1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stdlib.h>
6 #include <limits>
7
8 #include "src/v8.h"
9
10 #include "src/accessors.h"
11 #include "src/allocation-site-scopes.h"
12 #include "src/api.h"
13 #include "src/arguments.h"
14 #include "src/bailout-reason.h"
15 #include "src/base/cpu.h"
16 #include "src/base/platform/platform.h"
17 #include "src/bootstrapper.h"
18 #include "src/codegen.h"
19 #include "src/compilation-cache.h"
20 #include "src/compiler.h"
21 #include "src/conversions.h"
22 #include "src/cpu-profiler.h"
23 #include "src/date.h"
24 #include "src/dateparser-inl.h"
25 #include "src/debug.h"
26 #include "src/deoptimizer.h"
27 #include "src/execution.h"
28 #include "src/full-codegen.h"
29 #include "src/global-handles.h"
30 #include "src/isolate-inl.h"
31 #include "src/json-parser.h"
32 #include "src/json-stringifier.h"
33 #include "src/jsregexp-inl.h"
34 #include "src/jsregexp.h"
35 #include "src/liveedit.h"
36 #include "src/misc-intrinsics.h"
37 #include "src/parser.h"
38 #include "src/prototype.h"
39 #include "src/runtime.h"
40 #include "src/runtime-profiler.h"
41 #include "src/scopeinfo.h"
42 #include "src/smart-pointers.h"
43 #include "src/string-search.h"
44 #include "src/uri.h"
45 #include "src/utils.h"
46 #include "src/v8threads.h"
47 #include "src/vm-state-inl.h"
48 #include "third_party/fdlibm/fdlibm.h"
49
50 #ifdef V8_I18N_SUPPORT
51 #include "src/i18n.h"
52 #include "unicode/brkiter.h"
53 #include "unicode/calendar.h"
54 #include "unicode/coll.h"
55 #include "unicode/curramt.h"
56 #include "unicode/datefmt.h"
57 #include "unicode/dcfmtsym.h"
58 #include "unicode/decimfmt.h"
59 #include "unicode/dtfmtsym.h"
60 #include "unicode/dtptngen.h"
61 #include "unicode/locid.h"
62 #include "unicode/numfmt.h"
63 #include "unicode/numsys.h"
64 #include "unicode/rbbi.h"
65 #include "unicode/smpdtfmt.h"
66 #include "unicode/timezone.h"
67 #include "unicode/uchar.h"
68 #include "unicode/ucol.h"
69 #include "unicode/ucurr.h"
70 #include "unicode/uloc.h"
71 #include "unicode/unum.h"
72 #include "unicode/uversion.h"
73 #endif
74
75 #ifndef _STLP_VENDOR_CSTD
76 // STLPort doesn't import fpclassify and isless into the std namespace.
77 using std::fpclassify;
78 using std::isless;
79 #endif
80
81 namespace v8 {
82 namespace internal {
83
84
85 #define RUNTIME_ASSERT(value) \
86 if (!(value)) return isolate->ThrowIllegalOperation();
87
88 #define RUNTIME_ASSERT_HANDLIFIED(value, T) \
89 if (!(value)) { \
90 isolate->ThrowIllegalOperation(); \
91 return MaybeHandle<T>(); \
92 }
93
94 // Cast the given object to a value of the specified type and store
95 // it in a variable with the given name. If the object is not of the
96 // expected type call IllegalOperation and return.
97 #define CONVERT_ARG_CHECKED(Type, name, index) \
98 RUNTIME_ASSERT(args[index]->Is##Type()); \
99 Type* name = Type::cast(args[index]);
100
101 #define CONVERT_ARG_HANDLE_CHECKED(Type, name, index) \
102 RUNTIME_ASSERT(args[index]->Is##Type()); \
103 Handle<Type> name = args.at<Type>(index);
104
105 #define CONVERT_NUMBER_ARG_HANDLE_CHECKED(name, index) \
106 RUNTIME_ASSERT(args[index]->IsNumber()); \
107 Handle<Object> name = args.at<Object>(index);
108
109 // Cast the given object to a boolean and store it in a variable with
110 // the given name. If the object is not a boolean call IllegalOperation
111 // and return.
112 #define CONVERT_BOOLEAN_ARG_CHECKED(name, index) \
113 RUNTIME_ASSERT(args[index]->IsBoolean()); \
114 bool name = args[index]->IsTrue();
115
116 // Cast the given argument to a Smi and store its value in an int variable
117 // with the given name. If the argument is not a Smi call IllegalOperation
118 // and return.
119 #define CONVERT_SMI_ARG_CHECKED(name, index) \
120 RUNTIME_ASSERT(args[index]->IsSmi()); \
121 int name = args.smi_at(index);
122
123 // Cast the given argument to a double and store it in a variable with
124 // the given name. If the argument is not a number (as opposed to
125 // the number not-a-number) call IllegalOperation and return.
126 #define CONVERT_DOUBLE_ARG_CHECKED(name, index) \
127 RUNTIME_ASSERT(args[index]->IsNumber()); \
128 double name = args.number_at(index);
129
130 // Call the specified converter on the object *comand store the result in
131 // a variable of the specified type with the given name. If the
132 // object is not a Number call IllegalOperation and return.
133 #define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \
134 RUNTIME_ASSERT(obj->IsNumber()); \
135 type name = NumberTo##Type(obj);
136
137
138 // Cast the given argument to PropertyDetails and store its value in a
139 // variable with the given name. If the argument is not a Smi call
140 // IllegalOperation and return.
141 #define CONVERT_PROPERTY_DETAILS_CHECKED(name, index) \
142 RUNTIME_ASSERT(args[index]->IsSmi()); \
143 PropertyDetails name = PropertyDetails(Smi::cast(args[index]));
144
145
146 // Assert that the given argument has a valid value for a StrictMode
147 // and store it in a StrictMode variable with the given name.
148 #define CONVERT_STRICT_MODE_ARG_CHECKED(name, index) \
149 RUNTIME_ASSERT(args[index]->IsSmi()); \
150 RUNTIME_ASSERT(args.smi_at(index) == STRICT || \
151 args.smi_at(index) == SLOPPY); \
152 StrictMode name = static_cast<StrictMode>(args.smi_at(index));
153
154
155 // Assert that the given argument is a number within the Int32 range
156 // and convert it to int32_t. If the argument is not an Int32 call
157 // IllegalOperation and return.
158 #define CONVERT_INT32_ARG_CHECKED(name, index) \
159 RUNTIME_ASSERT(args[index]->IsNumber()); \
160 int32_t name = 0; \
161 RUNTIME_ASSERT(args[index]->ToInt32(&name));
162
163
ComputeObjectLiteralMap(Handle<Context> context,Handle<FixedArray> constant_properties,bool * is_result_from_cache)164 static Handle<Map> ComputeObjectLiteralMap(
165 Handle<Context> context,
166 Handle<FixedArray> constant_properties,
167 bool* is_result_from_cache) {
168 Isolate* isolate = context->GetIsolate();
169 int properties_length = constant_properties->length();
170 int number_of_properties = properties_length / 2;
171 // Check that there are only internal strings and array indices among keys.
172 int number_of_string_keys = 0;
173 for (int p = 0; p != properties_length; p += 2) {
174 Object* key = constant_properties->get(p);
175 uint32_t element_index = 0;
176 if (key->IsInternalizedString()) {
177 number_of_string_keys++;
178 } else if (key->ToArrayIndex(&element_index)) {
179 // An index key does not require space in the property backing store.
180 number_of_properties--;
181 } else {
182 // Bail out as a non-internalized-string non-index key makes caching
183 // impossible.
184 // DCHECK to make sure that the if condition after the loop is false.
185 DCHECK(number_of_string_keys != number_of_properties);
186 break;
187 }
188 }
189 // If we only have internalized strings and array indices among keys then we
190 // can use the map cache in the native context.
191 const int kMaxKeys = 10;
192 if ((number_of_string_keys == number_of_properties) &&
193 (number_of_string_keys < kMaxKeys)) {
194 // Create the fixed array with the key.
195 Handle<FixedArray> keys =
196 isolate->factory()->NewFixedArray(number_of_string_keys);
197 if (number_of_string_keys > 0) {
198 int index = 0;
199 for (int p = 0; p < properties_length; p += 2) {
200 Object* key = constant_properties->get(p);
201 if (key->IsInternalizedString()) {
202 keys->set(index++, key);
203 }
204 }
205 DCHECK(index == number_of_string_keys);
206 }
207 *is_result_from_cache = true;
208 return isolate->factory()->ObjectLiteralMapFromCache(context, keys);
209 }
210 *is_result_from_cache = false;
211 return Map::Create(isolate, number_of_properties);
212 }
213
214
215 MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
216 Isolate* isolate,
217 Handle<FixedArray> literals,
218 Handle<FixedArray> constant_properties);
219
220
CreateObjectLiteralBoilerplate(Isolate * isolate,Handle<FixedArray> literals,Handle<FixedArray> constant_properties,bool should_have_fast_elements,bool has_function_literal)221 MUST_USE_RESULT static MaybeHandle<Object> CreateObjectLiteralBoilerplate(
222 Isolate* isolate,
223 Handle<FixedArray> literals,
224 Handle<FixedArray> constant_properties,
225 bool should_have_fast_elements,
226 bool has_function_literal) {
227 // Get the native context from the literals array. This is the
228 // context in which the function was created and we use the object
229 // function from this context to create the object literal. We do
230 // not use the object function from the current native context
231 // because this might be the object function from another context
232 // which we should not have access to.
233 Handle<Context> context =
234 Handle<Context>(JSFunction::NativeContextFromLiterals(*literals));
235
236 // In case we have function literals, we want the object to be in
237 // slow properties mode for now. We don't go in the map cache because
238 // maps with constant functions can't be shared if the functions are
239 // not the same (which is the common case).
240 bool is_result_from_cache = false;
241 Handle<Map> map = has_function_literal
242 ? Handle<Map>(context->object_function()->initial_map())
243 : ComputeObjectLiteralMap(context,
244 constant_properties,
245 &is_result_from_cache);
246
247 PretenureFlag pretenure_flag =
248 isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
249
250 Handle<JSObject> boilerplate =
251 isolate->factory()->NewJSObjectFromMap(map, pretenure_flag);
252
253 // Normalize the elements of the boilerplate to save space if needed.
254 if (!should_have_fast_elements) JSObject::NormalizeElements(boilerplate);
255
256 // Add the constant properties to the boilerplate.
257 int length = constant_properties->length();
258 bool should_transform =
259 !is_result_from_cache && boilerplate->HasFastProperties();
260 bool should_normalize = should_transform || has_function_literal;
261 if (should_normalize) {
262 // TODO(verwaest): We might not want to ever normalize here.
263 JSObject::NormalizeProperties(
264 boilerplate, KEEP_INOBJECT_PROPERTIES, length / 2);
265 }
266 // TODO(verwaest): Support tracking representations in the boilerplate.
267 for (int index = 0; index < length; index +=2) {
268 Handle<Object> key(constant_properties->get(index+0), isolate);
269 Handle<Object> value(constant_properties->get(index+1), isolate);
270 if (value->IsFixedArray()) {
271 // The value contains the constant_properties of a
272 // simple object or array literal.
273 Handle<FixedArray> array = Handle<FixedArray>::cast(value);
274 ASSIGN_RETURN_ON_EXCEPTION(
275 isolate, value,
276 CreateLiteralBoilerplate(isolate, literals, array),
277 Object);
278 }
279 MaybeHandle<Object> maybe_result;
280 uint32_t element_index = 0;
281 if (key->IsInternalizedString()) {
282 if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) {
283 // Array index as string (uint32).
284 if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
285 maybe_result =
286 JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
287 } else {
288 Handle<String> name(String::cast(*key));
289 DCHECK(!name->AsArrayIndex(&element_index));
290 maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(
291 boilerplate, name, value, NONE);
292 }
293 } else if (key->ToArrayIndex(&element_index)) {
294 // Array index (uint32).
295 if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
296 maybe_result =
297 JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
298 } else {
299 // Non-uint32 number.
300 DCHECK(key->IsNumber());
301 double num = key->Number();
302 char arr[100];
303 Vector<char> buffer(arr, arraysize(arr));
304 const char* str = DoubleToCString(num, buffer);
305 Handle<String> name = isolate->factory()->NewStringFromAsciiChecked(str);
306 maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(boilerplate, name,
307 value, NONE);
308 }
309 // If setting the property on the boilerplate throws an
310 // exception, the exception is converted to an empty handle in
311 // the handle based operations. In that case, we need to
312 // convert back to an exception.
313 RETURN_ON_EXCEPTION(isolate, maybe_result, Object);
314 }
315
316 // Transform to fast properties if necessary. For object literals with
317 // containing function literals we defer this operation until after all
318 // computed properties have been assigned so that we can generate
319 // constant function properties.
320 if (should_transform && !has_function_literal) {
321 JSObject::MigrateSlowToFast(
322 boilerplate, boilerplate->map()->unused_property_fields());
323 }
324
325 return boilerplate;
326 }
327
328
TransitionElements(Handle<Object> object,ElementsKind to_kind,Isolate * isolate)329 MUST_USE_RESULT static MaybeHandle<Object> TransitionElements(
330 Handle<Object> object,
331 ElementsKind to_kind,
332 Isolate* isolate) {
333 HandleScope scope(isolate);
334 if (!object->IsJSObject()) {
335 isolate->ThrowIllegalOperation();
336 return MaybeHandle<Object>();
337 }
338 ElementsKind from_kind =
339 Handle<JSObject>::cast(object)->map()->elements_kind();
340 if (Map::IsValidElementsTransition(from_kind, to_kind)) {
341 JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), to_kind);
342 return object;
343 }
344 isolate->ThrowIllegalOperation();
345 return MaybeHandle<Object>();
346 }
347
348
CreateArrayLiteralBoilerplate(Isolate * isolate,Handle<FixedArray> literals,Handle<FixedArray> elements)349 MaybeHandle<Object> Runtime::CreateArrayLiteralBoilerplate(
350 Isolate* isolate,
351 Handle<FixedArray> literals,
352 Handle<FixedArray> elements) {
353 // Create the JSArray.
354 Handle<JSFunction> constructor(
355 JSFunction::NativeContextFromLiterals(*literals)->array_function());
356
357 PretenureFlag pretenure_flag =
358 isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
359
360 Handle<JSArray> object = Handle<JSArray>::cast(
361 isolate->factory()->NewJSObject(constructor, pretenure_flag));
362
363 ElementsKind constant_elements_kind =
364 static_cast<ElementsKind>(Smi::cast(elements->get(0))->value());
365 Handle<FixedArrayBase> constant_elements_values(
366 FixedArrayBase::cast(elements->get(1)));
367
368 { DisallowHeapAllocation no_gc;
369 DCHECK(IsFastElementsKind(constant_elements_kind));
370 Context* native_context = isolate->context()->native_context();
371 Object* maps_array = native_context->js_array_maps();
372 DCHECK(!maps_array->IsUndefined());
373 Object* map = FixedArray::cast(maps_array)->get(constant_elements_kind);
374 object->set_map(Map::cast(map));
375 }
376
377 Handle<FixedArrayBase> copied_elements_values;
378 if (IsFastDoubleElementsKind(constant_elements_kind)) {
379 copied_elements_values = isolate->factory()->CopyFixedDoubleArray(
380 Handle<FixedDoubleArray>::cast(constant_elements_values));
381 } else {
382 DCHECK(IsFastSmiOrObjectElementsKind(constant_elements_kind));
383 const bool is_cow =
384 (constant_elements_values->map() ==
385 isolate->heap()->fixed_cow_array_map());
386 if (is_cow) {
387 copied_elements_values = constant_elements_values;
388 #if DEBUG
389 Handle<FixedArray> fixed_array_values =
390 Handle<FixedArray>::cast(copied_elements_values);
391 for (int i = 0; i < fixed_array_values->length(); i++) {
392 DCHECK(!fixed_array_values->get(i)->IsFixedArray());
393 }
394 #endif
395 } else {
396 Handle<FixedArray> fixed_array_values =
397 Handle<FixedArray>::cast(constant_elements_values);
398 Handle<FixedArray> fixed_array_values_copy =
399 isolate->factory()->CopyFixedArray(fixed_array_values);
400 copied_elements_values = fixed_array_values_copy;
401 for (int i = 0; i < fixed_array_values->length(); i++) {
402 if (fixed_array_values->get(i)->IsFixedArray()) {
403 // The value contains the constant_properties of a
404 // simple object or array literal.
405 Handle<FixedArray> fa(FixedArray::cast(fixed_array_values->get(i)));
406 Handle<Object> result;
407 ASSIGN_RETURN_ON_EXCEPTION(
408 isolate, result,
409 CreateLiteralBoilerplate(isolate, literals, fa),
410 Object);
411 fixed_array_values_copy->set(i, *result);
412 }
413 }
414 }
415 }
416 object->set_elements(*copied_elements_values);
417 object->set_length(Smi::FromInt(copied_elements_values->length()));
418
419 JSObject::ValidateElements(object);
420 return object;
421 }
422
423
CreateLiteralBoilerplate(Isolate * isolate,Handle<FixedArray> literals,Handle<FixedArray> array)424 MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
425 Isolate* isolate,
426 Handle<FixedArray> literals,
427 Handle<FixedArray> array) {
428 Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
429 const bool kHasNoFunctionLiteral = false;
430 switch (CompileTimeValue::GetLiteralType(array)) {
431 case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS:
432 return CreateObjectLiteralBoilerplate(isolate,
433 literals,
434 elements,
435 true,
436 kHasNoFunctionLiteral);
437 case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS:
438 return CreateObjectLiteralBoilerplate(isolate,
439 literals,
440 elements,
441 false,
442 kHasNoFunctionLiteral);
443 case CompileTimeValue::ARRAY_LITERAL:
444 return Runtime::CreateArrayLiteralBoilerplate(
445 isolate, literals, elements);
446 default:
447 UNREACHABLE();
448 return MaybeHandle<Object>();
449 }
450 }
451
452
RUNTIME_FUNCTION(Runtime_CreateObjectLiteral)453 RUNTIME_FUNCTION(Runtime_CreateObjectLiteral) {
454 HandleScope scope(isolate);
455 DCHECK(args.length() == 4);
456 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
457 CONVERT_SMI_ARG_CHECKED(literals_index, 1);
458 CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2);
459 CONVERT_SMI_ARG_CHECKED(flags, 3);
460 bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0;
461 bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0;
462
463 RUNTIME_ASSERT(literals_index >= 0 && literals_index < literals->length());
464
465 // Check if boilerplate exists. If not, create it first.
466 Handle<Object> literal_site(literals->get(literals_index), isolate);
467 Handle<AllocationSite> site;
468 Handle<JSObject> boilerplate;
469 if (*literal_site == isolate->heap()->undefined_value()) {
470 Handle<Object> raw_boilerplate;
471 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
472 isolate, raw_boilerplate,
473 CreateObjectLiteralBoilerplate(
474 isolate,
475 literals,
476 constant_properties,
477 should_have_fast_elements,
478 has_function_literal));
479 boilerplate = Handle<JSObject>::cast(raw_boilerplate);
480
481 AllocationSiteCreationContext creation_context(isolate);
482 site = creation_context.EnterNewScope();
483 RETURN_FAILURE_ON_EXCEPTION(
484 isolate,
485 JSObject::DeepWalk(boilerplate, &creation_context));
486 creation_context.ExitScope(site, boilerplate);
487
488 // Update the functions literal and return the boilerplate.
489 literals->set(literals_index, *site);
490 } else {
491 site = Handle<AllocationSite>::cast(literal_site);
492 boilerplate = Handle<JSObject>(JSObject::cast(site->transition_info()),
493 isolate);
494 }
495
496 AllocationSiteUsageContext usage_context(isolate, site, true);
497 usage_context.EnterNewScope();
498 MaybeHandle<Object> maybe_copy = JSObject::DeepCopy(
499 boilerplate, &usage_context);
500 usage_context.ExitScope(site, boilerplate);
501 Handle<Object> copy;
502 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, copy, maybe_copy);
503 return *copy;
504 }
505
506
GetLiteralAllocationSite(Isolate * isolate,Handle<FixedArray> literals,int literals_index,Handle<FixedArray> elements)507 MUST_USE_RESULT static MaybeHandle<AllocationSite> GetLiteralAllocationSite(
508 Isolate* isolate,
509 Handle<FixedArray> literals,
510 int literals_index,
511 Handle<FixedArray> elements) {
512 // Check if boilerplate exists. If not, create it first.
513 Handle<Object> literal_site(literals->get(literals_index), isolate);
514 Handle<AllocationSite> site;
515 if (*literal_site == isolate->heap()->undefined_value()) {
516 DCHECK(*elements != isolate->heap()->empty_fixed_array());
517 Handle<Object> boilerplate;
518 ASSIGN_RETURN_ON_EXCEPTION(
519 isolate, boilerplate,
520 Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements),
521 AllocationSite);
522
523 AllocationSiteCreationContext creation_context(isolate);
524 site = creation_context.EnterNewScope();
525 if (JSObject::DeepWalk(Handle<JSObject>::cast(boilerplate),
526 &creation_context).is_null()) {
527 return Handle<AllocationSite>::null();
528 }
529 creation_context.ExitScope(site, Handle<JSObject>::cast(boilerplate));
530
531 literals->set(literals_index, *site);
532 } else {
533 site = Handle<AllocationSite>::cast(literal_site);
534 }
535
536 return site;
537 }
538
539
CreateArrayLiteralImpl(Isolate * isolate,Handle<FixedArray> literals,int literals_index,Handle<FixedArray> elements,int flags)540 static MaybeHandle<JSObject> CreateArrayLiteralImpl(Isolate* isolate,
541 Handle<FixedArray> literals,
542 int literals_index,
543 Handle<FixedArray> elements,
544 int flags) {
545 RUNTIME_ASSERT_HANDLIFIED(literals_index >= 0 &&
546 literals_index < literals->length(), JSObject);
547 Handle<AllocationSite> site;
548 ASSIGN_RETURN_ON_EXCEPTION(
549 isolate, site,
550 GetLiteralAllocationSite(isolate, literals, literals_index, elements),
551 JSObject);
552
553 bool enable_mementos = (flags & ArrayLiteral::kDisableMementos) == 0;
554 Handle<JSObject> boilerplate(JSObject::cast(site->transition_info()));
555 AllocationSiteUsageContext usage_context(isolate, site, enable_mementos);
556 usage_context.EnterNewScope();
557 JSObject::DeepCopyHints hints = (flags & ArrayLiteral::kShallowElements) == 0
558 ? JSObject::kNoHints
559 : JSObject::kObjectIsShallow;
560 MaybeHandle<JSObject> copy = JSObject::DeepCopy(boilerplate, &usage_context,
561 hints);
562 usage_context.ExitScope(site, boilerplate);
563 return copy;
564 }
565
566
RUNTIME_FUNCTION(Runtime_CreateArrayLiteral)567 RUNTIME_FUNCTION(Runtime_CreateArrayLiteral) {
568 HandleScope scope(isolate);
569 DCHECK(args.length() == 4);
570 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
571 CONVERT_SMI_ARG_CHECKED(literals_index, 1);
572 CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
573 CONVERT_SMI_ARG_CHECKED(flags, 3);
574
575 Handle<JSObject> result;
576 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
577 CreateArrayLiteralImpl(isolate, literals, literals_index, elements,
578 flags));
579 return *result;
580 }
581
582
RUNTIME_FUNCTION(Runtime_CreateArrayLiteralStubBailout)583 RUNTIME_FUNCTION(Runtime_CreateArrayLiteralStubBailout) {
584 HandleScope scope(isolate);
585 DCHECK(args.length() == 3);
586 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
587 CONVERT_SMI_ARG_CHECKED(literals_index, 1);
588 CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
589
590 Handle<JSObject> result;
591 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
592 CreateArrayLiteralImpl(isolate, literals, literals_index, elements,
593 ArrayLiteral::kShallowElements));
594 return *result;
595 }
596
597
RUNTIME_FUNCTION(Runtime_CreateSymbol)598 RUNTIME_FUNCTION(Runtime_CreateSymbol) {
599 HandleScope scope(isolate);
600 DCHECK(args.length() == 1);
601 CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
602 RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
603 Handle<Symbol> symbol = isolate->factory()->NewSymbol();
604 if (name->IsString()) symbol->set_name(*name);
605 return *symbol;
606 }
607
608
RUNTIME_FUNCTION(Runtime_CreatePrivateSymbol)609 RUNTIME_FUNCTION(Runtime_CreatePrivateSymbol) {
610 HandleScope scope(isolate);
611 DCHECK(args.length() == 1);
612 CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
613 RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
614 Handle<Symbol> symbol = isolate->factory()->NewPrivateSymbol();
615 if (name->IsString()) symbol->set_name(*name);
616 return *symbol;
617 }
618
619
RUNTIME_FUNCTION(Runtime_CreatePrivateOwnSymbol)620 RUNTIME_FUNCTION(Runtime_CreatePrivateOwnSymbol) {
621 HandleScope scope(isolate);
622 DCHECK(args.length() == 1);
623 CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
624 RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
625 Handle<Symbol> symbol = isolate->factory()->NewPrivateOwnSymbol();
626 if (name->IsString()) symbol->set_name(*name);
627 return *symbol;
628 }
629
630
RUNTIME_FUNCTION(Runtime_CreateGlobalPrivateOwnSymbol)631 RUNTIME_FUNCTION(Runtime_CreateGlobalPrivateOwnSymbol) {
632 HandleScope scope(isolate);
633 DCHECK(args.length() == 1);
634 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
635 Handle<JSObject> registry = isolate->GetSymbolRegistry();
636 Handle<String> part = isolate->factory()->private_intern_string();
637 Handle<Object> privates;
638 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
639 isolate, privates, Object::GetPropertyOrElement(registry, part));
640 Handle<Object> symbol;
641 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
642 isolate, symbol, Object::GetPropertyOrElement(privates, name));
643 if (!symbol->IsSymbol()) {
644 DCHECK(symbol->IsUndefined());
645 symbol = isolate->factory()->NewPrivateSymbol();
646 Handle<Symbol>::cast(symbol)->set_name(*name);
647 Handle<Symbol>::cast(symbol)->set_is_own(true);
648 JSObject::SetProperty(Handle<JSObject>::cast(privates), name, symbol,
649 STRICT).Assert();
650 }
651 return *symbol;
652 }
653
654
RUNTIME_FUNCTION(Runtime_NewSymbolWrapper)655 RUNTIME_FUNCTION(Runtime_NewSymbolWrapper) {
656 HandleScope scope(isolate);
657 DCHECK(args.length() == 1);
658 CONVERT_ARG_HANDLE_CHECKED(Symbol, symbol, 0);
659 return *Object::ToObject(isolate, symbol).ToHandleChecked();
660 }
661
662
RUNTIME_FUNCTION(Runtime_SymbolDescription)663 RUNTIME_FUNCTION(Runtime_SymbolDescription) {
664 SealHandleScope shs(isolate);
665 DCHECK(args.length() == 1);
666 CONVERT_ARG_CHECKED(Symbol, symbol, 0);
667 return symbol->name();
668 }
669
670
RUNTIME_FUNCTION(Runtime_SymbolRegistry)671 RUNTIME_FUNCTION(Runtime_SymbolRegistry) {
672 HandleScope scope(isolate);
673 DCHECK(args.length() == 0);
674 return *isolate->GetSymbolRegistry();
675 }
676
677
RUNTIME_FUNCTION(Runtime_SymbolIsPrivate)678 RUNTIME_FUNCTION(Runtime_SymbolIsPrivate) {
679 SealHandleScope shs(isolate);
680 DCHECK(args.length() == 1);
681 CONVERT_ARG_CHECKED(Symbol, symbol, 0);
682 return isolate->heap()->ToBoolean(symbol->is_private());
683 }
684
685
RUNTIME_FUNCTION(Runtime_CreateJSProxy)686 RUNTIME_FUNCTION(Runtime_CreateJSProxy) {
687 HandleScope scope(isolate);
688 DCHECK(args.length() == 2);
689 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
690 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
691 if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
692 return *isolate->factory()->NewJSProxy(handler, prototype);
693 }
694
695
RUNTIME_FUNCTION(Runtime_CreateJSFunctionProxy)696 RUNTIME_FUNCTION(Runtime_CreateJSFunctionProxy) {
697 HandleScope scope(isolate);
698 DCHECK(args.length() == 4);
699 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
700 CONVERT_ARG_HANDLE_CHECKED(Object, call_trap, 1);
701 RUNTIME_ASSERT(call_trap->IsJSFunction() || call_trap->IsJSFunctionProxy());
702 CONVERT_ARG_HANDLE_CHECKED(JSFunction, construct_trap, 2);
703 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 3);
704 if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
705 return *isolate->factory()->NewJSFunctionProxy(
706 handler, call_trap, construct_trap, prototype);
707 }
708
709
RUNTIME_FUNCTION(Runtime_IsJSProxy)710 RUNTIME_FUNCTION(Runtime_IsJSProxy) {
711 SealHandleScope shs(isolate);
712 DCHECK(args.length() == 1);
713 CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
714 return isolate->heap()->ToBoolean(obj->IsJSProxy());
715 }
716
717
RUNTIME_FUNCTION(Runtime_IsJSFunctionProxy)718 RUNTIME_FUNCTION(Runtime_IsJSFunctionProxy) {
719 SealHandleScope shs(isolate);
720 DCHECK(args.length() == 1);
721 CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
722 return isolate->heap()->ToBoolean(obj->IsJSFunctionProxy());
723 }
724
725
RUNTIME_FUNCTION(Runtime_GetHandler)726 RUNTIME_FUNCTION(Runtime_GetHandler) {
727 SealHandleScope shs(isolate);
728 DCHECK(args.length() == 1);
729 CONVERT_ARG_CHECKED(JSProxy, proxy, 0);
730 return proxy->handler();
731 }
732
733
RUNTIME_FUNCTION(Runtime_GetCallTrap)734 RUNTIME_FUNCTION(Runtime_GetCallTrap) {
735 SealHandleScope shs(isolate);
736 DCHECK(args.length() == 1);
737 CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
738 return proxy->call_trap();
739 }
740
741
RUNTIME_FUNCTION(Runtime_GetConstructTrap)742 RUNTIME_FUNCTION(Runtime_GetConstructTrap) {
743 SealHandleScope shs(isolate);
744 DCHECK(args.length() == 1);
745 CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
746 return proxy->construct_trap();
747 }
748
749
RUNTIME_FUNCTION(Runtime_Fix)750 RUNTIME_FUNCTION(Runtime_Fix) {
751 HandleScope scope(isolate);
752 DCHECK(args.length() == 1);
753 CONVERT_ARG_HANDLE_CHECKED(JSProxy, proxy, 0);
754 JSProxy::Fix(proxy);
755 return isolate->heap()->undefined_value();
756 }
757
758
FreeArrayBuffer(Isolate * isolate,JSArrayBuffer * phantom_array_buffer)759 void Runtime::FreeArrayBuffer(Isolate* isolate,
760 JSArrayBuffer* phantom_array_buffer) {
761 if (phantom_array_buffer->should_be_freed()) {
762 DCHECK(phantom_array_buffer->is_external());
763 free(phantom_array_buffer->backing_store());
764 }
765 if (phantom_array_buffer->is_external()) return;
766
767 size_t allocated_length = NumberToSize(
768 isolate, phantom_array_buffer->byte_length());
769
770 reinterpret_cast<v8::Isolate*>(isolate)
771 ->AdjustAmountOfExternalAllocatedMemory(
772 -static_cast<int64_t>(allocated_length));
773 CHECK(V8::ArrayBufferAllocator() != NULL);
774 V8::ArrayBufferAllocator()->Free(
775 phantom_array_buffer->backing_store(),
776 allocated_length);
777 }
778
779
SetupArrayBuffer(Isolate * isolate,Handle<JSArrayBuffer> array_buffer,bool is_external,void * data,size_t allocated_length)780 void Runtime::SetupArrayBuffer(Isolate* isolate,
781 Handle<JSArrayBuffer> array_buffer,
782 bool is_external,
783 void* data,
784 size_t allocated_length) {
785 DCHECK(array_buffer->GetInternalFieldCount() ==
786 v8::ArrayBuffer::kInternalFieldCount);
787 for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
788 array_buffer->SetInternalField(i, Smi::FromInt(0));
789 }
790 array_buffer->set_backing_store(data);
791 array_buffer->set_flag(Smi::FromInt(0));
792 array_buffer->set_is_external(is_external);
793
794 Handle<Object> byte_length =
795 isolate->factory()->NewNumberFromSize(allocated_length);
796 CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
797 array_buffer->set_byte_length(*byte_length);
798
799 array_buffer->set_weak_next(isolate->heap()->array_buffers_list());
800 isolate->heap()->set_array_buffers_list(*array_buffer);
801 array_buffer->set_weak_first_view(isolate->heap()->undefined_value());
802 }
803
804
SetupArrayBufferAllocatingData(Isolate * isolate,Handle<JSArrayBuffer> array_buffer,size_t allocated_length,bool initialize)805 bool Runtime::SetupArrayBufferAllocatingData(
806 Isolate* isolate,
807 Handle<JSArrayBuffer> array_buffer,
808 size_t allocated_length,
809 bool initialize) {
810 void* data;
811 CHECK(V8::ArrayBufferAllocator() != NULL);
812 if (allocated_length != 0) {
813 if (initialize) {
814 data = V8::ArrayBufferAllocator()->Allocate(allocated_length);
815 } else {
816 data =
817 V8::ArrayBufferAllocator()->AllocateUninitialized(allocated_length);
818 }
819 if (data == NULL) return false;
820 } else {
821 data = NULL;
822 }
823
824 SetupArrayBuffer(isolate, array_buffer, false, data, allocated_length);
825
826 reinterpret_cast<v8::Isolate*>(isolate)
827 ->AdjustAmountOfExternalAllocatedMemory(allocated_length);
828
829 return true;
830 }
831
832
NeuterArrayBuffer(Handle<JSArrayBuffer> array_buffer)833 void Runtime::NeuterArrayBuffer(Handle<JSArrayBuffer> array_buffer) {
834 Isolate* isolate = array_buffer->GetIsolate();
835 for (Handle<Object> view_obj(array_buffer->weak_first_view(), isolate);
836 !view_obj->IsUndefined();) {
837 Handle<JSArrayBufferView> view(JSArrayBufferView::cast(*view_obj));
838 if (view->IsJSTypedArray()) {
839 JSTypedArray::cast(*view)->Neuter();
840 } else if (view->IsJSDataView()) {
841 JSDataView::cast(*view)->Neuter();
842 } else {
843 UNREACHABLE();
844 }
845 view_obj = handle(view->weak_next(), isolate);
846 }
847 array_buffer->Neuter();
848 }
849
850
RUNTIME_FUNCTION(Runtime_ArrayBufferInitialize)851 RUNTIME_FUNCTION(Runtime_ArrayBufferInitialize) {
852 HandleScope scope(isolate);
853 DCHECK(args.length() == 2);
854 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, holder, 0);
855 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byteLength, 1);
856 if (!holder->byte_length()->IsUndefined()) {
857 // ArrayBuffer is already initialized; probably a fuzz test.
858 return *holder;
859 }
860 size_t allocated_length = 0;
861 if (!TryNumberToSize(isolate, *byteLength, &allocated_length)) {
862 THROW_NEW_ERROR_RETURN_FAILURE(
863 isolate, NewRangeError("invalid_array_buffer_length",
864 HandleVector<Object>(NULL, 0)));
865 }
866 if (!Runtime::SetupArrayBufferAllocatingData(isolate,
867 holder, allocated_length)) {
868 THROW_NEW_ERROR_RETURN_FAILURE(
869 isolate, NewRangeError("invalid_array_buffer_length",
870 HandleVector<Object>(NULL, 0)));
871 }
872 return *holder;
873 }
874
875
RUNTIME_FUNCTION(Runtime_ArrayBufferGetByteLength)876 RUNTIME_FUNCTION(Runtime_ArrayBufferGetByteLength) {
877 SealHandleScope shs(isolate);
878 DCHECK(args.length() == 1);
879 CONVERT_ARG_CHECKED(JSArrayBuffer, holder, 0);
880 return holder->byte_length();
881 }
882
883
RUNTIME_FUNCTION(Runtime_ArrayBufferSliceImpl)884 RUNTIME_FUNCTION(Runtime_ArrayBufferSliceImpl) {
885 HandleScope scope(isolate);
886 DCHECK(args.length() == 3);
887 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, source, 0);
888 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, target, 1);
889 CONVERT_NUMBER_ARG_HANDLE_CHECKED(first, 2);
890 RUNTIME_ASSERT(!source.is_identical_to(target));
891 size_t start = 0;
892 RUNTIME_ASSERT(TryNumberToSize(isolate, *first, &start));
893 size_t target_length = NumberToSize(isolate, target->byte_length());
894
895 if (target_length == 0) return isolate->heap()->undefined_value();
896
897 size_t source_byte_length = NumberToSize(isolate, source->byte_length());
898 RUNTIME_ASSERT(start <= source_byte_length);
899 RUNTIME_ASSERT(source_byte_length - start >= target_length);
900 uint8_t* source_data = reinterpret_cast<uint8_t*>(source->backing_store());
901 uint8_t* target_data = reinterpret_cast<uint8_t*>(target->backing_store());
902 CopyBytes(target_data, source_data + start, target_length);
903 return isolate->heap()->undefined_value();
904 }
905
906
RUNTIME_FUNCTION(Runtime_ArrayBufferIsView)907 RUNTIME_FUNCTION(Runtime_ArrayBufferIsView) {
908 HandleScope scope(isolate);
909 DCHECK(args.length() == 1);
910 CONVERT_ARG_CHECKED(Object, object, 0);
911 return isolate->heap()->ToBoolean(object->IsJSArrayBufferView());
912 }
913
914
RUNTIME_FUNCTION(Runtime_ArrayBufferNeuter)915 RUNTIME_FUNCTION(Runtime_ArrayBufferNeuter) {
916 HandleScope scope(isolate);
917 DCHECK(args.length() == 1);
918 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, array_buffer, 0);
919 if (array_buffer->backing_store() == NULL) {
920 CHECK(Smi::FromInt(0) == array_buffer->byte_length());
921 return isolate->heap()->undefined_value();
922 }
923 DCHECK(!array_buffer->is_external());
924 void* backing_store = array_buffer->backing_store();
925 size_t byte_length = NumberToSize(isolate, array_buffer->byte_length());
926 array_buffer->set_is_external(true);
927 Runtime::NeuterArrayBuffer(array_buffer);
928 V8::ArrayBufferAllocator()->Free(backing_store, byte_length);
929 return isolate->heap()->undefined_value();
930 }
931
932
ArrayIdToTypeAndSize(int arrayId,ExternalArrayType * array_type,ElementsKind * external_elements_kind,ElementsKind * fixed_elements_kind,size_t * element_size)933 void Runtime::ArrayIdToTypeAndSize(
934 int arrayId,
935 ExternalArrayType* array_type,
936 ElementsKind* external_elements_kind,
937 ElementsKind* fixed_elements_kind,
938 size_t* element_size) {
939 switch (arrayId) {
940 #define ARRAY_ID_CASE(Type, type, TYPE, ctype, size) \
941 case ARRAY_ID_##TYPE: \
942 *array_type = kExternal##Type##Array; \
943 *external_elements_kind = EXTERNAL_##TYPE##_ELEMENTS; \
944 *fixed_elements_kind = TYPE##_ELEMENTS; \
945 *element_size = size; \
946 break;
947
948 TYPED_ARRAYS(ARRAY_ID_CASE)
949 #undef ARRAY_ID_CASE
950
951 default:
952 UNREACHABLE();
953 }
954 }
955
956
RUNTIME_FUNCTION(Runtime_TypedArrayInitialize)957 RUNTIME_FUNCTION(Runtime_TypedArrayInitialize) {
958 HandleScope scope(isolate);
959 DCHECK(args.length() == 5);
960 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
961 CONVERT_SMI_ARG_CHECKED(arrayId, 1);
962 CONVERT_ARG_HANDLE_CHECKED(Object, maybe_buffer, 2);
963 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset_object, 3);
964 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length_object, 4);
965
966 RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST &&
967 arrayId <= Runtime::ARRAY_ID_LAST);
968
969 ExternalArrayType array_type = kExternalInt8Array; // Bogus initialization.
970 size_t element_size = 1; // Bogus initialization.
