parse cv-qualifier-seq[opt].
5336       ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
5337                                 /*AtomicAllowed*/ false);
5338       if (!DS.getSourceRange().getEnd().isInvalid()) {
5339         EndLoc = DS.getSourceRange().getEnd();
5340         ConstQualifierLoc = DS.getConstSpecLoc();
5341         VolatileQualifierLoc = DS.getVolatileSpecLoc();
5342         RestrictQualifierLoc = DS.getRestrictSpecLoc();
5343       }
5344 
5345       // Parse ref-qualifier[opt].
5346       if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
5347         EndLoc = RefQualifierLoc;
5348 
5349       // C++11 [expr.prim.general]p3:
5350       //   If a declaration declares a member function or member function
5351       //   template of a class X, the expression this is a prvalue of type
5352       //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
5353       //   and the end of the function-definition, member-declarator, or
5354       //   declarator.
5355       // FIXME: currently, "static" case isn't handled correctly.
5356       bool IsCXX11MemberFunction =
5357         getLangOpts().CPlusPlus11 &&
5358         D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5359         (D.getContext() == Declarator::MemberContext
5360          ? !D.getDeclSpec().isFriendSpecified()
5361          : D.getContext() == Declarator::FileContext &&
5362            D.getCXXScopeSpec().isValid() &&
5363            Actions.CurContext->isRecord());
5364       Sema::CXXThisScopeRAII ThisScope(Actions,
5365                                dyn_cast<CXXRecordDecl>(Actions.CurContext),
5366                                DS.getTypeQualifiers() |
5367                                (D.getDeclSpec().isConstexprSpecified() &&
5368                                 !getLangOpts().CPlusPlus14
5369                                   ? Qualifiers::Const : 0),
5370                                IsCXX11MemberFunction);
5371 
5372       // Parse exception-specification[opt].
5373       bool Delayed = D.isFirstDeclarationOfMember() &&
5374                      D.isFunctionDeclaratorAFunctionDeclaration();
5375       if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
5376           GetLookAheadToken(0).is(tok::kw_noexcept) &&
5377           GetLookAheadToken(1).is(tok::l_paren) &&
5378           GetLookAheadToken(2).is(tok::kw_noexcept) &&
5379           GetLookAheadToken(3).is(tok::l_paren) &&
5380           GetLookAheadToken(4).is(tok::identifier) &&
5381           GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
5382         // HACK: We've got an exception-specification
5383         //   noexcept(noexcept(swap(...)))
5384         // or
5385         //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
5386         // on a 'swap' member function. This is a libstdc++ bug; the lookup
5387         // for 'swap' will only find the function we're currently declaring,
5388         // whereas it expects to find a non-member swap through ADL. Turn off
5389         // delayed parsing to give it a chance to find what it expects.
5390         Delayed = false;
5391       }
5392       ESpecType = tryParseExceptionSpecification(Delayed,
5393                                                  ESpecRange,
5394                                                  DynamicExceptions,
5395                                                  DynamicExceptionRanges,
5396                                                  NoexceptExpr,
5397                                                  ExceptionSpecTokens);
5398       if (ESpecType != EST_None)
5399         EndLoc = ESpecRange.getEnd();
5400 
5401       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
5402       // after the exception-specification.
5403       MaybeParseCXX11Attributes(FnAttrs);
5404 
5405       // Parse trailing-return-type[opt].
5406       LocalEndLoc = EndLoc;
5407       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
5408         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
5409         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
5410           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5411         LocalEndLoc = Tok.getLocation();
5412         SourceRange Range;
5413         TrailingReturnType = ParseTrailingReturnType(Range);
5414         EndLoc = Range.getEnd();
5415       }
5416     }
5417   }
5418 
5419   // Remember that we parsed a function type, and remember the attributes.
5420   D.AddTypeInfo(DeclaratorChunk::getFunction(HasProto,
5421                                              IsAmbiguous,
5422                                              LParenLoc,
5423                                              ParamInfo.data(), ParamInfo.size(),
5424                                              EllipsisLoc, RParenLoc,
5425                                              DS.getTypeQualifiers(),
5426                                              RefQualifierIsLValueRef,
5427                                              RefQualifierLoc, ConstQualifierLoc,
5428                                              VolatileQualifierLoc,
5429                                              RestrictQualifierLoc,
5430                                              /*MutableLoc=*/SourceLocation(),
5431                                              ESpecType, ESpecRange.getBegin(),
5432                                              DynamicExceptions.data(),
5433                                              DynamicExceptionRanges.data(),
5434                                              DynamicExceptions.size(),
5435                                              NoexceptExpr.isUsable() ?
5436                                                NoexceptExpr.get() : nullptr,
5437                                              ExceptionSpecTokens,
5438                                              StartLoc, LocalEndLoc, D,
5439                                              TrailingReturnType),
5440                 FnAttrs, EndLoc);
5441 }
5442 
5443 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
5444 /// true if a ref-qualifier is found.
