1 //===--------- llvm/DataLayout.h - Data size & alignment info ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines layout properties related to datatype size/offset/alignment
11 // information. It uses lazy annotations to cache information about how
12 // structure types are laid out and used.
13 //
14 // This structure should be created once, filled in if the defaults are not
15 // correct and then passed around by const&. None of the members functions
16 // require modification to the object.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #ifndef LLVM_IR_DATALAYOUT_H
21 #define LLVM_IR_DATALAYOUT_H
22
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/DataTypes.h"
29
30 // This needs to be outside of the namespace, to avoid conflict with llvm-c
31 // decl.
32 typedef struct LLVMOpaqueTargetData *LLVMTargetDataRef;
33
34 namespace llvm {
35
36 class Value;
37 class Type;
38 class IntegerType;
39 class StructType;
40 class StructLayout;
41 class Triple;
42 class GlobalVariable;
43 class LLVMContext;
44 template<typename T>
45 class ArrayRef;
46
47 /// Enum used to categorize the alignment types stored by LayoutAlignElem
48 enum AlignTypeEnum {
49 INVALID_ALIGN = 0,
50 INTEGER_ALIGN = 'i',
51 VECTOR_ALIGN = 'v',
52 FLOAT_ALIGN = 'f',
53 AGGREGATE_ALIGN = 'a'
54 };
55
56 // FIXME: Currently the DataLayout string carries a "preferred alignment"
57 // for types. As the DataLayout is module/global, this should likely be
58 // sunk down to an FTTI element that is queried rather than a global
59 // preference.
60
61 /// \brief Layout alignment element.
62 ///
63 /// Stores the alignment data associated with a given alignment type (integer,
64 /// vector, float) and type bit width.
65 ///
66 /// \note The unusual order of elements in the structure attempts to reduce
67 /// padding and make the structure slightly more cache friendly.
68 struct LayoutAlignElem {
69 /// \brief Alignment type from \c AlignTypeEnum
70 unsigned AlignType : 8;
71 unsigned TypeBitWidth : 24;
72 unsigned ABIAlign : 16;
73 unsigned PrefAlign : 16;
74
75 static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
76 unsigned pref_align, uint32_t bit_width);
77 bool operator==(const LayoutAlignElem &rhs) const;
78 };
79
80 /// \brief Layout pointer alignment element.
81 ///
82 /// Stores the alignment data associated with a given pointer and address space.
83 ///
84 /// \note The unusual order of elements in the structure attempts to reduce
85 /// padding and make the structure slightly more cache friendly.
86 struct PointerAlignElem {
87 unsigned ABIAlign;
88 unsigned PrefAlign;
89 uint32_t TypeByteWidth;
90 uint32_t AddressSpace;
91
92 /// Initializer
93 static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
94 unsigned PrefAlign, uint32_t TypeByteWidth);
95 bool operator==(const PointerAlignElem &rhs) const;
96 };
97
98 /// \brief A parsed version of the target data layout string in and methods for
99 /// querying it.
100 ///
101 /// The target data layout string is specified *by the target* - a frontend
102 /// generating LLVM IR is required to generate the right target data for the
103 /// target being codegen'd to.
104 class DataLayout {
105 private:
106 /// Defaults to false.
107 bool BigEndian;
108
109 unsigned StackNaturalAlign;
110
111 enum ManglingModeT {
112 MM_None,
113 MM_ELF,
114 MM_MachO,
115 MM_WinCOFF,
116 MM_WinCOFFX86,
117 MM_Mips
118 };
119 ManglingModeT ManglingMode;
120
121 SmallVector<unsigned char, 8> LegalIntWidths;
122
123 /// \brief Primitive type alignment data.
124 SmallVector<LayoutAlignElem, 16> Alignments;
125
126 /// \brief The string representation used to create this DataLayout
127 std::string StringRepresentation;
128
129 typedef SmallVector<PointerAlignElem, 8> PointersTy;
130 PointersTy Pointers;
131
132 PointersTy::const_iterator
findPointerLowerBound(uint32_t AddressSpace)133 findPointerLowerBound(uint32_t AddressSpace) const {
134 return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
135 }
136
137 PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
138
139 /// This member is a signal that a requested alignment type and bit width were
140 /// not found in the SmallVector.