971 ElementsKind external_elements_kind =
972 EXTERNAL_INT8_ELEMENTS; // Bogus initialization.
973 ElementsKind fixed_elements_kind = INT8_ELEMENTS; // Bogus initialization.
974 Runtime::ArrayIdToTypeAndSize(arrayId,
975 &array_type,
976 &external_elements_kind,
977 &fixed_elements_kind,
978 &element_size);
979 RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind);
980
981 size_t byte_offset = 0;
982 size_t byte_length = 0;
983 RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset_object, &byte_offset));
984 RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length_object, &byte_length));
985
986 if (maybe_buffer->IsJSArrayBuffer()) {
987 Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
988 size_t array_buffer_byte_length =
989 NumberToSize(isolate, buffer->byte_length());
990 RUNTIME_ASSERT(byte_offset <= array_buffer_byte_length);
991 RUNTIME_ASSERT(array_buffer_byte_length - byte_offset >= byte_length);
992 } else {
993 RUNTIME_ASSERT(maybe_buffer->IsNull());
994 }
995
996 RUNTIME_ASSERT(byte_length % element_size == 0);
997 size_t length = byte_length / element_size;
998
999 if (length > static_cast<unsigned>(Smi::kMaxValue)) {
1000 THROW_NEW_ERROR_RETURN_FAILURE(
1001 isolate, NewRangeError("invalid_typed_array_length",
1002 HandleVector<Object>(NULL, 0)));
1003 }
1004
1005 // All checks are done, now we can modify objects.
1006
1007 DCHECK(holder->GetInternalFieldCount() ==
1008 v8::ArrayBufferView::kInternalFieldCount);
1009 for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
1010 holder->SetInternalField(i, Smi::FromInt(0));
1011 }
1012 Handle<Object> length_obj = isolate->factory()->NewNumberFromSize(length);
1013 holder->set_length(*length_obj);
1014 holder->set_byte_offset(*byte_offset_object);
1015 holder->set_byte_length(*byte_length_object);
1016
1017 if (!maybe_buffer->IsNull()) {
1018 Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
1019 holder->set_buffer(*buffer);
1020 holder->set_weak_next(buffer->weak_first_view());
1021 buffer->set_weak_first_view(*holder);
1022
1023 Handle<ExternalArray> elements =
1024 isolate->factory()->NewExternalArray(
1025 static_cast<int>(length), array_type,
1026 static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
1027 Handle<Map> map =
1028 JSObject::GetElementsTransitionMap(holder, external_elements_kind);
1029 JSObject::SetMapAndElements(holder, map, elements);
1030 DCHECK(IsExternalArrayElementsKind(holder->map()->elements_kind()));
1031 } else {
1032 holder->set_buffer(Smi::FromInt(0));
1033 holder->set_weak_next(isolate->heap()->undefined_value());
1034 Handle<FixedTypedArrayBase> elements =
1035 isolate->factory()->NewFixedTypedArray(
1036 static_cast<int>(length), array_type);
1037 holder->set_elements(*elements);
1038 }
1039 return isolate->heap()->undefined_value();
1040 }
1041
1042
1043 // Initializes a typed array from an array-like object.
1044 // If an array-like object happens to be a typed array of the same type,
1045 // initializes backing store using memove.
1046 //
1047 // Returns true if backing store was initialized or false otherwise.
RUNTIME_FUNCTION(Runtime_TypedArrayInitializeFromArrayLike)1048 RUNTIME_FUNCTION(Runtime_TypedArrayInitializeFromArrayLike) {
1049 HandleScope scope(isolate);
1050 DCHECK(args.length() == 4);
1051 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
1052 CONVERT_SMI_ARG_CHECKED(arrayId, 1);
1053 CONVERT_ARG_HANDLE_CHECKED(Object, source, 2);
1054 CONVERT_NUMBER_ARG_HANDLE_CHECKED(length_obj, 3);
1055
1056 RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST &&
1057 arrayId <= Runtime::ARRAY_ID_LAST);
1058
1059 ExternalArrayType array_type = kExternalInt8Array; // Bogus initialization.
1060 size_t element_size = 1; // Bogus initialization.
1061 ElementsKind external_elements_kind =
1062 EXTERNAL_INT8_ELEMENTS; // Bogus intialization.
1063 ElementsKind fixed_elements_kind = INT8_ELEMENTS; // Bogus initialization.
1064 Runtime::ArrayIdToTypeAndSize(arrayId,
1065 &array_type,
1066 &external_elements_kind,
1067 &fixed_elements_kind,
1068 &element_size);
1069
1070 RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind);
1071
1072 Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer();
1073 if (source->IsJSTypedArray() &&
1074 JSTypedArray::cast(*source)->type() == array_type) {
1075 length_obj = Handle<Object>(JSTypedArray::cast(*source)->length(), isolate);
1076 }
1077 size_t length = 0;
1078 RUNTIME_ASSERT(TryNumberToSize(isolate, *length_obj, &length));
1079
1080 if ((length > static_cast<unsigned>(Smi::kMaxValue)) ||
1081 (length > (kMaxInt / element_size))) {
1082 THROW_NEW_ERROR_RETURN_FAILURE(
1083 isolate, NewRangeError("invalid_typed_array_length",
1084 HandleVector<Object>(NULL, 0)));
1085 }
1086 size_t byte_length = length * element_size;
1087
1088 DCHECK(holder->GetInternalFieldCount() ==
1089 v8::ArrayBufferView::kInternalFieldCount);
1090 for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
1091 holder->SetInternalField(i, Smi::FromInt(0));
1092 }
1093
1094 // NOTE: not initializing backing store.
1095 // We assume that the caller of this function will initialize holder
1096 // with the loop
1097 // for(i = 0; i < length; i++) { holder[i] = source[i]; }
1098 // We assume that the caller of this function is always a typed array
1099 // constructor.
1100 // If source is a typed array, this loop will always run to completion,
1101 // so we are sure that the backing store will be initialized.
1102 // Otherwise, the indexing operation might throw, so the loop will not
1103 // run to completion and the typed array might remain partly initialized.
1104 // However we further assume that the caller of this function is a typed array
1105 // constructor, and the exception will propagate out of the constructor,
1106 // therefore uninitialized memory will not be accessible by a user program.
1107 //
1108 // TODO(dslomov): revise this once we support subclassing.
1109
1110 if (!Runtime::SetupArrayBufferAllocatingData(
1111 isolate, buffer, byte_length, false)) {
1112 THROW_NEW_ERROR_RETURN_FAILURE(
1113 isolate, NewRangeError("invalid_array_buffer_length",
1114 HandleVector<Object>(NULL, 0)));
1115 }
1116
1117 holder->set_buffer(*buffer);
1118 holder->set_byte_offset(Smi::FromInt(0));
1119 Handle<Object> byte_length_obj(
1120 isolate->factory()->NewNumberFromSize(byte_length));
1121 holder->set_byte_length(*byte_length_obj);
1122 holder->set_length(*length_obj);
1123 holder->set_weak_next(buffer->weak_first_view());
1124 buffer->set_weak_first_view(*holder);
1125
1126 Handle<ExternalArray> elements =
1127 isolate->factory()->NewExternalArray(
1128 static_cast<int>(length), array_type,
1129 static_cast<uint8_t*>(buffer->backing_store()));
1130 Handle<Map> map = JSObject::GetElementsTransitionMap(
1131 holder, external_elements_kind);
1132 JSObject::SetMapAndElements(holder, map, elements);
1133
1134 if (source->IsJSTypedArray()) {
1135 Handle<JSTypedArray> typed_array(JSTypedArray::cast(*source));
1136
1137 if (typed_array->type() == holder->type()) {
1138 uint8_t* backing_store =
1139 static_cast<uint8_t*>(
1140 typed_array->GetBuffer()->backing_store());
1141 size_t source_byte_offset =
1142 NumberToSize(isolate, typed_array->byte_offset());
1143 memcpy(
1144 buffer->backing_store(),
1145 backing_store + source_byte_offset,
1146 byte_length);
1147 return isolate->heap()->true_value();
1148 }
1149 }
1150
1151 return isolate->heap()->false_value();
1152 }
1153
1154
1155 #define BUFFER_VIEW_GETTER(Type, getter, accessor) \
1156 RUNTIME_FUNCTION(Runtime_##Type##Get##getter) { \
1157 HandleScope scope(isolate); \
1158 DCHECK(args.length() == 1); \
1159 CONVERT_ARG_HANDLE_CHECKED(JS##Type, holder, 0); \
1160 return holder->accessor(); \
1161 }
1162
BUFFER_VIEW_GETTER(ArrayBufferView,ByteLength,byte_length)1163 BUFFER_VIEW_GETTER(ArrayBufferView, ByteLength, byte_length)
1164 BUFFER_VIEW_GETTER(ArrayBufferView, ByteOffset, byte_offset)
1165 BUFFER_VIEW_GETTER(TypedArray, Length, length)
1166 BUFFER_VIEW_GETTER(DataView, Buffer, buffer)
1167
1168 #undef BUFFER_VIEW_GETTER
1169
1170 RUNTIME_FUNCTION(Runtime_TypedArrayGetBuffer) {
1171 HandleScope scope(isolate);
1172 DCHECK(args.length() == 1);
1173 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
1174 return *holder->GetBuffer();
1175 }
1176
1177
1178 // Return codes for Runtime_TypedArraySetFastCases.
1179 // Should be synchronized with typedarray.js natives.
1180 enum TypedArraySetResultCodes {
1181 // Set from typed array of the same type.
1182 // This is processed by TypedArraySetFastCases
1183 TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE = 0,
1184 // Set from typed array of the different type, overlapping in memory.
1185 TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING = 1,
1186 // Set from typed array of the different type, non-overlapping.
1187 TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING = 2,
1188 // Set from non-typed array.
1189 TYPED_ARRAY_SET_NON_TYPED_ARRAY = 3
1190 };
1191
1192
RUNTIME_FUNCTION(Runtime_TypedArraySetFastCases)1193 RUNTIME_FUNCTION(Runtime_TypedArraySetFastCases) {
1194 HandleScope scope(isolate);
1195 DCHECK(args.length() == 3);
1196 if (!args[0]->IsJSTypedArray()) {
1197 THROW_NEW_ERROR_RETURN_FAILURE(
1198 isolate,
1199 NewTypeError("not_typed_array", HandleVector<Object>(NULL, 0)));
1200 }
1201
1202 if (!args[1]->IsJSTypedArray())
1203 return Smi::FromInt(TYPED_ARRAY_SET_NON_TYPED_ARRAY);
1204
1205 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, target_obj, 0);
1206 CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, source_obj, 1);
1207 CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset_obj, 2);
1208
1209 Handle<JSTypedArray> target(JSTypedArray::cast(*target_obj));
1210 Handle<JSTypedArray> source(JSTypedArray::cast(*source_obj));
1211 size_t offset = 0;
1212 RUNTIME_ASSERT(TryNumberToSize(isolate, *offset_obj, &offset));
1213 size_t target_length = NumberToSize(isolate, target->length());
1214 size_t source_length = NumberToSize(isolate, source->length());
1215 size_t target_byte_length = NumberToSize(isolate, target->byte_length());
1216 size_t source_byte_length = NumberToSize(isolate, source->byte_length());
1217 if (offset > target_length || offset + source_length > target_length ||
1218 offset + source_length < offset) { // overflow
1219 THROW_NEW_ERROR_RETURN_FAILURE(
1220 isolate, NewRangeError("typed_array_set_source_too_large",
1221 HandleVector<Object>(NULL, 0)));
1222 }
1223
1224 size_t target_offset = NumberToSize(isolate, target->byte_offset());
1225 size_t source_offset = NumberToSize(isolate, source->byte_offset());
1226 uint8_t* target_base =
1227 static_cast<uint8_t*>(
1228 target->GetBuffer()->backing_store()) + target_offset;
1229 uint8_t* source_base =
1230 static_cast<uint8_t*>(
1231 source->GetBuffer()->backing_store()) + source_offset;
1232
1233 // Typed arrays of the same type: use memmove.
1234 if (target->type() == source->type()) {
1235 memmove(target_base + offset * target->element_size(),
1236 source_base, source_byte_length);
1237 return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE);
1238 }
1239
1240 // Typed arrays of different types over the same backing store
1241 if ((source_base <= target_base &&
1242 source_base + source_byte_length > target_base) ||
1243 (target_base <= source_base &&
1244 target_base + target_byte_length > source_base)) {
1245 // We do not support overlapping ArrayBuffers
1246 DCHECK(
1247 target->GetBuffer()->backing_store() ==
1248 source->GetBuffer()->backing_store());
1249 return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING);
1250 } else { // Non-overlapping typed arrays
1251 return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING);
1252 }
1253 }
1254
1255
RUNTIME_FUNCTION(Runtime_TypedArrayMaxSizeInHeap)1256 RUNTIME_FUNCTION(Runtime_TypedArrayMaxSizeInHeap) {
1257 DCHECK(args.length() == 0);
1258 DCHECK_OBJECT_SIZE(
1259 FLAG_typed_array_max_size_in_heap + FixedTypedArrayBase::kDataOffset);
1260 return Smi::FromInt(FLAG_typed_array_max_size_in_heap);
1261 }
1262
1263
RUNTIME_FUNCTION(Runtime_DataViewInitialize)1264 RUNTIME_FUNCTION(Runtime_DataViewInitialize) {
1265 HandleScope scope(isolate);
1266 DCHECK(args.length() == 4);
1267 CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0);
1268 CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, buffer, 1);
1269 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset, 2);
1270 CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length, 3);
1271
1272 DCHECK(holder->GetInternalFieldCount() ==
1273 v8::ArrayBufferView::kInternalFieldCount);
1274 for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
1275 holder->SetInternalField(i, Smi::FromInt(0));
1276 }
1277 size_t buffer_length = 0;
1278 size_t offset = 0;
1279 size_t length = 0;
1280 RUNTIME_ASSERT(
1281 TryNumberToSize(isolate, buffer->byte_length(), &buffer_length));
1282 RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset, &offset));
1283 RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length, &length));
1284
1285 // TODO(jkummerow): When we have a "safe numerics" helper class, use it here.
1286 // Entire range [offset, offset + length] must be in bounds.
1287 RUNTIME_ASSERT(offset <= buffer_length);
1288 RUNTIME_ASSERT(offset + length <= buffer_length);
1289 // No overflow.
1290 RUNTIME_ASSERT(offset + length >= offset);
1291
1292 holder->set_buffer(*buffer);
1293 holder->set_byte_offset(*byte_offset);
1294 holder->set_byte_length(*byte_length);
1295
1296 holder->set_weak_next(buffer->weak_first_view());
1297 buffer->set_weak_first_view(*holder);
1298
1299 return isolate->heap()->undefined_value();
1300 }
1301
1302
NeedToFlipBytes(bool is_little_endian)1303 inline static bool NeedToFlipBytes(bool is_little_endian) {
1304 #ifdef V8_TARGET_LITTLE_ENDIAN
1305 return !is_little_endian;
1306 #else
1307 return is_little_endian;
1308 #endif
1309 }
1310
1311
1312 template<int n>
CopyBytes(uint8_t * target,uint8_t * source)1313 inline void CopyBytes(uint8_t* target, uint8_t* source) {
1314 for (int i = 0; i < n; i++) {
1315 *(target++) = *(source++);
1316 }
1317 }
1318
1319
1320 template<int n>
FlipBytes(uint8_t * target,uint8_t * source)1321 inline void FlipBytes(uint8_t* target, uint8_t* source) {
1322 source = source + (n-1);
1323 for (int i = 0; i < n; i++) {
1324 *(target++) = *(source--);
1325 }
1326 }
1327
1328
1329 template<typename T>
DataViewGetValue(Isolate * isolate,Handle<JSDataView> data_view,Handle<Object> byte_offset_obj,bool is_little_endian,T * result)1330 inline static bool DataViewGetValue(
1331 Isolate* isolate,
1332 Handle<JSDataView> data_view,
1333 Handle<Object> byte_offset_obj,
1334 bool is_little_endian,
1335 T* result) {
1336 size_t byte_offset = 0;
1337 if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
1338 return false;
1339 }
1340 Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
1341
1342 size_t data_view_byte_offset =
1343 NumberToSize(isolate, data_view->byte_offset());
1344 size_t data_view_byte_length =
1345 NumberToSize(isolate, data_view->byte_length());
1346 if (byte_offset + sizeof(T) > data_view_byte_length ||
1347 byte_offset + sizeof(T) < byte_offset) { // overflow
1348 return false;
1349 }
1350
1351 union Value {
1352 T data;
1353 uint8_t bytes[sizeof(T)];
1354 };
1355
1356 Value value;
1357 size_t buffer_offset = data_view_byte_offset + byte_offset;
1358 DCHECK(
1359 NumberToSize(isolate, buffer->byte_length())
1360 >= buffer_offset + sizeof(T));
1361 uint8_t* source =
1362 static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
1363 if (NeedToFlipBytes(is_little_endian)) {
1364 FlipBytes<sizeof(T)>(value.bytes, source);
1365 } else {
1366 CopyBytes<sizeof(T)>(value.bytes, source);
1367 }
1368 *result = value.data;
1369 return true;
1370 }
1371
1372
1373 template<typename T>
DataViewSetValue(Isolate * isolate,Handle<JSDataView> data_view,Handle<Object> byte_offset_obj,bool is_little_endian,T data)1374 static bool DataViewSetValue(
1375 Isolate* isolate,
1376 Handle<JSDataView> data_view,
1377 Handle<Object> byte_offset_obj,
1378 bool is_little_endian,
1379 T data) {
1380 size_t byte_offset = 0;
1381 if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
1382 return false;
1383 }
1384 Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
1385
1386 size_t data_view_byte_offset =
1387 NumberToSize(isolate, data_view->byte_offset());
1388 size_t data_view_byte_length =
1389 NumberToSize(isolate, data_view->byte_length());
1390 if (byte_offset + sizeof(T) > data_view_byte_length ||
1391 byte_offset + sizeof(T) < byte_offset) { // overflow
1392 return false;
1393 }
1394
1395 union Value {
1396 T data;
1397 uint8_t bytes[sizeof(T)];
1398 };
1399
1400 Value value;
1401 value.data = data;
1402 size_t buffer_offset = data_view_byte_offset + byte_offset;
1403 DCHECK(
1404 NumberToSize(isolate, buffer->byte_length())
1405 >= buffer_offset + sizeof(T));
1406 uint8_t* target =
1407 static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
1408 if (NeedToFlipBytes(is_little_endian)) {
1409 FlipBytes<sizeof(T)>(target, value.bytes);
1410 } else {
1411 CopyBytes<sizeof(T)>(target, value.bytes);
1412 }
1413 return true;
1414 }
1415
1416
1417 #define DATA_VIEW_GETTER(TypeName, Type, Converter) \
1418 RUNTIME_FUNCTION(Runtime_DataViewGet##TypeName) { \
1419 HandleScope scope(isolate); \
1420 DCHECK(args.length() == 3); \
1421 CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \
1422 CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1); \
1423 CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 2); \
1424 Type result; \
1425 if (DataViewGetValue(isolate, holder, offset, is_little_endian, \
1426 &result)) { \
1427 return *isolate->factory()->Converter(result); \
1428 } else { \
1429 THROW_NEW_ERROR_RETURN_FAILURE( \
1430 isolate, NewRangeError("invalid_data_view_accessor_offset", \
1431 HandleVector<Object>(NULL, 0))); \
1432 } \
1433 }
1434
1435 DATA_VIEW_GETTER(Uint8, uint8_t, NewNumberFromUint)
1436 DATA_VIEW_GETTER(Int8, int8_t, NewNumberFromInt)
1437 DATA_VIEW_GETTER(Uint16, uint16_t, NewNumberFromUint)
1438 DATA_VIEW_GETTER(Int16, int16_t, NewNumberFromInt)
1439 DATA_VIEW_GETTER(Uint32, uint32_t, NewNumberFromUint)
1440 DATA_VIEW_GETTER(Int32, int32_t, NewNumberFromInt)
1441 DATA_VIEW_GETTER(Float32, float, NewNumber)
1442 DATA_VIEW_GETTER(Float64, double, NewNumber)
1443
1444 #undef DATA_VIEW_GETTER
1445
1446
1447 template <typename T>
1448 static T DataViewConvertValue(double value);
1449
1450
1451 template <>
DataViewConvertValue(double value)1452 int8_t DataViewConvertValue<int8_t>(double value) {
1453 return static_cast<int8_t>(DoubleToInt32(value));
1454 }
1455
1456
1457 template <>
DataViewConvertValue(double value)1458 int16_t DataViewConvertValue<int16_t>(double value) {
1459 return static_cast<int16_t>(DoubleToInt32(value));
1460 }
1461
1462
1463 template <>
DataViewConvertValue(double value)1464 int32_t DataViewConvertValue<int32_t>(double value) {
1465 return DoubleToInt32(value);
1466 }
1467
1468
1469 template <>
DataViewConvertValue(double value)1470 uint8_t DataViewConvertValue<uint8_t>(double value) {
1471 return static_cast<uint8_t>(DoubleToUint32(value));
1472 }
1473
1474
1475 template <>
DataViewConvertValue(double value)1476 uint16_t DataViewConvertValue<uint16_t>(double value) {
1477 return static_cast<uint16_t>(DoubleToUint32(value));
1478 }
1479
1480
1481 template <>
DataViewConvertValue(double value)1482 uint32_t DataViewConvertValue<uint32_t>(double value) {
1483 return DoubleToUint32(value);
1484 }
1485
1486
1487 template <>
DataViewConvertValue(double value)1488 float DataViewConvertValue<float>(double value) {
1489 return static_cast<float>(value);
1490 }
1491
1492
1493 template <>
DataViewConvertValue(double value)1494 double DataViewConvertValue<double>(double value) {
1495 return value;
1496 }
1497
1498
1499 #define DATA_VIEW_SETTER(TypeName, Type) \
1500 RUNTIME_FUNCTION(Runtime_DataViewSet##TypeName) { \
1501 HandleScope scope(isolate); \
1502 DCHECK(args.length() == 4); \
1503 CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0); \
1504 CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1); \
1505 CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2); \
1506 CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 3); \
1507 Type v = DataViewConvertValue<Type>(value->Number()); \
1508 if (DataViewSetValue(isolate, holder, offset, is_little_endian, v)) { \
1509 return isolate->heap()->undefined_value(); \
1510 } else { \
1511 THROW_NEW_ERROR_RETURN_FAILURE( \
1512 isolate, NewRangeError("invalid_data_view_accessor_offset", \
1513 HandleVector<Object>(NULL, 0))); \
1514 } \
1515 }
1516
DATA_VIEW_SETTER(Uint8,uint8_t)1517 DATA_VIEW_SETTER(Uint8, uint8_t)
1518 DATA_VIEW_SETTER(Int8, int8_t)
1519 DATA_VIEW_SETTER(Uint16, uint16_t)
1520 DATA_VIEW_SETTER(Int16, int16_t)
1521 DATA_VIEW_SETTER(Uint32, uint32_t)
1522 DATA_VIEW_SETTER(Int32, int32_t)
1523 DATA_VIEW_SETTER(Float32, float)
1524 DATA_VIEW_SETTER(Float64, double)
1525
1526 #undef DATA_VIEW_SETTER
1527
1528
1529 RUNTIME_FUNCTION(Runtime_SetInitialize) {
1530 HandleScope scope(isolate);
1531 DCHECK(args.length() == 1);
1532 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1533 Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet();
1534 holder->set_table(*table);
1535 return *holder;
1536 }
1537
1538
RUNTIME_FUNCTION(Runtime_SetAdd)1539 RUNTIME_FUNCTION(Runtime_SetAdd) {
1540 HandleScope scope(isolate);
1541 DCHECK(args.length() == 2);
1542 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1543 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1544 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1545 table = OrderedHashSet::Add(table, key);
1546 holder->set_table(*table);
1547 return *holder;
1548 }
1549
1550
RUNTIME_FUNCTION(Runtime_SetHas)1551 RUNTIME_FUNCTION(Runtime_SetHas) {
1552 HandleScope scope(isolate);
1553 DCHECK(args.length() == 2);
1554 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1555 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1556 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1557 return isolate->heap()->ToBoolean(table->Contains(key));
1558 }
1559
1560
RUNTIME_FUNCTION(Runtime_SetDelete)1561 RUNTIME_FUNCTION(Runtime_SetDelete) {
1562 HandleScope scope(isolate);
1563 DCHECK(args.length() == 2);
1564 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1565 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1566 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1567 bool was_present = false;
1568 table = OrderedHashSet::Remove(table, key, &was_present);
1569 holder->set_table(*table);
1570 return isolate->heap()->ToBoolean(was_present);
1571 }
1572
1573
RUNTIME_FUNCTION(Runtime_SetClear)1574 RUNTIME_FUNCTION(Runtime_SetClear) {
1575 HandleScope scope(isolate);
1576 DCHECK(args.length() == 1);
1577 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1578 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1579 table = OrderedHashSet::Clear(table);
1580 holder->set_table(*table);
1581 return isolate->heap()->undefined_value();
1582 }
1583
1584
RUNTIME_FUNCTION(Runtime_SetGetSize)1585 RUNTIME_FUNCTION(Runtime_SetGetSize) {
1586 HandleScope scope(isolate);
1587 DCHECK(args.length() == 1);
1588 CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
1589 Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
1590 return Smi::FromInt(table->NumberOfElements());
1591 }
1592
1593
RUNTIME_FUNCTION(Runtime_SetIteratorInitialize)1594 RUNTIME_FUNCTION(Runtime_SetIteratorInitialize) {
1595 HandleScope scope(isolate);
1596 DCHECK(args.length() == 3);
1597 CONVERT_ARG_HANDLE_CHECKED(JSSetIterator, holder, 0);
1598 CONVERT_ARG_HANDLE_CHECKED(JSSet, set, 1);
1599 CONVERT_SMI_ARG_CHECKED(kind, 2)
1600 RUNTIME_ASSERT(kind == JSSetIterator::kKindValues ||
1601 kind == JSSetIterator::kKindEntries);
1602 Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table()));
1603 holder->set_table(*table);
1604 holder->set_index(Smi::FromInt(0));
1605 holder->set_kind(Smi::FromInt(kind));
1606 return isolate->heap()->undefined_value();
1607 }
1608
1609
RUNTIME_FUNCTION(Runtime_SetIteratorNext)1610 RUNTIME_FUNCTION(Runtime_SetIteratorNext) {
1611 SealHandleScope shs(isolate);
1612 DCHECK(args.length() == 2);
1613 CONVERT_ARG_CHECKED(JSSetIterator, holder, 0);
1614 CONVERT_ARG_CHECKED(JSArray, value_array, 1);
1615 return holder->Next(value_array);
1616 }
1617
1618
RUNTIME_FUNCTION(Runtime_MapInitialize)1619 RUNTIME_FUNCTION(Runtime_MapInitialize) {
1620 HandleScope scope(isolate);
1621 DCHECK(args.length() == 1);
1622 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1623 Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap();
1624 holder->set_table(*table);
1625 return *holder;
1626 }
1627
1628
RUNTIME_FUNCTION(Runtime_MapGet)1629 RUNTIME_FUNCTION(Runtime_MapGet) {
1630 HandleScope scope(isolate);
1631 DCHECK(args.length() == 2);
1632 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1633 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1634 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1635 Handle<Object> lookup(table->Lookup(key), isolate);
1636 return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
1637 }
1638
1639
RUNTIME_FUNCTION(Runtime_MapHas)1640 RUNTIME_FUNCTION(Runtime_MapHas) {
1641 HandleScope scope(isolate);
1642 DCHECK(args.length() == 2);
1643 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1644 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1645 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1646 Handle<Object> lookup(table->Lookup(key), isolate);
1647 return isolate->heap()->ToBoolean(!lookup->IsTheHole());
1648 }
1649
1650
RUNTIME_FUNCTION(Runtime_MapDelete)1651 RUNTIME_FUNCTION(Runtime_MapDelete) {
1652 HandleScope scope(isolate);
1653 DCHECK(args.length() == 2);
1654 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1655 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1656 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1657 bool was_present = false;
1658 Handle<OrderedHashMap> new_table =
1659 OrderedHashMap::Remove(table, key, &was_present);
1660 holder->set_table(*new_table);
1661 return isolate->heap()->ToBoolean(was_present);
1662 }
1663
1664
RUNTIME_FUNCTION(Runtime_MapClear)1665 RUNTIME_FUNCTION(Runtime_MapClear) {
1666 HandleScope scope(isolate);
1667 DCHECK(args.length() == 1);
1668 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1669 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1670 table = OrderedHashMap::Clear(table);
1671 holder->set_table(*table);
1672 return isolate->heap()->undefined_value();
1673 }
1674
1675
RUNTIME_FUNCTION(Runtime_MapSet)1676 RUNTIME_FUNCTION(Runtime_MapSet) {
1677 HandleScope scope(isolate);
1678 DCHECK(args.length() == 3);
1679 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1680 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1681 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
1682 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1683 Handle<OrderedHashMap> new_table = OrderedHashMap::Put(table, key, value);
1684 holder->set_table(*new_table);
1685 return *holder;
1686 }
1687
1688
RUNTIME_FUNCTION(Runtime_MapGetSize)1689 RUNTIME_FUNCTION(Runtime_MapGetSize) {
1690 HandleScope scope(isolate);
1691 DCHECK(args.length() == 1);
1692 CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
1693 Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
1694 return Smi::FromInt(table->NumberOfElements());
1695 }
1696
1697
RUNTIME_FUNCTION(Runtime_MapIteratorInitialize)1698 RUNTIME_FUNCTION(Runtime_MapIteratorInitialize) {
1699 HandleScope scope(isolate);
1700 DCHECK(args.length() == 3);
1701 CONVERT_ARG_HANDLE_CHECKED(JSMapIterator, holder, 0);
1702 CONVERT_ARG_HANDLE_CHECKED(JSMap, map, 1);
1703 CONVERT_SMI_ARG_CHECKED(kind, 2)
1704 RUNTIME_ASSERT(kind == JSMapIterator::kKindKeys
1705 || kind == JSMapIterator::kKindValues
1706 || kind == JSMapIterator::kKindEntries);
1707 Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table()));
1708 holder->set_table(*table);
1709 holder->set_index(Smi::FromInt(0));
1710 holder->set_kind(Smi::FromInt(kind));
1711 return isolate->heap()->undefined_value();
1712 }
1713
1714
RUNTIME_FUNCTION(Runtime_GetWeakMapEntries)1715 RUNTIME_FUNCTION(Runtime_GetWeakMapEntries) {
1716 HandleScope scope(isolate);
1717 DCHECK(args.length() == 1);
1718 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0);
1719 Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
1720 Handle<FixedArray> entries =
1721 isolate->factory()->NewFixedArray(table->NumberOfElements() * 2);
1722 {
1723 DisallowHeapAllocation no_gc;
1724 int number_of_non_hole_elements = 0;
1725 for (int i = 0; i < table->Capacity(); i++) {
1726 Handle<Object> key(table->KeyAt(i), isolate);
1727 if (table->IsKey(*key)) {
1728 entries->set(number_of_non_hole_elements++, *key);
1729 Object* value = table->Lookup(key);
1730 entries->set(number_of_non_hole_elements++, value);
1731 }
1732 }
1733 DCHECK_EQ(table->NumberOfElements() * 2, number_of_non_hole_elements);
1734 }
1735 return *isolate->factory()->NewJSArrayWithElements(entries);
1736 }
1737
1738
RUNTIME_FUNCTION(Runtime_MapIteratorNext)1739 RUNTIME_FUNCTION(Runtime_MapIteratorNext) {
1740 SealHandleScope shs(isolate);
1741 DCHECK(args.length() == 2);
1742 CONVERT_ARG_CHECKED(JSMapIterator, holder, 0);
1743 CONVERT_ARG_CHECKED(JSArray, value_array, 1);
1744 return holder->Next(value_array);
1745 }
1746
1747
WeakCollectionInitialize(Isolate * isolate,Handle<JSWeakCollection> weak_collection)1748 static Handle<JSWeakCollection> WeakCollectionInitialize(
1749 Isolate* isolate,
1750 Handle<JSWeakCollection> weak_collection) {
1751 DCHECK(weak_collection->map()->inobject_properties() == 0);
1752 Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0);
1753 weak_collection->set_table(*table);
1754 return weak_collection;
1755 }
1756
1757
RUNTIME_FUNCTION(Runtime_WeakCollectionInitialize)1758 RUNTIME_FUNCTION(Runtime_WeakCollectionInitialize) {
1759 HandleScope scope(isolate);
1760 DCHECK(args.length() == 1);
1761 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1762 return *WeakCollectionInitialize(isolate, weak_collection);
1763 }
1764
1765
RUNTIME_FUNCTION(Runtime_WeakCollectionGet)1766 RUNTIME_FUNCTION(Runtime_WeakCollectionGet) {
1767 HandleScope scope(isolate);
1768 DCHECK(args.length() == 2);
1769 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1770 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1771 RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1772 Handle<ObjectHashTable> table(
1773 ObjectHashTable::cast(weak_collection->table()));
1774 RUNTIME_ASSERT(table->IsKey(*key));
1775 Handle<Object> lookup(table->Lookup(key), isolate);
1776 return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
1777 }
1778
1779
RUNTIME_FUNCTION(Runtime_WeakCollectionHas)1780 RUNTIME_FUNCTION(Runtime_WeakCollectionHas) {
1781 HandleScope scope(isolate);
1782 DCHECK(args.length() == 2);
1783 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1784 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1785 RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1786 Handle<ObjectHashTable> table(
1787 ObjectHashTable::cast(weak_collection->table()));
1788 RUNTIME_ASSERT(table->IsKey(*key));
1789 Handle<Object> lookup(table->Lookup(key), isolate);
1790 return isolate->heap()->ToBoolean(!lookup->IsTheHole());
1791 }
1792
1793
RUNTIME_FUNCTION(Runtime_WeakCollectionDelete)1794 RUNTIME_FUNCTION(Runtime_WeakCollectionDelete) {
1795 HandleScope scope(isolate);
1796 DCHECK(args.length() == 2);
1797 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1798 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1799 RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1800 Handle<ObjectHashTable> table(ObjectHashTable::cast(
1801 weak_collection->table()));
1802 RUNTIME_ASSERT(table->IsKey(*key));
1803 bool was_present = false;
1804 Handle<ObjectHashTable> new_table =
1805 ObjectHashTable::Remove(table, key, &was_present);
1806 weak_collection->set_table(*new_table);
1807 return isolate->heap()->ToBoolean(was_present);
1808 }
1809
1810
RUNTIME_FUNCTION(Runtime_WeakCollectionSet)1811 RUNTIME_FUNCTION(Runtime_WeakCollectionSet) {
1812 HandleScope scope(isolate);
1813 DCHECK(args.length() == 3);
1814 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
1815 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
1816 RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
1817 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
1818 Handle<ObjectHashTable> table(
1819 ObjectHashTable::cast(weak_collection->table()));
1820 RUNTIME_ASSERT(table->IsKey(*key));
1821 Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, value);
1822 weak_collection->set_table(*new_table);
1823 return *weak_collection;
1824 }
1825
1826
RUNTIME_FUNCTION(Runtime_GetWeakSetValues)1827 RUNTIME_FUNCTION(Runtime_GetWeakSetValues) {
1828 HandleScope scope(isolate);
1829 DCHECK(args.length() == 1);
1830 CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0);
1831 Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
1832 Handle<FixedArray> values =
1833 isolate->factory()->NewFixedArray(table->NumberOfElements());
1834 {
1835 DisallowHeapAllocation no_gc;
1836 int number_of_non_hole_elements = 0;
1837 for (int i = 0; i < table->Capacity(); i++) {
1838 Handle<Object> key(table->KeyAt(i), isolate);
1839 if (table->IsKey(*key)) {
1840 values->set(number_of_non_hole_elements++, *key);
1841 }
1842 }
1843 DCHECK_EQ(table->NumberOfElements(), number_of_non_hole_elements);
1844 }
1845 return *isolate->factory()->NewJSArrayWithElements(values);
1846 }
1847
1848
RUNTIME_FUNCTION(Runtime_GetPrototype)1849 RUNTIME_FUNCTION(Runtime_GetPrototype) {
1850 HandleScope scope(isolate);
1851 DCHECK(args.length() == 1);
1852 CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
1853 // We don't expect access checks to be needed on JSProxy objects.