ParseRefQualifier(bool & RefQualifierIsLValueRef,SourceLocation & RefQualifierLoc)5445 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
5446                                SourceLocation &RefQualifierLoc) {
5447   if (Tok.is(tok::amp) || Tok.is(tok::ampamp)) {
5448     Diag(Tok, getLangOpts().CPlusPlus11 ?
5449          diag::warn_cxx98_compat_ref_qualifier :
5450          diag::ext_ref_qualifier);
5451 
5452     RefQualifierIsLValueRef = Tok.is(tok::amp);
5453     RefQualifierLoc = ConsumeToken();
5454     return true;
5455   }
5456   return false;
5457 }
5458 
5459 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
5460 /// identifier list form for a K&R-style function:  void foo(a,b,c)
5461 ///
5462 /// Note that identifier-lists are only allowed for normal declarators, not for
5463 /// abstract-declarators.
isFunctionDeclaratorIdentifierList()5464 bool Parser::isFunctionDeclaratorIdentifierList() {
5465   return !getLangOpts().CPlusPlus
5466          && Tok.is(tok::identifier)
5467          && !TryAltiVecVectorToken()
5468          // K&R identifier lists can't have typedefs as identifiers, per C99
5469          // 6.7.5.3p11.
5470          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
5471          // Identifier lists follow a really simple grammar: the identifiers can
5472          // be followed *only* by a ", identifier" or ")".  However, K&R
5473          // identifier lists are really rare in the brave new modern world, and
5474          // it is very common for someone to typo a type in a non-K&R style
5475          // list.  If we are presented with something like: "void foo(intptr x,
5476          // float y)", we don't want to start parsing the function declarator as
5477          // though it is a K&R style declarator just because intptr is an
5478          // invalid type.
5479          //
5480          // To handle this, we check to see if the token after the first
5481          // identifier is a "," or ")".  Only then do we parse it as an
5482          // identifier list.
5483          && (NextToken().is(tok::comma) || NextToken().is(tok::r_paren));
5484 }
5485 
5486 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
5487 /// we found a K&R-style identifier list instead of a typed parameter list.
5488 ///
5489 /// After returning, ParamInfo will hold the parsed parameters.
5490 ///
5491 ///       identifier-list: [C99 6.7.5]
5492 ///         identifier
5493 ///         identifier-list ',' identifier
5494 ///
ParseFunctionDeclaratorIdentifierList(Declarator & D,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo)5495 void Parser::ParseFunctionDeclaratorIdentifierList(
5496        Declarator &D,
5497        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
5498   // If there was no identifier specified for the declarator, either we are in
5499   // an abstract-declarator, or we are in a parameter declarator which was found
5500   // to be abstract.  In abstract-declarators, identifier lists are not valid:
5501   // diagnose this.
5502   if (!D.getIdentifier())
5503     Diag(Tok, diag::ext_ident_list_in_param);
5504 
5505   // Maintain an efficient lookup of params we have seen so far.
5506   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
5507 
5508   do {
5509     // If this isn't an identifier, report the error and skip until ')'.
5510     if (Tok.isNot(tok::identifier)) {
5511       Diag(Tok, diag::err_expected) << tok::identifier;
5512       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
5513       // Forget we parsed anything.
5514       ParamInfo.clear();
5515       return;
5516     }
5517 
5518     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
5519 
5520     // Reject 'typedef int y; int test(x, y)', but continue parsing.
5521     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
5522       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
5523 
5524     // Verify that the argument identifier has not already been mentioned.
5525     if (!ParamsSoFar.insert(ParmII).second) {
5526       Diag(Tok, diag::err_param_redefinition) << ParmII;
5527     } else {
5528       // Remember this identifier in ParamInfo.
5529       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5530                                                      Tok.getLocation(),
5531                                                      nullptr));
5532     }
5533 
5534     // Eat the identifier.