141 static const LayoutAlignElem InvalidAlignmentElem;
142
143 /// This member is a signal that a requested pointer type and bit width were
144 /// not found in the DenseSet.
145 static const PointerAlignElem InvalidPointerElem;
146
147 // The StructType -> StructLayout map.
148 mutable void *LayoutMap;
149
150 void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
151 unsigned pref_align, uint32_t bit_width);
152 unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
153 bool ABIAlign, Type *Ty) const;
154 void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
155 unsigned PrefAlign, uint32_t TypeByteWidth);
156
157 /// Internal helper method that returns requested alignment for type.
158 unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
159
160 /// \brief Valid alignment predicate.
161 ///
162 /// Predicate that tests a LayoutAlignElem reference returned by get() against
163 /// InvalidAlignmentElem.
validAlignment(const LayoutAlignElem & align)164 bool validAlignment(const LayoutAlignElem &align) const {
165 return &align != &InvalidAlignmentElem;
166 }
167
168 /// \brief Valid pointer predicate.
169 ///
170 /// Predicate that tests a PointerAlignElem reference returned by get()
171 /// against \c InvalidPointerElem.
validPointer(const PointerAlignElem & align)172 bool validPointer(const PointerAlignElem &align) const {
173 return &align != &InvalidPointerElem;
174 }
175
176 /// Parses a target data specification string. Assert if the string is
177 /// malformed.
178 void parseSpecifier(StringRef LayoutDescription);
179
180 // Free all internal data structures.
181 void clear();
182
183 public:
184 /// Constructs a DataLayout from a specification string. See reset().
DataLayout(StringRef LayoutDescription)185 explicit DataLayout(StringRef LayoutDescription) : LayoutMap(nullptr) {
186 reset(LayoutDescription);
187 }
188
189 /// Initialize target data from properties stored in the module.
190 explicit DataLayout(const Module *M);
191
192 void init(const Module *M);
193
DataLayout(const DataLayout & DL)194 DataLayout(const DataLayout &DL) : LayoutMap(nullptr) { *this = DL; }
195
196 DataLayout &operator=(const DataLayout &DL) {
197 clear();
198 StringRepresentation = DL.StringRepresentation;
199 BigEndian = DL.isBigEndian();
200 StackNaturalAlign = DL.StackNaturalAlign;
201 ManglingMode = DL.ManglingMode;
202 LegalIntWidths = DL.LegalIntWidths;
203 Alignments = DL.Alignments;
204 Pointers = DL.Pointers;
205 return *this;
206 }
207
208 bool operator==(const DataLayout &Other) const;
209 bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
210
211 ~DataLayout(); // Not virtual, do not subclass this class
212
213 /// Parse a data layout string (with fallback to default values).
214 void reset(StringRef LayoutDescription);
215
216 /// Layout endianness...
isLittleEndian()217 bool isLittleEndian() const { return !BigEndian; }
isBigEndian()218 bool isBigEndian() const { return BigEndian; }
219
220 /// \brief Returns the string representation of the DataLayout.
221 ///
222 /// This representation is in the same format accepted by the string
223 /// constructor above. This should not be used to compare two DataLayout as
224 /// different string can represent the same layout.
getStringRepresentation()225 std::string getStringRepresentation() const { return StringRepresentation; }
226
227 /// \brief Test if the DataLayout was constructed from an empty string.
isDefault()228 bool isDefault() const { return StringRepresentation.empty(); }
229
230 /// \brief Returns true if the specified type is known to be a native integer
231 /// type supported by the CPU.
232 ///
233 /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
234 /// on any known one. This returns false if the integer width is not legal.