1854 DCHECK(!obj->IsAccessCheckNeeded() || obj->IsJSObject());
1855 PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
1856 do {
1857 if (PrototypeIterator::GetCurrent(iter)->IsAccessCheckNeeded() &&
1858 !isolate->MayNamedAccess(
1859 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
1860 isolate->factory()->proto_string(), v8::ACCESS_GET)) {
1861 isolate->ReportFailedAccessCheck(
1862 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
1863 v8::ACCESS_GET);
1864 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
1865 return isolate->heap()->undefined_value();
1866 }
1867 iter.AdvanceIgnoringProxies();
1868 if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
1869 return *PrototypeIterator::GetCurrent(iter);
1870 }
1871 } while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN));
1872 return *PrototypeIterator::GetCurrent(iter);
1873 }
1874
1875
GetPrototypeSkipHiddenPrototypes(Isolate * isolate,Handle<Object> receiver)1876 static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
1877 Isolate* isolate, Handle<Object> receiver) {
1878 PrototypeIterator iter(isolate, receiver);
1879 while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN)) {
1880 if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
1881 return PrototypeIterator::GetCurrent(iter);
1882 }
1883 iter.Advance();
1884 }
1885 return PrototypeIterator::GetCurrent(iter);
1886 }
1887
1888
RUNTIME_FUNCTION(Runtime_InternalSetPrototype)1889 RUNTIME_FUNCTION(Runtime_InternalSetPrototype) {
1890 HandleScope scope(isolate);
1891 DCHECK(args.length() == 2);
1892 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
1893 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
1894 DCHECK(!obj->IsAccessCheckNeeded());
1895 DCHECK(!obj->map()->is_observed());
1896 Handle<Object> result;
1897 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1898 isolate, result, JSObject::SetPrototype(obj, prototype, false));
1899 return *result;
1900 }
1901
1902
RUNTIME_FUNCTION(Runtime_SetPrototype)1903 RUNTIME_FUNCTION(Runtime_SetPrototype) {
1904 HandleScope scope(isolate);
1905 DCHECK(args.length() == 2);
1906 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
1907 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
1908 if (obj->IsAccessCheckNeeded() &&
1909 !isolate->MayNamedAccess(
1910 obj, isolate->factory()->proto_string(), v8::ACCESS_SET)) {
1911 isolate->ReportFailedAccessCheck(obj, v8::ACCESS_SET);
1912 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
1913 return isolate->heap()->undefined_value();
1914 }
1915 if (obj->map()->is_observed()) {
1916 Handle<Object> old_value = GetPrototypeSkipHiddenPrototypes(isolate, obj);
1917 Handle<Object> result;
1918 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1919 isolate, result,
1920 JSObject::SetPrototype(obj, prototype, true));
1921
1922 Handle<Object> new_value = GetPrototypeSkipHiddenPrototypes(isolate, obj);
1923 if (!new_value->SameValue(*old_value)) {
1924 JSObject::EnqueueChangeRecord(obj, "setPrototype",
1925 isolate->factory()->proto_string(),
1926 old_value);
1927 }
1928 return *result;
1929 }
1930 Handle<Object> result;
1931 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1932 isolate, result,
1933 JSObject::SetPrototype(obj, prototype, true));
1934 return *result;
1935 }
1936
1937
RUNTIME_FUNCTION(Runtime_IsInPrototypeChain)1938 RUNTIME_FUNCTION(Runtime_IsInPrototypeChain) {
1939 HandleScope shs(isolate);
1940 DCHECK(args.length() == 2);
1941 // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
1942 CONVERT_ARG_HANDLE_CHECKED(Object, O, 0);
1943 CONVERT_ARG_HANDLE_CHECKED(Object, V, 1);
1944 PrototypeIterator iter(isolate, V, PrototypeIterator::START_AT_RECEIVER);
1945 while (true) {
1946 iter.AdvanceIgnoringProxies();
1947 if (iter.IsAtEnd()) return isolate->heap()->false_value();
1948 if (iter.IsAtEnd(O)) return isolate->heap()->true_value();
1949 }
1950 }
1951
1952
1953 // Enumerator used as indices into the array returned from GetOwnProperty
1954 enum PropertyDescriptorIndices {
1955 IS_ACCESSOR_INDEX,
1956 VALUE_INDEX,
1957 GETTER_INDEX,
1958 SETTER_INDEX,
1959 WRITABLE_INDEX,
1960 ENUMERABLE_INDEX,
1961 CONFIGURABLE_INDEX,
1962 DESCRIPTOR_SIZE
1963 };
1964
1965
GetOwnProperty(Isolate * isolate,Handle<JSObject> obj,Handle<Name> name)1966 MUST_USE_RESULT static MaybeHandle<Object> GetOwnProperty(Isolate* isolate,
1967 Handle<JSObject> obj,
1968 Handle<Name> name) {
1969 Heap* heap = isolate->heap();
1970 Factory* factory = isolate->factory();
1971
1972 PropertyAttributes attrs;
1973 uint32_t index = 0;
1974 Handle<Object> value;
1975 MaybeHandle<AccessorPair> maybe_accessors;
1976 // TODO(verwaest): Unify once indexed properties can be handled by the
1977 // LookupIterator.
1978 if (name->AsArrayIndex(&index)) {
1979 // Get attributes.
1980 Maybe<PropertyAttributes> maybe =
1981 JSReceiver::GetOwnElementAttribute(obj, index);
1982 if (!maybe.has_value) return MaybeHandle<Object>();
1983 attrs = maybe.value;
1984 if (attrs == ABSENT) return factory->undefined_value();
1985
1986 // Get AccessorPair if present.
1987 maybe_accessors = JSObject::GetOwnElementAccessorPair(obj, index);
1988
1989 // Get value if not an AccessorPair.
1990 if (maybe_accessors.is_null()) {
1991 ASSIGN_RETURN_ON_EXCEPTION(isolate, value,
1992 Runtime::GetElementOrCharAt(isolate, obj, index), Object);
1993 }
1994 } else {
1995 // Get attributes.
1996 LookupIterator it(obj, name, LookupIterator::HIDDEN);
1997 Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(&it);
1998 if (!maybe.has_value) return MaybeHandle<Object>();
1999 attrs = maybe.value;
2000 if (attrs == ABSENT) return factory->undefined_value();
2001
2002 // Get AccessorPair if present.
2003 if (it.state() == LookupIterator::ACCESSOR &&
2004 it.GetAccessors()->IsAccessorPair()) {
2005 maybe_accessors = Handle<AccessorPair>::cast(it.GetAccessors());
2006 }
2007
2008 // Get value if not an AccessorPair.
2009 if (maybe_accessors.is_null()) {
2010 ASSIGN_RETURN_ON_EXCEPTION(
2011 isolate, value, Object::GetProperty(&it), Object);
2012 }
2013 }
2014 DCHECK(!isolate->has_pending_exception());
2015 Handle<FixedArray> elms = factory->NewFixedArray(DESCRIPTOR_SIZE);
2016 elms->set(ENUMERABLE_INDEX, heap->ToBoolean((attrs & DONT_ENUM) == 0));
2017 elms->set(CONFIGURABLE_INDEX, heap->ToBoolean((attrs & DONT_DELETE) == 0));
2018 elms->set(IS_ACCESSOR_INDEX, heap->ToBoolean(!maybe_accessors.is_null()));
2019
2020 Handle<AccessorPair> accessors;
2021 if (maybe_accessors.ToHandle(&accessors)) {
2022 Handle<Object> getter(accessors->GetComponent(ACCESSOR_GETTER), isolate);
2023 Handle<Object> setter(accessors->GetComponent(ACCESSOR_SETTER), isolate);
2024 elms->set(GETTER_INDEX, *getter);
2025 elms->set(SETTER_INDEX, *setter);
2026 } else {
2027 elms->set(WRITABLE_INDEX, heap->ToBoolean((attrs & READ_ONLY) == 0));
2028 elms->set(VALUE_INDEX, *value);
2029 }
2030
2031 return factory->NewJSArrayWithElements(elms);
2032 }
2033
2034
2035 // Returns an array with the property description:
2036 // if args[1] is not a property on args[0]
2037 // returns undefined
2038 // if args[1] is a data property on args[0]
2039 // [false, value, Writeable, Enumerable, Configurable]
2040 // if args[1] is an accessor on args[0]
2041 // [true, GetFunction, SetFunction, Enumerable, Configurable]
RUNTIME_FUNCTION(Runtime_GetOwnProperty)2042 RUNTIME_FUNCTION(Runtime_GetOwnProperty) {
2043 HandleScope scope(isolate);
2044 DCHECK(args.length() == 2);
2045 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
2046 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
2047 Handle<Object> result;
2048 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2049 isolate, result, GetOwnProperty(isolate, obj, name));
2050 return *result;
2051 }
2052
2053
RUNTIME_FUNCTION(Runtime_PreventExtensions)2054 RUNTIME_FUNCTION(Runtime_PreventExtensions) {
2055 HandleScope scope(isolate);
2056 DCHECK(args.length() == 1);
2057 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
2058 Handle<Object> result;
2059 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2060 isolate, result, JSObject::PreventExtensions(obj));
2061 return *result;
2062 }
2063
2064
RUNTIME_FUNCTION(Runtime_ToMethod)2065 RUNTIME_FUNCTION(Runtime_ToMethod) {
2066 HandleScope scope(isolate);
2067 DCHECK(args.length() == 2);
2068 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
2069 CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
2070 Handle<JSFunction> clone = JSFunction::CloneClosure(fun);
2071 Handle<Symbol> home_object_symbol(isolate->heap()->home_object_symbol());
2072 JSObject::SetOwnPropertyIgnoreAttributes(clone, home_object_symbol,
2073 home_object, DONT_ENUM).Assert();
2074 return *clone;
2075 }
2076
2077
RUNTIME_FUNCTION(Runtime_HomeObjectSymbol)2078 RUNTIME_FUNCTION(Runtime_HomeObjectSymbol) {
2079 DCHECK(args.length() == 0);
2080 return isolate->heap()->home_object_symbol();
2081 }
2082
2083
RUNTIME_FUNCTION(Runtime_LoadFromSuper)2084 RUNTIME_FUNCTION(Runtime_LoadFromSuper) {
2085 HandleScope scope(isolate);
2086 DCHECK(args.length() == 3);
2087 CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 0);
2088 CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1);
2089 CONVERT_ARG_HANDLE_CHECKED(Name, name, 2);
2090
2091 if (home_object->IsAccessCheckNeeded() &&
2092 !isolate->MayNamedAccess(home_object, name, v8::ACCESS_GET)) {
2093 isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_GET);
2094 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
2095 }
2096
2097 PrototypeIterator iter(isolate, home_object);
2098 Handle<Object> proto = PrototypeIterator::GetCurrent(iter);
2099 if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value();
2100
2101 LookupIterator it(receiver, name, Handle<JSReceiver>::cast(proto));
2102 Handle<Object> result;
2103 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it));
2104 return *result;
2105 }
2106
2107
RUNTIME_FUNCTION(Runtime_IsExtensible)2108 RUNTIME_FUNCTION(Runtime_IsExtensible) {
2109 SealHandleScope shs(isolate);
2110 DCHECK(args.length() == 1);
2111 CONVERT_ARG_CHECKED(JSObject, obj, 0);
2112 if (obj->IsJSGlobalProxy()) {
2113 PrototypeIterator iter(isolate, obj);
2114 if (iter.IsAtEnd()) return isolate->heap()->false_value();
2115 DCHECK(iter.GetCurrent()->IsJSGlobalObject());
2116 obj = JSObject::cast(iter.GetCurrent());
2117 }
2118 return isolate->heap()->ToBoolean(obj->map()->is_extensible());
2119 }
2120
2121
RUNTIME_FUNCTION(Runtime_RegExpCompile)2122 RUNTIME_FUNCTION(Runtime_RegExpCompile) {
2123 HandleScope scope(isolate);
2124 DCHECK(args.length() == 3);
2125 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, re, 0);
2126 CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1);
2127 CONVERT_ARG_HANDLE_CHECKED(String, flags, 2);
2128 Handle<Object> result;
2129 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2130 isolate, result, RegExpImpl::Compile(re, pattern, flags));
2131 return *result;
2132 }
2133
2134
RUNTIME_FUNCTION(Runtime_CreateApiFunction)2135 RUNTIME_FUNCTION(Runtime_CreateApiFunction) {
2136 HandleScope scope(isolate);
2137 DCHECK(args.length() == 2);
2138 CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0);
2139 CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
2140 return *isolate->factory()->CreateApiFunction(data, prototype);
2141 }
2142
2143
RUNTIME_FUNCTION(Runtime_IsTemplate)2144 RUNTIME_FUNCTION(Runtime_IsTemplate) {
2145 SealHandleScope shs(isolate);
2146 DCHECK(args.length() == 1);
2147 CONVERT_ARG_HANDLE_CHECKED(Object, arg, 0);
2148 bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
2149 return isolate->heap()->ToBoolean(result);
2150 }
2151
2152
RUNTIME_FUNCTION(Runtime_GetTemplateField)2153 RUNTIME_FUNCTION(Runtime_GetTemplateField) {
2154 SealHandleScope shs(isolate);
2155 DCHECK(args.length() == 2);
2156 CONVERT_ARG_CHECKED(HeapObject, templ, 0);
2157 CONVERT_SMI_ARG_CHECKED(index, 1);
2158 int offset = index * kPointerSize + HeapObject::kHeaderSize;
2159 InstanceType type = templ->map()->instance_type();
2160 RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
2161 type == OBJECT_TEMPLATE_INFO_TYPE);
2162 RUNTIME_ASSERT(offset > 0);
2163 if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
2164 RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
2165 } else {
2166 RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
2167 }
2168 return *HeapObject::RawField(templ, offset);
2169 }
2170
2171
RUNTIME_FUNCTION(Runtime_DisableAccessChecks)2172 RUNTIME_FUNCTION(Runtime_DisableAccessChecks) {
2173 HandleScope scope(isolate);
2174 DCHECK(args.length() == 1);
2175 CONVERT_ARG_HANDLE_CHECKED(HeapObject, object, 0);
2176 Handle<Map> old_map(object->map());
2177 bool needs_access_checks = old_map->is_access_check_needed();
2178 if (needs_access_checks) {
2179 // Copy map so it won't interfere constructor's initial map.
2180 Handle<Map> new_map = Map::Copy(old_map);
2181 new_map->set_is_access_check_needed(false);
2182 JSObject::MigrateToMap(Handle<JSObject>::cast(object), new_map);
2183 }
2184 return isolate->heap()->ToBoolean(needs_access_checks);
2185 }
2186
2187
RUNTIME_FUNCTION(Runtime_EnableAccessChecks)2188 RUNTIME_FUNCTION(Runtime_EnableAccessChecks) {
2189 HandleScope scope(isolate);
2190 DCHECK(args.length() == 1);
2191 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
2192 Handle<Map> old_map(object->map());
2193 RUNTIME_ASSERT(!old_map->is_access_check_needed());
2194 // Copy map so it won't interfere constructor's initial map.
2195 Handle<Map> new_map = Map::Copy(old_map);
2196 new_map->set_is_access_check_needed(true);
2197 JSObject::MigrateToMap(object, new_map);
2198 return isolate->heap()->undefined_value();
2199 }
2200
2201
ThrowRedeclarationError(Isolate * isolate,Handle<String> name)2202 static Object* ThrowRedeclarationError(Isolate* isolate, Handle<String> name) {
2203 HandleScope scope(isolate);
2204 Handle<Object> args[1] = { name };
2205 THROW_NEW_ERROR_RETURN_FAILURE(
2206 isolate, NewTypeError("var_redeclaration", HandleVector(args, 1)));
2207 }
2208
2209
2210 // May throw a RedeclarationError.
DeclareGlobals(Isolate * isolate,Handle<GlobalObject> global,Handle<String> name,Handle<Object> value,PropertyAttributes attr,bool is_var,bool is_const,bool is_function)2211 static Object* DeclareGlobals(Isolate* isolate, Handle<GlobalObject> global,
2212 Handle<String> name, Handle<Object> value,
2213 PropertyAttributes attr, bool is_var,
2214 bool is_const, bool is_function) {
2215 // Do the lookup own properties only, see ES5 erratum.
2216 LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
2217 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
2218 if (!maybe.has_value) return isolate->heap()->exception();
2219
2220 if (it.IsFound()) {
2221 PropertyAttributes old_attributes = maybe.value;
2222 // The name was declared before; check for conflicting re-declarations.
2223 if (is_const) return ThrowRedeclarationError(isolate, name);
2224
2225 // Skip var re-declarations.
2226 if (is_var) return isolate->heap()->undefined_value();
2227
2228 DCHECK(is_function);
2229 if ((old_attributes & DONT_DELETE) != 0) {
2230 // Only allow reconfiguring globals to functions in user code (no
2231 // natives, which are marked as read-only).
2232 DCHECK((attr & READ_ONLY) == 0);
2233
2234 // Check whether we can reconfigure the existing property into a
2235 // function.
2236 PropertyDetails old_details = it.property_details();
2237 // TODO(verwaest): CALLBACKS invalidly includes ExecutableAccessInfo,
2238 // which are actually data properties, not accessor properties.
2239 if (old_details.IsReadOnly() || old_details.IsDontEnum() ||
2240 old_details.type() == CALLBACKS) {
2241 return ThrowRedeclarationError(isolate, name);
2242 }
2243 // If the existing property is not configurable, keep its attributes. Do
2244 attr = old_attributes;
2245 }
2246 }
2247
2248 // Define or redefine own property.
2249 RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2250 global, name, value, attr));
2251
2252 return isolate->heap()->undefined_value();
2253 }
2254
2255
RUNTIME_FUNCTION(Runtime_DeclareGlobals)2256 RUNTIME_FUNCTION(Runtime_DeclareGlobals) {
2257 HandleScope scope(isolate);
2258 DCHECK(args.length() == 3);
2259 Handle<GlobalObject> global(isolate->global_object());
2260
2261 CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
2262 CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1);
2263 CONVERT_SMI_ARG_CHECKED(flags, 2);
2264
2265 // Traverse the name/value pairs and set the properties.
2266 int length = pairs->length();
2267 for (int i = 0; i < length; i += 2) {
2268 HandleScope scope(isolate);
2269 Handle<String> name(String::cast(pairs->get(i)));
2270 Handle<Object> initial_value(pairs->get(i + 1), isolate);
2271
2272 // We have to declare a global const property. To capture we only
2273 // assign to it when evaluating the assignment for "const x =
2274 // <expr>" the initial value is the hole.
2275 bool is_var = initial_value->IsUndefined();
2276 bool is_const = initial_value->IsTheHole();
2277 bool is_function = initial_value->IsSharedFunctionInfo();
2278 DCHECK(is_var + is_const + is_function == 1);
2279
2280 Handle<Object> value;
2281 if (is_function) {
2282 // Copy the function and update its context. Use it as value.
2283 Handle<SharedFunctionInfo> shared =
2284 Handle<SharedFunctionInfo>::cast(initial_value);
2285 Handle<JSFunction> function =
2286 isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
2287 TENURED);
2288 value = function;
2289 } else {
2290 value = isolate->factory()->undefined_value();
2291 }
2292
2293 // Compute the property attributes. According to ECMA-262,
2294 // the property must be non-configurable except in eval.
2295 bool is_native = DeclareGlobalsNativeFlag::decode(flags);
2296 bool is_eval = DeclareGlobalsEvalFlag::decode(flags);
2297 int attr = NONE;
2298 if (is_const) attr |= READ_ONLY;
2299 if (is_function && is_native) attr |= READ_ONLY;
2300 if (!is_const && !is_eval) attr |= DONT_DELETE;
2301
2302 Object* result = DeclareGlobals(isolate, global, name, value,
2303 static_cast<PropertyAttributes>(attr),
2304 is_var, is_const, is_function);
2305 if (isolate->has_pending_exception()) return result;
2306 }
2307
2308 return isolate->heap()->undefined_value();
2309 }
2310
2311
RUNTIME_FUNCTION(Runtime_InitializeVarGlobal)2312 RUNTIME_FUNCTION(Runtime_InitializeVarGlobal) {
2313 HandleScope scope(isolate);
2314 // args[0] == name
2315 // args[1] == language_mode
2316 // args[2] == value (optional)
2317
2318 // Determine if we need to assign to the variable if it already
2319 // exists (based on the number of arguments).
2320 RUNTIME_ASSERT(args.length() == 3);
2321
2322 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
2323 CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 1);
2324 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
2325
2326 Handle<GlobalObject> global(isolate->context()->global_object());
2327 Handle<Object> result;
2328 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2329 isolate, result, Object::SetProperty(global, name, value, strict_mode));
2330 return *result;
2331 }
2332
2333
RUNTIME_FUNCTION(Runtime_InitializeConstGlobal)2334 RUNTIME_FUNCTION(Runtime_InitializeConstGlobal) {
2335 HandleScope handle_scope(isolate);
2336 // All constants are declared with an initial value. The name
2337 // of the constant is the first argument and the initial value
2338 // is the second.
2339 RUNTIME_ASSERT(args.length() == 2);
2340 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
2341 CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
2342
2343 Handle<GlobalObject> global = isolate->global_object();
2344
2345 // Lookup the property as own on the global object.
2346 LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
2347 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
2348 DCHECK(maybe.has_value);
2349 PropertyAttributes old_attributes = maybe.value;
2350
2351 PropertyAttributes attr =
2352 static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
2353 // Set the value if the property is either missing, or the property attributes
2354 // allow setting the value without invoking an accessor.
2355 if (it.IsFound()) {
2356 // Ignore if we can't reconfigure the value.
2357 if ((old_attributes & DONT_DELETE) != 0) {
2358 if ((old_attributes & READ_ONLY) != 0 ||
2359 it.state() == LookupIterator::ACCESSOR) {
2360 return *value;
2361 }
2362 attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
2363 }
2364 }
2365
2366 RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2367 global, name, value, attr));
2368
2369 return *value;
2370 }
2371
2372
RUNTIME_FUNCTION(Runtime_DeclareLookupSlot)2373 RUNTIME_FUNCTION(Runtime_DeclareLookupSlot) {
2374 HandleScope scope(isolate);
2375 DCHECK(args.length() == 4);
2376
2377 // Declarations are always made in a function, native, or global context. In
2378 // the case of eval code, the context passed is the context of the caller,
2379 // which may be some nested context and not the declaration context.
2380 CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 0);
2381 Handle<Context> context(context_arg->declaration_context());
2382 CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
2383 CONVERT_SMI_ARG_CHECKED(attr_arg, 2);
2384 PropertyAttributes attr = static_cast<PropertyAttributes>(attr_arg);
2385 RUNTIME_ASSERT(attr == READ_ONLY || attr == NONE);
2386 CONVERT_ARG_HANDLE_CHECKED(Object, initial_value, 3);
2387
2388 // TODO(verwaest): Unify the encoding indicating "var" with DeclareGlobals.
2389 bool is_var = *initial_value == NULL;
2390 bool is_const = initial_value->IsTheHole();
2391 bool is_function = initial_value->IsJSFunction();
2392 DCHECK(is_var + is_const + is_function == 1);
2393
2394 int index;
2395 PropertyAttributes attributes;
2396 ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
2397 BindingFlags binding_flags;
2398 Handle<Object> holder =
2399 context->Lookup(name, flags, &index, &attributes, &binding_flags);
2400
2401 Handle<JSObject> object;
2402 Handle<Object> value =
2403 is_function ? initial_value
2404 : Handle<Object>::cast(isolate->factory()->undefined_value());
2405
2406 // TODO(verwaest): This case should probably not be covered by this function,
2407 // but by DeclareGlobals instead.
2408 if ((attributes != ABSENT && holder->IsJSGlobalObject()) ||
2409 (context_arg->has_extension() &&
2410 context_arg->extension()->IsJSGlobalObject())) {
2411 return DeclareGlobals(isolate, Handle<JSGlobalObject>::cast(holder), name,
2412 value, attr, is_var, is_const, is_function);
2413 }
2414
2415 if (attributes != ABSENT) {
2416 // The name was declared before; check for conflicting re-declarations.
2417 if (is_const || (attributes & READ_ONLY) != 0) {
2418 return ThrowRedeclarationError(isolate, name);
2419 }
2420
2421 // Skip var re-declarations.
2422 if (is_var) return isolate->heap()->undefined_value();
2423
2424 DCHECK(is_function);
2425 if (index >= 0) {
2426 DCHECK(holder.is_identical_to(context));
2427 context->set(index, *initial_value);
2428 return isolate->heap()->undefined_value();
2429 }
2430
2431 object = Handle<JSObject>::cast(holder);
2432
2433 } else if (context->has_extension()) {
2434 object = handle(JSObject::cast(context->extension()));
2435 DCHECK(object->IsJSContextExtensionObject() || object->IsJSGlobalObject());
2436 } else {
2437 DCHECK(context->IsFunctionContext());
2438 object =
2439 isolate->factory()->NewJSObject(isolate->context_extension_function());
2440 context->set_extension(*object);
2441 }
2442
2443 RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2444 object, name, value, attr));
2445
2446 return isolate->heap()->undefined_value();
2447 }
2448
2449
RUNTIME_FUNCTION(Runtime_InitializeLegacyConstLookupSlot)2450 RUNTIME_FUNCTION(Runtime_InitializeLegacyConstLookupSlot) {
2451 HandleScope scope(isolate);
2452 DCHECK(args.length() == 3);
2453
2454 CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
2455 DCHECK(!value->IsTheHole());
2456 // Initializations are always done in a function or native context.
2457 CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 1);
2458 Handle<Context> context(context_arg->declaration_context());
2459 CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
2460
2461 int index;
2462 PropertyAttributes attributes;
2463 ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
2464 BindingFlags binding_flags;
2465 Handle<Object> holder =
2466 context->Lookup(name, flags, &index, &attributes, &binding_flags);
2467
2468 if (index >= 0) {
2469 DCHECK(holder->IsContext());
2470 // Property was found in a context. Perform the assignment if the constant
2471 // was uninitialized.
2472 Handle<Context> context = Handle<Context>::cast(holder);
2473 DCHECK((attributes & READ_ONLY) != 0);
2474 if (context->get(index)->IsTheHole()) context->set(index, *value);
2475 return *value;
2476 }
2477
2478 PropertyAttributes attr =
2479 static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
2480
2481 // Strict mode handling not needed (legacy const is disallowed in strict
2482 // mode).
2483
2484 // The declared const was configurable, and may have been deleted in the
2485 // meanwhile. If so, re-introduce the variable in the context extension.
2486 DCHECK(context_arg->has_extension());
2487 if (attributes == ABSENT) {
2488 holder = handle(context_arg->extension(), isolate);
2489 } else {
2490 // For JSContextExtensionObjects, the initializer can be run multiple times
2491 // if in a for loop: for (var i = 0; i < 2; i++) { const x = i; }. Only the
2492 // first assignment should go through. For JSGlobalObjects, additionally any
2493 // code can run in between that modifies the declared property.
2494 DCHECK(holder->IsJSGlobalObject() || holder->IsJSContextExtensionObject());
2495
2496 LookupIterator it(holder, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
2497 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
2498 if (!maybe.has_value) return isolate->heap()->exception();
2499 PropertyAttributes old_attributes = maybe.value;
2500
2501 // Ignore if we can't reconfigure the value.
2502 if ((old_attributes & DONT_DELETE) != 0) {
2503 if ((old_attributes & READ_ONLY) != 0 ||
2504 it.state() == LookupIterator::ACCESSOR) {
2505 return *value;
2506 }
2507 attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
2508 }
2509 }
2510
2511 RETURN_FAILURE_ON_EXCEPTION(
2512 isolate, JSObject::SetOwnPropertyIgnoreAttributes(
2513 Handle<JSObject>::cast(holder), name, value, attr));
2514
2515 return *value;
2516 }
2517
2518
RUNTIME_FUNCTION(Runtime_OptimizeObjectForAddingMultipleProperties)2519 RUNTIME_FUNCTION(Runtime_OptimizeObjectForAddingMultipleProperties) {
2520 HandleScope scope(isolate);
2521 DCHECK(args.length() == 2);
2522 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
2523 CONVERT_SMI_ARG_CHECKED(properties, 1);
2524 // Conservative upper limit to prevent fuzz tests from going OOM.
2525 RUNTIME_ASSERT(properties <= 100000);
2526 if (object->HasFastProperties() && !object->IsJSGlobalProxy()) {
2527 JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
2528 }
2529 return *object;
2530 }
2531
2532
RUNTIME_FUNCTION(Runtime_RegExpExecRT)2533 RUNTIME_FUNCTION(Runtime_RegExpExecRT) {
2534 HandleScope scope(isolate);
2535 DCHECK(args.length() == 4);
2536 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
2537 CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
2538 CONVERT_INT32_ARG_CHECKED(index, 2);
2539 CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
2540 // Due to the way the JS calls are constructed this must be less than the
2541 // length of a string, i.e. it is always a Smi. We check anyway for security.
2542 RUNTIME_ASSERT(index >= 0);
2543 RUNTIME_ASSERT(index <= subject->length());
2544 isolate->counters()->regexp_entry_runtime()->Increment();
2545 Handle<Object> result;
2546 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2547 isolate, result,
2548 RegExpImpl::Exec(regexp, subject, index, last_match_info));
2549 return *result;
2550 }
2551
2552
RUNTIME_FUNCTION(Runtime_RegExpConstructResult)2553 RUNTIME_FUNCTION(Runtime_RegExpConstructResult) {
2554 HandleScope handle_scope(isolate);
2555 DCHECK(args.length() == 3);
2556 CONVERT_SMI_ARG_CHECKED(size, 0);
2557 RUNTIME_ASSERT(size >= 0 && size <= FixedArray::kMaxLength);
2558 CONVERT_ARG_HANDLE_CHECKED(Object, index, 1);
2559 CONVERT_ARG_HANDLE_CHECKED(Object, input, 2);
2560 Handle<FixedArray> elements = isolate->factory()->NewFixedArray(size);
2561 Handle<Map> regexp_map(isolate->native_context()->regexp_result_map());
2562 Handle<JSObject> object =
2563 isolate->factory()->NewJSObjectFromMap(regexp_map, NOT_TENURED, false);
2564 Handle<JSArray> array = Handle<JSArray>::cast(object);
2565 array->set_elements(*elements);
2566 array->set_length(Smi::FromInt(size));
2567 // Write in-object properties after the length of the array.
2568 array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, *index);
2569 array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, *input);
2570 return *array;
2571 }
2572
2573
RUNTIME_FUNCTION(Runtime_RegExpInitializeObject)2574 RUNTIME_FUNCTION(Runtime_RegExpInitializeObject) {
2575 HandleScope scope(isolate);
2576 DCHECK(args.length() == 6);
2577 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
2578 CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
2579 // If source is the empty string we set it to "(?:)" instead as
2580 // suggested by ECMA-262, 5th, section 15.10.4.1.
2581 if (source->length() == 0) source = isolate->factory()->query_colon_string();
2582
2583 CONVERT_ARG_HANDLE_CHECKED(Object, global, 2);
2584 if (!global->IsTrue()) global = isolate->factory()->false_value();
2585
2586 CONVERT_ARG_HANDLE_CHECKED(Object, ignoreCase, 3);
2587 if (!ignoreCase->IsTrue()) ignoreCase = isolate->factory()->false_value();
2588
2589 CONVERT_ARG_HANDLE_CHECKED(Object, multiline, 4);
2590 if (!multiline->IsTrue()) multiline = isolate->factory()->false_value();
2591
2592 CONVERT_ARG_HANDLE_CHECKED(Object, sticky, 5);
2593 if (!sticky->IsTrue()) sticky = isolate->factory()->false_value();
2594
2595 Map* map = regexp->map();
2596 Object* constructor = map->constructor();
2597 if (!FLAG_harmony_regexps &&
2598 constructor->IsJSFunction() &&
2599 JSFunction::cast(constructor)->initial_map() == map) {
2600 // If we still have the original map, set in-object properties directly.
2601 regexp->InObjectPropertyAtPut(JSRegExp::kSourceFieldIndex, *source);
2602 // Both true and false are immovable immortal objects so no need for write
2603 // barrier.
2604 regexp->InObjectPropertyAtPut(
2605 JSRegExp::kGlobalFieldIndex, *global, SKIP_WRITE_BARRIER);
2606 regexp->InObjectPropertyAtPut(
2607 JSRegExp::kIgnoreCaseFieldIndex, *ignoreCase, SKIP_WRITE_BARRIER);
2608 regexp->InObjectPropertyAtPut(
2609 JSRegExp::kMultilineFieldIndex, *multiline, SKIP_WRITE_BARRIER);
2610 regexp->InObjectPropertyAtPut(
2611 JSRegExp::kLastIndexFieldIndex, Smi::FromInt(0), SKIP_WRITE_BARRIER);
2612 return *regexp;
2613 }
2614
2615 // Map has changed, so use generic, but slower, method. We also end here if
2616 // the --harmony-regexp flag is set, because the initial map does not have
2617 // space for the 'sticky' flag, since it is from the snapshot, but must work
2618 // both with and without --harmony-regexp. When sticky comes out from under
2619 // the flag, we will be able to use the fast initial map.
2620 PropertyAttributes final =
2621 static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE);
2622 PropertyAttributes writable =
2623 static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
2624 Handle<Object> zero(Smi::FromInt(0), isolate);
2625 Factory* factory = isolate->factory();
2626 JSObject::SetOwnPropertyIgnoreAttributes(
2627 regexp, factory->source_string(), source, final).Check();
2628 JSObject::SetOwnPropertyIgnoreAttributes(
2629 regexp, factory->global_string(), global, final).Check();
2630 JSObject::SetOwnPropertyIgnoreAttributes(
2631 regexp, factory->ignore_case_string(), ignoreCase, final).Check();
2632 JSObject::SetOwnPropertyIgnoreAttributes(
2633 regexp, factory->multiline_string(), multiline, final).Check();
2634 if (FLAG_harmony_regexps) {
2635 JSObject::SetOwnPropertyIgnoreAttributes(
2636 regexp, factory->sticky_string(), sticky, final).Check();
2637 }
2638 JSObject::SetOwnPropertyIgnoreAttributes(
2639 regexp, factory->last_index_string(), zero, writable).Check();
2640 return *regexp;
2641 }
2642
2643
RUNTIME_FUNCTION(Runtime_FinishArrayPrototypeSetup)2644 RUNTIME_FUNCTION(Runtime_FinishArrayPrototypeSetup) {
2645 HandleScope scope(isolate);
2646 DCHECK(args.length() == 1);
2647 CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0);
2648 Object* length = prototype->length();
2649 RUNTIME_ASSERT(length->IsSmi() && Smi::cast(length)->value() == 0);
2650 RUNTIME_ASSERT(prototype->HasFastSmiOrObjectElements());
2651 // This is necessary to enable fast checks for absence of elements
2652 // on Array.prototype and below.
2653 prototype->set_elements(isolate->heap()->empty_fixed_array());
2654 return Smi::FromInt(0);
2655 }
2656
2657
InstallBuiltin(Isolate * isolate,Handle<JSObject> holder,const char * name,Builtins::Name builtin_name)2658 static void InstallBuiltin(Isolate* isolate,
2659 Handle<JSObject> holder,
2660 const char* name,
2661 Builtins::Name builtin_name) {
2662 Handle<String> key = isolate->factory()->InternalizeUtf8String(name);
2663 Handle<Code> code(isolate->builtins()->builtin(builtin_name));
2664 Handle<JSFunction> optimized =
2665 isolate->factory()->NewFunctionWithoutPrototype(key, code);
2666 optimized->shared()->DontAdaptArguments();
2667 JSObject::AddProperty(holder, key, optimized, NONE);
2668 }
2669
2670
RUNTIME_FUNCTION(Runtime_SpecialArrayFunctions)2671 RUNTIME_FUNCTION(Runtime_SpecialArrayFunctions) {
2672 HandleScope scope(isolate);
2673 DCHECK(args.length() == 0);
2674 Handle<JSObject> holder =
2675 isolate->factory()->NewJSObject(isolate->object_function());
2676
2677 InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop);
2678 InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush);
2679 InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift);
2680 InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift);
2681 InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice);
2682 InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice);
2683 InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat);
2684
2685 return *holder;
2686 }
2687
2688
RUNTIME_FUNCTION(Runtime_IsSloppyModeFunction)2689 RUNTIME_FUNCTION(Runtime_IsSloppyModeFunction) {
2690 SealHandleScope shs(isolate);
2691 DCHECK(args.length() == 1);
2692 CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
2693 if (!callable->IsJSFunction()) {
2694 HandleScope scope(isolate);
2695 Handle<Object> delegate;
2696 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2697 isolate, delegate,
2698 Execution::TryGetFunctionDelegate(
2699 isolate, Handle<JSReceiver>(callable)));
2700 callable = JSFunction::cast(*delegate);
2701 }
2702 JSFunction* function = JSFunction::cast(callable);
2703 SharedFunctionInfo* shared = function->shared();
2704 return isolate->heap()->ToBoolean(shared->strict_mode() == SLOPPY);
2705 }
2706
2707
RUNTIME_FUNCTION(Runtime_GetDefaultReceiver)2708 RUNTIME_FUNCTION(Runtime_GetDefaultReceiver) {
2709 SealHandleScope shs(isolate);
2710 DCHECK(args.length() == 1);
2711 CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
2712
2713 if (!callable->IsJSFunction()) {
2714 HandleScope scope(isolate);
2715 Handle<Object> delegate;
2716 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2717 isolate, delegate,
2718 Execution::TryGetFunctionDelegate(
2719 isolate, Handle<JSReceiver>(callable)));
2720 callable = JSFunction::cast(*delegate);
2721 }
2722 JSFunction* function = JSFunction::cast(callable);
2723
2724 SharedFunctionInfo* shared = function->shared();
2725 if (shared->native() || shared->strict_mode() == STRICT) {
2726 return isolate->heap()->undefined_value();
2727 }
2728 // Returns undefined for strict or native functions, or
2729 // the associated global receiver for "normal" functions.