5535     ConsumeToken();
5536     // The list continues if we see a comma.
5537   } while (TryConsumeToken(tok::comma));
5538 }
5539 
5540 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
5541 /// after the opening parenthesis. This function will not parse a K&R-style
5542 /// identifier list.
5543 ///
5544 /// D is the declarator being parsed.  If FirstArgAttrs is non-null, then the
5545 /// caller parsed those arguments immediately after the open paren - they should
5546 /// be considered to be part of the first parameter.
5547 ///
5548 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
5549 /// be the location of the ellipsis, if any was parsed.
5550 ///
5551 ///       parameter-type-list: [C99 6.7.5]
5552 ///         parameter-list
5553 ///         parameter-list ',' '...'
5554 /// [C++]   parameter-list '...'
5555 ///
5556 ///       parameter-list: [C99 6.7.5]
5557 ///         parameter-declaration
5558 ///         parameter-list ',' parameter-declaration
5559 ///
5560 ///       parameter-declaration: [C99 6.7.5]
5561 ///         declaration-specifiers declarator
5562 /// [C++]   declaration-specifiers declarator '=' assignment-expression
5563 /// [C++11]                                       initializer-clause
5564 /// [GNU]   declaration-specifiers declarator attributes
5565 ///         declaration-specifiers abstract-declarator[opt]
5566 /// [C++]   declaration-specifiers abstract-declarator[opt]
5567 ///           '=' assignment-expression
5568 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
5569 /// [C++11] attribute-specifier-seq parameter-declaration
5570 ///
ParseParameterDeclarationClause(Declarator & D,ParsedAttributes & FirstArgAttrs,SmallVectorImpl<DeclaratorChunk::ParamInfo> & ParamInfo,SourceLocation & EllipsisLoc)5571 void Parser::ParseParameterDeclarationClause(
5572        Declarator &D,
5573        ParsedAttributes &FirstArgAttrs,
5574        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
5575        SourceLocation &EllipsisLoc) {
5576   do {
5577     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
5578     // before deciding this was a parameter-declaration-clause.
5579     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
5580       break;
5581 
5582     // Parse the declaration-specifiers.
5583     // Just use the ParsingDeclaration "scope" of the declarator.
5584     DeclSpec DS(AttrFactory);
5585 
5586     // Parse any C++11 attributes.
5587     MaybeParseCXX11Attributes(DS.getAttributes());
5588 
5589     // Skip any Microsoft attributes before a param.
5590     MaybeParseMicrosoftAttributes(DS.getAttributes());
5591 
5592     SourceLocation DSStart = Tok.getLocation();
5593 
5594     // If the caller parsed attributes for the first argument, add them now.
5595     // Take them so that we only apply the attributes to the first parameter.
5596     // FIXME: If we can leave the attributes in the token stream somehow, we can
5597     // get rid of a parameter (FirstArgAttrs) and this statement. It might be
5598     // too much hassle.
5599     DS.takeAttributesFrom(FirstArgAttrs);
5600 
5601     ParseDeclarationSpecifiers(DS);
5602 
5603 
5604     // Parse the declarator.  This is "PrototypeContext" or
5605     // "LambdaExprParameterContext", because we must accept either
5606     // 'declarator' or 'abstract-declarator' here.
5607     Declarator ParmDeclarator(DS,
5608               D.getContext() == Declarator::LambdaExprContext ?
5609                                   Declarator::LambdaExprParameterContext :
5610                                                 Declarator::PrototypeContext);
5611     ParseDeclarator(ParmDeclarator);
5612 
5613     // Parse GNU attributes, if present.
5614     MaybeParseGNUAttributes(ParmDeclarator);
5615 
5616     // Remember this parsed parameter in ParamInfo.
5617     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
5618 
5619     // DefArgToks is used when the parsing of default arguments needs
5620     // to be delayed.
5621     CachedTokens *DefArgToks = nullptr;
5622 
5623     // If no parameter was specified, verify that *something* was specified,
5624     // otherwise we have a missing type and identifier.
5625     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
5626         ParmDeclarator.getNumTypeObjects() == 0) {
5627       // Completely missing, emit error.
5628       Diag(DSStart, diag::err_missing_param);
5629     } else {
5630       // Otherwise, we have something.  Add it and let semantic analysis try
5631       // to grok it and add the result to the ParamInfo we are building.
5632 
5633       // Last chance to recover from a misplaced ellipsis in an attempted
5634       // parameter pack declaration.