235 ///
236 /// The width is specified in bits.
isLegalInteger(unsigned Width)237 bool isLegalInteger(unsigned Width) const {
238 for (unsigned LegalIntWidth : LegalIntWidths)
239 if (LegalIntWidth == Width)
240 return true;
241 return false;
242 }
243
isIllegalInteger(unsigned Width)244 bool isIllegalInteger(unsigned Width) const { return !isLegalInteger(Width); }
245
246 /// Returns true if the given alignment exceeds the natural stack alignment.
exceedsNaturalStackAlignment(unsigned Align)247 bool exceedsNaturalStackAlignment(unsigned Align) const {
248 return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
249 }
250
getStackAlignment()251 unsigned getStackAlignment() const { return StackNaturalAlign; }
252
hasMicrosoftFastStdCallMangling()253 bool hasMicrosoftFastStdCallMangling() const {
254 return ManglingMode == MM_WinCOFFX86;
255 }
256
hasLinkerPrivateGlobalPrefix()257 bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
258
getLinkerPrivateGlobalPrefix()259 const char *getLinkerPrivateGlobalPrefix() const {
260 if (ManglingMode == MM_MachO)
261 return "l";
262 return "";
263 }
264
getGlobalPrefix()265 char getGlobalPrefix() const {
266 switch (ManglingMode) {
267 case MM_None:
268 case MM_ELF:
269 case MM_Mips:
270 case MM_WinCOFF:
271 return '\0';
272 case MM_MachO:
273 case MM_WinCOFFX86:
274 return '_';
275 }
276 llvm_unreachable("invalid mangling mode");
277 }
278
getPrivateGlobalPrefix()279 const char *getPrivateGlobalPrefix() const {
280 switch (ManglingMode) {
281 case MM_None:
282 return "";
283 case MM_ELF:
284 return ".L";
285 case MM_Mips:
286 return "$";
287 case MM_MachO:
288 case MM_WinCOFF:
289 case MM_WinCOFFX86:
290 return "L";
291 }
292 llvm_unreachable("invalid mangling mode");
293 }
294
295 static const char *getManglingComponent(const Triple &T);
296
297 /// \brief Returns true if the specified type fits in a native integer type
298 /// supported by the CPU.
299 ///
300 /// For example, if the CPU only supports i32 as a native integer type, then
301 /// i27 fits in a legal integer type but i45 does not.
fitsInLegalInteger(unsigned Width)302 bool fitsInLegalInteger(unsigned Width) const {
303 for (unsigned LegalIntWidth : LegalIntWidths)
304 if (Width <= LegalIntWidth)
305 return true;
306 return false;
307 }
308
309 /// Layout pointer alignment
310 /// FIXME: The defaults need to be removed once all of
311 /// the backends/clients are updated.
312 unsigned getPointerABIAlignment(unsigned AS = 0) const;
313
314 /// Return target's alignment for stack-based pointers
315 /// FIXME: The defaults need to be removed once all of
316 /// the backends/clients are updated.
317 unsigned getPointerPrefAlignment(unsigned AS = 0) const;
318
319 /// Layout pointer size
320 /// FIXME: The defaults need to be removed once all of
321 /// the backends/clients are updated.
322 unsigned getPointerSize(unsigned AS = 0) const;
323
324 /// Layout pointer size, in bits
325 /// FIXME: The defaults need to be removed once all of
326 /// the backends/clients are updated.
327 unsigned getPointerSizeInBits(unsigned AS = 0) const {
328 return getPointerSize(AS) * 8;
329 }
330
331 /// Layout pointer size, in bits, based on the type. If this function is
332 /// called with a pointer type, then the type size of the pointer is returned.
333 /// If this function is called with a vector of pointers, then the type size
334 /// of the pointer is returned. This should only be called with a pointer or
335 /// vector of pointers.