2730
2731 return function->global_proxy();
2732 }
2733
2734
RUNTIME_FUNCTION(Runtime_MaterializeRegExpLiteral)2735 RUNTIME_FUNCTION(Runtime_MaterializeRegExpLiteral) {
2736 HandleScope scope(isolate);
2737 DCHECK(args.length() == 4);
2738 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
2739 CONVERT_SMI_ARG_CHECKED(index, 1);
2740 CONVERT_ARG_HANDLE_CHECKED(String, pattern, 2);
2741 CONVERT_ARG_HANDLE_CHECKED(String, flags, 3);
2742
2743 // Get the RegExp function from the context in the literals array.
2744 // This is the RegExp function from the context in which the
2745 // function was created. We do not use the RegExp function from the
2746 // current native context because this might be the RegExp function
2747 // from another context which we should not have access to.
2748 Handle<JSFunction> constructor =
2749 Handle<JSFunction>(
2750 JSFunction::NativeContextFromLiterals(*literals)->regexp_function());
2751 // Compute the regular expression literal.
2752 Handle<Object> regexp;
2753 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
2754 isolate, regexp,
2755 RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags));
2756 literals->set(index, *regexp);
2757 return *regexp;
2758 }
2759
2760
RUNTIME_FUNCTION(Runtime_FunctionGetName)2761 RUNTIME_FUNCTION(Runtime_FunctionGetName) {
2762 SealHandleScope shs(isolate);
2763 DCHECK(args.length() == 1);
2764
2765 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2766 return f->shared()->name();
2767 }
2768
2769
RUNTIME_FUNCTION(Runtime_FunctionSetName)2770 RUNTIME_FUNCTION(Runtime_FunctionSetName) {
2771 SealHandleScope shs(isolate);
2772 DCHECK(args.length() == 2);
2773
2774 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2775 CONVERT_ARG_CHECKED(String, name, 1);
2776 f->shared()->set_name(name);
2777 return isolate->heap()->undefined_value();
2778 }
2779
2780
RUNTIME_FUNCTION(Runtime_FunctionNameShouldPrintAsAnonymous)2781 RUNTIME_FUNCTION(Runtime_FunctionNameShouldPrintAsAnonymous) {
2782 SealHandleScope shs(isolate);
2783 DCHECK(args.length() == 1);
2784 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2785 return isolate->heap()->ToBoolean(
2786 f->shared()->name_should_print_as_anonymous());
2787 }
2788
2789
RUNTIME_FUNCTION(Runtime_FunctionMarkNameShouldPrintAsAnonymous)2790 RUNTIME_FUNCTION(Runtime_FunctionMarkNameShouldPrintAsAnonymous) {
2791 SealHandleScope shs(isolate);
2792 DCHECK(args.length() == 1);
2793 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2794 f->shared()->set_name_should_print_as_anonymous(true);
2795 return isolate->heap()->undefined_value();
2796 }
2797
2798
RUNTIME_FUNCTION(Runtime_FunctionIsGenerator)2799 RUNTIME_FUNCTION(Runtime_FunctionIsGenerator) {
2800 SealHandleScope shs(isolate);
2801 DCHECK(args.length() == 1);
2802 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2803 return isolate->heap()->ToBoolean(f->shared()->is_generator());
2804 }
2805
2806
RUNTIME_FUNCTION(Runtime_FunctionIsArrow)2807 RUNTIME_FUNCTION(Runtime_FunctionIsArrow) {
2808 SealHandleScope shs(isolate);
2809 DCHECK(args.length() == 1);
2810 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2811 return isolate->heap()->ToBoolean(f->shared()->is_arrow());
2812 }
2813
2814
RUNTIME_FUNCTION(Runtime_FunctionIsConciseMethod)2815 RUNTIME_FUNCTION(Runtime_FunctionIsConciseMethod) {
2816 SealHandleScope shs(isolate);
2817 DCHECK(args.length() == 1);
2818 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2819 return isolate->heap()->ToBoolean(f->shared()->is_concise_method());
2820 }
2821
2822
RUNTIME_FUNCTION(Runtime_FunctionRemovePrototype)2823 RUNTIME_FUNCTION(Runtime_FunctionRemovePrototype) {
2824 SealHandleScope shs(isolate);
2825 DCHECK(args.length() == 1);
2826
2827 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2828 RUNTIME_ASSERT(f->RemovePrototype());
2829
2830 return isolate->heap()->undefined_value();
2831 }
2832
2833
RUNTIME_FUNCTION(Runtime_FunctionGetScript)2834 RUNTIME_FUNCTION(Runtime_FunctionGetScript) {
2835 HandleScope scope(isolate);
2836 DCHECK(args.length() == 1);
2837
2838 CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2839 Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate);
2840 if (!script->IsScript()) return isolate->heap()->undefined_value();
2841
2842 return *Script::GetWrapper(Handle<Script>::cast(script));
2843 }
2844
2845
RUNTIME_FUNCTION(Runtime_FunctionGetSourceCode)2846 RUNTIME_FUNCTION(Runtime_FunctionGetSourceCode) {
2847 HandleScope scope(isolate);
2848 DCHECK(args.length() == 1);
2849
2850 CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0);
2851 Handle<SharedFunctionInfo> shared(f->shared());
2852 return *shared->GetSourceCode();
2853 }
2854
2855
RUNTIME_FUNCTION(Runtime_FunctionGetScriptSourcePosition)2856 RUNTIME_FUNCTION(Runtime_FunctionGetScriptSourcePosition) {
2857 SealHandleScope shs(isolate);
2858 DCHECK(args.length() == 1);
2859
2860 CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2861 int pos = fun->shared()->start_position();
2862 return Smi::FromInt(pos);
2863 }
2864
2865
RUNTIME_FUNCTION(Runtime_FunctionGetPositionForOffset)2866 RUNTIME_FUNCTION(Runtime_FunctionGetPositionForOffset) {
2867 SealHandleScope shs(isolate);
2868 DCHECK(args.length() == 2);
2869
2870 CONVERT_ARG_CHECKED(Code, code, 0);
2871 CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);
2872
2873 RUNTIME_ASSERT(0 <= offset && offset < code->Size());
2874
2875 Address pc = code->address() + offset;
2876 return Smi::FromInt(code->SourcePosition(pc));
2877 }
2878
2879
RUNTIME_FUNCTION(Runtime_FunctionSetInstanceClassName)2880 RUNTIME_FUNCTION(Runtime_FunctionSetInstanceClassName) {
2881 SealHandleScope shs(isolate);
2882 DCHECK(args.length() == 2);
2883
2884 CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2885 CONVERT_ARG_CHECKED(String, name, 1);
2886 fun->SetInstanceClassName(name);
2887 return isolate->heap()->undefined_value();
2888 }
2889
2890
RUNTIME_FUNCTION(Runtime_FunctionSetLength)2891 RUNTIME_FUNCTION(Runtime_FunctionSetLength) {
2892 SealHandleScope shs(isolate);
2893 DCHECK(args.length() == 2);
2894
2895 CONVERT_ARG_CHECKED(JSFunction, fun, 0);
2896 CONVERT_SMI_ARG_CHECKED(length, 1);
2897 RUNTIME_ASSERT((length & 0xC0000000) == 0xC0000000 ||
2898 (length & 0xC0000000) == 0x0);
2899 fun->shared()->set_length(length);
2900 return isolate->heap()->undefined_value();
2901 }
2902
2903
RUNTIME_FUNCTION(Runtime_FunctionSetPrototype)2904 RUNTIME_FUNCTION(Runtime_FunctionSetPrototype) {
2905 HandleScope scope(isolate);
2906 DCHECK(args.length() == 2);
2907
2908 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
2909 CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
2910 RUNTIME_ASSERT(fun->should_have_prototype());
2911 Accessors::FunctionSetPrototype(fun, value);
2912 return args[0]; // return TOS
2913 }
2914
2915
RUNTIME_FUNCTION(Runtime_FunctionIsAPIFunction)2916 RUNTIME_FUNCTION(Runtime_FunctionIsAPIFunction) {
2917 SealHandleScope shs(isolate);
2918 DCHECK(args.length() == 1);
2919
2920 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2921 return isolate->heap()->ToBoolean(f->shared()->IsApiFunction());
2922 }
2923
2924
RUNTIME_FUNCTION(Runtime_FunctionIsBuiltin)2925 RUNTIME_FUNCTION(Runtime_FunctionIsBuiltin) {
2926 SealHandleScope shs(isolate);
2927 DCHECK(args.length() == 1);
2928
2929 CONVERT_ARG_CHECKED(JSFunction, f, 0);
2930 return isolate->heap()->ToBoolean(f->IsBuiltin());
2931 }
2932
2933
RUNTIME_FUNCTION(Runtime_SetCode)2934 RUNTIME_FUNCTION(Runtime_SetCode) {
2935 HandleScope scope(isolate);
2936 DCHECK(args.length() == 2);
2937
2938 CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0);
2939 CONVERT_ARG_HANDLE_CHECKED(JSFunction, source, 1);
2940
2941 Handle<SharedFunctionInfo> target_shared(target->shared());
2942 Handle<SharedFunctionInfo> source_shared(source->shared());
2943 RUNTIME_ASSERT(!source_shared->bound());
2944
2945 if (!Compiler::EnsureCompiled(source, KEEP_EXCEPTION)) {
2946 return isolate->heap()->exception();
2947 }
2948
2949 // Mark both, the source and the target, as un-flushable because the
2950 // shared unoptimized code makes them impossible to enqueue in a list.
2951 DCHECK(target_shared->code()->gc_metadata() == NULL);
2952 DCHECK(source_shared->code()->gc_metadata() == NULL);
2953 target_shared->set_dont_flush(true);
2954 source_shared->set_dont_flush(true);
2955
2956 // Set the code, scope info, formal parameter count, and the length
2957 // of the target shared function info.
2958 target_shared->ReplaceCode(source_shared->code());
2959 target_shared->set_scope_info(source_shared->scope_info());
2960 target_shared->set_length(source_shared->length());
2961 target_shared->set_feedback_vector(source_shared->feedback_vector());
2962 target_shared->set_formal_parameter_count(
2963 source_shared->formal_parameter_count());
2964 target_shared->set_script(source_shared->script());
2965 target_shared->set_start_position_and_type(
2966 source_shared->start_position_and_type());
2967 target_shared->set_end_position(source_shared->end_position());
2968 bool was_native = target_shared->native();
2969 target_shared->set_compiler_hints(source_shared->compiler_hints());
2970 target_shared->set_native(was_native);
2971 target_shared->set_profiler_ticks(source_shared->profiler_ticks());
2972
2973 // Set the code of the target function.
2974 target->ReplaceCode(source_shared->code());
2975 DCHECK(target->next_function_link()->IsUndefined());
2976
2977 // Make sure we get a fresh copy of the literal vector to avoid cross
2978 // context contamination.
2979 Handle<Context> context(source->context());
2980 int number_of_literals = source->NumberOfLiterals();
2981 Handle<FixedArray> literals =
2982 isolate->factory()->NewFixedArray(number_of_literals, TENURED);
2983 if (number_of_literals > 0) {
2984 literals->set(JSFunction::kLiteralNativeContextIndex,
2985 context->native_context());
2986 }
2987 target->set_context(*context);
2988 target->set_literals(*literals);
2989
2990 if (isolate->logger()->is_logging_code_events() ||
2991 isolate->cpu_profiler()->is_profiling()) {
2992 isolate->logger()->LogExistingFunction(
2993 source_shared, Handle<Code>(source_shared->code()));
2994 }
2995
2996 return *target;
2997 }
2998
2999
RUNTIME_FUNCTION(Runtime_CreateJSGeneratorObject)3000 RUNTIME_FUNCTION(Runtime_CreateJSGeneratorObject) {
3001 HandleScope scope(isolate);
3002 DCHECK(args.length() == 0);
3003
3004 JavaScriptFrameIterator it(isolate);
3005 JavaScriptFrame* frame = it.frame();
3006 Handle<JSFunction> function(frame->function());
3007 RUNTIME_ASSERT(function->shared()->is_generator());
3008
3009 Handle<JSGeneratorObject> generator;
3010 if (frame->IsConstructor()) {
3011 generator = handle(JSGeneratorObject::cast(frame->receiver()));
3012 } else {
3013 generator = isolate->factory()->NewJSGeneratorObject(function);
3014 }
3015 generator->set_function(*function);
3016 generator->set_context(Context::cast(frame->context()));
3017 generator->set_receiver(frame->receiver());
3018 generator->set_continuation(0);
3019 generator->set_operand_stack(isolate->heap()->empty_fixed_array());
3020 generator->set_stack_handler_index(-1);
3021
3022 return *generator;
3023 }
3024
3025
RUNTIME_FUNCTION(Runtime_SuspendJSGeneratorObject)3026 RUNTIME_FUNCTION(Runtime_SuspendJSGeneratorObject) {
3027 HandleScope handle_scope(isolate);
3028 DCHECK(args.length() == 1);
3029 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator_object, 0);
3030
3031 JavaScriptFrameIterator stack_iterator(isolate);
3032 JavaScriptFrame* frame = stack_iterator.frame();
3033 RUNTIME_ASSERT(frame->function()->shared()->is_generator());
3034 DCHECK_EQ(frame->function(), generator_object->function());
3035
3036 // The caller should have saved the context and continuation already.
3037 DCHECK_EQ(generator_object->context(), Context::cast(frame->context()));
3038 DCHECK_LT(0, generator_object->continuation());
3039
3040 // We expect there to be at least two values on the operand stack: the return
3041 // value of the yield expression, and the argument to this runtime call.
3042 // Neither of those should be saved.
3043 int operands_count = frame->ComputeOperandsCount();
3044 DCHECK_GE(operands_count, 2);
3045 operands_count -= 2;
3046
3047 if (operands_count == 0) {
3048 // Although it's semantically harmless to call this function with an
3049 // operands_count of zero, it is also unnecessary.
3050 DCHECK_EQ(generator_object->operand_stack(),
3051 isolate->heap()->empty_fixed_array());
3052 DCHECK_EQ(generator_object->stack_handler_index(), -1);
3053 // If there are no operands on the stack, there shouldn't be a handler
3054 // active either.
3055 DCHECK(!frame->HasHandler());
3056 } else {
3057 int stack_handler_index = -1;
3058 Handle<FixedArray> operand_stack =
3059 isolate->factory()->NewFixedArray(operands_count);
3060 frame->SaveOperandStack(*operand_stack, &stack_handler_index);
3061 generator_object->set_operand_stack(*operand_stack);
3062 generator_object->set_stack_handler_index(stack_handler_index);
3063 }
3064
3065 return isolate->heap()->undefined_value();
3066 }
3067
3068
3069 // Note that this function is the slow path for resuming generators. It is only
3070 // called if the suspended activation had operands on the stack, stack handlers
3071 // needing rewinding, or if the resume should throw an exception. The fast path
3072 // is handled directly in FullCodeGenerator::EmitGeneratorResume(), which is
3073 // inlined into GeneratorNext and GeneratorThrow. EmitGeneratorResumeResume is
3074 // called in any case, as it needs to reconstruct the stack frame and make space
3075 // for arguments and operands.
RUNTIME_FUNCTION(Runtime_ResumeJSGeneratorObject)3076 RUNTIME_FUNCTION(Runtime_ResumeJSGeneratorObject) {
3077 SealHandleScope shs(isolate);
3078 DCHECK(args.length() == 3);
3079 CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0);
3080 CONVERT_ARG_CHECKED(Object, value, 1);
3081 CONVERT_SMI_ARG_CHECKED(resume_mode_int, 2);
3082 JavaScriptFrameIterator stack_iterator(isolate);
3083 JavaScriptFrame* frame = stack_iterator.frame();
3084
3085 DCHECK_EQ(frame->function(), generator_object->function());
3086 DCHECK(frame->function()->is_compiled());
3087
3088 STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
3089 STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
3090
3091 Address pc = generator_object->function()->code()->instruction_start();
3092 int offset = generator_object->continuation();
3093 DCHECK(offset > 0);
3094 frame->set_pc(pc + offset);
3095 if (FLAG_enable_ool_constant_pool) {
3096 frame->set_constant_pool(
3097 generator_object->function()->code()->constant_pool());
3098 }
3099 generator_object->set_continuation(JSGeneratorObject::kGeneratorExecuting);
3100
3101 FixedArray* operand_stack = generator_object->operand_stack();
3102 int operands_count = operand_stack->length();
3103 if (operands_count != 0) {
3104 frame->RestoreOperandStack(operand_stack,
3105 generator_object->stack_handler_index());
3106 generator_object->set_operand_stack(isolate->heap()->empty_fixed_array());
3107 generator_object->set_stack_handler_index(-1);
3108 }
3109
3110 JSGeneratorObject::ResumeMode resume_mode =
3111 static_cast<JSGeneratorObject::ResumeMode>(resume_mode_int);
3112 switch (resume_mode) {
3113 case JSGeneratorObject::NEXT:
3114 return value;
3115 case JSGeneratorObject::THROW:
3116 return isolate->Throw(value);
3117 }
3118
3119 UNREACHABLE();
3120 return isolate->ThrowIllegalOperation();
3121 }
3122
3123
RUNTIME_FUNCTION(Runtime_ThrowGeneratorStateError)3124 RUNTIME_FUNCTION(Runtime_ThrowGeneratorStateError) {
3125 HandleScope scope(isolate);
3126 DCHECK(args.length() == 1);
3127 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
3128 int continuation = generator->continuation();
3129 const char* message = continuation == JSGeneratorObject::kGeneratorClosed ?
3130 "generator_finished" : "generator_running";
3131 Vector< Handle<Object> > argv = HandleVector<Object>(NULL, 0);
3132 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewError(message, argv));
3133 }
3134
3135
RUNTIME_FUNCTION(Runtime_ObjectFreeze)3136 RUNTIME_FUNCTION(Runtime_ObjectFreeze) {
3137 HandleScope scope(isolate);
3138 DCHECK(args.length() == 1);
3139 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
3140
3141 // %ObjectFreeze is a fast path and these cases are handled elsewhere.
3142 RUNTIME_ASSERT(!object->HasSloppyArgumentsElements() &&
3143 !object->map()->is_observed() &&
3144 !object->IsJSProxy());
3145
3146 Handle<Object> result;
3147 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, JSObject::Freeze(object));
3148 return *result;
3149 }
3150
3151
RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT)3152 RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
3153 HandleScope handle_scope(isolate);
3154 DCHECK(args.length() == 2);
3155
3156 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
3157 CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
3158
3159 // Flatten the string. If someone wants to get a char at an index
3160 // in a cons string, it is likely that more indices will be
3161 // accessed.
3162 subject = String::Flatten(subject);
3163
3164 if (i >= static_cast<uint32_t>(subject->length())) {
3165 return isolate->heap()->nan_value();
3166 }
3167
3168 return Smi::FromInt(subject->Get(i));
3169 }
3170
3171
RUNTIME_FUNCTION(Runtime_CharFromCode)3172 RUNTIME_FUNCTION(Runtime_CharFromCode) {
3173 HandleScope handlescope(isolate);
3174 DCHECK(args.length() == 1);
3175 if (args[0]->IsNumber()) {
3176 CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
3177 code &= 0xffff;
3178 return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
3179 }
3180 return isolate->heap()->empty_string();
3181 }
3182
3183
3184 class FixedArrayBuilder {
3185 public:
FixedArrayBuilder(Isolate * isolate,int initial_capacity)3186 explicit FixedArrayBuilder(Isolate* isolate, int initial_capacity)
3187 : array_(isolate->factory()->NewFixedArrayWithHoles(initial_capacity)),
3188 length_(0),
3189 has_non_smi_elements_(false) {
3190 // Require a non-zero initial size. Ensures that doubling the size to
3191 // extend the array will work.
3192 DCHECK(initial_capacity > 0);
3193 }
3194
FixedArrayBuilder(Handle<FixedArray> backing_store)3195 explicit FixedArrayBuilder(Handle<FixedArray> backing_store)
3196 : array_(backing_store),
3197 length_(0),
3198 has_non_smi_elements_(false) {
3199 // Require a non-zero initial size. Ensures that doubling the size to
3200 // extend the array will work.
3201 DCHECK(backing_store->length() > 0);
3202 }
3203
HasCapacity(int elements)3204 bool HasCapacity(int elements) {
3205 int length = array_->length();
3206 int required_length = length_ + elements;
3207 return (length >= required_length);
3208 }
3209
EnsureCapacity(int elements)3210 void EnsureCapacity(int elements) {
3211 int length = array_->length();
3212 int required_length = length_ + elements;
3213 if (length < required_length) {
3214 int new_length = length;
3215 do {
3216 new_length *= 2;
3217 } while (new_length < required_length);
3218 Handle<FixedArray> extended_array =
3219 array_->GetIsolate()->factory()->NewFixedArrayWithHoles(new_length);
3220 array_->CopyTo(0, *extended_array, 0, length_);
3221 array_ = extended_array;
3222 }
3223 }
3224
Add(Object * value)3225 void Add(Object* value) {
3226 DCHECK(!value->IsSmi());
3227 DCHECK(length_ < capacity());
3228 array_->set(length_, value);
3229 length_++;
3230 has_non_smi_elements_ = true;
3231 }
3232
Add(Smi * value)3233 void Add(Smi* value) {
3234 DCHECK(value->IsSmi());
3235 DCHECK(length_ < capacity());
3236 array_->set(length_, value);
3237 length_++;
3238 }
3239
array()3240 Handle<FixedArray> array() {
3241 return array_;
3242 }
3243
length()3244 int length() {
3245 return length_;
3246 }
3247
capacity()3248 int capacity() {
3249 return array_->length();
3250 }
3251
ToJSArray(Handle<JSArray> target_array)3252 Handle<JSArray> ToJSArray(Handle<JSArray> target_array) {
3253 JSArray::SetContent(target_array, array_);
3254 target_array->set_length(Smi::FromInt(length_));
3255 return target_array;
3256 }
3257
3258
3259 private:
3260 Handle<FixedArray> array_;
3261 int length_;
3262 bool has_non_smi_elements_;
3263 };
3264
3265
3266 // Forward declarations.
3267 const int kStringBuilderConcatHelperLengthBits = 11;
3268 const int kStringBuilderConcatHelperPositionBits = 19;
3269
3270 template <typename schar>
3271 static inline void StringBuilderConcatHelper(String*,
3272 schar*,
3273 FixedArray*,
3274 int);
3275
3276 typedef BitField<int, 0, kStringBuilderConcatHelperLengthBits>
3277 StringBuilderSubstringLength;
3278 typedef BitField<int,
3279 kStringBuilderConcatHelperLengthBits,
3280 kStringBuilderConcatHelperPositionBits>
3281 StringBuilderSubstringPosition;
3282
3283
3284 class ReplacementStringBuilder {
3285 public:
ReplacementStringBuilder(Heap * heap,Handle<String> subject,int estimated_part_count)3286 ReplacementStringBuilder(Heap* heap, Handle<String> subject,
3287 int estimated_part_count)
3288 : heap_(heap),
3289 array_builder_(heap->isolate(), estimated_part_count),
3290 subject_(subject),
3291 character_count_(0),
3292 is_one_byte_(subject->IsOneByteRepresentation()) {
3293 // Require a non-zero initial size. Ensures that doubling the size to
3294 // extend the array will work.
3295 DCHECK(estimated_part_count > 0);
3296 }
3297
AddSubjectSlice(FixedArrayBuilder * builder,int from,int to)3298 static inline void AddSubjectSlice(FixedArrayBuilder* builder,
3299 int from,
3300 int to) {
3301 DCHECK(from >= 0);
3302 int length = to - from;
3303 DCHECK(length > 0);
3304 if (StringBuilderSubstringLength::is_valid(length) &&
3305 StringBuilderSubstringPosition::is_valid(from)) {
3306 int encoded_slice = StringBuilderSubstringLength::encode(length) |
3307 StringBuilderSubstringPosition::encode(from);
3308 builder->Add(Smi::FromInt(encoded_slice));
3309 } else {
3310 // Otherwise encode as two smis.
3311 builder->Add(Smi::FromInt(-length));
3312 builder->Add(Smi::FromInt(from));
3313 }
3314 }
3315
3316
EnsureCapacity(int elements)3317 void EnsureCapacity(int elements) {
3318 array_builder_.EnsureCapacity(elements);
3319 }
3320
3321
AddSubjectSlice(int from,int to)3322 void AddSubjectSlice(int from, int to) {
3323 AddSubjectSlice(&array_builder_, from, to);
3324 IncrementCharacterCount(to - from);
3325 }
3326
3327
AddString(Handle<String> string)3328 void AddString(Handle<String> string) {
3329 int length = string->length();
3330 DCHECK(length > 0);
3331 AddElement(*string);
3332 if (!string->IsOneByteRepresentation()) {
3333 is_one_byte_ = false;
3334 }
3335 IncrementCharacterCount(length);
3336 }
3337
3338
ToString()3339 MaybeHandle<String> ToString() {
3340 Isolate* isolate = heap_->isolate();
3341 if (array_builder_.length() == 0) {
3342 return isolate->factory()->empty_string();
3343 }
3344
3345 Handle<String> joined_string;
3346 if (is_one_byte_) {
3347 Handle<SeqOneByteString> seq;
3348 ASSIGN_RETURN_ON_EXCEPTION(
3349 isolate, seq,
3350 isolate->factory()->NewRawOneByteString(character_count_),
3351 String);
3352
3353 DisallowHeapAllocation no_gc;
3354 uint8_t* char_buffer = seq->GetChars();
3355 StringBuilderConcatHelper(*subject_,
3356 char_buffer,
3357 *array_builder_.array(),
3358 array_builder_.length());
3359 joined_string = Handle<String>::cast(seq);
3360 } else {
3361 // Two-byte.
3362 Handle<SeqTwoByteString> seq;
3363 ASSIGN_RETURN_ON_EXCEPTION(
3364 isolate, seq,
3365 isolate->factory()->NewRawTwoByteString(character_count_),
3366 String);
3367
3368 DisallowHeapAllocation no_gc;
3369 uc16* char_buffer = seq->GetChars();
3370 StringBuilderConcatHelper(*subject_,
3371 char_buffer,
3372 *array_builder_.array(),
3373 array_builder_.length());
3374 joined_string = Handle<String>::cast(seq);
3375 }
3376 return joined_string;
3377 }
3378
3379
IncrementCharacterCount(int by)3380 void IncrementCharacterCount(int by) {
3381 if (character_count_ > String::kMaxLength - by) {
3382 STATIC_ASSERT(String::kMaxLength < kMaxInt);
3383 character_count_ = kMaxInt;
3384 } else {
3385 character_count_ += by;
3386 }
3387 }
3388
3389 private:
AddElement(Object * element)3390 void AddElement(Object* element) {
3391 DCHECK(element->IsSmi() || element->IsString());
3392 DCHECK(array_builder_.capacity() > array_builder_.length());
3393 array_builder_.Add(element);
3394 }
3395
3396 Heap* heap_;
3397 FixedArrayBuilder array_builder_;
3398 Handle<String> subject_;
3399 int character_count_;
3400 bool is_one_byte_;
3401 };
3402
3403
3404 class CompiledReplacement {
3405 public:
CompiledReplacement(Zone * zone)3406 explicit CompiledReplacement(Zone* zone)
3407 : parts_(1, zone), replacement_substrings_(0, zone), zone_(zone) {}
3408
3409 // Return whether the replacement is simple.
3410 bool Compile(Handle<String> replacement,
3411 int capture_count,
3412 int subject_length);
3413
3414 // Use Apply only if Compile returned false.
3415 void Apply(ReplacementStringBuilder* builder,
3416 int match_from,
3417 int match_to,
3418 int32_t* match);
3419
3420 // Number of distinct parts of the replacement pattern.
parts()3421 int parts() {
3422 return parts_.length();
3423 }
3424
zone() const3425 Zone* zone() const { return zone_; }
3426
3427 private:
3428 enum PartType {
3429 SUBJECT_PREFIX = 1,
3430 SUBJECT_SUFFIX,
3431 SUBJECT_CAPTURE,
3432 REPLACEMENT_SUBSTRING,
3433 REPLACEMENT_STRING,
3434
3435 NUMBER_OF_PART_TYPES
3436 };
3437
3438 struct ReplacementPart {
SubjectMatchv8::internal::CompiledReplacement::ReplacementPart3439 static inline ReplacementPart SubjectMatch() {
3440 return ReplacementPart(SUBJECT_CAPTURE, 0);
3441 }
SubjectCapturev8::internal::CompiledReplacement::ReplacementPart3442 static inline ReplacementPart SubjectCapture(int capture_index) {
3443 return ReplacementPart(SUBJECT_CAPTURE, capture_index);
3444 }
SubjectPrefixv8::internal::CompiledReplacement::ReplacementPart3445 static inline ReplacementPart SubjectPrefix() {
3446 return ReplacementPart(SUBJECT_PREFIX, 0);
3447 }
SubjectSuffixv8::internal::CompiledReplacement::ReplacementPart3448 static inline ReplacementPart SubjectSuffix(int subject_length) {
3449 return ReplacementPart(SUBJECT_SUFFIX, subject_length);
3450 }
ReplacementStringv8::internal::CompiledReplacement::ReplacementPart3451 static inline ReplacementPart ReplacementString() {
3452 return ReplacementPart(REPLACEMENT_STRING, 0);
3453 }
ReplacementSubStringv8::internal::CompiledReplacement::ReplacementPart3454 static inline ReplacementPart ReplacementSubString(int from, int to) {
3455 DCHECK(from >= 0);
3456 DCHECK(to > from);
3457 return ReplacementPart(-from, to);
3458 }
3459
3460 // If tag <= 0 then it is the negation of a start index of a substring of
3461 // the replacement pattern, otherwise it's a value from PartType.
ReplacementPartv8::internal::CompiledReplacement::ReplacementPart3462 ReplacementPart(int tag, int data)
3463 : tag(tag), data(data) {
3464 // Must be non-positive or a PartType value.
3465 DCHECK(tag < NUMBER_OF_PART_TYPES);
3466 }
3467 // Either a value of PartType or a non-positive number that is
3468 // the negation of an index into the replacement string.
3469 int tag;
3470 // The data value's interpretation depends on the value of tag:
3471 // tag == SUBJECT_PREFIX ||
3472 // tag == SUBJECT_SUFFIX: data is unused.
3473 // tag == SUBJECT_CAPTURE: data is the number of the capture.
3474 // tag == REPLACEMENT_SUBSTRING ||
3475 // tag == REPLACEMENT_STRING: data is index into array of substrings
3476 // of the replacement string.
3477 // tag <= 0: Temporary representation of the substring of the replacement
3478 // string ranging over -tag .. data.
3479 // Is replaced by REPLACEMENT_{SUB,}STRING when we create the
3480 // substring objects.
3481 int data;
3482 };
3483
3484 template<typename Char>
ParseReplacementPattern(ZoneList<ReplacementPart> * parts,Vector<Char> characters,int capture_count,int subject_length,Zone * zone)3485 bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
3486 Vector<Char> characters,
3487 int capture_count,
3488 int subject_length,
3489 Zone* zone) {
3490 int length = characters.length();
3491 int last = 0;
3492 for (int i = 0; i < length; i++) {
3493 Char c = characters[i];
3494 if (c == '$') {
3495 int next_index = i + 1;
3496 if (next_index == length) { // No next character!
3497 break;
3498 }
3499 Char c2 = characters[next_index];
3500 switch (c2) {
3501 case '$':
3502 if (i > last) {
3503 // There is a substring before. Include the first "$".
3504 parts->Add(ReplacementPart::ReplacementSubString(last, next_index),
3505 zone);
3506 last = next_index + 1; // Continue after the second "$".
3507 } else {
3508 // Let the next substring start with the second "$".
3509 last = next_index;
3510 }
3511 i = next_index;
3512 break;
3513 case '`':
3514 if (i > last) {
3515 parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3516 }
3517 parts->Add(ReplacementPart::SubjectPrefix(), zone);
3518 i = next_index;
3519 last = i + 1;
3520 break;
3521 case '\'':
3522 if (i > last) {
3523 parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3524 }
3525 parts->Add(ReplacementPart::SubjectSuffix(subject_length), zone);
3526 i = next_index;
3527 last = i + 1;
3528 break;
3529 case '&':
3530 if (i > last) {
3531 parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3532 }
3533 parts->Add(ReplacementPart::SubjectMatch(), zone);
3534 i = next_index;
3535 last = i + 1;
3536 break;
3537 case '0':
3538 case '1':
3539 case '2':
3540 case '3':
3541 case '4':
3542 case '5':
3543 case '6':
3544 case '7':
3545 case '8':
3546 case '9': {
3547 int capture_ref = c2 - '0';
3548 if (capture_ref > capture_count) {
3549 i = next_index;
3550 continue;
3551 }
3552 int second_digit_index = next_index + 1;
3553 if (second_digit_index < length) {
3554 // Peek ahead to see if we have two digits.
3555 Char c3 = characters[second_digit_index];
3556 if ('0' <= c3 && c3 <= '9') { // Double digits.
3557 int double_digit_ref = capture_ref * 10 + c3 - '0';
3558 if (double_digit_ref <= capture_count) {
3559 next_index = second_digit_index;
3560 capture_ref = double_digit_ref;
3561 }
3562 }
3563 }
3564 if (capture_ref > 0) {
3565 if (i > last) {
3566 parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
3567 }
3568 DCHECK(capture_ref <= capture_count);
3569 parts->Add(ReplacementPart::SubjectCapture(capture_ref), zone);
3570 last = next_index + 1;
3571 }
3572 i = next_index;
3573 break;
3574 }
3575 default:
3576 i = next_index;
3577 break;
3578 }
3579 }
3580 }
3581 if (length > last) {
3582 if (last == 0) {
3583 // Replacement is simple. Do not use Apply to do the replacement.
3584 return true;
3585 } else {
3586 parts->Add(ReplacementPart::ReplacementSubString(last, length), zone);
3587 }
3588 }
3589 return false;
3590 }
3591
3592 ZoneList<ReplacementPart> parts_;
3593 ZoneList<Handle<String> > replacement_substrings_;
3594 Zone* zone_;
3595 };
3596
3597
Compile(Handle<String> replacement,int capture_count,int subject_length)3598 bool CompiledReplacement::Compile(Handle<String> replacement,
3599 int capture_count,
3600 int subject_length) {
3601 {
3602 DisallowHeapAllocation no_gc;
3603 String::FlatContent content = replacement->GetFlatContent();
3604 DCHECK(content.IsFlat());
3605 bool simple = false;
3606 if (content.IsOneByte()) {
3607 simple = ParseReplacementPattern(&parts_,
3608 content.ToOneByteVector(),
3609 capture_count,
3610 subject_length,
3611 zone());
3612 } else {
3613 DCHECK(content.IsTwoByte());
3614 simple = ParseReplacementPattern(&parts_,
3615 content.ToUC16Vector(),
3616 capture_count,
3617 subject_length,
3618 zone());
3619 }
3620 if (simple) return true;
3621 }
3622
3623 Isolate* isolate = replacement->GetIsolate();
3624 // Find substrings of replacement string and create them as String objects.
3625 int substring_index = 0;
3626 for (int i = 0, n = parts_.length(); i < n; i++) {
3627 int tag = parts_[i].tag;
3628 if (tag <= 0) { // A replacement string slice.
3629 int from = -tag;
3630 int to = parts_[i].data;
3631 replacement_substrings_.Add(
3632 isolate->factory()->NewSubString(replacement, from, to), zone());
3633 parts_[i].tag = REPLACEMENT_SUBSTRING;
3634 parts_[i].data = substring_index;
3635 substring_index++;
3636 } else if (tag == REPLACEMENT_STRING) {
3637 replacement_substrings_.Add(replacement, zone());
3638 parts_[i].data = substring_index;
3639 substring_index++;
3640 }
3641 }
3642 return false;
3643 }
3644
3645
Apply(ReplacementStringBuilder * builder,int match_from,int match_to,int32_t * match)3646 void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
3647 int match_from,
3648 int match_to,
3649 int32_t* match) {
3650 DCHECK_LT(0, parts_.length());
3651 for (int i = 0, n = parts_.length(); i < n; i++) {
3652 ReplacementPart part = parts_[i];
3653 switch (part.tag) {
3654 case SUBJECT_PREFIX:
3655 if (match_from > 0) builder->AddSubjectSlice(0, match_from);
3656 break;
3657 case SUBJECT_SUFFIX: {
3658 int subject_length = part.data;
3659 if (match_to < subject_length) {
3660 builder->AddSubjectSlice(match_to, subject_length);
3661 }
3662 break;
3663 }
3664 case SUBJECT_CAPTURE: {
3665 int capture = part.data;
3666 int from = match[capture * 2];
3667 int to = match[capture * 2 + 1];
3668 if (from >= 0 && to > from) {
3669 builder->AddSubjectSlice(from, to);
3670 }
3671 break;
3672 }
3673 case REPLACEMENT_SUBSTRING:
3674 case REPLACEMENT_STRING:
3675 builder->AddString(replacement_substrings_[part.data]);
3676 break;
3677 default:
3678 UNREACHABLE();
3679 }
3680 }
3681 }
3682
3683
FindOneByteStringIndices(Vector<const uint8_t> subject,char pattern,ZoneList<int> * indices,unsigned int limit,Zone * zone)3684 void FindOneByteStringIndices(Vector<const uint8_t> subject, char pattern,
3685 ZoneList<int>* indices, unsigned int limit,
3686 Zone* zone) {
3687 DCHECK(limit > 0);
3688 // Collect indices of pattern in subject using memchr.