5635       if (Tok.is(tok::ellipsis) &&
5636           (NextToken().isNot(tok::r_paren) ||
5637            (!ParmDeclarator.getEllipsisLoc().isValid() &&
5638             !Actions.isUnexpandedParameterPackPermitted())) &&
5639           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
5640         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
5641 
5642       // Inform the actions module about the parameter declarator, so it gets
5643       // added to the current scope.
5644       Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator);
5645       // Parse the default argument, if any. We parse the default
5646       // arguments in all dialects; the semantic analysis in
5647       // ActOnParamDefaultArgument will reject the default argument in
5648       // C.
5649       if (Tok.is(tok::equal)) {
5650         SourceLocation EqualLoc = Tok.getLocation();
5651 
5652         // Parse the default argument
5653         if (D.getContext() == Declarator::MemberContext) {
5654           // If we're inside a class definition, cache the tokens
5655           // corresponding to the default argument. We'll actually parse
5656           // them when we see the end of the class definition.
5657           // FIXME: Can we use a smart pointer for Toks?
5658           DefArgToks = new CachedTokens;
5659 
5660           SourceLocation ArgStartLoc = NextToken().getLocation();
5661           if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) {
5662             delete DefArgToks;
5663             DefArgToks = nullptr;
5664             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5665           } else {
5666             Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
5667                                                       ArgStartLoc);
5668           }
5669         } else {
5670           // Consume the '='.
5671           ConsumeToken();
5672 
5673           // The argument isn't actually potentially evaluated unless it is
5674           // used.
5675           EnterExpressionEvaluationContext Eval(Actions,
5676                                               Sema::PotentiallyEvaluatedIfUsed,
5677                                                 Param);
5678 
5679           ExprResult DefArgResult;
5680           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
5681             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
5682             DefArgResult = ParseBraceInitializer();
5683           } else
5684             DefArgResult = ParseAssignmentExpression();
5685           DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
5686           if (DefArgResult.isInvalid()) {
5687             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc);
5688             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
5689           } else {
5690             // Inform the actions module about the default argument
5691             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
5692                                               DefArgResult.get());
5693           }
5694         }
5695       }
5696 
5697       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
5698                                           ParmDeclarator.getIdentifierLoc(),
5699                                           Param, DefArgToks));
5700     }
5701 
5702     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
5703       if (!getLangOpts().CPlusPlus) {
5704         // We have ellipsis without a preceding ',', which is ill-formed
5705         // in C. Complain and provide the fix.
5706         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
5707             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5708       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
5709                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
5710         // It looks like this was supposed to be a parameter pack. Warn and
5711         // point out where the ellipsis should have gone.
5712         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
5713         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
5714           << ParmEllipsis.isValid() << ParmEllipsis;
5715         if (ParmEllipsis.isValid()) {
5716           Diag(ParmEllipsis,
5717                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
5718         } else {
5719           Diag(ParmDeclarator.getIdentifierLoc(),
5720                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
5721             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
5722                                           "...")
5723             << !ParmDeclarator.hasName();
5724         }
5725         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
5726           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
5727       }
5728 
5729       // We can't have any more parameters after an ellipsis.
5730       break;
5731     }
5732 
5733     // If the next token is a comma, consume it and keep reading arguments.
5734   } while (TryConsumeToken(tok::comma));
5735 }
5736 
5737 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
5738 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
5739 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
5740 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
5741 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
5742 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
5743 ///                           attribute-specifier-seq[opt]
ParseBracketDeclarator(Declarator & D)5744 void Parser::ParseBracketDeclarator(Declarator &D) {
5745   if (CheckProhibitedCXX11Attribute())
5746     return;
5747 
5748   BalancedDelimiterTracker T(*this, tok::l_square);
5749   T.consumeOpen();
5750 
5751   // C array syntax has many features, but by-far the most common is [] and [4].
5752   // This code does a fast path to handle some of the most obvious cases.
5753   if (Tok.getKind() == tok::r_square) {
5754     T.consumeClose();
5755     ParsedAttributes attrs(AttrFactory);
5756     MaybeParseCXX11Attributes(attrs);
5757 
5758     // Remember that we parsed the empty array type.
5759     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
5760                                             T.getOpenLocation(),
5761                                             T.getCloseLocation()),
5762                   attrs, T.getCloseLocation());
5763     return;
5764   } else if (Tok.getKind() == tok::numeric_constant &&
5765              GetLookAheadToken(1).is(tok::r_square)) {
5766     // [4] is very common.  Parse the numeric constant expression.