336 unsigned getPointerTypeSizeInBits(Type *) const;
337
getPointerTypeSize(Type * Ty)338 unsigned getPointerTypeSize(Type *Ty) const {
339 return getPointerTypeSizeInBits(Ty) / 8;
340 }
341
342 /// Size examples:
343 ///
344 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
345 /// ---- ---------- --------------- ---------------
346 /// i1 1 8 8
347 /// i8 8 8 8
348 /// i19 19 24 32
349 /// i32 32 32 32
350 /// i100 100 104 128
351 /// i128 128 128 128
352 /// Float 32 32 32
353 /// Double 64 64 64
354 /// X86_FP80 80 80 96
355 ///
356 /// [*] The alloc size depends on the alignment, and thus on the target.
357 /// These values are for x86-32 linux.
358
359 /// \brief Returns the number of bits necessary to hold the specified type.
360 ///
361 /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
362 /// have a size (Type::isSized() must return true).
363 uint64_t getTypeSizeInBits(Type *Ty) const;
364
365 /// \brief Returns the maximum number of bytes that may be overwritten by
366 /// storing the specified type.
367 ///
368 /// For example, returns 5 for i36 and 10 for x86_fp80.
getTypeStoreSize(Type * Ty)369 uint64_t getTypeStoreSize(Type *Ty) const {
370 return (getTypeSizeInBits(Ty) + 7) / 8;
371 }
372
373 /// \brief Returns the maximum number of bits that may be overwritten by
374 /// storing the specified type; always a multiple of 8.
375 ///
376 /// For example, returns 40 for i36 and 80 for x86_fp80.
getTypeStoreSizeInBits(Type * Ty)377 uint64_t getTypeStoreSizeInBits(Type *Ty) const {
378 return 8 * getTypeStoreSize(Ty);
379 }
380
381 /// \brief Returns the offset in bytes between successive objects of the
382 /// specified type, including alignment padding.
383 ///
384 /// This is the amount that alloca reserves for this type. For example,
385 /// returns 12 or 16 for x86_fp80, depending on alignment.
getTypeAllocSize(Type * Ty)386 uint64_t getTypeAllocSize(Type *Ty) const {
387 // Round up to the next alignment boundary.
388 return RoundUpToAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
389 }
390
391 /// \brief Returns the offset in bits between successive objects of the
392 /// specified type, including alignment padding; always a multiple of 8.
393 ///
394 /// This is the amount that alloca reserves for this type. For example,
395 /// returns 96 or 128 for x86_fp80, depending on alignment.
getTypeAllocSizeInBits(Type * Ty)396 uint64_t getTypeAllocSizeInBits(Type *Ty) const {
397 return 8 * getTypeAllocSize(Ty);
398 }
399
400 /// \brief Returns the minimum ABI-required alignment for the specified type.
401 unsigned getABITypeAlignment(Type *Ty) const;
402
403 /// \brief Returns the minimum ABI-required alignment for an integer type of
404 /// the specified bitwidth.
405 unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
406
407 /// \brief Returns the preferred stack/global alignment for the specified
408 /// type.
409 ///
410 /// This is always at least as good as the ABI alignment.
411 unsigned getPrefTypeAlignment(Type *Ty) const;
412
413 /// \brief Returns the preferred alignment for the specified type, returned as
414 /// log2 of the value (a shift amount).
415 unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
416
417 /// \brief Returns an integer type with size at least as big as that of a
418 /// pointer in the given address space.
419 IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
420
421 /// \brief Returns an integer (vector of integer) type with size at least as
422 /// big as that of a pointer of the given pointer (vector of pointer) type.
423 Type *getIntPtrType(Type *) const;
424
425 /// \brief Returns the smallest integer type with size at least as big as
426 /// Width bits.
427 Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
428
429 /// \brief Returns the largest legal integer type, or null if none are set.
getLargestLegalIntType(LLVMContext & C)430 Type *getLargestLegalIntType(LLVMContext &C) const {
431 unsigned LargestSize = getLargestLegalIntTypeSize();
432 return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
433 }
434
435 /// \brief Returns the size of largest legal integer type size, or 0 if none
436 /// are set.
437 unsigned getLargestLegalIntTypeSize() const;
438
439 /// \brief Returns the offset from the beginning of the type for the specified
440 /// indices.