3689 // Stop after finding at most limit values.
3690 const uint8_t* subject_start = subject.start();
3691 const uint8_t* subject_end = subject_start + subject.length();
3692 const uint8_t* pos = subject_start;
3693 while (limit > 0) {
3694 pos = reinterpret_cast<const uint8_t*>(
3695 memchr(pos, pattern, subject_end - pos));
3696 if (pos == NULL) return;
3697 indices->Add(static_cast<int>(pos - subject_start), zone);
3698 pos++;
3699 limit--;
3700 }
3701 }
3702
3703
FindTwoByteStringIndices(const Vector<const uc16> subject,uc16 pattern,ZoneList<int> * indices,unsigned int limit,Zone * zone)3704 void FindTwoByteStringIndices(const Vector<const uc16> subject,
3705 uc16 pattern,
3706 ZoneList<int>* indices,
3707 unsigned int limit,
3708 Zone* zone) {
3709 DCHECK(limit > 0);
3710 const uc16* subject_start = subject.start();
3711 const uc16* subject_end = subject_start + subject.length();
3712 for (const uc16* pos = subject_start; pos < subject_end && limit > 0; pos++) {
3713 if (*pos == pattern) {
3714 indices->Add(static_cast<int>(pos - subject_start), zone);
3715 limit--;
3716 }
3717 }
3718 }
3719
3720
3721 template <typename SubjectChar, typename PatternChar>
FindStringIndices(Isolate * isolate,Vector<const SubjectChar> subject,Vector<const PatternChar> pattern,ZoneList<int> * indices,unsigned int limit,Zone * zone)3722 void FindStringIndices(Isolate* isolate,
3723 Vector<const SubjectChar> subject,
3724 Vector<const PatternChar> pattern,
3725 ZoneList<int>* indices,
3726 unsigned int limit,
3727 Zone* zone) {
3728 DCHECK(limit > 0);
3729 // Collect indices of pattern in subject.
3730 // Stop after finding at most limit values.
3731 int pattern_length = pattern.length();
3732 int index = 0;
3733 StringSearch<PatternChar, SubjectChar> search(isolate, pattern);
3734 while (limit > 0) {
3735 index = search.Search(subject, index);
3736 if (index < 0) return;
3737 indices->Add(index, zone);
3738 index += pattern_length;
3739 limit--;
3740 }
3741 }
3742
3743
FindStringIndicesDispatch(Isolate * isolate,String * subject,String * pattern,ZoneList<int> * indices,unsigned int limit,Zone * zone)3744 void FindStringIndicesDispatch(Isolate* isolate,
3745 String* subject,
3746 String* pattern,
3747 ZoneList<int>* indices,
3748 unsigned int limit,
3749 Zone* zone) {
3750 {
3751 DisallowHeapAllocation no_gc;
3752 String::FlatContent subject_content = subject->GetFlatContent();
3753 String::FlatContent pattern_content = pattern->GetFlatContent();
3754 DCHECK(subject_content.IsFlat());
3755 DCHECK(pattern_content.IsFlat());
3756 if (subject_content.IsOneByte()) {
3757 Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
3758 if (pattern_content.IsOneByte()) {
3759 Vector<const uint8_t> pattern_vector =
3760 pattern_content.ToOneByteVector();
3761 if (pattern_vector.length() == 1) {
3762 FindOneByteStringIndices(subject_vector, pattern_vector[0], indices,
3763 limit, zone);
3764 } else {
3765 FindStringIndices(isolate,
3766 subject_vector,
3767 pattern_vector,
3768 indices,
3769 limit,
3770 zone);
3771 }
3772 } else {
3773 FindStringIndices(isolate,
3774 subject_vector,
3775 pattern_content.ToUC16Vector(),
3776 indices,
3777 limit,
3778 zone);
3779 }
3780 } else {
3781 Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
3782 if (pattern_content.IsOneByte()) {
3783 Vector<const uint8_t> pattern_vector =
3784 pattern_content.ToOneByteVector();
3785 if (pattern_vector.length() == 1) {
3786 FindTwoByteStringIndices(subject_vector,
3787 pattern_vector[0],
3788 indices,
3789 limit,
3790 zone);
3791 } else {
3792 FindStringIndices(isolate,
3793 subject_vector,
3794 pattern_vector,
3795 indices,
3796 limit,
3797 zone);
3798 }
3799 } else {
3800 Vector<const uc16> pattern_vector = pattern_content.ToUC16Vector();
3801 if (pattern_vector.length() == 1) {
3802 FindTwoByteStringIndices(subject_vector,
3803 pattern_vector[0],
3804 indices,
3805 limit,
3806 zone);
3807 } else {
3808 FindStringIndices(isolate,
3809 subject_vector,
3810 pattern_vector,
3811 indices,
3812 limit,
3813 zone);
3814 }
3815 }
3816 }
3817 }
3818 }
3819
3820
3821 template<typename ResultSeqString>
StringReplaceGlobalAtomRegExpWithString(Isolate * isolate,Handle<String> subject,Handle<JSRegExp> pattern_regexp,Handle<String> replacement,Handle<JSArray> last_match_info)3822 MUST_USE_RESULT static Object* StringReplaceGlobalAtomRegExpWithString(
3823 Isolate* isolate,
3824 Handle<String> subject,
3825 Handle<JSRegExp> pattern_regexp,
3826 Handle<String> replacement,
3827 Handle<JSArray> last_match_info) {
3828 DCHECK(subject->IsFlat());
3829 DCHECK(replacement->IsFlat());
3830
3831 ZoneScope zone_scope(isolate->runtime_zone());
3832 ZoneList<int> indices(8, zone_scope.zone());
3833 DCHECK_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag());
3834 String* pattern =
3835 String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex));
3836 int subject_len = subject->length();
3837 int pattern_len = pattern->length();
3838 int replacement_len = replacement->length();
3839
3840 FindStringIndicesDispatch(
3841 isolate, *subject, pattern, &indices, 0xffffffff, zone_scope.zone());
3842
3843 int matches = indices.length();
3844 if (matches == 0) return *subject;
3845
3846 // Detect integer overflow.
3847 int64_t result_len_64 =
3848 (static_cast<int64_t>(replacement_len) -
3849 static_cast<int64_t>(pattern_len)) *
3850 static_cast<int64_t>(matches) +
3851 static_cast<int64_t>(subject_len);
3852 int result_len;
3853 if (result_len_64 > static_cast<int64_t>(String::kMaxLength)) {
3854 STATIC_ASSERT(String::kMaxLength < kMaxInt);
3855 result_len = kMaxInt; // Provoke exception.
3856 } else {
3857 result_len = static_cast<int>(result_len_64);
3858 }
3859
3860 int subject_pos = 0;
3861 int result_pos = 0;
3862
3863 MaybeHandle<SeqString> maybe_res;
3864 if (ResultSeqString::kHasOneByteEncoding) {
3865 maybe_res = isolate->factory()->NewRawOneByteString(result_len);
3866 } else {
3867 maybe_res = isolate->factory()->NewRawTwoByteString(result_len);
3868 }
3869 Handle<SeqString> untyped_res;
3870 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, untyped_res, maybe_res);
3871 Handle<ResultSeqString> result = Handle<ResultSeqString>::cast(untyped_res);
3872
3873 for (int i = 0; i < matches; i++) {
3874 // Copy non-matched subject content.
3875 if (subject_pos < indices.at(i)) {
3876 String::WriteToFlat(*subject,
3877 result->GetChars() + result_pos,
3878 subject_pos,
3879 indices.at(i));
3880 result_pos += indices.at(i) - subject_pos;
3881 }
3882
3883 // Replace match.
3884 if (replacement_len > 0) {
3885 String::WriteToFlat(*replacement,
3886 result->GetChars() + result_pos,
3887 0,
3888 replacement_len);
3889 result_pos += replacement_len;
3890 }
3891
3892 subject_pos = indices.at(i) + pattern_len;
3893 }
3894 // Add remaining subject content at the end.
3895 if (subject_pos < subject_len) {
3896 String::WriteToFlat(*subject,
3897 result->GetChars() + result_pos,
3898 subject_pos,
3899 subject_len);
3900 }
3901
3902 int32_t match_indices[] = { indices.at(matches - 1),
3903 indices.at(matches - 1) + pattern_len };
3904 RegExpImpl::SetLastMatchInfo(last_match_info, subject, 0, match_indices);
3905
3906 return *result;
3907 }
3908
3909
StringReplaceGlobalRegExpWithString(Isolate * isolate,Handle<String> subject,Handle<JSRegExp> regexp,Handle<String> replacement,Handle<JSArray> last_match_info)3910 MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithString(
3911 Isolate* isolate,
3912 Handle<String> subject,
3913 Handle<JSRegExp> regexp,
3914 Handle<String> replacement,
3915 Handle<JSArray> last_match_info) {
3916 DCHECK(subject->IsFlat());
3917 DCHECK(replacement->IsFlat());
3918
3919 int capture_count = regexp->CaptureCount();
3920 int subject_length = subject->length();
3921
3922 // CompiledReplacement uses zone allocation.
3923 ZoneScope zone_scope(isolate->runtime_zone());
3924 CompiledReplacement compiled_replacement(zone_scope.zone());
3925 bool simple_replace = compiled_replacement.Compile(replacement,
3926 capture_count,
3927 subject_length);
3928
3929 // Shortcut for simple non-regexp global replacements
3930 if (regexp->TypeTag() == JSRegExp::ATOM && simple_replace) {
3931 if (subject->HasOnlyOneByteChars() &&
3932 replacement->HasOnlyOneByteChars()) {
3933 return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
3934 isolate, subject, regexp, replacement, last_match_info);
3935 } else {
3936 return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
3937 isolate, subject, regexp, replacement, last_match_info);
3938 }
3939 }
3940
3941 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
3942 if (global_cache.HasException()) return isolate->heap()->exception();
3943
3944 int32_t* current_match = global_cache.FetchNext();
3945 if (current_match == NULL) {
3946 if (global_cache.HasException()) return isolate->heap()->exception();
3947 return *subject;
3948 }
3949
3950 // Guessing the number of parts that the final result string is built
3951 // from. Global regexps can match any number of times, so we guess
3952 // conservatively.
3953 int expected_parts = (compiled_replacement.parts() + 1) * 4 + 1;
3954 ReplacementStringBuilder builder(isolate->heap(),
3955 subject,
3956 expected_parts);
3957
3958 // Number of parts added by compiled replacement plus preceeding
3959 // string and possibly suffix after last match. It is possible for
3960 // all components to use two elements when encoded as two smis.
3961 const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
3962
3963 int prev = 0;
3964
3965 do {
3966 builder.EnsureCapacity(parts_added_per_loop);
3967
3968 int start = current_match[0];
3969 int end = current_match[1];
3970
3971 if (prev < start) {
3972 builder.AddSubjectSlice(prev, start);
3973 }
3974
3975 if (simple_replace) {
3976 builder.AddString(replacement);
3977 } else {
3978 compiled_replacement.Apply(&builder,
3979 start,
3980 end,
3981 current_match);
3982 }
3983 prev = end;
3984
3985 current_match = global_cache.FetchNext();
3986 } while (current_match != NULL);
3987
3988 if (global_cache.HasException()) return isolate->heap()->exception();
3989
3990 if (prev < subject_length) {
3991 builder.EnsureCapacity(2);
3992 builder.AddSubjectSlice(prev, subject_length);
3993 }
3994
3995 RegExpImpl::SetLastMatchInfo(last_match_info,
3996 subject,
3997 capture_count,
3998 global_cache.LastSuccessfulMatch());
3999
4000 Handle<String> result;
4001 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, builder.ToString());
4002 return *result;
4003 }
4004
4005
4006 template <typename ResultSeqString>
StringReplaceGlobalRegExpWithEmptyString(Isolate * isolate,Handle<String> subject,Handle<JSRegExp> regexp,Handle<JSArray> last_match_info)4007 MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithEmptyString(
4008 Isolate* isolate,
4009 Handle<String> subject,
4010 Handle<JSRegExp> regexp,
4011 Handle<JSArray> last_match_info) {
4012 DCHECK(subject->IsFlat());
4013
4014 // Shortcut for simple non-regexp global replacements
4015 if (regexp->TypeTag() == JSRegExp::ATOM) {
4016 Handle<String> empty_string = isolate->factory()->empty_string();
4017 if (subject->IsOneByteRepresentation()) {
4018 return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
4019 isolate, subject, regexp, empty_string, last_match_info);
4020 } else {
4021 return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
4022 isolate, subject, regexp, empty_string, last_match_info);
4023 }
4024 }
4025
4026 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
4027 if (global_cache.HasException()) return isolate->heap()->exception();
4028
4029 int32_t* current_match = global_cache.FetchNext();
4030 if (current_match == NULL) {
4031 if (global_cache.HasException()) return isolate->heap()->exception();
4032 return *subject;
4033 }
4034
4035 int start = current_match[0];
4036 int end = current_match[1];
4037 int capture_count = regexp->CaptureCount();
4038 int subject_length = subject->length();
4039
4040 int new_length = subject_length - (end - start);
4041 if (new_length == 0) return isolate->heap()->empty_string();
4042
4043 Handle<ResultSeqString> answer;
4044 if (ResultSeqString::kHasOneByteEncoding) {
4045 answer = Handle<ResultSeqString>::cast(
4046 isolate->factory()->NewRawOneByteString(new_length).ToHandleChecked());
4047 } else {
4048 answer = Handle<ResultSeqString>::cast(
4049 isolate->factory()->NewRawTwoByteString(new_length).ToHandleChecked());
4050 }
4051
4052 int prev = 0;
4053 int position = 0;
4054
4055 do {
4056 start = current_match[0];
4057 end = current_match[1];
4058 if (prev < start) {
4059 // Add substring subject[prev;start] to answer string.
4060 String::WriteToFlat(*subject, answer->GetChars() + position, prev, start);
4061 position += start - prev;
4062 }
4063 prev = end;
4064
4065 current_match = global_cache.FetchNext();
4066 } while (current_match != NULL);
4067
4068 if (global_cache.HasException()) return isolate->heap()->exception();
4069
4070 RegExpImpl::SetLastMatchInfo(last_match_info,
4071 subject,
4072 capture_count,
4073 global_cache.LastSuccessfulMatch());
4074
4075 if (prev < subject_length) {
4076 // Add substring subject[prev;length] to answer string.
4077 String::WriteToFlat(
4078 *subject, answer->GetChars() + position, prev, subject_length);
4079 position += subject_length - prev;
4080 }
4081
4082 if (position == 0) return isolate->heap()->empty_string();
4083
4084 // Shorten string and fill
4085 int string_size = ResultSeqString::SizeFor(position);
4086 int allocated_string_size = ResultSeqString::SizeFor(new_length);
4087 int delta = allocated_string_size - string_size;
4088
4089 answer->set_length(position);
4090 if (delta == 0) return *answer;
4091
4092 Address end_of_string = answer->address() + string_size;
4093 Heap* heap = isolate->heap();
4094
4095 // The trimming is performed on a newly allocated object, which is on a
4096 // fresly allocated page or on an already swept page. Hence, the sweeper
4097 // thread can not get confused with the filler creation. No synchronization
4098 // needed.
4099 heap->CreateFillerObjectAt(end_of_string, delta);
4100 heap->AdjustLiveBytes(answer->address(), -delta, Heap::FROM_MUTATOR);
4101 return *answer;
4102 }
4103
4104
RUNTIME_FUNCTION(Runtime_StringReplaceGlobalRegExpWithString)4105 RUNTIME_FUNCTION(Runtime_StringReplaceGlobalRegExpWithString) {
4106 HandleScope scope(isolate);
4107 DCHECK(args.length() == 4);
4108
4109 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
4110 CONVERT_ARG_HANDLE_CHECKED(String, replacement, 2);
4111 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
4112 CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
4113
4114 RUNTIME_ASSERT(regexp->GetFlags().is_global());
4115 RUNTIME_ASSERT(last_match_info->HasFastObjectElements());
4116
4117 subject = String::Flatten(subject);
4118
4119 if (replacement->length() == 0) {
4120 if (subject->HasOnlyOneByteChars()) {
4121 return StringReplaceGlobalRegExpWithEmptyString<SeqOneByteString>(
4122 isolate, subject, regexp, last_match_info);
4123 } else {
4124 return StringReplaceGlobalRegExpWithEmptyString<SeqTwoByteString>(
4125 isolate, subject, regexp, last_match_info);
4126 }
4127 }
4128
4129 replacement = String::Flatten(replacement);
4130
4131 return StringReplaceGlobalRegExpWithString(
4132 isolate, subject, regexp, replacement, last_match_info);
4133 }
4134
4135
4136 // This may return an empty MaybeHandle if an exception is thrown or
4137 // we abort due to reaching the recursion limit.
StringReplaceOneCharWithString(Isolate * isolate,Handle<String> subject,Handle<String> search,Handle<String> replace,bool * found,int recursion_limit)4138 MaybeHandle<String> StringReplaceOneCharWithString(Isolate* isolate,
4139 Handle<String> subject,
4140 Handle<String> search,
4141 Handle<String> replace,
4142 bool* found,
4143 int recursion_limit) {
4144 StackLimitCheck stackLimitCheck(isolate);
4145 if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
4146 return MaybeHandle<String>();
4147 }
4148 recursion_limit--;
4149 if (subject->IsConsString()) {
4150 ConsString* cons = ConsString::cast(*subject);
4151 Handle<String> first = Handle<String>(cons->first());
4152 Handle<String> second = Handle<String>(cons->second());
4153 Handle<String> new_first;
4154 if (!StringReplaceOneCharWithString(
4155 isolate, first, search, replace, found, recursion_limit)
4156 .ToHandle(&new_first)) {
4157 return MaybeHandle<String>();
4158 }
4159 if (*found) return isolate->factory()->NewConsString(new_first, second);
4160
4161 Handle<String> new_second;
4162 if (!StringReplaceOneCharWithString(
4163 isolate, second, search, replace, found, recursion_limit)
4164 .ToHandle(&new_second)) {
4165 return MaybeHandle<String>();
4166 }
4167 if (*found) return isolate->factory()->NewConsString(first, new_second);
4168
4169 return subject;
4170 } else {
4171 int index = Runtime::StringMatch(isolate, subject, search, 0);
4172 if (index == -1) return subject;
4173 *found = true;
4174 Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
4175 Handle<String> cons1;
4176 ASSIGN_RETURN_ON_EXCEPTION(
4177 isolate, cons1,
4178 isolate->factory()->NewConsString(first, replace),
4179 String);
4180 Handle<String> second =
4181 isolate->factory()->NewSubString(subject, index + 1, subject->length());
4182 return isolate->factory()->NewConsString(cons1, second);
4183 }
4184 }
4185
4186
RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString)4187 RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
4188 HandleScope scope(isolate);
4189 DCHECK(args.length() == 3);
4190 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
4191 CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
4192 CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
4193
4194 // If the cons string tree is too deep, we simply abort the recursion and
4195 // retry with a flattened subject string.
4196 const int kRecursionLimit = 0x1000;
4197 bool found = false;
4198 Handle<String> result;
4199 if (StringReplaceOneCharWithString(
4200 isolate, subject, search, replace, &found, kRecursionLimit)
4201 .ToHandle(&result)) {
4202 return *result;
4203 }
4204 if (isolate->has_pending_exception()) return isolate->heap()->exception();
4205
4206 subject = String::Flatten(subject);
4207 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
4208 isolate, result,
4209 StringReplaceOneCharWithString(
4210 isolate, subject, search, replace, &found, kRecursionLimit));
4211 return *result;
4212 }
4213
4214
4215 // Perform string match of pattern on subject, starting at start index.
4216 // Caller must ensure that 0 <= start_index <= sub->length(),
4217 // and should check that pat->length() + start_index <= sub->length().
StringMatch(Isolate * isolate,Handle<String> sub,Handle<String> pat,int start_index)4218 int Runtime::StringMatch(Isolate* isolate,
4219 Handle<String> sub,
4220 Handle<String> pat,
4221 int start_index) {
4222 DCHECK(0 <= start_index);
4223 DCHECK(start_index <= sub->length());
4224
4225 int pattern_length = pat->length();
4226 if (pattern_length == 0) return start_index;
4227
4228 int subject_length = sub->length();
4229 if (start_index + pattern_length > subject_length) return -1;
4230
4231 sub = String::Flatten(sub);
4232 pat = String::Flatten(pat);
4233
4234 DisallowHeapAllocation no_gc; // ensure vectors stay valid
4235 // Extract flattened substrings of cons strings before getting encoding.
4236 String::FlatContent seq_sub = sub->GetFlatContent();
4237 String::FlatContent seq_pat = pat->GetFlatContent();
4238
4239 // dispatch on type of strings
4240 if (seq_pat.IsOneByte()) {
4241 Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector();
4242 if (seq_sub.IsOneByte()) {
4243 return SearchString(isolate,
4244 seq_sub.ToOneByteVector(),
4245 pat_vector,
4246 start_index);
4247 }
4248 return SearchString(isolate,
4249 seq_sub.ToUC16Vector(),
4250 pat_vector,
4251 start_index);
4252 }
4253 Vector<const uc16> pat_vector = seq_pat.ToUC16Vector();
4254 if (seq_sub.IsOneByte()) {
4255 return SearchString(isolate,
4256 seq_sub.ToOneByteVector(),
4257 pat_vector,
4258 start_index);
4259 }
4260 return SearchString(isolate,
4261 seq_sub.ToUC16Vector(),
4262 pat_vector,
4263 start_index);
4264 }
4265
4266
RUNTIME_FUNCTION(Runtime_StringIndexOf)4267 RUNTIME_FUNCTION(Runtime_StringIndexOf) {
4268 HandleScope scope(isolate);
4269 DCHECK(args.length() == 3);
4270
4271 CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
4272 CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
4273 CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
4274
4275 uint32_t start_index;
4276 if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
4277
4278 RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
4279 int position = Runtime::StringMatch(isolate, sub, pat, start_index);
4280 return Smi::FromInt(position);
4281 }
4282
4283
4284 template <typename schar, typename pchar>
StringMatchBackwards(Vector<const schar> subject,Vector<const pchar> pattern,int idx)4285 static int StringMatchBackwards(Vector<const schar> subject,
4286 Vector<const pchar> pattern,
4287 int idx) {
4288 int pattern_length = pattern.length();
4289 DCHECK(pattern_length >= 1);
4290 DCHECK(idx + pattern_length <= subject.length());
4291
4292 if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
4293 for (int i = 0; i < pattern_length; i++) {
4294 uc16 c = pattern[i];
4295 if (c > String::kMaxOneByteCharCode) {
4296 return -1;
4297 }
4298 }
4299 }
4300
4301 pchar pattern_first_char = pattern[0];
4302 for (int i = idx; i >= 0; i--) {
4303 if (subject[i] != pattern_first_char) continue;
4304 int j = 1;
4305 while (j < pattern_length) {
4306 if (pattern[j] != subject[i+j]) {
4307 break;
4308 }
4309 j++;
4310 }
4311 if (j == pattern_length) {
4312 return i;
4313 }
4314 }
4315 return -1;
4316 }
4317
4318
RUNTIME_FUNCTION(Runtime_StringLastIndexOf)4319 RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
4320 HandleScope scope(isolate);
4321 DCHECK(args.length() == 3);
4322
4323 CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
4324 CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
4325 CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
4326
4327 uint32_t start_index;
4328 if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
4329
4330 uint32_t pat_length = pat->length();
4331 uint32_t sub_length = sub->length();
4332
4333 if (start_index + pat_length > sub_length) {
4334 start_index = sub_length - pat_length;
4335 }
4336
4337 if (pat_length == 0) {
4338 return Smi::FromInt(start_index);
4339 }
4340
4341 sub = String::Flatten(sub);
4342 pat = String::Flatten(pat);
4343
4344 int position = -1;
4345 DisallowHeapAllocation no_gc; // ensure vectors stay valid
4346
4347 String::FlatContent sub_content = sub->GetFlatContent();
4348 String::FlatContent pat_content = pat->GetFlatContent();
4349
4350 if (pat_content.IsOneByte()) {
4351 Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
4352 if (sub_content.IsOneByte()) {
4353 position = StringMatchBackwards(sub_content.ToOneByteVector(),
4354 pat_vector,
4355 start_index);
4356 } else {
4357 position = StringMatchBackwards(sub_content.ToUC16Vector(),
4358 pat_vector,
4359 start_index);
4360 }
4361 } else {
4362 Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
4363 if (sub_content.IsOneByte()) {
4364 position = StringMatchBackwards(sub_content.ToOneByteVector(),
4365 pat_vector,
4366 start_index);
4367 } else {
4368 position = StringMatchBackwards(sub_content.ToUC16Vector(),
4369 pat_vector,
4370 start_index);
4371 }
4372 }
4373
4374 return Smi::FromInt(position);
4375 }
4376
4377
RUNTIME_FUNCTION(Runtime_StringLocaleCompare)4378 RUNTIME_FUNCTION(Runtime_StringLocaleCompare) {
4379 HandleScope handle_scope(isolate);
4380 DCHECK(args.length() == 2);
4381
4382 CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
4383 CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
4384
4385 if (str1.is_identical_to(str2)) return Smi::FromInt(0); // Equal.
4386 int str1_length = str1->length();
4387 int str2_length = str2->length();
4388
4389 // Decide trivial cases without flattening.
4390 if (str1_length == 0) {
4391 if (str2_length == 0) return Smi::FromInt(0); // Equal.
4392 return Smi::FromInt(-str2_length);
4393 } else {
4394 if (str2_length == 0) return Smi::FromInt(str1_length);
4395 }
4396
4397 int end = str1_length < str2_length ? str1_length : str2_length;
4398
4399 // No need to flatten if we are going to find the answer on the first
4400 // character. At this point we know there is at least one character
4401 // in each string, due to the trivial case handling above.
4402 int d = str1->Get(0) - str2->Get(0);
4403 if (d != 0) return Smi::FromInt(d);
4404
4405 str1 = String::Flatten(str1);
4406 str2 = String::Flatten(str2);
4407
4408 DisallowHeapAllocation no_gc;
4409 String::FlatContent flat1 = str1->GetFlatContent();
4410 String::FlatContent flat2 = str2->GetFlatContent();
4411
4412 for (int i = 0; i < end; i++) {
4413 if (flat1.Get(i) != flat2.Get(i)) {
4414 return Smi::FromInt(flat1.Get(i) - flat2.Get(i));
4415 }
4416 }
4417
4418 return Smi::FromInt(str1_length - str2_length);
4419 }
4420
4421
RUNTIME_FUNCTION(Runtime_SubString)4422 RUNTIME_FUNCTION(Runtime_SubString) {
4423 HandleScope scope(isolate);
4424 DCHECK(args.length() == 3);
4425
4426 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
4427 int start, end;
4428 // We have a fast integer-only case here to avoid a conversion to double in
4429 // the common case where from and to are Smis.
4430 if (args[1]->IsSmi() && args[2]->IsSmi()) {
4431 CONVERT_SMI_ARG_CHECKED(from_number, 1);
4432 CONVERT_SMI_ARG_CHECKED(to_number, 2);
4433 start = from_number;
4434 end = to_number;
4435 } else {
4436 CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
4437 CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
4438 start = FastD2IChecked(from_number);
4439 end = FastD2IChecked(to_number);
4440 }
4441 RUNTIME_ASSERT(end >= start);
4442 RUNTIME_ASSERT(start >= 0);
4443 RUNTIME_ASSERT(end <= string->length());
4444 isolate->counters()->sub_string_runtime()->Increment();
4445
4446 return *isolate->factory()->NewSubString(string, start, end);
4447 }
4448
4449
RUNTIME_FUNCTION(Runtime_InternalizeString)4450 RUNTIME_FUNCTION(Runtime_InternalizeString) {
4451 HandleScope handles(isolate);
4452 RUNTIME_ASSERT(args.length() == 1);
4453 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
4454 return *isolate->factory()->InternalizeString(string);
4455 }
4456
4457
RUNTIME_FUNCTION(Runtime_StringMatch)4458 RUNTIME_FUNCTION(Runtime_StringMatch) {
4459 HandleScope handles(isolate);
4460 DCHECK(args.length() == 3);
4461
4462 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
4463 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
4464 CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
4465
4466 RUNTIME_ASSERT(regexp_info->HasFastObjectElements());
4467
4468 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
4469 if (global_cache.HasException()) return isolate->heap()->exception();
4470
4471 int capture_count = regexp->CaptureCount();
4472
4473 ZoneScope zone_scope(isolate->runtime_zone());
4474 ZoneList<int> offsets(8, zone_scope.zone());
4475
4476 while (true) {
4477 int32_t* match = global_cache.FetchNext();
4478 if (match == NULL) break;
4479 offsets.Add(match[0], zone_scope.zone()); // start
4480 offsets.Add(match[1], zone_scope.zone()); // end
4481 }
4482
4483 if (global_cache.HasException()) return isolate->heap()->exception();
4484
4485 if (offsets.length() == 0) {
4486 // Not a single match.
4487 return isolate->heap()->null_value();
4488 }
4489
4490 RegExpImpl::SetLastMatchInfo(regexp_info,
4491 subject,
4492 capture_count,
4493 global_cache.LastSuccessfulMatch());
4494
4495 int matches = offsets.length() / 2;
4496 Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
4497 Handle<String> substring =
4498 isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
4499 elements->set(0, *substring);
4500 for (int i = 1; i < matches; i++) {
4501 HandleScope temp_scope(isolate);
4502 int from = offsets.at(i * 2);
4503 int to = offsets.at(i * 2 + 1);
4504 Handle<String> substring =
4505 isolate->factory()->NewProperSubString(subject, from, to);
4506 elements->set(i, *substring);
4507 }
4508 Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
4509 result->set_length(Smi::FromInt(matches));
4510 return *result;
4511 }
4512
4513
4514 // Only called from Runtime_RegExpExecMultiple so it doesn't need to maintain
4515 // separate last match info. See comment on that function.
4516 template<bool has_capture>
SearchRegExpMultiple(Isolate * isolate,Handle<String> subject,Handle<JSRegExp> regexp,Handle<JSArray> last_match_array,Handle<JSArray> result_array)4517 static Object* SearchRegExpMultiple(
4518 Isolate* isolate,
4519 Handle<String> subject,
4520 Handle<JSRegExp> regexp,
4521 Handle<JSArray> last_match_array,
4522 Handle<JSArray> result_array) {
4523 DCHECK(subject->IsFlat());
4524 DCHECK_NE(has_capture, regexp->CaptureCount() == 0);
4525
4526 int capture_count = regexp->CaptureCount();
4527 int subject_length = subject->length();
4528
4529 static const int kMinLengthToCache = 0x1000;
4530
4531 if (subject_length > kMinLengthToCache) {
4532 Handle<Object> cached_answer(RegExpResultsCache::Lookup(
4533 isolate->heap(),
4534 *subject,
4535 regexp->data(),
4536 RegExpResultsCache::REGEXP_MULTIPLE_INDICES), isolate);
4537 if (*cached_answer != Smi::FromInt(0)) {
4538 Handle<FixedArray> cached_fixed_array =
4539 Handle<FixedArray>(FixedArray::cast(*cached_answer));
4540 // The cache FixedArray is a COW-array and can therefore be reused.
4541 JSArray::SetContent(result_array, cached_fixed_array);
4542 // The actual length of the result array is stored in the last element of
4543 // the backing store (the backing FixedArray may have a larger capacity).
4544 Object* cached_fixed_array_last_element =
4545 cached_fixed_array->get(cached_fixed_array->length() - 1);
4546 Smi* js_array_length = Smi::cast(cached_fixed_array_last_element);
4547 result_array->set_length(js_array_length);
4548 RegExpImpl::SetLastMatchInfo(
4549 last_match_array, subject, capture_count, NULL);
4550 return *result_array;
4551 }
4552 }
4553
4554 RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
4555 if (global_cache.HasException()) return isolate->heap()->exception();
4556
4557 // Ensured in Runtime_RegExpExecMultiple.
4558 DCHECK(result_array->HasFastObjectElements());
4559 Handle<FixedArray> result_elements(
4560 FixedArray::cast(result_array->elements()));
4561 if (result_elements->length() < 16) {
4562 result_elements = isolate->factory()->NewFixedArrayWithHoles(16);
4563 }
4564
4565 FixedArrayBuilder builder(result_elements);
4566
4567 // Position to search from.
4568 int match_start = -1;
4569 int match_end = 0;
4570 bool first = true;
4571
4572 // Two smis before and after the match, for very long strings.
4573 static const int kMaxBuilderEntriesPerRegExpMatch = 5;
4574
4575 while (true) {
4576 int32_t* current_match = global_cache.FetchNext();
4577 if (current_match == NULL) break;
4578 match_start = current_match[0];
4579 builder.EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
4580 if (match_end < match_start) {
4581 ReplacementStringBuilder::AddSubjectSlice(&builder,
4582 match_end,
4583 match_start);
4584 }
4585 match_end = current_match[1];
4586 {
4587 // Avoid accumulating new handles inside loop.
4588 HandleScope temp_scope(isolate);
4589 Handle<String> match;
4590 if (!first) {
4591 match = isolate->factory()->NewProperSubString(subject,
4592 match_start,
4593 match_end);
4594 } else {
4595 match = isolate->factory()->NewSubString(subject,
4596 match_start,
4597 match_end);
4598 first = false;
4599 }
4600
4601 if (has_capture) {
4602 // Arguments array to replace function is match, captures, index and
4603 // subject, i.e., 3 + capture count in total.
4604 Handle<FixedArray> elements =
4605 isolate->factory()->NewFixedArray(3 + capture_count);
4606
4607 elements->set(0, *match);
4608 for (int i = 1; i <= capture_count; i++) {
4609 int start = current_match[i * 2];
4610 if (start >= 0) {
4611 int end = current_match[i * 2 + 1];
4612 DCHECK(start <= end);
4613 Handle<String> substring =
4614 isolate->factory()->NewSubString(subject, start, end);
4615 elements->set(i, *substring);
4616 } else {
4617 DCHECK(current_match[i * 2 + 1] < 0);
4618 elements->set(i, isolate->heap()->undefined_value());
4619 }
4620 }
4621 elements->set(capture_count + 1, Smi::FromInt(match_start));
4622 elements->set(capture_count + 2, *subject);
4623 builder.Add(*isolate->factory()->NewJSArrayWithElements(elements));
4624 } else {
4625 builder.Add(*match);
4626 }
4627 }
4628 }
4629
4630 if (global_cache.HasException()) return isolate->heap()->exception();
4631
4632 if (match_start >= 0) {
4633 // Finished matching, with at least one match.
4634 if (match_end < subject_length) {
4635 ReplacementStringBuilder::AddSubjectSlice(&builder,
4636 match_end,
4637 subject_length);
4638 }
4639
4640 RegExpImpl::SetLastMatchInfo(
4641 last_match_array, subject, capture_count, NULL);
4642
4643 if (subject_length > kMinLengthToCache) {
4644 // Store the length of the result array into the last element of the
4645 // backing FixedArray.
4646 builder.EnsureCapacity(1);
4647 Handle<FixedArray> fixed_array = builder.array();
4648 fixed_array->set(fixed_array->length() - 1,
4649 Smi::FromInt(builder.length()));
4650 // Cache the result and turn the FixedArray into a COW array.
4651 RegExpResultsCache::Enter(isolate,
4652 subject,
4653 handle(regexp->data(), isolate),
4654 fixed_array,
4655 RegExpResultsCache::REGEXP_MULTIPLE_INDICES);
4656 }
4657 return *builder.ToJSArray(result_array);
4658 } else {
4659 return isolate->heap()->null_value(); // No matches at all.
4660 }
4661 }
4662
4663
4664 // This is only called for StringReplaceGlobalRegExpWithFunction. This sets
4665 // lastMatchInfoOverride to maintain the last match info, so we don't need to
4666 // set any other last match array info.
RUNTIME_FUNCTION(Runtime_RegExpExecMultiple)4667 RUNTIME_FUNCTION(Runtime_RegExpExecMultiple) {
4668 HandleScope handles(isolate);
4669 DCHECK(args.length() == 4);
4670
4671 CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
4672 CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
4673 CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2);
4674 CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3);
4675 RUNTIME_ASSERT(last_match_info->HasFastObjectElements());
4676 RUNTIME_ASSERT(result_array->HasFastObjectElements());
4677
4678 subject = String::Flatten(subject);
4679 RUNTIME_ASSERT(regexp->GetFlags().is_global());
4680
4681 if (regexp->CaptureCount() == 0) {
4682 return SearchRegExpMultiple<false>(
4683 isolate, subject, regexp, last_match_info, result_array);
4684 } else {
4685 return SearchRegExpMultiple<true>(
4686 isolate, subject, regexp, last_match_info, result_array);
4687 }
4688 }
4689
4690
RUNTIME_FUNCTION(Runtime_NumberToRadixString)4691 RUNTIME_FUNCTION(Runtime_NumberToRadixString) {
4692 HandleScope scope(isolate);
4693 DCHECK(args.length() == 2);
4694 CONVERT_SMI_ARG_CHECKED(radix, 1);
4695 RUNTIME_ASSERT(2 <= radix && radix <= 36);
4696
4697 // Fast case where the result is a one character string.