5767     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
5768     ConsumeToken();
5769 
5770     T.consumeClose();
5771     ParsedAttributes attrs(AttrFactory);
5772     MaybeParseCXX11Attributes(attrs);
5773 
5774     // Remember that we parsed a array type, and remember its features.
5775     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false,
5776                                             ExprRes.get(),
5777                                             T.getOpenLocation(),
5778                                             T.getCloseLocation()),
5779                   attrs, T.getCloseLocation());
5780     return;
5781   }
5782 
5783   // If valid, this location is the position where we read the 'static' keyword.
5784   SourceLocation StaticLoc;
5785   TryConsumeToken(tok::kw_static, StaticLoc);
5786 
5787   // If there is a type-qualifier-list, read it now.
5788   // Type qualifiers in an array subscript are a C99 feature.
5789   DeclSpec DS(AttrFactory);
5790   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
5791 
5792   // If we haven't already read 'static', check to see if there is one after the
5793   // type-qualifier-list.
5794   if (!StaticLoc.isValid())
5795     TryConsumeToken(tok::kw_static, StaticLoc);
5796 
5797   // Handle "direct-declarator [ type-qual-list[opt] * ]".
5798   bool isStar = false;
5799   ExprResult NumElements;
5800 
5801   // Handle the case where we have '[*]' as the array size.  However, a leading
5802   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
5803   // the token after the star is a ']'.  Since stars in arrays are
5804   // infrequent, use of lookahead is not costly here.
5805   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
5806     ConsumeToken();  // Eat the '*'.
5807 
5808     if (StaticLoc.isValid()) {
5809       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
5810       StaticLoc = SourceLocation();  // Drop the static.
5811     }
5812     isStar = true;
5813   } else if (Tok.isNot(tok::r_square)) {
5814     // Note, in C89, this production uses the constant-expr production instead
5815     // of assignment-expr.  The only difference is that assignment-expr allows
5816     // things like '=' and '*='.  Sema rejects these in C89 mode because they
5817     // are not i-c-e's, so we don't need to distinguish between the two here.
5818 
5819     // Parse the constant-expression or assignment-expression now (depending
5820     // on dialect).
5821     if (getLangOpts().CPlusPlus) {
5822       NumElements = ParseConstantExpression();
5823     } else {
5824       EnterExpressionEvaluationContext Unevaluated(Actions,
5825                                                    Sema::ConstantEvaluated);
5826       NumElements =
5827           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
5828     }
5829   } else {
5830     if (StaticLoc.isValid()) {
5831       Diag(StaticLoc, diag::err_unspecified_size_with_static);
5832       StaticLoc = SourceLocation();  // Drop the static.
5833     }
5834   }
5835 
5836   // If there was an error parsing the assignment-expression, recover.
5837   if (NumElements.isInvalid()) {
5838     D.setInvalidType(true);
5839     // If the expression was invalid, skip it.
5840     SkipUntil(tok::r_square, StopAtSemi);
5841     return;
5842   }
5843 
5844   T.consumeClose();
5845 
5846   ParsedAttributes attrs(AttrFactory);
5847   MaybeParseCXX11Attributes(attrs);
5848 
5849   // Remember that we parsed a array type, and remember its features.
5850   D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
5851                                           StaticLoc.isValid(), isStar,
5852                                           NumElements.get(),
5853                                           T.getOpenLocation(),
5854                                           T.getCloseLocation()),
5855                 attrs, T.getCloseLocation());
5856 }
5857 
5858 /// Diagnose brackets before an identifier.
ParseMisplacedBracketDeclarator(Declarator & D)5859 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
5860   assert(Tok.is(tok::l_square) && "Missing opening bracket");
5861   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
5862 
5863   SourceLocation StartBracketLoc = Tok.getLocation();
5864   Declarator TempDeclarator(D.getDeclSpec(), D.getContext());
5865 
5866   while (Tok.is(tok::l_square)) {
5867     ParseBracketDeclarator(TempDeclarator);
5868   }
5869 
5870   // Stuff the location of the start of the brackets into the Declarator.
5871   // The diagnostics from ParseDirectDeclarator will make more sense if
5872   // they use this location instead.