441 ///
442 /// This is used to implement getelementptr.
443 uint64_t getIndexedOffset(Type *Ty, ArrayRef<Value *> Indices) const;
444
445 /// \brief Returns a StructLayout object, indicating the alignment of the
446 /// struct, its size, and the offsets of its fields.
447 ///
448 /// Note that this information is lazily cached.
449 const StructLayout *getStructLayout(StructType *Ty) const;
450
451 /// \brief Returns the preferred alignment of the specified global.
452 ///
453 /// This includes an explicitly requested alignment (if the global has one).
454 unsigned getPreferredAlignment(const GlobalVariable *GV) const;
455
456 /// \brief Returns the preferred alignment of the specified global, returned
457 /// in log form.
458 ///
459 /// This includes an explicitly requested alignment (if the global has one).
460 unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
461 };
462
unwrap(LLVMTargetDataRef P)463 inline DataLayout *unwrap(LLVMTargetDataRef P) {
464 return reinterpret_cast<DataLayout *>(P);
465 }
466
wrap(const DataLayout * P)467 inline LLVMTargetDataRef wrap(const DataLayout *P) {
468 return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
469 }
470
471 /// Used to lazily calculate structure layout information for a target machine,
472 /// based on the DataLayout structure.
473 class StructLayout {
474 uint64_t StructSize;
475 unsigned StructAlignment;
476 unsigned NumElements;
477 uint64_t MemberOffsets[1]; // variable sized array!
478 public:
getSizeInBytes()479 uint64_t getSizeInBytes() const { return StructSize; }
480
getSizeInBits()481 uint64_t getSizeInBits() const { return 8 * StructSize; }
482
getAlignment()483 unsigned getAlignment() const { return StructAlignment; }
484
485 /// \brief Given a valid byte offset into the structure, returns the structure
486 /// index that contains it.
487 unsigned getElementContainingOffset(uint64_t Offset) const;
488
getElementOffset(unsigned Idx)489 uint64_t getElementOffset(unsigned Idx) const {
490 assert(Idx < NumElements && "Invalid element idx!");
491 return MemberOffsets[Idx];
492 }
493
getElementOffsetInBits(unsigned Idx)494 uint64_t getElementOffsetInBits(unsigned Idx) const {
495 return getElementOffset(Idx) * 8;
496 }
497
498 private:
499 friend class DataLayout; // Only DataLayout can create this class
500 StructLayout(StructType *ST, const DataLayout &DL);
501 };
502
503 // The implementation of this method is provided inline as it is particularly
504 // well suited to constant folding when called on a specific Type subclass.
getTypeSizeInBits(Type * Ty)505 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
506 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
507 switch (Ty->getTypeID()) {
508 case Type::LabelTyID:
509 return getPointerSizeInBits(0);
510 case Type::PointerTyID:
511 return getPointerSizeInBits(Ty->getPointerAddressSpace());
512 case Type::ArrayTyID: {
513 ArrayType *ATy = cast<ArrayType>(Ty);
514 return ATy->getNumElements() *
515 getTypeAllocSizeInBits(ATy->getElementType());
516 }
517 case Type::StructTyID:
518 // Get the layout annotation... which is lazily created on demand.
519 return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
520 case Type::IntegerTyID:
521 return Ty->getIntegerBitWidth();
522 case Type::HalfTyID:
523 return 16;
524 case Type::FloatTyID:
525 return 32;
526 case Type::DoubleTyID:
527 case Type::X86_MMXTyID:
528 return 64;
529 case Type::PPC_FP128TyID:
530 case Type::FP128TyID:
531 return 128;
532 // In memory objects this is always aligned to a higher boundary, but
533 // only 80 bits contain information.
534 case Type::X86_FP80TyID:
535 return 80;
536 case Type::VectorTyID: {
537 VectorType *VTy = cast<VectorType>(Ty);
538 return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
539 }
540 default:
541 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
542 }
543 }
544
545 } // End llvm namespace
546
547 #endif
548