4698 if (args[0]->IsSmi()) {
4699 int value = args.smi_at(0);
4700 if (value >= 0 && value < radix) {
4701 // Character array used for conversion.
4702 static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
4703 return *isolate->factory()->
4704 LookupSingleCharacterStringFromCode(kCharTable[value]);
4705 }
4706 }
4707
4708 // Slow case.
4709 CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4710 if (std::isnan(value)) {
4711 return isolate->heap()->nan_string();
4712 }
4713 if (std::isinf(value)) {
4714 if (value < 0) {
4715 return isolate->heap()->minus_infinity_string();
4716 }
4717 return isolate->heap()->infinity_string();
4718 }
4719 char* str = DoubleToRadixCString(value, radix);
4720 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4721 DeleteArray(str);
4722 return *result;
4723 }
4724
4725
RUNTIME_FUNCTION(Runtime_NumberToFixed)4726 RUNTIME_FUNCTION(Runtime_NumberToFixed) {
4727 HandleScope scope(isolate);
4728 DCHECK(args.length() == 2);
4729
4730 CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4731 CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
4732 int f = FastD2IChecked(f_number);
4733 // See DoubleToFixedCString for these constants:
4734 RUNTIME_ASSERT(f >= 0 && f <= 20);
4735 RUNTIME_ASSERT(!Double(value).IsSpecial());
4736 char* str = DoubleToFixedCString(value, f);
4737 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4738 DeleteArray(str);
4739 return *result;
4740 }
4741
4742
RUNTIME_FUNCTION(Runtime_NumberToExponential)4743 RUNTIME_FUNCTION(Runtime_NumberToExponential) {
4744 HandleScope scope(isolate);
4745 DCHECK(args.length() == 2);
4746
4747 CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4748 CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
4749 int f = FastD2IChecked(f_number);
4750 RUNTIME_ASSERT(f >= -1 && f <= 20);
4751 RUNTIME_ASSERT(!Double(value).IsSpecial());
4752 char* str = DoubleToExponentialCString(value, f);
4753 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4754 DeleteArray(str);
4755 return *result;
4756 }
4757
4758
RUNTIME_FUNCTION(Runtime_NumberToPrecision)4759 RUNTIME_FUNCTION(Runtime_NumberToPrecision) {
4760 HandleScope scope(isolate);
4761 DCHECK(args.length() == 2);
4762
4763 CONVERT_DOUBLE_ARG_CHECKED(value, 0);
4764 CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
4765 int f = FastD2IChecked(f_number);
4766 RUNTIME_ASSERT(f >= 1 && f <= 21);
4767 RUNTIME_ASSERT(!Double(value).IsSpecial());
4768 char* str = DoubleToPrecisionCString(value, f);
4769 Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
4770 DeleteArray(str);
4771 return *result;
4772 }
4773
4774
RUNTIME_FUNCTION(Runtime_IsValidSmi)4775 RUNTIME_FUNCTION(Runtime_IsValidSmi) {
4776 SealHandleScope shs(isolate);
4777 DCHECK(args.length() == 1);
4778
4779 CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
4780 return isolate->heap()->ToBoolean(Smi::IsValid(number));
4781 }
4782
4783
4784 // Returns a single character string where first character equals
4785 // string->Get(index).
GetCharAt(Handle<String> string,uint32_t index)4786 static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
4787 if (index < static_cast<uint32_t>(string->length())) {
4788 Factory* factory = string->GetIsolate()->factory();
4789 return factory->LookupSingleCharacterStringFromCode(
4790 String::Flatten(string)->Get(index));
4791 }
4792 return Execution::CharAt(string, index);
4793 }
4794
4795
GetElementOrCharAt(Isolate * isolate,Handle<Object> object,uint32_t index)4796 MaybeHandle<Object> Runtime::GetElementOrCharAt(Isolate* isolate,
4797 Handle<Object> object,
4798 uint32_t index) {
4799 // Handle [] indexing on Strings
4800 if (object->IsString()) {
4801 Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
4802 if (!result->IsUndefined()) return result;
4803 }
4804
4805 // Handle [] indexing on String objects
4806 if (object->IsStringObjectWithCharacterAt(index)) {
4807 Handle<JSValue> js_value = Handle<JSValue>::cast(object);
4808 Handle<Object> result =
4809 GetCharAt(Handle<String>(String::cast(js_value->value())), index);
4810 if (!result->IsUndefined()) return result;
4811 }
4812
4813 Handle<Object> result;
4814 if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
4815 PrototypeIterator iter(isolate, object);
4816 return Object::GetElement(isolate, PrototypeIterator::GetCurrent(iter),
4817 index);
4818 } else {
4819 return Object::GetElement(isolate, object, index);
4820 }
4821 }
4822
4823
4824 MUST_USE_RESULT
ToName(Isolate * isolate,Handle<Object> key)4825 static MaybeHandle<Name> ToName(Isolate* isolate, Handle<Object> key) {
4826 if (key->IsName()) {
4827 return Handle<Name>::cast(key);
4828 } else {
4829 Handle<Object> converted;
4830 ASSIGN_RETURN_ON_EXCEPTION(
4831 isolate, converted, Execution::ToString(isolate, key), Name);
4832 return Handle<Name>::cast(converted);
4833 }
4834 }
4835
4836
HasObjectProperty(Isolate * isolate,Handle<JSReceiver> object,Handle<Object> key)4837 MaybeHandle<Object> Runtime::HasObjectProperty(Isolate* isolate,
4838 Handle<JSReceiver> object,
4839 Handle<Object> key) {
4840 Maybe<bool> maybe;
4841 // Check if the given key is an array index.
4842 uint32_t index;
4843 if (key->ToArrayIndex(&index)) {
4844 maybe = JSReceiver::HasElement(object, index);
4845 } else {
4846 // Convert the key to a name - possibly by calling back into JavaScript.
4847 Handle<Name> name;
4848 ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
4849
4850 maybe = JSReceiver::HasProperty(object, name);
4851 }
4852
4853 if (!maybe.has_value) return MaybeHandle<Object>();
4854 return isolate->factory()->ToBoolean(maybe.value);
4855 }
4856
4857
GetObjectProperty(Isolate * isolate,Handle<Object> object,Handle<Object> key)4858 MaybeHandle<Object> Runtime::GetObjectProperty(Isolate* isolate,
4859 Handle<Object> object,
4860 Handle<Object> key) {
4861 if (object->IsUndefined() || object->IsNull()) {
4862 Handle<Object> args[2] = { key, object };
4863 THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_load",
4864 HandleVector(args, 2)),
4865 Object);
4866 }
4867
4868 // Check if the given key is an array index.
4869 uint32_t index;
4870 if (key->ToArrayIndex(&index)) {
4871 return GetElementOrCharAt(isolate, object, index);
4872 }
4873
4874 // Convert the key to a name - possibly by calling back into JavaScript.
4875 Handle<Name> name;
4876 ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
4877
4878 // Check if the name is trivially convertible to an index and get
4879 // the element if so.
4880 if (name->AsArrayIndex(&index)) {
4881 return GetElementOrCharAt(isolate, object, index);
4882 } else {
4883 return Object::GetProperty(object, name);
4884 }
4885 }
4886
4887
RUNTIME_FUNCTION(Runtime_GetProperty)4888 RUNTIME_FUNCTION(Runtime_GetProperty) {
4889 HandleScope scope(isolate);
4890 DCHECK(args.length() == 2);
4891
4892 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
4893 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
4894 Handle<Object> result;
4895 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
4896 isolate, result,
4897 Runtime::GetObjectProperty(isolate, object, key));
4898 return *result;
4899 }
4900
4901
4902 // KeyedGetProperty is called from KeyedLoadIC::GenerateGeneric.
RUNTIME_FUNCTION(Runtime_KeyedGetProperty)4903 RUNTIME_FUNCTION(Runtime_KeyedGetProperty) {
4904 HandleScope scope(isolate);
4905 DCHECK(args.length() == 2);
4906
4907 CONVERT_ARG_HANDLE_CHECKED(Object, receiver_obj, 0);
4908 CONVERT_ARG_HANDLE_CHECKED(Object, key_obj, 1);
4909
4910 // Fast cases for getting named properties of the receiver JSObject
4911 // itself.
4912 //
4913 // The global proxy objects has to be excluded since LookupOwn on
4914 // the global proxy object can return a valid result even though the
4915 // global proxy object never has properties. This is the case
4916 // because the global proxy object forwards everything to its hidden
4917 // prototype including own lookups.
4918 //
4919 // Additionally, we need to make sure that we do not cache results
4920 // for objects that require access checks.
4921 if (receiver_obj->IsJSObject()) {
4922 if (!receiver_obj->IsJSGlobalProxy() &&
4923 !receiver_obj->IsAccessCheckNeeded() &&
4924 key_obj->IsName()) {
4925 DisallowHeapAllocation no_allocation;
4926 Handle<JSObject> receiver = Handle<JSObject>::cast(receiver_obj);
4927 Handle<Name> key = Handle<Name>::cast(key_obj);
4928 if (receiver->HasFastProperties()) {
4929 // Attempt to use lookup cache.
4930 Handle<Map> receiver_map(receiver->map(), isolate);
4931 KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache();
4932 int index = keyed_lookup_cache->Lookup(receiver_map, key);
4933 if (index != -1) {
4934 // Doubles are not cached, so raw read the value.
4935 return receiver->RawFastPropertyAt(
4936 FieldIndex::ForKeyedLookupCacheIndex(*receiver_map, index));
4937 }
4938 // Lookup cache miss. Perform lookup and update the cache if
4939 // appropriate.
4940 LookupIterator it(receiver, key, LookupIterator::OWN);
4941 if (it.state() == LookupIterator::DATA &&
4942 it.property_details().type() == FIELD) {
4943 FieldIndex field_index = it.GetFieldIndex();
4944 // Do not track double fields in the keyed lookup cache. Reading
4945 // double values requires boxing.
4946 if (!it.representation().IsDouble()) {
4947 keyed_lookup_cache->Update(receiver_map, key,
4948 field_index.GetKeyedLookupCacheIndex());
4949 }
4950 AllowHeapAllocation allow_allocation;
4951 return *JSObject::FastPropertyAt(receiver, it.representation(),
4952 field_index);
4953 }
4954 } else {
4955 // Attempt dictionary lookup.
4956 NameDictionary* dictionary = receiver->property_dictionary();
4957 int entry = dictionary->FindEntry(key);
4958 if ((entry != NameDictionary::kNotFound) &&
4959 (dictionary->DetailsAt(entry).type() == NORMAL)) {
4960 Object* value = dictionary->ValueAt(entry);
4961 if (!receiver->IsGlobalObject()) return value;
4962 value = PropertyCell::cast(value)->value();
4963 if (!value->IsTheHole()) return value;
4964 // If value is the hole (meaning, absent) do the general lookup.
4965 }
4966 }
4967 } else if (key_obj->IsSmi()) {
4968 // JSObject without a name key. If the key is a Smi, check for a
4969 // definite out-of-bounds access to elements, which is a strong indicator
4970 // that subsequent accesses will also call the runtime. Proactively
4971 // transition elements to FAST_*_ELEMENTS to avoid excessive boxing of
4972 // doubles for those future calls in the case that the elements would
4973 // become FAST_DOUBLE_ELEMENTS.
4974 Handle<JSObject> js_object = Handle<JSObject>::cast(receiver_obj);
4975 ElementsKind elements_kind = js_object->GetElementsKind();
4976 if (IsFastDoubleElementsKind(elements_kind)) {
4977 Handle<Smi> key = Handle<Smi>::cast(key_obj);
4978 if (key->value() >= js_object->elements()->length()) {
4979 if (IsFastHoleyElementsKind(elements_kind)) {
4980 elements_kind = FAST_HOLEY_ELEMENTS;
4981 } else {
4982 elements_kind = FAST_ELEMENTS;
4983 }
4984 RETURN_FAILURE_ON_EXCEPTION(
4985 isolate, TransitionElements(js_object, elements_kind, isolate));
4986 }
4987 } else {
4988 DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) ||
4989 !IsFastElementsKind(elements_kind));
4990 }
4991 }
4992 } else if (receiver_obj->IsString() && key_obj->IsSmi()) {
4993 // Fast case for string indexing using [] with a smi index.
4994 Handle<String> str = Handle<String>::cast(receiver_obj);
4995 int index = args.smi_at(1);
4996 if (index >= 0 && index < str->length()) {
4997 return *GetCharAt(str, index);
4998 }
4999 }
5000
5001 // Fall back to GetObjectProperty.
5002 Handle<Object> result;
5003 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5004 isolate, result,
5005 Runtime::GetObjectProperty(isolate, receiver_obj, key_obj));
5006 return *result;
5007 }
5008
5009
IsValidAccessor(Handle<Object> obj)5010 static bool IsValidAccessor(Handle<Object> obj) {
5011 return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull();
5012 }
5013
5014
5015 // Transform getter or setter into something DefineAccessor can handle.
InstantiateAccessorComponent(Isolate * isolate,Handle<Object> component)5016 static Handle<Object> InstantiateAccessorComponent(Isolate* isolate,
5017 Handle<Object> component) {
5018 if (component->IsUndefined()) return isolate->factory()->undefined_value();
5019 Handle<FunctionTemplateInfo> info =
5020 Handle<FunctionTemplateInfo>::cast(component);
5021 return Utils::OpenHandle(*Utils::ToLocal(info)->GetFunction());
5022 }
5023
5024
RUNTIME_FUNCTION(Runtime_DefineApiAccessorProperty)5025 RUNTIME_FUNCTION(Runtime_DefineApiAccessorProperty) {
5026 HandleScope scope(isolate);
5027 DCHECK(args.length() == 5);
5028 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5029 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
5030 CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
5031 CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
5032 CONVERT_SMI_ARG_CHECKED(attribute, 4);
5033 RUNTIME_ASSERT(getter->IsUndefined() || getter->IsFunctionTemplateInfo());
5034 RUNTIME_ASSERT(setter->IsUndefined() || setter->IsFunctionTemplateInfo());
5035 RUNTIME_ASSERT(PropertyDetails::AttributesField::is_valid(
5036 static_cast<PropertyAttributes>(attribute)));
5037 RETURN_FAILURE_ON_EXCEPTION(
5038 isolate, JSObject::DefineAccessor(
5039 object, name, InstantiateAccessorComponent(isolate, getter),
5040 InstantiateAccessorComponent(isolate, setter),
5041 static_cast<PropertyAttributes>(attribute)));
5042 return isolate->heap()->undefined_value();
5043 }
5044
5045
5046 // Implements part of 8.12.9 DefineOwnProperty.
5047 // There are 3 cases that lead here:
5048 // Step 4b - define a new accessor property.
5049 // Steps 9c & 12 - replace an existing data property with an accessor property.
5050 // Step 12 - update an existing accessor property with an accessor or generic
5051 // descriptor.
RUNTIME_FUNCTION(Runtime_DefineAccessorPropertyUnchecked)5052 RUNTIME_FUNCTION(Runtime_DefineAccessorPropertyUnchecked) {
5053 HandleScope scope(isolate);
5054 DCHECK(args.length() == 5);
5055 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5056 RUNTIME_ASSERT(!obj->IsNull());
5057 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
5058 CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
5059 RUNTIME_ASSERT(IsValidAccessor(getter));
5060 CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
5061 RUNTIME_ASSERT(IsValidAccessor(setter));
5062 CONVERT_SMI_ARG_CHECKED(unchecked, 4);
5063 RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5064 PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
5065
5066 bool fast = obj->HasFastProperties();
5067 RETURN_FAILURE_ON_EXCEPTION(
5068 isolate, JSObject::DefineAccessor(obj, name, getter, setter, attr));
5069 if (fast) JSObject::MigrateSlowToFast(obj, 0);
5070 return isolate->heap()->undefined_value();
5071 }
5072
5073
5074 // Implements part of 8.12.9 DefineOwnProperty.
5075 // There are 3 cases that lead here:
5076 // Step 4a - define a new data property.
5077 // Steps 9b & 12 - replace an existing accessor property with a data property.
5078 // Step 12 - update an existing data property with a data or generic
5079 // descriptor.
RUNTIME_FUNCTION(Runtime_DefineDataPropertyUnchecked)5080 RUNTIME_FUNCTION(Runtime_DefineDataPropertyUnchecked) {
5081 HandleScope scope(isolate);
5082 DCHECK(args.length() == 4);
5083 CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0);
5084 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
5085 CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2);
5086 CONVERT_SMI_ARG_CHECKED(unchecked, 3);
5087 RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5088 PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
5089
5090 LookupIterator it(js_object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
5091 if (it.IsFound() && it.state() == LookupIterator::ACCESS_CHECK) {
5092 if (!isolate->MayNamedAccess(js_object, name, v8::ACCESS_SET)) {
5093 return isolate->heap()->undefined_value();
5094 }
5095 it.Next();
5096 }
5097
5098 // Take special care when attributes are different and there is already
5099 // a property.
5100 if (it.state() == LookupIterator::ACCESSOR) {
5101 // Use IgnoreAttributes version since a readonly property may be
5102 // overridden and SetProperty does not allow this.
5103 Handle<Object> result;
5104 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5105 isolate, result,
5106 JSObject::SetOwnPropertyIgnoreAttributes(
5107 js_object, name, obj_value, attr,
5108 JSObject::DONT_FORCE_FIELD));
5109 return *result;
5110 }
5111
5112 Handle<Object> result;
5113 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5114 isolate, result,
5115 Runtime::DefineObjectProperty(js_object, name, obj_value, attr));
5116 return *result;
5117 }
5118
5119
5120 // Return property without being observable by accessors or interceptors.
RUNTIME_FUNCTION(Runtime_GetDataProperty)5121 RUNTIME_FUNCTION(Runtime_GetDataProperty) {
5122 HandleScope scope(isolate);
5123 DCHECK(args.length() == 2);
5124 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5125 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5126 return *JSObject::GetDataProperty(object, key);
5127 }
5128
5129
SetObjectProperty(Isolate * isolate,Handle<Object> object,Handle<Object> key,Handle<Object> value,StrictMode strict_mode)5130 MaybeHandle<Object> Runtime::SetObjectProperty(Isolate* isolate,
5131 Handle<Object> object,
5132 Handle<Object> key,
5133 Handle<Object> value,
5134 StrictMode strict_mode) {
5135 if (object->IsUndefined() || object->IsNull()) {
5136 Handle<Object> args[2] = { key, object };
5137 THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_store",
5138 HandleVector(args, 2)),
5139 Object);
5140 }
5141
5142 if (object->IsJSProxy()) {
5143 Handle<Object> name_object;
5144 if (key->IsSymbol()) {
5145 name_object = key;
5146 } else {
5147 ASSIGN_RETURN_ON_EXCEPTION(
5148 isolate, name_object, Execution::ToString(isolate, key), Object);
5149 }
5150 Handle<Name> name = Handle<Name>::cast(name_object);
5151 return Object::SetProperty(Handle<JSProxy>::cast(object), name, value,
5152 strict_mode);
5153 }
5154
5155 // Check if the given key is an array index.
5156 uint32_t index;
5157 if (key->ToArrayIndex(&index)) {
5158 // TODO(verwaest): Support non-JSObject receivers.
5159 if (!object->IsJSObject()) return value;
5160 Handle<JSObject> js_object = Handle<JSObject>::cast(object);
5161
5162 // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
5163 // of a string using [] notation. We need to support this too in
5164 // JavaScript.
5165 // In the case of a String object we just need to redirect the assignment to
5166 // the underlying string if the index is in range. Since the underlying
5167 // string does nothing with the assignment then we can ignore such
5168 // assignments.
5169 if (js_object->IsStringObjectWithCharacterAt(index)) {
5170 return value;
5171 }
5172
5173 JSObject::ValidateElements(js_object);
5174 if (js_object->HasExternalArrayElements() ||
5175 js_object->HasFixedTypedArrayElements()) {
5176 if (!value->IsNumber() && !value->IsUndefined()) {
5177 ASSIGN_RETURN_ON_EXCEPTION(
5178 isolate, value, Execution::ToNumber(isolate, value), Object);
5179 }
5180 }
5181
5182 MaybeHandle<Object> result = JSObject::SetElement(
5183 js_object, index, value, NONE, strict_mode, true, SET_PROPERTY);
5184 JSObject::ValidateElements(js_object);
5185
5186 return result.is_null() ? result : value;
5187 }
5188
5189 if (key->IsName()) {
5190 Handle<Name> name = Handle<Name>::cast(key);
5191 if (name->AsArrayIndex(&index)) {
5192 // TODO(verwaest): Support non-JSObject receivers.
5193 if (!object->IsJSObject()) return value;
5194 Handle<JSObject> js_object = Handle<JSObject>::cast(object);
5195 if (js_object->HasExternalArrayElements()) {
5196 if (!value->IsNumber() && !value->IsUndefined()) {
5197 ASSIGN_RETURN_ON_EXCEPTION(
5198 isolate, value, Execution::ToNumber(isolate, value), Object);
5199 }
5200 }
5201 return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
5202 true, SET_PROPERTY);
5203 } else {
5204 if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
5205 return Object::SetProperty(object, name, value, strict_mode);
5206 }
5207 }
5208
5209 // Call-back into JavaScript to convert the key to a string.
5210 Handle<Object> converted;
5211 ASSIGN_RETURN_ON_EXCEPTION(
5212 isolate, converted, Execution::ToString(isolate, key), Object);
5213 Handle<String> name = Handle<String>::cast(converted);
5214
5215 if (name->AsArrayIndex(&index)) {
5216 // TODO(verwaest): Support non-JSObject receivers.
5217 if (!object->IsJSObject()) return value;
5218 Handle<JSObject> js_object = Handle<JSObject>::cast(object);
5219 return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
5220 true, SET_PROPERTY);
5221 }
5222 return Object::SetProperty(object, name, value, strict_mode);
5223 }
5224
5225
DefineObjectProperty(Handle<JSObject> js_object,Handle<Object> key,Handle<Object> value,PropertyAttributes attr)5226 MaybeHandle<Object> Runtime::DefineObjectProperty(Handle<JSObject> js_object,
5227 Handle<Object> key,
5228 Handle<Object> value,
5229 PropertyAttributes attr) {
5230 Isolate* isolate = js_object->GetIsolate();
5231 // Check if the given key is an array index.
5232 uint32_t index;
5233 if (key->ToArrayIndex(&index)) {
5234 // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
5235 // of a string using [] notation. We need to support this too in
5236 // JavaScript.
5237 // In the case of a String object we just need to redirect the assignment to
5238 // the underlying string if the index is in range. Since the underlying
5239 // string does nothing with the assignment then we can ignore such
5240 // assignments.
5241 if (js_object->IsStringObjectWithCharacterAt(index)) {
5242 return value;
5243 }
5244
5245 return JSObject::SetElement(js_object, index, value, attr,
5246 SLOPPY, false, DEFINE_PROPERTY);
5247 }
5248
5249 if (key->IsName()) {
5250 Handle<Name> name = Handle<Name>::cast(key);
5251 if (name->AsArrayIndex(&index)) {
5252 return JSObject::SetElement(js_object, index, value, attr,
5253 SLOPPY, false, DEFINE_PROPERTY);
5254 } else {
5255 if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
5256 return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
5257 attr);
5258 }
5259 }
5260
5261 // Call-back into JavaScript to convert the key to a string.
5262 Handle<Object> converted;
5263 ASSIGN_RETURN_ON_EXCEPTION(
5264 isolate, converted, Execution::ToString(isolate, key), Object);
5265 Handle<String> name = Handle<String>::cast(converted);
5266
5267 if (name->AsArrayIndex(&index)) {
5268 return JSObject::SetElement(js_object, index, value, attr,
5269 SLOPPY, false, DEFINE_PROPERTY);
5270 } else {
5271 return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
5272 attr);
5273 }
5274 }
5275
5276
DeleteObjectProperty(Isolate * isolate,Handle<JSReceiver> receiver,Handle<Object> key,JSReceiver::DeleteMode mode)5277 MaybeHandle<Object> Runtime::DeleteObjectProperty(Isolate* isolate,
5278 Handle<JSReceiver> receiver,
5279 Handle<Object> key,
5280 JSReceiver::DeleteMode mode) {
5281 // Check if the given key is an array index.
5282 uint32_t index;
5283 if (key->ToArrayIndex(&index)) {
5284 // In Firefox/SpiderMonkey, Safari and Opera you can access the
5285 // characters of a string using [] notation. In the case of a
5286 // String object we just need to redirect the deletion to the
5287 // underlying string if the index is in range. Since the
5288 // underlying string does nothing with the deletion, we can ignore
5289 // such deletions.
5290 if (receiver->IsStringObjectWithCharacterAt(index)) {
5291 return isolate->factory()->true_value();
5292 }
5293
5294 return JSReceiver::DeleteElement(receiver, index, mode);
5295 }
5296
5297 Handle<Name> name;
5298 if (key->IsName()) {
5299 name = Handle<Name>::cast(key);
5300 } else {
5301 // Call-back into JavaScript to convert the key to a string.
5302 Handle<Object> converted;
5303 ASSIGN_RETURN_ON_EXCEPTION(
5304 isolate, converted, Execution::ToString(isolate, key), Object);
5305 name = Handle<String>::cast(converted);
5306 }
5307
5308 if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
5309 return JSReceiver::DeleteProperty(receiver, name, mode);
5310 }
5311
5312
RUNTIME_FUNCTION(Runtime_SetHiddenProperty)5313 RUNTIME_FUNCTION(Runtime_SetHiddenProperty) {
5314 HandleScope scope(isolate);
5315 RUNTIME_ASSERT(args.length() == 3);
5316
5317 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5318 CONVERT_ARG_HANDLE_CHECKED(String, key, 1);
5319 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5320 RUNTIME_ASSERT(key->IsUniqueName());
5321 return *JSObject::SetHiddenProperty(object, key, value);
5322 }
5323
5324
RUNTIME_FUNCTION(Runtime_AddNamedProperty)5325 RUNTIME_FUNCTION(Runtime_AddNamedProperty) {
5326 HandleScope scope(isolate);
5327 RUNTIME_ASSERT(args.length() == 4);
5328
5329 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5330 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5331 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5332 CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
5333 RUNTIME_ASSERT(
5334 (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5335 // Compute attributes.
5336 PropertyAttributes attributes =
5337 static_cast<PropertyAttributes>(unchecked_attributes);
5338
5339 #ifdef DEBUG
5340 uint32_t index = 0;
5341 DCHECK(!key->ToArrayIndex(&index));
5342 LookupIterator it(object, key, LookupIterator::OWN_SKIP_INTERCEPTOR);
5343 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
5344 if (!maybe.has_value) return isolate->heap()->exception();
5345 RUNTIME_ASSERT(!it.IsFound());
5346 #endif
5347
5348 Handle<Object> result;
5349 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5350 isolate, result,
5351 JSObject::SetOwnPropertyIgnoreAttributes(object, key, value, attributes));
5352 return *result;
5353 }
5354
5355
RUNTIME_FUNCTION(Runtime_AddPropertyForTemplate)5356 RUNTIME_FUNCTION(Runtime_AddPropertyForTemplate) {
5357 HandleScope scope(isolate);
5358 RUNTIME_ASSERT(args.length() == 4);
5359
5360 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5361 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
5362 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5363 CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
5364 RUNTIME_ASSERT(
5365 (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5366 // Compute attributes.
5367 PropertyAttributes attributes =
5368 static_cast<PropertyAttributes>(unchecked_attributes);
5369
5370 #ifdef DEBUG
5371 bool duplicate;
5372 if (key->IsName()) {
5373 LookupIterator it(object, Handle<Name>::cast(key),
5374 LookupIterator::OWN_SKIP_INTERCEPTOR);
5375 Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
5376 DCHECK(maybe.has_value);
5377 duplicate = it.IsFound();
5378 } else {
5379 uint32_t index = 0;
5380 RUNTIME_ASSERT(key->ToArrayIndex(&index));
5381 Maybe<bool> maybe = JSReceiver::HasOwnElement(object, index);
5382 if (!maybe.has_value) return isolate->heap()->exception();
5383 duplicate = maybe.value;
5384 }
5385 if (duplicate) {
5386 Handle<Object> args[1] = { key };
5387 THROW_NEW_ERROR_RETURN_FAILURE(
5388 isolate,
5389 NewTypeError("duplicate_template_property", HandleVector(args, 1)));
5390 }
5391 #endif
5392
5393 Handle<Object> result;
5394 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5395 isolate, result,
5396 Runtime::DefineObjectProperty(object, key, value, attributes));
5397 return *result;
5398 }
5399
5400
RUNTIME_FUNCTION(Runtime_SetProperty)5401 RUNTIME_FUNCTION(Runtime_SetProperty) {
5402 HandleScope scope(isolate);
5403 RUNTIME_ASSERT(args.length() == 4);
5404
5405 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
5406 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
5407 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5408 CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_arg, 3);
5409 StrictMode strict_mode = strict_mode_arg;
5410
5411 Handle<Object> result;
5412 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5413 isolate, result,
5414 Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
5415 return *result;
5416 }
5417
5418
5419 // Adds an element to an array.
5420 // This is used to create an indexed data property into an array.
RUNTIME_FUNCTION(Runtime_AddElement)5421 RUNTIME_FUNCTION(Runtime_AddElement) {
5422 HandleScope scope(isolate);
5423 RUNTIME_ASSERT(args.length() == 4);
5424
5425 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5426 CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
5427 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5428 CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
5429 RUNTIME_ASSERT(
5430 (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
5431 // Compute attributes.
5432 PropertyAttributes attributes =
5433 static_cast<PropertyAttributes>(unchecked_attributes);
5434
5435 uint32_t index = 0;
5436 key->ToArrayIndex(&index);
5437
5438 Handle<Object> result;
5439 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5440 isolate, result, JSObject::SetElement(object, index, value, attributes,
5441 SLOPPY, false, DEFINE_PROPERTY));
5442 return *result;
5443 }
5444
5445
RUNTIME_FUNCTION(Runtime_TransitionElementsKind)5446 RUNTIME_FUNCTION(Runtime_TransitionElementsKind) {
5447 HandleScope scope(isolate);
5448 RUNTIME_ASSERT(args.length() == 2);
5449 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
5450 CONVERT_ARG_HANDLE_CHECKED(Map, map, 1);
5451 JSObject::TransitionElementsKind(array, map->elements_kind());
5452 return *array;
5453 }
5454
5455
5456 // Set the native flag on the function.
5457 // This is used to decide if we should transform null and undefined
5458 // into the global object when doing call and apply.
RUNTIME_FUNCTION(Runtime_SetNativeFlag)5459 RUNTIME_FUNCTION(Runtime_SetNativeFlag) {
5460 SealHandleScope shs(isolate);
5461 RUNTIME_ASSERT(args.length() == 1);
5462
5463 CONVERT_ARG_CHECKED(Object, object, 0);
5464
5465 if (object->IsJSFunction()) {
5466 JSFunction* func = JSFunction::cast(object);
5467 func->shared()->set_native(true);
5468 }
5469 return isolate->heap()->undefined_value();
5470 }
5471
5472
RUNTIME_FUNCTION(Runtime_SetInlineBuiltinFlag)5473 RUNTIME_FUNCTION(Runtime_SetInlineBuiltinFlag) {
5474 SealHandleScope shs(isolate);
5475 RUNTIME_ASSERT(args.length() == 1);
5476 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
5477
5478 if (object->IsJSFunction()) {
5479 JSFunction* func = JSFunction::cast(*object);
5480 func->shared()->set_inline_builtin(true);
5481 }
5482 return isolate->heap()->undefined_value();
5483 }
5484
5485
RUNTIME_FUNCTION(Runtime_StoreArrayLiteralElement)5486 RUNTIME_FUNCTION(Runtime_StoreArrayLiteralElement) {
5487 HandleScope scope(isolate);
5488 RUNTIME_ASSERT(args.length() == 5);
5489 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5490 CONVERT_SMI_ARG_CHECKED(store_index, 1);
5491 CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
5492 CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 3);
5493 CONVERT_SMI_ARG_CHECKED(literal_index, 4);
5494
5495 Object* raw_literal_cell = literals->get(literal_index);
5496 JSArray* boilerplate = NULL;
5497 if (raw_literal_cell->IsAllocationSite()) {
5498 AllocationSite* site = AllocationSite::cast(raw_literal_cell);
5499 boilerplate = JSArray::cast(site->transition_info());
5500 } else {
5501 boilerplate = JSArray::cast(raw_literal_cell);
5502 }
5503 Handle<JSArray> boilerplate_object(boilerplate);
5504 ElementsKind elements_kind = object->GetElementsKind();
5505 DCHECK(IsFastElementsKind(elements_kind));
5506 // Smis should never trigger transitions.
5507 DCHECK(!value->IsSmi());
5508
5509 if (value->IsNumber()) {
5510 DCHECK(IsFastSmiElementsKind(elements_kind));
5511 ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
5512 ? FAST_HOLEY_DOUBLE_ELEMENTS
5513 : FAST_DOUBLE_ELEMENTS;
5514 if (IsMoreGeneralElementsKindTransition(
5515 boilerplate_object->GetElementsKind(),
5516 transitioned_kind)) {
5517 JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
5518 }
5519 JSObject::TransitionElementsKind(object, transitioned_kind);
5520 DCHECK(IsFastDoubleElementsKind(object->GetElementsKind()));
5521 FixedDoubleArray* double_array = FixedDoubleArray::cast(object->elements());
5522 HeapNumber* number = HeapNumber::cast(*value);
5523 double_array->set(store_index, number->Number());
5524 } else {
5525 if (!IsFastObjectElementsKind(elements_kind)) {
5526 ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
5527 ? FAST_HOLEY_ELEMENTS
5528 : FAST_ELEMENTS;
5529 JSObject::TransitionElementsKind(object, transitioned_kind);
5530 ElementsKind boilerplate_elements_kind =
5531 boilerplate_object->GetElementsKind();
5532 if (IsMoreGeneralElementsKindTransition(boilerplate_elements_kind,
5533 transitioned_kind)) {
5534 JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
5535 }
5536 }
5537 FixedArray* object_array = FixedArray::cast(object->elements());
5538 object_array->set(store_index, *value);
5539 }
5540 return *object;
5541 }
5542
5543
5544 // Check whether debugger and is about to step into the callback that is passed
5545 // to a built-in function such as Array.forEach.
RUNTIME_FUNCTION(Runtime_DebugCallbackSupportsStepping)5546 RUNTIME_FUNCTION(Runtime_DebugCallbackSupportsStepping) {
5547 DCHECK(args.length() == 1);
5548 if (!isolate->debug()->is_active() || !isolate->debug()->StepInActive()) {
5549 return isolate->heap()->false_value();
5550 }
5551 CONVERT_ARG_CHECKED(Object, callback, 0);
5552 // We do not step into the callback if it's a builtin or not even a function.
5553 return isolate->heap()->ToBoolean(
5554 callback->IsJSFunction() && !JSFunction::cast(callback)->IsBuiltin());
5555 }
5556
5557
5558 // Set one shot breakpoints for the callback function that is passed to a
5559 // built-in function such as Array.forEach to enable stepping into the callback.
RUNTIME_FUNCTION(Runtime_DebugPrepareStepInIfStepping)5560 RUNTIME_FUNCTION(Runtime_DebugPrepareStepInIfStepping) {
5561 DCHECK(args.length() == 1);
5562 Debug* debug = isolate->debug();
5563 if (!debug->IsStepping()) return isolate->heap()->undefined_value();
5564
5565 HandleScope scope(isolate);
5566 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
5567 RUNTIME_ASSERT(object->IsJSFunction() || object->IsJSGeneratorObject());
5568 Handle<JSFunction> fun;
5569 if (object->IsJSFunction()) {
5570 fun = Handle<JSFunction>::cast(object);
5571 } else {
5572 fun = Handle<JSFunction>(
5573 Handle<JSGeneratorObject>::cast(object)->function(), isolate);
5574 }
5575 // When leaving the function, step out has been activated, but not performed
5576 // if we do not leave the builtin. To be able to step into the function
5577 // again, we need to clear the step out at this point.
5578 debug->ClearStepOut();
5579 debug->FloodWithOneShot(fun);
5580 return isolate->heap()->undefined_value();
5581 }
5582
5583
RUNTIME_FUNCTION(Runtime_DebugPushPromise)5584 RUNTIME_FUNCTION(Runtime_DebugPushPromise) {
5585 DCHECK(args.length() == 1);
5586 HandleScope scope(isolate);
5587 CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
5588 isolate->PushPromise(promise);
5589 return isolate->heap()->undefined_value();
5590 }
5591
5592
RUNTIME_FUNCTION(Runtime_DebugPopPromise)5593 RUNTIME_FUNCTION(Runtime_DebugPopPromise) {
5594 DCHECK(args.length() == 0);
5595 SealHandleScope shs(isolate);
5596 isolate->PopPromise();
5597 return isolate->heap()->undefined_value();
5598 }
5599
5600
RUNTIME_FUNCTION(Runtime_DebugPromiseEvent)5601 RUNTIME_FUNCTION(Runtime_DebugPromiseEvent) {
5602 DCHECK(args.length() == 1);
5603 HandleScope scope(isolate);
5604 CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
5605 isolate->debug()->OnPromiseEvent(data);
5606 return isolate->heap()->undefined_value();
5607 }
5608
5609
RUNTIME_FUNCTION(Runtime_DebugPromiseRejectEvent)5610 RUNTIME_FUNCTION(Runtime_DebugPromiseRejectEvent) {
5611 DCHECK(args.length() == 2);
5612 HandleScope scope(isolate);
5613 CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
5614 CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
5615 isolate->debug()->OnPromiseReject(promise, value);
5616 return isolate->heap()->undefined_value();
5617 }
5618
5619
RUNTIME_FUNCTION(Runtime_DebugAsyncTaskEvent)5620 RUNTIME_FUNCTION(Runtime_DebugAsyncTaskEvent) {
5621 DCHECK(args.length() == 1);
5622 HandleScope scope(isolate);
5623 CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
5624 isolate->debug()->OnAsyncTaskEvent(data);
5625 return isolate->heap()->undefined_value();
5626 }
5627
5628
RUNTIME_FUNCTION(Runtime_DeleteProperty)5629 RUNTIME_FUNCTION(Runtime_DeleteProperty) {
5630 HandleScope scope(isolate);
5631 DCHECK(args.length() == 3);
5632 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
5633 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5634 CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2);
5635 JSReceiver::DeleteMode delete_mode = strict_mode == STRICT
5636 ? JSReceiver::STRICT_DELETION : JSReceiver::NORMAL_DELETION;
5637 Handle<Object> result;
5638 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5639 isolate, result,
5640 JSReceiver::DeleteProperty(object, key, delete_mode));
5641 return *result;
5642 }
5643
5644
HasOwnPropertyImplementation(Isolate * isolate,Handle<JSObject> object,Handle<Name> key)5645 static Object* HasOwnPropertyImplementation(Isolate* isolate,
5646 Handle<JSObject> object,
5647 Handle<Name> key) {
5648 Maybe<bool> maybe = JSReceiver::HasOwnProperty(object, key);
5649 if (!maybe.has_value) return isolate->heap()->exception();
5650 if (maybe.value) return isolate->heap()->true_value();
5651 // Handle hidden prototypes. If there's a hidden prototype above this thing
5652 // then we have to check it for properties, because they are supposed to
5653 // look like they are on this object.