5873   if (Tok.is(tok::semi))
5874     D.getName().EndLocation = StartBracketLoc;
5875 
5876   SourceLocation SuggestParenLoc = Tok.getLocation();
5877 
5878   // Now that the brackets are removed, try parsing the declarator again.
5879   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
5880 
5881   // Something went wrong parsing the brackets, in which case,
5882   // ParseBracketDeclarator has emitted an error, and we don't need to emit
5883   // one here.
5884   if (TempDeclarator.getNumTypeObjects() == 0)
5885     return;
5886 
5887   // Determine if parens will need to be suggested in the diagnostic.
5888   bool NeedParens = false;
5889   if (D.getNumTypeObjects() != 0) {
5890     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
5891     case DeclaratorChunk::Pointer:
5892     case DeclaratorChunk::Reference:
5893     case DeclaratorChunk::BlockPointer:
5894     case DeclaratorChunk::MemberPointer:
5895       NeedParens = true;
5896       break;
5897     case DeclaratorChunk::Array:
5898     case DeclaratorChunk::Function:
5899     case DeclaratorChunk::Paren:
5900       break;
5901     }
5902   }
5903 
5904   if (NeedParens) {
5905     // Create a DeclaratorChunk for the inserted parens.
5906     ParsedAttributes attrs(AttrFactory);
5907     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5908     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), attrs,
5909                   SourceLocation());
5910   }
5911 
5912   // Adding back the bracket info to the end of the Declarator.
5913   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
5914     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
5915     ParsedAttributes attrs(AttrFactory);
5916     attrs.set(Chunk.Common.AttrList);
5917     D.AddTypeInfo(Chunk, attrs, SourceLocation());
5918   }
5919 
5920   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
5921   // If parentheses are required, always suggest them.
5922   if (!D.getIdentifier() && !NeedParens)
5923     return;
5924 
5925   SourceLocation EndBracketLoc = TempDeclarator.getLocEnd();
5926 
5927   // Generate the move bracket error message.
5928   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
5929   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getLocEnd());
5930 
5931   if (NeedParens) {
5932     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5933         << getLangOpts().CPlusPlus
5934         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
5935         << FixItHint::CreateInsertion(EndLoc, ")")
5936         << FixItHint::CreateInsertionFromRange(
5937                EndLoc, CharSourceRange(BracketRange, true))
5938         << FixItHint::CreateRemoval(BracketRange);
5939   } else {
5940     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
5941         << getLangOpts().CPlusPlus
5942         << FixItHint::CreateInsertionFromRange(
5943                EndLoc, CharSourceRange(BracketRange, true))
5944         << FixItHint::CreateRemoval(BracketRange);
5945   }
5946 }
5947 
5948 /// [GNU]   typeof-specifier:
5949 ///           typeof ( expressions )
5950 ///           typeof ( type-name )
5951 /// [GNU/C++] typeof unary-expression
5952 ///
ParseTypeofSpecifier(DeclSpec & DS)5953 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
5954   assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
5955   Token OpTok = Tok;
5956   SourceLocation StartLoc = ConsumeToken();
5957 
5958   const bool hasParens = Tok.is(tok::l_paren);
5959 
5960   EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
5961                                                Sema::ReuseLambdaContextDecl);
5962 
5963   bool isCastExpr;
5964   ParsedType CastTy;
5965   SourceRange CastRange;
5966   ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
5967       ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
5968   if (hasParens)
5969     DS.setTypeofParensRange(CastRange);
5970 
5971   if (CastRange.getEnd().isInvalid())
5972     // FIXME: Not accurate, the range gets one token more than it should.
5973     DS.SetRangeEnd(Tok.getLocation());
5974   else
5975     DS.SetRangeEnd(CastRange.getEnd());
5976 
5977   if (isCastExpr) {
5978     if (!CastTy) {
5979       DS.SetTypeSpecError();
5980       return;
5981     }
5982 
5983     const char *PrevSpec = nullptr;
5984     unsigned DiagID;
5985     // Check for duplicate type specifiers (e.g. "int typeof(int)").
5986     if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
5987                            DiagID, CastTy,
5988                            Actions.getASTContext().getPrintingPolicy()))
5989       Diag(StartLoc, DiagID) << PrevSpec;
5990     return;
5991   }
5992 
5993   // If we get here, the operand to the typeof was an expresion.
5994   if (Operand.isInvalid()) {
5995     DS.SetTypeSpecError();
5996     return;
5997   }
5998 
5999   // We might need to transform the operand if it is potentially evaluated.