5654 PrototypeIterator iter(isolate, object);
5655 if (!iter.IsAtEnd() &&
5656 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter))
5657 ->map()
5658 ->is_hidden_prototype()) {
5659 // TODO(verwaest): The recursion is not necessary for keys that are array
5660 // indices. Removing this.
5661 return HasOwnPropertyImplementation(
5662 isolate, Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
5663 key);
5664 }
5665 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
5666 return isolate->heap()->false_value();
5667 }
5668
5669
RUNTIME_FUNCTION(Runtime_HasOwnProperty)5670 RUNTIME_FUNCTION(Runtime_HasOwnProperty) {
5671 HandleScope scope(isolate);
5672 DCHECK(args.length() == 2);
5673 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0)
5674 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5675
5676 uint32_t index;
5677 const bool key_is_array_index = key->AsArrayIndex(&index);
5678
5679 // Only JS objects can have properties.
5680 if (object->IsJSObject()) {
5681 Handle<JSObject> js_obj = Handle<JSObject>::cast(object);
5682 // Fast case: either the key is a real named property or it is not
5683 // an array index and there are no interceptors or hidden
5684 // prototypes.
5685 Maybe<bool> maybe = JSObject::HasRealNamedProperty(js_obj, key);
5686 if (!maybe.has_value) return isolate->heap()->exception();
5687 DCHECK(!isolate->has_pending_exception());
5688 if (maybe.value) {
5689 return isolate->heap()->true_value();
5690 }
5691 Map* map = js_obj->map();
5692 if (!key_is_array_index &&
5693 !map->has_named_interceptor() &&
5694 !HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) {
5695 return isolate->heap()->false_value();
5696 }
5697 // Slow case.
5698 return HasOwnPropertyImplementation(isolate,
5699 Handle<JSObject>(js_obj),
5700 Handle<Name>(key));
5701 } else if (object->IsString() && key_is_array_index) {
5702 // Well, there is one exception: Handle [] on strings.
5703 Handle<String> string = Handle<String>::cast(object);
5704 if (index < static_cast<uint32_t>(string->length())) {
5705 return isolate->heap()->true_value();
5706 }
5707 }
5708 return isolate->heap()->false_value();
5709 }
5710
5711
RUNTIME_FUNCTION(Runtime_HasProperty)5712 RUNTIME_FUNCTION(Runtime_HasProperty) {
5713 HandleScope scope(isolate);
5714 DCHECK(args.length() == 2);
5715 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
5716 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5717
5718 Maybe<bool> maybe = JSReceiver::HasProperty(receiver, key);
5719 if (!maybe.has_value) return isolate->heap()->exception();
5720 return isolate->heap()->ToBoolean(maybe.value);
5721 }
5722
5723
RUNTIME_FUNCTION(Runtime_HasElement)5724 RUNTIME_FUNCTION(Runtime_HasElement) {
5725 HandleScope scope(isolate);
5726 DCHECK(args.length() == 2);
5727 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
5728 CONVERT_SMI_ARG_CHECKED(index, 1);
5729
5730 Maybe<bool> maybe = JSReceiver::HasElement(receiver, index);
5731 if (!maybe.has_value) return isolate->heap()->exception();
5732 return isolate->heap()->ToBoolean(maybe.value);
5733 }
5734
5735
RUNTIME_FUNCTION(Runtime_IsPropertyEnumerable)5736 RUNTIME_FUNCTION(Runtime_IsPropertyEnumerable) {
5737 HandleScope scope(isolate);
5738 DCHECK(args.length() == 2);
5739
5740 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
5741 CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
5742
5743 Maybe<PropertyAttributes> maybe =
5744 JSReceiver::GetOwnPropertyAttributes(object, key);
5745 if (!maybe.has_value) return isolate->heap()->exception();
5746 if (maybe.value == ABSENT) maybe.value = DONT_ENUM;
5747 return isolate->heap()->ToBoolean((maybe.value & DONT_ENUM) == 0);
5748 }
5749
5750
RUNTIME_FUNCTION(Runtime_GetPropertyNames)5751 RUNTIME_FUNCTION(Runtime_GetPropertyNames) {
5752 HandleScope scope(isolate);
5753 DCHECK(args.length() == 1);
5754 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
5755 Handle<JSArray> result;
5756
5757 isolate->counters()->for_in()->Increment();
5758 Handle<FixedArray> elements;
5759 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5760 isolate, elements,
5761 JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
5762 return *isolate->factory()->NewJSArrayWithElements(elements);
5763 }
5764
5765
5766 // Returns either a FixedArray as Runtime_GetPropertyNames,
5767 // or, if the given object has an enum cache that contains
5768 // all enumerable properties of the object and its prototypes
5769 // have none, the map of the object. This is used to speed up
5770 // the check for deletions during a for-in.
RUNTIME_FUNCTION(Runtime_GetPropertyNamesFast)5771 RUNTIME_FUNCTION(Runtime_GetPropertyNamesFast) {
5772 SealHandleScope shs(isolate);
5773 DCHECK(args.length() == 1);
5774
5775 CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0);
5776
5777 if (raw_object->IsSimpleEnum()) return raw_object->map();
5778
5779 HandleScope scope(isolate);
5780 Handle<JSReceiver> object(raw_object);
5781 Handle<FixedArray> content;
5782 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
5783 isolate, content,
5784 JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
5785
5786 // Test again, since cache may have been built by preceding call.
5787 if (object->IsSimpleEnum()) return object->map();
5788
5789 return *content;
5790 }
5791
5792
5793 // Find the length of the prototype chain that is to be handled as one. If a
5794 // prototype object is hidden it is to be viewed as part of the the object it
5795 // is prototype for.
OwnPrototypeChainLength(JSObject * obj)5796 static int OwnPrototypeChainLength(JSObject* obj) {
5797 int count = 1;
5798 for (PrototypeIterator iter(obj->GetIsolate(), obj);
5799 !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) {
5800 count++;
5801 }
5802 return count;
5803 }
5804
5805
5806 // Return the names of the own named properties.
5807 // args[0]: object
5808 // args[1]: PropertyAttributes as int
RUNTIME_FUNCTION(Runtime_GetOwnPropertyNames)5809 RUNTIME_FUNCTION(Runtime_GetOwnPropertyNames) {
5810 HandleScope scope(isolate);
5811 DCHECK(args.length() == 2);
5812 if (!args[0]->IsJSObject()) {
5813 return isolate->heap()->undefined_value();
5814 }
5815 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5816 CONVERT_SMI_ARG_CHECKED(filter_value, 1);
5817 PropertyAttributes filter = static_cast<PropertyAttributes>(filter_value);
5818
5819 // Skip the global proxy as it has no properties and always delegates to the
5820 // real global object.
5821 if (obj->IsJSGlobalProxy()) {
5822 // Only collect names if access is permitted.
5823 if (obj->IsAccessCheckNeeded() &&
5824 !isolate->MayNamedAccess(
5825 obj, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) {
5826 isolate->ReportFailedAccessCheck(obj, v8::ACCESS_KEYS);
5827 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
5828 return *isolate->factory()->NewJSArray(0);
5829 }
5830 PrototypeIterator iter(isolate, obj);
5831 obj = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
5832 }
5833
5834 // Find the number of objects making up this.
5835 int length = OwnPrototypeChainLength(*obj);
5836
5837 // Find the number of own properties for each of the objects.
5838 ScopedVector<int> own_property_count(length);
5839 int total_property_count = 0;
5840 {
5841 PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
5842 for (int i = 0; i < length; i++) {
5843 DCHECK(!iter.IsAtEnd());
5844 Handle<JSObject> jsproto =
5845 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
5846 // Only collect names if access is permitted.
5847 if (jsproto->IsAccessCheckNeeded() &&
5848 !isolate->MayNamedAccess(jsproto,
5849 isolate->factory()->undefined_value(),
5850 v8::ACCESS_KEYS)) {
5851 isolate->ReportFailedAccessCheck(jsproto, v8::ACCESS_KEYS);
5852 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
5853 return *isolate->factory()->NewJSArray(0);
5854 }
5855 int n;
5856 n = jsproto->NumberOfOwnProperties(filter);
5857 own_property_count[i] = n;
5858 total_property_count += n;
5859 iter.Advance();
5860 }
5861 }
5862
5863 // Allocate an array with storage for all the property names.
5864 Handle<FixedArray> names =
5865 isolate->factory()->NewFixedArray(total_property_count);
5866
5867 // Get the property names.
5868 int next_copy_index = 0;
5869 int hidden_strings = 0;
5870 {
5871 PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
5872 for (int i = 0; i < length; i++) {
5873 DCHECK(!iter.IsAtEnd());
5874 Handle<JSObject> jsproto =
5875 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
5876 jsproto->GetOwnPropertyNames(*names, next_copy_index, filter);
5877 if (i > 0) {
5878 // Names from hidden prototypes may already have been added
5879 // for inherited function template instances. Count the duplicates
5880 // and stub them out; the final copy pass at the end ignores holes.
5881 for (int j = next_copy_index;
5882 j < next_copy_index + own_property_count[i]; j++) {
5883 Object* name_from_hidden_proto = names->get(j);
5884 for (int k = 0; k < next_copy_index; k++) {
5885 if (names->get(k) != isolate->heap()->hidden_string()) {
5886 Object* name = names->get(k);
5887 if (name_from_hidden_proto == name) {
5888 names->set(j, isolate->heap()->hidden_string());
5889 hidden_strings++;
5890 break;
5891 }
5892 }
5893 }
5894 }
5895 }
5896 next_copy_index += own_property_count[i];
5897
5898 // Hidden properties only show up if the filter does not skip strings.
5899 if ((filter & STRING) == 0 && JSObject::HasHiddenProperties(jsproto)) {
5900 hidden_strings++;
5901 }
5902 iter.Advance();
5903 }
5904 }
5905
5906 // Filter out name of hidden properties object and
5907 // hidden prototype duplicates.
5908 if (hidden_strings > 0) {
5909 Handle<FixedArray> old_names = names;
5910 names = isolate->factory()->NewFixedArray(
5911 names->length() - hidden_strings);
5912 int dest_pos = 0;
5913 for (int i = 0; i < total_property_count; i++) {
5914 Object* name = old_names->get(i);
5915 if (name == isolate->heap()->hidden_string()) {
5916 hidden_strings--;
5917 continue;
5918 }
5919 names->set(dest_pos++, name);
5920 }
5921 DCHECK_EQ(0, hidden_strings);
5922 }
5923
5924 return *isolate->factory()->NewJSArrayWithElements(names);
5925 }
5926
5927
5928 // Return the names of the own indexed properties.
5929 // args[0]: object
RUNTIME_FUNCTION(Runtime_GetOwnElementNames)5930 RUNTIME_FUNCTION(Runtime_GetOwnElementNames) {
5931 HandleScope scope(isolate);
5932 DCHECK(args.length() == 1);
5933 if (!args[0]->IsJSObject()) {
5934 return isolate->heap()->undefined_value();
5935 }
5936 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5937
5938 int n = obj->NumberOfOwnElements(static_cast<PropertyAttributes>(NONE));
5939 Handle<FixedArray> names = isolate->factory()->NewFixedArray(n);
5940 obj->GetOwnElementKeys(*names, static_cast<PropertyAttributes>(NONE));
5941 return *isolate->factory()->NewJSArrayWithElements(names);
5942 }
5943
5944
5945 // Return information on whether an object has a named or indexed interceptor.
5946 // args[0]: object
RUNTIME_FUNCTION(Runtime_GetInterceptorInfo)5947 RUNTIME_FUNCTION(Runtime_GetInterceptorInfo) {
5948 HandleScope scope(isolate);
5949 DCHECK(args.length() == 1);
5950 if (!args[0]->IsJSObject()) {
5951 return Smi::FromInt(0);
5952 }
5953 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5954
5955 int result = 0;
5956 if (obj->HasNamedInterceptor()) result |= 2;
5957 if (obj->HasIndexedInterceptor()) result |= 1;
5958
5959 return Smi::FromInt(result);
5960 }
5961
5962
5963 // Return property names from named interceptor.
5964 // args[0]: object
RUNTIME_FUNCTION(Runtime_GetNamedInterceptorPropertyNames)5965 RUNTIME_FUNCTION(Runtime_GetNamedInterceptorPropertyNames) {
5966 HandleScope scope(isolate);
5967 DCHECK(args.length() == 1);
5968 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5969
5970 if (obj->HasNamedInterceptor()) {
5971 Handle<JSObject> result;
5972 if (JSObject::GetKeysForNamedInterceptor(obj, obj).ToHandle(&result)) {
5973 return *result;
5974 }
5975 }
5976 return isolate->heap()->undefined_value();
5977 }
5978
5979
5980 // Return element names from indexed interceptor.
5981 // args[0]: object
RUNTIME_FUNCTION(Runtime_GetIndexedInterceptorElementNames)5982 RUNTIME_FUNCTION(Runtime_GetIndexedInterceptorElementNames) {
5983 HandleScope scope(isolate);
5984 DCHECK(args.length() == 1);
5985 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
5986
5987 if (obj->HasIndexedInterceptor()) {
5988 Handle<JSObject> result;
5989 if (JSObject::GetKeysForIndexedInterceptor(obj, obj).ToHandle(&result)) {
5990 return *result;
5991 }
5992 }
5993 return isolate->heap()->undefined_value();
5994 }
5995
5996
RUNTIME_FUNCTION(Runtime_OwnKeys)5997 RUNTIME_FUNCTION(Runtime_OwnKeys) {
5998 HandleScope scope(isolate);
5999 DCHECK(args.length() == 1);
6000 CONVERT_ARG_CHECKED(JSObject, raw_object, 0);
6001 Handle<JSObject> object(raw_object);
6002
6003 if (object->IsJSGlobalProxy()) {
6004 // Do access checks before going to the global object.
6005 if (object->IsAccessCheckNeeded() &&
6006 !isolate->MayNamedAccess(
6007 object, isolate->factory()->undefined_value(), v8::ACCESS_KEYS)) {
6008 isolate->ReportFailedAccessCheck(object, v8::ACCESS_KEYS);
6009 RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
6010 return *isolate->factory()->NewJSArray(0);
6011 }
6012
6013 PrototypeIterator iter(isolate, object);
6014 // If proxy is detached we simply return an empty array.
6015 if (iter.IsAtEnd()) return *isolate->factory()->NewJSArray(0);
6016 object = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
6017 }
6018
6019 Handle<FixedArray> contents;
6020 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6021 isolate, contents,
6022 JSReceiver::GetKeys(object, JSReceiver::OWN_ONLY));
6023
6024 // Some fast paths through GetKeysInFixedArrayFor reuse a cached
6025 // property array and since the result is mutable we have to create
6026 // a fresh clone on each invocation.
6027 int length = contents->length();
6028 Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length);
6029 for (int i = 0; i < length; i++) {
6030 Object* entry = contents->get(i);
6031 if (entry->IsString()) {
6032 copy->set(i, entry);
6033 } else {
6034 DCHECK(entry->IsNumber());
6035 HandleScope scope(isolate);
6036 Handle<Object> entry_handle(entry, isolate);
6037 Handle<Object> entry_str =
6038 isolate->factory()->NumberToString(entry_handle);
6039 copy->set(i, *entry_str);
6040 }
6041 }
6042 return *isolate->factory()->NewJSArrayWithElements(copy);
6043 }
6044
6045
RUNTIME_FUNCTION(Runtime_GetArgumentsProperty)6046 RUNTIME_FUNCTION(Runtime_GetArgumentsProperty) {
6047 SealHandleScope shs(isolate);
6048 DCHECK(args.length() == 1);
6049 CONVERT_ARG_HANDLE_CHECKED(Object, raw_key, 0);
6050
6051 // Compute the frame holding the arguments.
6052 JavaScriptFrameIterator it(isolate);
6053 it.AdvanceToArgumentsFrame();
6054 JavaScriptFrame* frame = it.frame();
6055
6056 // Get the actual number of provided arguments.
6057 const uint32_t n = frame->ComputeParametersCount();
6058
6059 // Try to convert the key to an index. If successful and within
6060 // index return the the argument from the frame.
6061 uint32_t index;
6062 if (raw_key->ToArrayIndex(&index) && index < n) {
6063 return frame->GetParameter(index);
6064 }
6065
6066 HandleScope scope(isolate);
6067 if (raw_key->IsSymbol()) {
6068 Handle<Symbol> symbol = Handle<Symbol>::cast(raw_key);
6069 if (symbol->Equals(isolate->native_context()->iterator_symbol())) {
6070 return isolate->native_context()->array_values_iterator();
6071 }
6072 // Lookup in the initial Object.prototype object.
6073 Handle<Object> result;
6074 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6075 isolate, result,
6076 Object::GetProperty(isolate->initial_object_prototype(),
6077 Handle<Symbol>::cast(raw_key)));
6078 return *result;
6079 }
6080
6081 // Convert the key to a string.
6082 Handle<Object> converted;
6083 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6084 isolate, converted, Execution::ToString(isolate, raw_key));
6085 Handle<String> key = Handle<String>::cast(converted);
6086
6087 // Try to convert the string key into an array index.
6088 if (key->AsArrayIndex(&index)) {
6089 if (index < n) {
6090 return frame->GetParameter(index);
6091 } else {
6092 Handle<Object> initial_prototype(isolate->initial_object_prototype());
6093 Handle<Object> result;
6094 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6095 isolate, result,
6096 Object::GetElement(isolate, initial_prototype, index));
6097 return *result;
6098 }
6099 }
6100
6101 // Handle special arguments properties.
6102 if (String::Equals(isolate->factory()->length_string(), key)) {
6103 return Smi::FromInt(n);
6104 }
6105 if (String::Equals(isolate->factory()->callee_string(), key)) {
6106 JSFunction* function = frame->function();
6107 if (function->shared()->strict_mode() == STRICT) {
6108 THROW_NEW_ERROR_RETURN_FAILURE(
6109 isolate, NewTypeError("strict_arguments_callee",
6110 HandleVector<Object>(NULL, 0)));
6111 }
6112 return function;
6113 }
6114
6115 // Lookup in the initial Object.prototype object.
6116 Handle<Object> result;
6117 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6118 isolate, result,
6119 Object::GetProperty(isolate->initial_object_prototype(), key));
6120 return *result;
6121 }
6122
6123
RUNTIME_FUNCTION(Runtime_ToFastProperties)6124 RUNTIME_FUNCTION(Runtime_ToFastProperties) {
6125 HandleScope scope(isolate);
6126 DCHECK(args.length() == 1);
6127 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
6128 if (object->IsJSObject() && !object->IsGlobalObject()) {
6129 JSObject::MigrateSlowToFast(Handle<JSObject>::cast(object), 0);
6130 }
6131 return *object;
6132 }
6133
6134
RUNTIME_FUNCTION(Runtime_ToBool)6135 RUNTIME_FUNCTION(Runtime_ToBool) {
6136 SealHandleScope shs(isolate);
6137 DCHECK(args.length() == 1);
6138 CONVERT_ARG_CHECKED(Object, object, 0);
6139
6140 return isolate->heap()->ToBoolean(object->BooleanValue());
6141 }
6142
6143
6144 // Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
6145 // Possible optimizations: put the type string into the oddballs.
RUNTIME_FUNCTION(Runtime_Typeof)6146 RUNTIME_FUNCTION(Runtime_Typeof) {
6147 SealHandleScope shs(isolate);
6148 DCHECK(args.length() == 1);
6149 CONVERT_ARG_CHECKED(Object, obj, 0);
6150 if (obj->IsNumber()) return isolate->heap()->number_string();
6151 HeapObject* heap_obj = HeapObject::cast(obj);
6152
6153 // typeof an undetectable object is 'undefined'
6154 if (heap_obj->map()->is_undetectable()) {
6155 return isolate->heap()->undefined_string();
6156 }
6157
6158 InstanceType instance_type = heap_obj->map()->instance_type();
6159 if (instance_type < FIRST_NONSTRING_TYPE) {
6160 return isolate->heap()->string_string();
6161 }
6162
6163 switch (instance_type) {
6164 case ODDBALL_TYPE:
6165 if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
6166 return isolate->heap()->boolean_string();
6167 }
6168 if (heap_obj->IsNull()) {
6169 return isolate->heap()->object_string();
6170 }
6171 DCHECK(heap_obj->IsUndefined());
6172 return isolate->heap()->undefined_string();
6173 case SYMBOL_TYPE:
6174 return isolate->heap()->symbol_string();
6175 case JS_FUNCTION_TYPE:
6176 case JS_FUNCTION_PROXY_TYPE:
6177 return isolate->heap()->function_string();
6178 default:
6179 // For any kind of object not handled above, the spec rule for
6180 // host objects gives that it is okay to return "object"
6181 return isolate->heap()->object_string();
6182 }
6183 }
6184
6185
RUNTIME_FUNCTION(Runtime_Booleanize)6186 RUNTIME_FUNCTION(Runtime_Booleanize) {
6187 SealHandleScope shs(isolate);
6188 DCHECK(args.length() == 2);
6189 CONVERT_ARG_CHECKED(Object, value_raw, 0);
6190 CONVERT_SMI_ARG_CHECKED(token_raw, 1);
6191 intptr_t value = reinterpret_cast<intptr_t>(value_raw);
6192 Token::Value token = static_cast<Token::Value>(token_raw);
6193 switch (token) {
6194 case Token::EQ:
6195 case Token::EQ_STRICT:
6196 return isolate->heap()->ToBoolean(value == 0);
6197 case Token::NE:
6198 case Token::NE_STRICT:
6199 return isolate->heap()->ToBoolean(value != 0);
6200 case Token::LT:
6201 return isolate->heap()->ToBoolean(value < 0);
6202 case Token::GT:
6203 return isolate->heap()->ToBoolean(value > 0);
6204 case Token::LTE:
6205 return isolate->heap()->ToBoolean(value <= 0);
6206 case Token::GTE:
6207 return isolate->heap()->ToBoolean(value >= 0);
6208 default:
6209 // This should only happen during natives fuzzing.
6210 return isolate->heap()->undefined_value();
6211 }
6212 }
6213
6214
AreDigits(const uint8_t * s,int from,int to)6215 static bool AreDigits(const uint8_t*s, int from, int to) {
6216 for (int i = from; i < to; i++) {
6217 if (s[i] < '0' || s[i] > '9') return false;
6218 }
6219
6220 return true;
6221 }
6222
6223
ParseDecimalInteger(const uint8_t * s,int from,int to)6224 static int ParseDecimalInteger(const uint8_t*s, int from, int to) {
6225 DCHECK(to - from < 10); // Overflow is not possible.
6226 DCHECK(from < to);
6227 int d = s[from] - '0';
6228
6229 for (int i = from + 1; i < to; i++) {
6230 d = 10 * d + (s[i] - '0');
6231 }
6232
6233 return d;
6234 }
6235
6236
RUNTIME_FUNCTION(Runtime_StringToNumber)6237 RUNTIME_FUNCTION(Runtime_StringToNumber) {
6238 HandleScope handle_scope(isolate);
6239 DCHECK(args.length() == 1);
6240 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6241 subject = String::Flatten(subject);
6242
6243 // Fast case: short integer or some sorts of junk values.
6244 if (subject->IsSeqOneByteString()) {
6245 int len = subject->length();
6246 if (len == 0) return Smi::FromInt(0);
6247
6248 DisallowHeapAllocation no_gc;
6249 uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
6250 bool minus = (data[0] == '-');
6251 int start_pos = (minus ? 1 : 0);
6252
6253 if (start_pos == len) {
6254 return isolate->heap()->nan_value();
6255 } else if (data[start_pos] > '9') {
6256 // Fast check for a junk value. A valid string may start from a
6257 // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
6258 // or the 'I' character ('Infinity'). All of that have codes not greater
6259 // than '9' except 'I' and .
6260 if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
6261 return isolate->heap()->nan_value();
6262 }
6263 } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
6264 // The maximal/minimal smi has 10 digits. If the string has less digits
6265 // we know it will fit into the smi-data type.
6266 int d = ParseDecimalInteger(data, start_pos, len);
6267 if (minus) {
6268 if (d == 0) return isolate->heap()->minus_zero_value();
6269 d = -d;
6270 } else if (!subject->HasHashCode() &&
6271 len <= String::kMaxArrayIndexSize &&
6272 (len == 1 || data[0] != '0')) {
6273 // String hash is not calculated yet but all the data are present.
6274 // Update the hash field to speed up sequential convertions.
6275 uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
6276 #ifdef DEBUG
6277 subject->Hash(); // Force hash calculation.
6278 DCHECK_EQ(static_cast<int>(subject->hash_field()),
6279 static_cast<int>(hash));
6280 #endif
6281 subject->set_hash_field(hash);
6282 }
6283 return Smi::FromInt(d);
6284 }
6285 }
6286
6287 // Slower case.
6288 int flags = ALLOW_HEX;
6289 if (FLAG_harmony_numeric_literals) {
6290 // The current spec draft has not updated "ToNumber Applied to the String
6291 // Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584
6292 flags |= ALLOW_OCTAL | ALLOW_BINARY;
6293 }
6294
6295 return *isolate->factory()->NewNumber(StringToDouble(
6296 isolate->unicode_cache(), *subject, flags));
6297 }
6298
6299
RUNTIME_FUNCTION(Runtime_NewString)6300 RUNTIME_FUNCTION(Runtime_NewString) {
6301 HandleScope scope(isolate);
6302 DCHECK(args.length() == 2);
6303 CONVERT_INT32_ARG_CHECKED(length, 0);
6304 CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1);
6305 if (length == 0) return isolate->heap()->empty_string();
6306 Handle<String> result;
6307 if (is_one_byte) {
6308 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6309 isolate, result, isolate->factory()->NewRawOneByteString(length));
6310 } else {
6311 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6312 isolate, result, isolate->factory()->NewRawTwoByteString(length));
6313 }
6314 return *result;
6315 }
6316
6317
RUNTIME_FUNCTION(Runtime_TruncateString)6318 RUNTIME_FUNCTION(Runtime_TruncateString) {
6319 HandleScope scope(isolate);
6320 DCHECK(args.length() == 2);
6321 CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0);
6322 CONVERT_INT32_ARG_CHECKED(new_length, 1);
6323 RUNTIME_ASSERT(new_length >= 0);
6324 return *SeqString::Truncate(string, new_length);
6325 }
6326
6327
RUNTIME_FUNCTION(Runtime_URIEscape)6328 RUNTIME_FUNCTION(Runtime_URIEscape) {
6329 HandleScope scope(isolate);
6330 DCHECK(args.length() == 1);
6331 CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
6332 Handle<String> string = String::Flatten(source);
6333 DCHECK(string->IsFlat());
6334 Handle<String> result;
6335 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6336 isolate, result,
6337 string->IsOneByteRepresentationUnderneath()
6338 ? URIEscape::Escape<uint8_t>(isolate, source)
6339 : URIEscape::Escape<uc16>(isolate, source));
6340 return *result;
6341 }
6342
6343
RUNTIME_FUNCTION(Runtime_URIUnescape)6344 RUNTIME_FUNCTION(Runtime_URIUnescape) {
6345 HandleScope scope(isolate);
6346 DCHECK(args.length() == 1);
6347 CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
6348 Handle<String> string = String::Flatten(source);
6349 DCHECK(string->IsFlat());
6350 Handle<String> result;
6351 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6352 isolate, result,
6353 string->IsOneByteRepresentationUnderneath()
6354 ? URIUnescape::Unescape<uint8_t>(isolate, source)
6355 : URIUnescape::Unescape<uc16>(isolate, source));
6356 return *result;
6357 }
6358
6359
RUNTIME_FUNCTION(Runtime_QuoteJSONString)6360 RUNTIME_FUNCTION(Runtime_QuoteJSONString) {
6361 HandleScope scope(isolate);
6362 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
6363 DCHECK(args.length() == 1);
6364 Handle<Object> result;
6365 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6366 isolate, result, BasicJsonStringifier::StringifyString(isolate, string));
6367 return *result;
6368 }
6369
6370
RUNTIME_FUNCTION(Runtime_BasicJSONStringify)6371 RUNTIME_FUNCTION(Runtime_BasicJSONStringify) {
6372 HandleScope scope(isolate);
6373 DCHECK(args.length() == 1);
6374 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
6375 BasicJsonStringifier stringifier(isolate);
6376 Handle<Object> result;
6377 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6378 isolate, result, stringifier.Stringify(object));
6379 return *result;
6380 }
6381
6382
RUNTIME_FUNCTION(Runtime_StringParseInt)6383 RUNTIME_FUNCTION(Runtime_StringParseInt) {
6384 HandleScope handle_scope(isolate);
6385 DCHECK(args.length() == 2);
6386 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6387 CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]);
6388 RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));
6389
6390 subject = String::Flatten(subject);
6391 double value;
6392
6393 { DisallowHeapAllocation no_gc;
6394 String::FlatContent flat = subject->GetFlatContent();
6395
6396 // ECMA-262 section 15.1.2.3, empty string is NaN
6397 if (flat.IsOneByte()) {
6398 value = StringToInt(
6399 isolate->unicode_cache(), flat.ToOneByteVector(), radix);
6400 } else {
6401 value = StringToInt(
6402 isolate->unicode_cache(), flat.ToUC16Vector(), radix);
6403 }
6404 }
6405
6406 return *isolate->factory()->NewNumber(value);
6407 }
6408
6409
RUNTIME_FUNCTION(Runtime_StringParseFloat)6410 RUNTIME_FUNCTION(Runtime_StringParseFloat) {
6411 HandleScope shs(isolate);
6412 DCHECK(args.length() == 1);
6413 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6414
6415 subject = String::Flatten(subject);
6416 double value = StringToDouble(isolate->unicode_cache(), *subject,
6417 ALLOW_TRAILING_JUNK, base::OS::nan_value());
6418
6419 return *isolate->factory()->NewNumber(value);
6420 }
6421
6422
ToUpperOverflows(uc32 character)6423 static inline bool ToUpperOverflows(uc32 character) {
6424 // y with umlauts and the micro sign are the only characters that stop
6425 // fitting into one-byte when converting to uppercase.
6426 static const uc32 yuml_code = 0xff;
6427 static const uc32 micro_code = 0xb5;
6428 return (character == yuml_code || character == micro_code);
6429 }
6430
6431
6432 template <class Converter>
ConvertCaseHelper(Isolate * isolate,String * string,SeqString * result,int result_length,unibrow::Mapping<Converter,128> * mapping)6433 MUST_USE_RESULT static Object* ConvertCaseHelper(
6434 Isolate* isolate,
6435 String* string,
6436 SeqString* result,
6437 int result_length,
6438 unibrow::Mapping<Converter, 128>* mapping) {
6439 DisallowHeapAllocation no_gc;
6440 // We try this twice, once with the assumption that the result is no longer
6441 // than the input and, if that assumption breaks, again with the exact
6442 // length. This may not be pretty, but it is nicer than what was here before
6443 // and I hereby claim my vaffel-is.
6444 //
6445 // NOTE: This assumes that the upper/lower case of an ASCII
6446 // character is also ASCII. This is currently the case, but it
6447 // might break in the future if we implement more context and locale
6448 // dependent upper/lower conversions.
6449 bool has_changed_character = false;
6450
6451 // Convert all characters to upper case, assuming that they will fit
6452 // in the buffer
6453 Access<ConsStringIteratorOp> op(
6454 isolate->runtime_state()->string_iterator());
6455 StringCharacterStream stream(string, op.value());
6456 unibrow::uchar chars[Converter::kMaxWidth];
6457 // We can assume that the string is not empty
6458 uc32 current = stream.GetNext();
6459 bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
6460 for (int i = 0; i < result_length;) {
6461 bool has_next = stream.HasMore();
6462 uc32 next = has_next ? stream.GetNext() : 0;
6463 int char_length = mapping->get(current, next, chars);
6464 if (char_length == 0) {
6465 // The case conversion of this character is the character itself.
6466 result->Set(i, current);
6467 i++;
6468 } else if (char_length == 1 &&
6469 (ignore_overflow || !ToUpperOverflows(current))) {
6470 // Common case: converting the letter resulted in one character.
6471 DCHECK(static_cast<uc32>(chars[0]) != current);
6472 result->Set(i, chars[0]);
6473 has_changed_character = true;
6474 i++;
6475 } else if (result_length == string->length()) {
6476 bool overflows = ToUpperOverflows(current);
6477 // We've assumed that the result would be as long as the
6478 // input but here is a character that converts to several
6479 // characters. No matter, we calculate the exact length
6480 // of the result and try the whole thing again.
6481 //
6482 // Note that this leaves room for optimization. We could just
6483 // memcpy what we already have to the result string. Also,
6484 // the result string is the last object allocated we could
6485 // "realloc" it and probably, in the vast majority of cases,
6486 // extend the existing string to be able to hold the full
6487 // result.
6488 int next_length = 0;
6489 if (has_next) {
6490 next_length = mapping->get(next, 0, chars);
6491 if (next_length == 0) next_length = 1;
6492 }
6493 int current_length = i + char_length + next_length;
6494 while (stream.HasMore()) {
6495 current = stream.GetNext();
6496 overflows |= ToUpperOverflows(current);
6497 // NOTE: we use 0 as the next character here because, while
6498 // the next character may affect what a character converts to,
6499 // it does not in any case affect the length of what it convert
6500 // to.
6501 int char_length = mapping->get(current, 0, chars);
6502 if (char_length == 0) char_length = 1;
6503 current_length += char_length;
6504 if (current_length > String::kMaxLength) {
6505 AllowHeapAllocation allocate_error_and_return;
6506 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
6507 NewInvalidStringLengthError());
6508 }
6509 }
6510 // Try again with the real length. Return signed if we need
6511 // to allocate a two-byte string for to uppercase.
6512 return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
6513 : Smi::FromInt(current_length);
6514 } else {
6515 for (int j = 0; j < char_length; j++) {
6516 result->Set(i, chars[j]);
6517 i++;
6518 }
6519 has_changed_character = true;
6520 }
6521 current = next;
6522 }
6523 if (has_changed_character) {
6524 return result;
6525 } else {
6526 // If we didn't actually change anything in doing the conversion
6527 // we simple return the result and let the converted string
6528 // become garbage; there is no reason to keep two identical strings
6529 // alive.
6530 return string;
6531 }
6532 }
6533
6534
6535 namespace {
6536
6537 static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
6538 static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
6539
6540 // Given a word and two range boundaries returns a word with high bit
6541 // set in every byte iff the corresponding input byte was strictly in
6542 // the range (m, n). All the other bits in the result are cleared.
6543 // This function is only useful when it can be inlined and the
6544 // boundaries are statically known.
6545 // Requires: all bytes in the input word and the boundaries must be
6546 // ASCII (less than 0x7F).
AsciiRangeMask(uintptr_t w,char m,char n)6547 static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
6548 // Use strict inequalities since in edge cases the function could be
6549 // further simplified.
6550 DCHECK(0 < m && m < n);
6551 // Has high bit set in every w byte less than n.
6552 uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
6553 // Has high bit set in every w byte greater than m.
6554 uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
6555 return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
6556 }
6557
6558
6559 #ifdef DEBUG
CheckFastAsciiConvert(char * dst,const char * src,int length,bool changed,bool is_to_lower)6560 static bool CheckFastAsciiConvert(char* dst,
6561 const char* src,
6562 int length,
6563 bool changed,
6564 bool is_to_lower) {
6565 bool expected_changed = false;
6566 for (int i = 0; i < length; i++) {
6567 if (dst[i] == src[i]) continue;
6568 expected_changed = true;
6569 if (is_to_lower) {
6570 DCHECK('A' <= src[i] && src[i] <= 'Z');
6571 DCHECK(dst[i] == src[i] + ('a' - 'A'));
6572 } else {
6573 DCHECK('a' <= src[i] && src[i] <= 'z');
6574 DCHECK(dst[i] == src[i] - ('a' - 'A'));
6575 }
6576 }
6577 return (expected_changed == changed);
6578 }
6579 #endif
6580
6581
6582 template<class Converter>
FastAsciiConvert(char * dst,const char * src,int length,bool * changed_out)6583 static bool FastAsciiConvert(char* dst,
6584 const char* src,
6585 int length,
6586 bool* changed_out) {
6587 #ifdef DEBUG
6588 char* saved_dst = dst;
6589 const char* saved_src = src;
6590 #endif
6591 DisallowHeapAllocation no_gc;
6592 // We rely on the distance between upper and lower case letters
6593 // being a known power of 2.