6000   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
6001   if (Operand.isInvalid()) {
6002     DS.SetTypeSpecError();
6003     return;
6004   }
6005 
6006   const char *PrevSpec = nullptr;
6007   unsigned DiagID;
6008   // Check for duplicate type specifiers (e.g. "int typeof(int)").
6009   if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
6010                          DiagID, Operand.get(),
6011                          Actions.getASTContext().getPrintingPolicy()))
6012     Diag(StartLoc, DiagID) << PrevSpec;
6013 }
6014 
6015 /// [C11]   atomic-specifier:
6016 ///           _Atomic ( type-name )
6017 ///
ParseAtomicSpecifier(DeclSpec & DS)6018 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
6019   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
6020          "Not an atomic specifier");
6021 
6022   SourceLocation StartLoc = ConsumeToken();
6023   BalancedDelimiterTracker T(*this, tok::l_paren);
6024   if (T.consumeOpen())
6025     return;
6026 
6027   TypeResult Result = ParseTypeName();
6028   if (Result.isInvalid()) {
6029     SkipUntil(tok::r_paren, StopAtSemi);
6030     return;
6031   }
6032 
6033   // Match the ')'
6034   T.consumeClose();
6035 
6036   if (T.getCloseLocation().isInvalid())
6037     return;
6038 
6039   DS.setTypeofParensRange(T.getRange());
6040   DS.SetRangeEnd(T.getCloseLocation());
6041 
6042   const char *PrevSpec = nullptr;
6043   unsigned DiagID;
6044   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
6045                          DiagID, Result.get(),
6046                          Actions.getASTContext().getPrintingPolicy()))
6047     Diag(StartLoc, DiagID) << PrevSpec;
6048 }
6049 
6050 
6051 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
6052 /// from TryAltiVecVectorToken.
TryAltiVecVectorTokenOutOfLine()6053 bool Parser::TryAltiVecVectorTokenOutOfLine() {
6054   Token Next = NextToken();
6055   switch (Next.getKind()) {
6056   default: return false;
6057   case tok::kw_short:
6058   case tok::kw_long:
6059   case tok::kw_signed:
6060   case tok::kw_unsigned:
6061   case tok::kw_void:
6062   case tok::kw_char:
6063   case tok::kw_int:
6064   case tok::kw_float:
6065   case tok::kw_double:
6066   case tok::kw_bool:
6067   case tok::kw___bool:
6068   case tok::kw___pixel:
6069     Tok.setKind(tok::kw___vector);
6070     return true;
6071   case tok::identifier:
6072     if (Next.getIdentifierInfo() == Ident_pixel) {
6073       Tok.setKind(tok::kw___vector);
6074       return true;
6075     }
6076     if (Next.getIdentifierInfo() == Ident_bool) {
6077       Tok.setKind(tok::kw___vector);
6078       return true;
6079     }
6080     return false;
6081   }
6082 }
6083 
TryAltiVecTokenOutOfLine(DeclSpec & DS,SourceLocation Loc,const char * & PrevSpec,unsigned & DiagID,bool & isInvalid)6084 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
6085                                       const char *&PrevSpec, unsigned &DiagID,
6086                                       bool &isInvalid) {
6087   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
6088   if (Tok.getIdentifierInfo() == Ident_vector) {
6089     Token Next = NextToken();
6090     switch (Next.getKind()) {
6091     case tok::kw_short:
6092     case tok::kw_long:
6093     case tok::kw_signed:
6094     case tok::kw_unsigned:
6095     case tok::kw_void:
6096     case tok::kw_char:
6097     case tok::kw_int:
6098     case tok::kw_float:
6099     case tok::kw_double:
6100     case tok::kw_bool:
6101     case tok::kw___bool:
6102     case tok::kw___pixel:
6103       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
6104       return true;
6105     case tok::identifier:
6106       if (Next.getIdentifierInfo() == Ident_pixel) {
6107         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6108         return true;
6109       }
6110       if (Next.getIdentifierInfo() == Ident_bool) {
6111         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
6112         return true;
6113       }
6114       break;
6115     default:
6116       break;
6117     }
6118   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
6119              DS.isTypeAltiVecVector()) {
6120     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
6121     return true;
6122   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
6123              DS.isTypeAltiVecVector()) {
6124     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
6125     return true;
6126   }
6127   return false;
6128 }
6129