6594 DCHECK('a' - 'A' == (1 << 5));
6595 // Boundaries for the range of input characters than require conversion.
6596 static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
6597 static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
6598 bool changed = false;
6599 uintptr_t or_acc = 0;
6600 const char* const limit = src + length;
6601
6602 // dst is newly allocated and always aligned.
6603 DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
6604 // Only attempt processing one word at a time if src is also aligned.
6605 if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
6606 // Process the prefix of the input that requires no conversion one aligned
6607 // (machine) word at a time.
6608 while (src <= limit - sizeof(uintptr_t)) {
6609 const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
6610 or_acc |= w;
6611 if (AsciiRangeMask(w, lo, hi) != 0) {
6612 changed = true;
6613 break;
6614 }
6615 *reinterpret_cast<uintptr_t*>(dst) = w;
6616 src += sizeof(uintptr_t);
6617 dst += sizeof(uintptr_t);
6618 }
6619 // Process the remainder of the input performing conversion when
6620 // required one word at a time.
6621 while (src <= limit - sizeof(uintptr_t)) {
6622 const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
6623 or_acc |= w;
6624 uintptr_t m = AsciiRangeMask(w, lo, hi);
6625 // The mask has high (7th) bit set in every byte that needs
6626 // conversion and we know that the distance between cases is
6627 // 1 << 5.
6628 *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
6629 src += sizeof(uintptr_t);
6630 dst += sizeof(uintptr_t);
6631 }
6632 }
6633 // Process the last few bytes of the input (or the whole input if
6634 // unaligned access is not supported).
6635 while (src < limit) {
6636 char c = *src;
6637 or_acc |= c;
6638 if (lo < c && c < hi) {
6639 c ^= (1 << 5);
6640 changed = true;
6641 }
6642 *dst = c;
6643 ++src;
6644 ++dst;
6645 }
6646
6647 if ((or_acc & kAsciiMask) != 0) return false;
6648
6649 DCHECK(CheckFastAsciiConvert(
6650 saved_dst, saved_src, length, changed, Converter::kIsToLower));
6651
6652 *changed_out = changed;
6653 return true;
6654 }
6655
6656 } // namespace
6657
6658
6659 template <class Converter>
ConvertCase(Handle<String> s,Isolate * isolate,unibrow::Mapping<Converter,128> * mapping)6660 MUST_USE_RESULT static Object* ConvertCase(
6661 Handle<String> s,
6662 Isolate* isolate,
6663 unibrow::Mapping<Converter, 128>* mapping) {
6664 s = String::Flatten(s);
6665 int length = s->length();
6666 // Assume that the string is not empty; we need this assumption later
6667 if (length == 0) return *s;
6668
6669 // Simpler handling of ASCII strings.
6670 //
6671 // NOTE: This assumes that the upper/lower case of an ASCII
6672 // character is also ASCII. This is currently the case, but it
6673 // might break in the future if we implement more context and locale
6674 // dependent upper/lower conversions.
6675 if (s->IsOneByteRepresentationUnderneath()) {
6676 // Same length as input.
6677 Handle<SeqOneByteString> result =
6678 isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
6679 DisallowHeapAllocation no_gc;
6680 String::FlatContent flat_content = s->GetFlatContent();
6681 DCHECK(flat_content.IsFlat());
6682 bool has_changed_character = false;
6683 bool is_ascii = FastAsciiConvert<Converter>(
6684 reinterpret_cast<char*>(result->GetChars()),
6685 reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
6686 length,
6687 &has_changed_character);
6688 // If not ASCII, we discard the result and take the 2 byte path.
6689 if (is_ascii) return has_changed_character ? *result : *s;
6690 }
6691
6692 Handle<SeqString> result; // Same length as input.
6693 if (s->IsOneByteRepresentation()) {
6694 result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
6695 } else {
6696 result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
6697 }
6698
6699 Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
6700 if (answer->IsException() || answer->IsString()) return answer;
6701
6702 DCHECK(answer->IsSmi());
6703 length = Smi::cast(answer)->value();
6704 if (s->IsOneByteRepresentation() && length > 0) {
6705 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6706 isolate, result, isolate->factory()->NewRawOneByteString(length));
6707 } else {
6708 if (length < 0) length = -length;
6709 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
6710 isolate, result, isolate->factory()->NewRawTwoByteString(length));
6711 }
6712 return ConvertCaseHelper(isolate, *s, *result, length, mapping);
6713 }
6714
6715
RUNTIME_FUNCTION(Runtime_StringToLowerCase)6716 RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
6717 HandleScope scope(isolate);
6718 DCHECK(args.length() == 1);
6719 CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
6720 return ConvertCase(
6721 s, isolate, isolate->runtime_state()->to_lower_mapping());
6722 }
6723
6724
RUNTIME_FUNCTION(Runtime_StringToUpperCase)6725 RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
6726 HandleScope scope(isolate);
6727 DCHECK(args.length() == 1);
6728 CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
6729 return ConvertCase(
6730 s, isolate, isolate->runtime_state()->to_upper_mapping());
6731 }
6732
6733
RUNTIME_FUNCTION(Runtime_StringTrim)6734 RUNTIME_FUNCTION(Runtime_StringTrim) {
6735 HandleScope scope(isolate);
6736 DCHECK(args.length() == 3);
6737
6738 CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
6739 CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1);
6740 CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2);
6741
6742 string = String::Flatten(string);
6743 int length = string->length();
6744
6745 int left = 0;
6746 UnicodeCache* unicode_cache = isolate->unicode_cache();
6747 if (trimLeft) {
6748 while (left < length &&
6749 unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
6750 left++;
6751 }
6752 }
6753
6754 int right = length;
6755 if (trimRight) {
6756 while (right > left &&
6757 unicode_cache->IsWhiteSpaceOrLineTerminator(
6758 string->Get(right - 1))) {
6759 right--;
6760 }
6761 }
6762
6763 return *isolate->factory()->NewSubString(string, left, right);
6764 }
6765
6766
RUNTIME_FUNCTION(Runtime_StringSplit)6767 RUNTIME_FUNCTION(Runtime_StringSplit) {
6768 HandleScope handle_scope(isolate);
6769 DCHECK(args.length() == 3);
6770 CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
6771 CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1);
6772 CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]);
6773 RUNTIME_ASSERT(limit > 0);
6774
6775 int subject_length = subject->length();
6776 int pattern_length = pattern->length();
6777 RUNTIME_ASSERT(pattern_length > 0);
6778
6779 if (limit == 0xffffffffu) {
6780 Handle<Object> cached_answer(
6781 RegExpResultsCache::Lookup(isolate->heap(),
6782 *subject,
6783 *pattern,
6784 RegExpResultsCache::STRING_SPLIT_SUBSTRINGS),
6785 isolate);
6786 if (*cached_answer != Smi::FromInt(0)) {
6787 // The cache FixedArray is a COW-array and can therefore be reused.
6788 Handle<JSArray> result =
6789 isolate->factory()->NewJSArrayWithElements(
6790 Handle<FixedArray>::cast(cached_answer));
6791 return *result;
6792 }
6793 }
6794
6795 // The limit can be very large (0xffffffffu), but since the pattern
6796 // isn't empty, we can never create more parts than ~half the length
6797 // of the subject.
6798
6799 subject = String::Flatten(subject);
6800 pattern = String::Flatten(pattern);
6801
6802 static const int kMaxInitialListCapacity = 16;
6803
6804 ZoneScope zone_scope(isolate->runtime_zone());
6805
6806 // Find (up to limit) indices of separator and end-of-string in subject
6807 int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit);
6808 ZoneList<int> indices(initial_capacity, zone_scope.zone());
6809
6810 FindStringIndicesDispatch(isolate, *subject, *pattern,
6811 &indices, limit, zone_scope.zone());
6812
6813 if (static_cast<uint32_t>(indices.length()) < limit) {
6814 indices.Add(subject_length, zone_scope.zone());
6815 }
6816
6817 // The list indices now contains the end of each part to create.
6818
6819 // Create JSArray of substrings separated by separator.
6820 int part_count = indices.length();
6821
6822 Handle<JSArray> result = isolate->factory()->NewJSArray(part_count);
6823 JSObject::EnsureCanContainHeapObjectElements(result);
6824 result->set_length(Smi::FromInt(part_count));
6825
6826 DCHECK(result->HasFastObjectElements());
6827
6828 if (part_count == 1 && indices.at(0) == subject_length) {
6829 FixedArray::cast(result->elements())->set(0, *subject);
6830 return *result;
6831 }
6832
6833 Handle<FixedArray> elements(FixedArray::cast(result->elements()));
6834 int part_start = 0;
6835 for (int i = 0; i < part_count; i++) {
6836 HandleScope local_loop_handle(isolate);
6837 int part_end = indices.at(i);
6838 Handle<String> substring =
6839 isolate->factory()->NewProperSubString(subject, part_start, part_end);
6840 elements->set(i, *substring);
6841 part_start = part_end + pattern_length;
6842 }
6843
6844 if (limit == 0xffffffffu) {
6845 if (result->HasFastObjectElements()) {
6846 RegExpResultsCache::Enter(isolate,
6847 subject,
6848 pattern,
6849 elements,
6850 RegExpResultsCache::STRING_SPLIT_SUBSTRINGS);
6851 }
6852 }
6853
6854 return *result;
6855 }
6856
6857
6858 // Copies Latin1 characters to the given fixed array looking up
6859 // one-char strings in the cache. Gives up on the first char that is
6860 // not in the cache and fills the remainder with smi zeros. Returns
6861 // the length of the successfully copied prefix.
CopyCachedOneByteCharsToArray(Heap * heap,const uint8_t * chars,FixedArray * elements,int length)6862 static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
6863 FixedArray* elements, int length) {
6864 DisallowHeapAllocation no_gc;
6865 FixedArray* one_byte_cache = heap->single_character_string_cache();
6866 Object* undefined = heap->undefined_value();
6867 int i;
6868 WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
6869 for (i = 0; i < length; ++i) {
6870 Object* value = one_byte_cache->get(chars[i]);
6871 if (value == undefined) break;
6872 elements->set(i, value, mode);
6873 }
6874 if (i < length) {
6875 DCHECK(Smi::FromInt(0) == 0);
6876 memset(elements->data_start() + i, 0, kPointerSize * (length - i));
6877 }
6878 #ifdef DEBUG
6879 for (int j = 0; j < length; ++j) {
6880 Object* element = elements->get(j);
6881 DCHECK(element == Smi::FromInt(0) ||
6882 (element->IsString() && String::cast(element)->LooksValid()));
6883 }
6884 #endif
6885 return i;
6886 }
6887
6888
6889 // Converts a String to JSArray.
6890 // For example, "foo" => ["f", "o", "o"].
RUNTIME_FUNCTION(Runtime_StringToArray)6891 RUNTIME_FUNCTION(Runtime_StringToArray) {
6892 HandleScope scope(isolate);
6893 DCHECK(args.length() == 2);
6894 CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
6895 CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
6896
6897 s = String::Flatten(s);
6898 const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
6899
6900 Handle<FixedArray> elements;
6901 int position = 0;
6902 if (s->IsFlat() && s->IsOneByteRepresentation()) {
6903 // Try using cached chars where possible.
6904 elements = isolate->factory()->NewUninitializedFixedArray(length);
6905
6906 DisallowHeapAllocation no_gc;
6907 String::FlatContent content = s->GetFlatContent();
6908 if (content.IsOneByte()) {
6909 Vector<const uint8_t> chars = content.ToOneByteVector();
6910 // Note, this will initialize all elements (not only the prefix)
6911 // to prevent GC from seeing partially initialized array.
6912 position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
6913 *elements, length);
6914 } else {
6915 MemsetPointer(elements->data_start(),
6916 isolate->heap()->undefined_value(),
6917 length);
6918 }
6919 } else {
6920 elements = isolate->factory()->NewFixedArray(length);
6921 }
6922 for (int i = position; i < length; ++i) {
6923 Handle<Object> str =
6924 isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
6925 elements->set(i, *str);
6926 }
6927
6928 #ifdef DEBUG
6929 for (int i = 0; i < length; ++i) {
6930 DCHECK(String::cast(elements->get(i))->length() == 1);
6931 }
6932 #endif
6933
6934 return *isolate->factory()->NewJSArrayWithElements(elements);
6935 }
6936
6937
RUNTIME_FUNCTION(Runtime_NewStringWrapper)6938 RUNTIME_FUNCTION(Runtime_NewStringWrapper) {
6939 HandleScope scope(isolate);
6940 DCHECK(args.length() == 1);
6941 CONVERT_ARG_HANDLE_CHECKED(String, value, 0);
6942 return *Object::ToObject(isolate, value).ToHandleChecked();
6943 }
6944
6945
IsUpperCaseChar(RuntimeState * runtime_state,uint16_t ch)6946 bool Runtime::IsUpperCaseChar(RuntimeState* runtime_state, uint16_t ch) {
6947 unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth];
6948 int char_length = runtime_state->to_upper_mapping()->get(ch, 0, chars);
6949 return char_length == 0;
6950 }
6951
6952
RUNTIME_FUNCTION(Runtime_NumberToStringRT)6953 RUNTIME_FUNCTION(Runtime_NumberToStringRT) {
6954 HandleScope scope(isolate);
6955 DCHECK(args.length() == 1);
6956 CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
6957
6958 return *isolate->factory()->NumberToString(number);
6959 }
6960
6961
RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache)6962 RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) {
6963 HandleScope scope(isolate);
6964 DCHECK(args.length() == 1);
6965 CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
6966
6967 return *isolate->factory()->NumberToString(number, false);
6968 }
6969
6970
RUNTIME_FUNCTION(Runtime_NumberToInteger)6971 RUNTIME_FUNCTION(Runtime_NumberToInteger) {
6972 HandleScope scope(isolate);
6973 DCHECK(args.length() == 1);
6974
6975 CONVERT_DOUBLE_ARG_CHECKED(number, 0);
6976 return *isolate->factory()->NewNumber(DoubleToInteger(number));
6977 }
6978
6979
RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero)6980 RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) {
6981 HandleScope scope(isolate);
6982 DCHECK(args.length() == 1);
6983
6984 CONVERT_DOUBLE_ARG_CHECKED(number, 0);
6985 double double_value = DoubleToInteger(number);
6986 // Map both -0 and +0 to +0.
6987 if (double_value == 0) double_value = 0;
6988
6989 return *isolate->factory()->NewNumber(double_value);
6990 }
6991
6992
RUNTIME_FUNCTION(Runtime_NumberToJSUint32)6993 RUNTIME_FUNCTION(Runtime_NumberToJSUint32) {
6994 HandleScope scope(isolate);
6995 DCHECK(args.length() == 1);
6996
6997 CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
6998 return *isolate->factory()->NewNumberFromUint(number);
6999 }
7000
7001
RUNTIME_FUNCTION(Runtime_NumberToJSInt32)7002 RUNTIME_FUNCTION(Runtime_NumberToJSInt32) {
7003 HandleScope scope(isolate);
7004 DCHECK(args.length() == 1);
7005
7006 CONVERT_DOUBLE_ARG_CHECKED(number, 0);
7007 return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number));
7008 }
7009
7010
7011 // Converts a Number to a Smi, if possible. Returns NaN if the number is not
7012 // a small integer.
RUNTIME_FUNCTION(Runtime_NumberToSmi)7013 RUNTIME_FUNCTION(Runtime_NumberToSmi) {
7014 SealHandleScope shs(isolate);
7015 DCHECK(args.length() == 1);
7016 CONVERT_ARG_CHECKED(Object, obj, 0);
7017 if (obj->IsSmi()) {
7018 return obj;
7019 }
7020 if (obj->IsHeapNumber()) {
7021 double value = HeapNumber::cast(obj)->value();
7022 int int_value = FastD2I(value);
7023 if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
7024 return Smi::FromInt(int_value);
7025 }
7026 }
7027 return isolate->heap()->nan_value();
7028 }
7029
7030
RUNTIME_FUNCTION(Runtime_AllocateHeapNumber)7031 RUNTIME_FUNCTION(Runtime_AllocateHeapNumber) {
7032 HandleScope scope(isolate);
7033 DCHECK(args.length() == 0);
7034 return *isolate->factory()->NewHeapNumber(0);
7035 }
7036
7037
RUNTIME_FUNCTION(Runtime_NumberAdd)7038 RUNTIME_FUNCTION(Runtime_NumberAdd) {
7039 HandleScope scope(isolate);
7040 DCHECK(args.length() == 2);
7041
7042 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7043 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7044 return *isolate->factory()->NewNumber(x + y);
7045 }
7046
7047
RUNTIME_FUNCTION(Runtime_NumberSub)7048 RUNTIME_FUNCTION(Runtime_NumberSub) {
7049 HandleScope scope(isolate);
7050 DCHECK(args.length() == 2);
7051
7052 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7053 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7054 return *isolate->factory()->NewNumber(x - y);
7055 }
7056
7057
RUNTIME_FUNCTION(Runtime_NumberMul)7058 RUNTIME_FUNCTION(Runtime_NumberMul) {
7059 HandleScope scope(isolate);
7060 DCHECK(args.length() == 2);
7061
7062 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7063 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7064 return *isolate->factory()->NewNumber(x * y);
7065 }
7066
7067
RUNTIME_FUNCTION(Runtime_NumberUnaryMinus)7068 RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) {
7069 HandleScope scope(isolate);
7070 DCHECK(args.length() == 1);
7071
7072 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7073 return *isolate->factory()->NewNumber(-x);
7074 }
7075
7076
RUNTIME_FUNCTION(Runtime_NumberDiv)7077 RUNTIME_FUNCTION(Runtime_NumberDiv) {
7078 HandleScope scope(isolate);
7079 DCHECK(args.length() == 2);
7080
7081 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7082 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7083 return *isolate->factory()->NewNumber(x / y);
7084 }
7085
7086
RUNTIME_FUNCTION(Runtime_NumberMod)7087 RUNTIME_FUNCTION(Runtime_NumberMod) {
7088 HandleScope scope(isolate);
7089 DCHECK(args.length() == 2);
7090
7091 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7092 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7093 return *isolate->factory()->NewNumber(modulo(x, y));
7094 }
7095
7096
RUNTIME_FUNCTION(Runtime_NumberImul)7097 RUNTIME_FUNCTION(Runtime_NumberImul) {
7098 HandleScope scope(isolate);
7099 DCHECK(args.length() == 2);
7100
7101 // We rely on implementation-defined behavior below, but at least not on
7102 // undefined behavior.
7103 CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]);
7104 CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]);
7105 int32_t product = static_cast<int32_t>(x * y);
7106 return *isolate->factory()->NewNumberFromInt(product);
7107 }
7108
7109
RUNTIME_FUNCTION(Runtime_StringAdd)7110 RUNTIME_FUNCTION(Runtime_StringAdd) {
7111 HandleScope scope(isolate);
7112 DCHECK(args.length() == 2);
7113 CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
7114 CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
7115 isolate->counters()->string_add_runtime()->Increment();
7116 Handle<String> result;
7117 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7118 isolate, result, isolate->factory()->NewConsString(str1, str2));
7119 return *result;
7120 }
7121
7122
7123 template <typename sinkchar>
StringBuilderConcatHelper(String * special,sinkchar * sink,FixedArray * fixed_array,int array_length)7124 static inline void StringBuilderConcatHelper(String* special,
7125 sinkchar* sink,
7126 FixedArray* fixed_array,
7127 int array_length) {
7128 DisallowHeapAllocation no_gc;
7129 int position = 0;
7130 for (int i = 0; i < array_length; i++) {
7131 Object* element = fixed_array->get(i);
7132 if (element->IsSmi()) {
7133 // Smi encoding of position and length.
7134 int encoded_slice = Smi::cast(element)->value();
7135 int pos;
7136 int len;
7137 if (encoded_slice > 0) {
7138 // Position and length encoded in one smi.
7139 pos = StringBuilderSubstringPosition::decode(encoded_slice);
7140 len = StringBuilderSubstringLength::decode(encoded_slice);
7141 } else {
7142 // Position and length encoded in two smis.
7143 Object* obj = fixed_array->get(++i);
7144 DCHECK(obj->IsSmi());
7145 pos = Smi::cast(obj)->value();
7146 len = -encoded_slice;
7147 }
7148 String::WriteToFlat(special,
7149 sink + position,
7150 pos,
7151 pos + len);
7152 position += len;
7153 } else {
7154 String* string = String::cast(element);
7155 int element_length = string->length();
7156 String::WriteToFlat(string, sink + position, 0, element_length);
7157 position += element_length;
7158 }
7159 }
7160 }
7161
7162
7163 // Returns the result length of the concatenation.
7164 // On illegal argument, -1 is returned.
StringBuilderConcatLength(int special_length,FixedArray * fixed_array,int array_length,bool * one_byte)7165 static inline int StringBuilderConcatLength(int special_length,
7166 FixedArray* fixed_array,
7167 int array_length,
7168 bool* one_byte) {
7169 DisallowHeapAllocation no_gc;
7170 int position = 0;
7171 for (int i = 0; i < array_length; i++) {
7172 int increment = 0;
7173 Object* elt = fixed_array->get(i);
7174 if (elt->IsSmi()) {
7175 // Smi encoding of position and length.
7176 int smi_value = Smi::cast(elt)->value();
7177 int pos;
7178 int len;
7179 if (smi_value > 0) {
7180 // Position and length encoded in one smi.
7181 pos = StringBuilderSubstringPosition::decode(smi_value);
7182 len = StringBuilderSubstringLength::decode(smi_value);
7183 } else {
7184 // Position and length encoded in two smis.
7185 len = -smi_value;
7186 // Get the position and check that it is a positive smi.
7187 i++;
7188 if (i >= array_length) return -1;
7189 Object* next_smi = fixed_array->get(i);
7190 if (!next_smi->IsSmi()) return -1;
7191 pos = Smi::cast(next_smi)->value();
7192 if (pos < 0) return -1;
7193 }
7194 DCHECK(pos >= 0);
7195 DCHECK(len >= 0);
7196 if (pos > special_length || len > special_length - pos) return -1;
7197 increment = len;
7198 } else if (elt->IsString()) {
7199 String* element = String::cast(elt);
7200 int element_length = element->length();
7201 increment = element_length;
7202 if (*one_byte && !element->HasOnlyOneByteChars()) {
7203 *one_byte = false;
7204 }
7205 } else {
7206 return -1;
7207 }
7208 if (increment > String::kMaxLength - position) {
7209 return kMaxInt; // Provoke throw on allocation.
7210 }
7211 position += increment;
7212 }
7213 return position;
7214 }
7215
7216
RUNTIME_FUNCTION(Runtime_StringBuilderConcat)7217 RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
7218 HandleScope scope(isolate);
7219 DCHECK(args.length() == 3);
7220 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
7221 int32_t array_length;
7222 if (!args[1]->ToInt32(&array_length)) {
7223 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7224 }
7225 CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
7226
7227 size_t actual_array_length = 0;
7228 RUNTIME_ASSERT(
7229 TryNumberToSize(isolate, array->length(), &actual_array_length));
7230 RUNTIME_ASSERT(array_length >= 0);
7231 RUNTIME_ASSERT(static_cast<size_t>(array_length) <= actual_array_length);
7232
7233 // This assumption is used by the slice encoding in one or two smis.
7234 DCHECK(Smi::kMaxValue >= String::kMaxLength);
7235
7236 RUNTIME_ASSERT(array->HasFastElements());
7237 JSObject::EnsureCanContainHeapObjectElements(array);
7238
7239 int special_length = special->length();
7240 if (!array->HasFastObjectElements()) {
7241 return isolate->Throw(isolate->heap()->illegal_argument_string());
7242 }
7243
7244 int length;
7245 bool one_byte = special->HasOnlyOneByteChars();
7246
7247 { DisallowHeapAllocation no_gc;
7248 FixedArray* fixed_array = FixedArray::cast(array->elements());
7249 if (fixed_array->length() < array_length) {
7250 array_length = fixed_array->length();
7251 }
7252
7253 if (array_length == 0) {
7254 return isolate->heap()->empty_string();
7255 } else if (array_length == 1) {
7256 Object* first = fixed_array->get(0);
7257 if (first->IsString()) return first;
7258 }
7259 length = StringBuilderConcatLength(
7260 special_length, fixed_array, array_length, &one_byte);
7261 }
7262
7263 if (length == -1) {
7264 return isolate->Throw(isolate->heap()->illegal_argument_string());
7265 }
7266
7267 if (one_byte) {
7268 Handle<SeqOneByteString> answer;
7269 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7270 isolate, answer,
7271 isolate->factory()->NewRawOneByteString(length));
7272 StringBuilderConcatHelper(*special,
7273 answer->GetChars(),
7274 FixedArray::cast(array->elements()),
7275 array_length);
7276 return *answer;
7277 } else {
7278 Handle<SeqTwoByteString> answer;
7279 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7280 isolate, answer,
7281 isolate->factory()->NewRawTwoByteString(length));
7282 StringBuilderConcatHelper(*special,
7283 answer->GetChars(),
7284 FixedArray::cast(array->elements()),
7285 array_length);
7286 return *answer;
7287 }
7288 }
7289
7290
RUNTIME_FUNCTION(Runtime_StringBuilderJoin)7291 RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
7292 HandleScope scope(isolate);
7293 DCHECK(args.length() == 3);
7294 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
7295 int32_t array_length;
7296 if (!args[1]->ToInt32(&array_length)) {
7297 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7298 }
7299 CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
7300 RUNTIME_ASSERT(array->HasFastObjectElements());
7301 RUNTIME_ASSERT(array_length >= 0);
7302
7303 Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
7304 if (fixed_array->length() < array_length) {
7305 array_length = fixed_array->length();
7306 }
7307
7308 if (array_length == 0) {
7309 return isolate->heap()->empty_string();
7310 } else if (array_length == 1) {
7311 Object* first = fixed_array->get(0);
7312 RUNTIME_ASSERT(first->IsString());
7313 return first;
7314 }
7315
7316 int separator_length = separator->length();
7317 RUNTIME_ASSERT(separator_length > 0);
7318 int max_nof_separators =
7319 (String::kMaxLength + separator_length - 1) / separator_length;
7320 if (max_nof_separators < (array_length - 1)) {
7321 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7322 }
7323 int length = (array_length - 1) * separator_length;
7324 for (int i = 0; i < array_length; i++) {
7325 Object* element_obj = fixed_array->get(i);
7326 RUNTIME_ASSERT(element_obj->IsString());
7327 String* element = String::cast(element_obj);
7328 int increment = element->length();
7329 if (increment > String::kMaxLength - length) {
7330 STATIC_ASSERT(String::kMaxLength < kMaxInt);
7331 length = kMaxInt; // Provoke exception;
7332 break;
7333 }
7334 length += increment;
7335 }
7336
7337 Handle<SeqTwoByteString> answer;
7338 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
7339 isolate, answer,
7340 isolate->factory()->NewRawTwoByteString(length));
7341
7342 DisallowHeapAllocation no_gc;
7343
7344 uc16* sink = answer->GetChars();
7345 #ifdef DEBUG
7346 uc16* end = sink + length;
7347 #endif
7348
7349 RUNTIME_ASSERT(fixed_array->get(0)->IsString());
7350 String* first = String::cast(fixed_array->get(0));
7351 String* separator_raw = *separator;
7352 int first_length = first->length();
7353 String::WriteToFlat(first, sink, 0, first_length);
7354 sink += first_length;
7355
7356 for (int i = 1; i < array_length; i++) {
7357 DCHECK(sink + separator_length <= end);
7358 String::WriteToFlat(separator_raw, sink, 0, separator_length);
7359 sink += separator_length;
7360
7361 RUNTIME_ASSERT(fixed_array->get(i)->IsString());
7362 String* element = String::cast(fixed_array->get(i));
7363 int element_length = element->length();
7364 DCHECK(sink + element_length <= end);
7365 String::WriteToFlat(element, sink, 0, element_length);
7366 sink += element_length;
7367 }
7368 DCHECK(sink == end);
7369
7370 // Use %_FastOneByteArrayJoin instead.
7371 DCHECK(!answer->IsOneByteRepresentation());
7372 return *answer;
7373 }
7374
7375 template <typename Char>
JoinSparseArrayWithSeparator(FixedArray * elements,int elements_length,uint32_t array_length,String * separator,Vector<Char> buffer)7376 static void JoinSparseArrayWithSeparator(FixedArray* elements,
7377 int elements_length,
7378 uint32_t array_length,
7379 String* separator,
7380 Vector<Char> buffer) {
7381 DisallowHeapAllocation no_gc;
7382 int previous_separator_position = 0;
7383 int separator_length = separator->length();
7384 int cursor = 0;
7385 for (int i = 0; i < elements_length; i += 2) {
7386 int position = NumberToInt32(elements->get(i));
7387 String* string = String::cast(elements->get(i + 1));
7388 int string_length = string->length();
7389 if (string->length() > 0) {
7390 while (previous_separator_position < position) {
7391 String::WriteToFlat<Char>(separator, &buffer[cursor],
7392 0, separator_length);
7393 cursor += separator_length;
7394 previous_separator_position++;
7395 }
7396 String::WriteToFlat<Char>(string, &buffer[cursor],
7397 0, string_length);
7398 cursor += string->length();
7399 }
7400 }
7401 if (separator_length > 0) {
7402 // Array length must be representable as a signed 32-bit number,
7403 // otherwise the total string length would have been too large.
7404 DCHECK(array_length <= 0x7fffffff); // Is int32_t.
7405 int last_array_index = static_cast<int>(array_length - 1);
7406 while (previous_separator_position < last_array_index) {
7407 String::WriteToFlat<Char>(separator, &buffer[cursor],
7408 0, separator_length);
7409 cursor += separator_length;
7410 previous_separator_position++;
7411 }
7412 }
7413 DCHECK(cursor <= buffer.length());
7414 }
7415
7416
RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator)7417 RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
7418 HandleScope scope(isolate);
7419 DCHECK(args.length() == 3);
7420 CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
7421 CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
7422 CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
7423 // elements_array is fast-mode JSarray of alternating positions
7424 // (increasing order) and strings.
7425 RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements());
7426 // array_length is length of original array (used to add separators);
7427 // separator is string to put between elements. Assumed to be non-empty.
7428 RUNTIME_ASSERT(array_length > 0);
7429
7430 // Find total length of join result.
7431 int string_length = 0;
7432 bool is_one_byte = separator->IsOneByteRepresentation();
7433 bool overflow = false;
7434 CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
7435 RUNTIME_ASSERT(elements_length <= elements_array->elements()->length());
7436 RUNTIME_ASSERT((elements_length & 1) == 0); // Even length.
7437 FixedArray* elements = FixedArray::cast(elements_array->elements());
7438 for (int i = 0; i < elements_length; i += 2) {
7439 RUNTIME_ASSERT(elements->get(i)->IsNumber());
7440 CONVERT_NUMBER_CHECKED(uint32_t, position, Uint32, elements->get(i));
7441 RUNTIME_ASSERT(position < array_length);
7442 RUNTIME_ASSERT(elements->get(i + 1)->IsString());
7443 }
7444
7445 { DisallowHeapAllocation no_gc;
7446 for (int i = 0; i < elements_length; i += 2) {
7447 String* string = String::cast(elements->get(i + 1));
7448 int length = string->length();
7449 if (is_one_byte && !string->IsOneByteRepresentation()) {
7450 is_one_byte = false;
7451 }
7452 if (length > String::kMaxLength ||
7453 String::kMaxLength - length < string_length) {
7454 overflow = true;
7455 break;
7456 }
7457 string_length += length;
7458 }
7459 }
7460
7461 int separator_length = separator->length();
7462 if (!overflow && separator_length > 0) {
7463 if (array_length <= 0x7fffffffu) {
7464 int separator_count = static_cast<int>(array_length) - 1;
7465 int remaining_length = String::kMaxLength - string_length;
7466 if ((remaining_length / separator_length) >= separator_count) {
7467 string_length += separator_length * (array_length - 1);
7468 } else {
7469 // Not room for the separators within the maximal string length.
7470 overflow = true;
7471 }
7472 } else {
7473 // Nonempty separator and at least 2^31-1 separators necessary
7474 // means that the string is too large to create.
7475 STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
7476 overflow = true;
7477 }
7478 }
7479 if (overflow) {
7480 // Throw an exception if the resulting string is too large. See
7481 // https://code.google.com/p/chromium/issues/detail?id=336820
7482 // for details.
7483 THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
7484 }
7485
7486 if (is_one_byte) {
7487 Handle<SeqOneByteString> result = isolate->factory()->NewRawOneByteString(
7488 string_length).ToHandleChecked();
7489 JoinSparseArrayWithSeparator<uint8_t>(
7490 FixedArray::cast(elements_array->elements()),
7491 elements_length,
7492 array_length,
7493 *separator,
7494 Vector<uint8_t>(result->GetChars(), string_length));
7495 return *result;
7496 } else {
7497 Handle<SeqTwoByteString> result = isolate->factory()->NewRawTwoByteString(
7498 string_length).ToHandleChecked();
7499 JoinSparseArrayWithSeparator<uc16>(
7500 FixedArray::cast(elements_array->elements()),
7501 elements_length,
7502 array_length,
7503 *separator,
7504 Vector<uc16>(result->GetChars(), string_length));
7505 return *result;
7506 }
7507 }
7508
7509
RUNTIME_FUNCTION(Runtime_NumberOr)7510 RUNTIME_FUNCTION(Runtime_NumberOr) {
7511 HandleScope scope(isolate);
7512 DCHECK(args.length() == 2);
7513
7514 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7515 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7516 return *isolate->factory()->NewNumberFromInt(x | y);
7517 }
7518
7519
RUNTIME_FUNCTION(Runtime_NumberAnd)7520 RUNTIME_FUNCTION(Runtime_NumberAnd) {
7521 HandleScope scope(isolate);
7522 DCHECK(args.length() == 2);
7523
7524 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7525 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7526 return *isolate->factory()->NewNumberFromInt(x & y);
7527 }
7528
7529
RUNTIME_FUNCTION(Runtime_NumberXor)7530 RUNTIME_FUNCTION(Runtime_NumberXor) {
7531 HandleScope scope(isolate);
7532 DCHECK(args.length() == 2);
7533
7534 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7535 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7536 return *isolate->factory()->NewNumberFromInt(x ^ y);
7537 }
7538
7539
RUNTIME_FUNCTION(Runtime_NumberShl)7540 RUNTIME_FUNCTION(Runtime_NumberShl) {
7541 HandleScope scope(isolate);
7542 DCHECK(args.length() == 2);
7543
7544 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7545 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7546 return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f));
7547 }
7548
7549
RUNTIME_FUNCTION(Runtime_NumberShr)7550 RUNTIME_FUNCTION(Runtime_NumberShr) {
7551 HandleScope scope(isolate);
7552 DCHECK(args.length() == 2);
7553
7554 CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
7555 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7556 return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f));
7557 }
7558
7559
RUNTIME_FUNCTION(Runtime_NumberSar)7560 RUNTIME_FUNCTION(Runtime_NumberSar) {
7561 HandleScope scope(isolate);
7562 DCHECK(args.length() == 2);
7563
7564 CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
7565 CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
7566 return *isolate->factory()->NewNumberFromInt(
7567 ArithmeticShiftRight(x, y & 0x1f));
7568 }
7569
7570
RUNTIME_FUNCTION(Runtime_NumberEquals)7571 RUNTIME_FUNCTION(Runtime_NumberEquals) {
7572 SealHandleScope shs(isolate);
7573 DCHECK(args.length() == 2);
7574
7575 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7576 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7577 if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL);
7578 if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL);
7579 if (x == y) return Smi::FromInt(EQUAL);
7580 Object* result;
7581 if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
7582 result = Smi::FromInt(EQUAL);
7583 } else {
7584 result = Smi::FromInt(NOT_EQUAL);
7585 }
7586 return result;
7587 }
7588
7589
RUNTIME_FUNCTION(Runtime_StringEquals)7590 RUNTIME_FUNCTION(Runtime_StringEquals) {
7591 HandleScope handle_scope(isolate);
7592 DCHECK(args.length() == 2);
7593
7594 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
7595 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
7596
7597 bool not_equal = !String::Equals(x, y);
7598 // This is slightly convoluted because the value that signifies
7599 // equality is 0 and inequality is 1 so we have to negate the result
7600 // from String::Equals.
7601 DCHECK(not_equal == 0 || not_equal == 1);
7602 STATIC_ASSERT(EQUAL == 0);
7603 STATIC_ASSERT(NOT_EQUAL == 1);
7604 return Smi::FromInt(not_equal);
7605 }
7606
7607
RUNTIME_FUNCTION(Runtime_NumberCompare)7608 RUNTIME_FUNCTION(Runtime_NumberCompare) {
7609 SealHandleScope shs(isolate);
7610 DCHECK(args.length() == 3);
7611
7612 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7613 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7614 CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2)
7615 if (std::isnan(x) || std::isnan(y)) return *uncomparable_result;
7616 if (x == y) return Smi::FromInt(EQUAL);
7617 if (isless(x, y)) return Smi::FromInt(LESS);
7618 return Smi::FromInt(GREATER);
7619 }
7620
7621
7622 // Compare two Smis as if they were converted to strings and then
7623 // compared lexicographically.
RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare)7624 RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
7625 SealHandleScope shs(isolate);
7626 DCHECK(args.length() == 2);
7627 CONVERT_SMI_ARG_CHECKED(x_value, 0);
7628 CONVERT_SMI_ARG_CHECKED(y_value, 1);
7629
7630 // If the integers are equal so are the string representations.
7631 if (x_value == y_value) return Smi::FromInt(EQUAL);
7632
7633 // If one of the integers is zero the normal integer order is the
7634 // same as the lexicographic order of the string representations.
7635 if (x_value == 0 || y_value == 0)
7636 return Smi::FromInt(x_value < y_value ? LESS : GREATER);
7637
7638 // If only one of the integers is negative the negative number is
7639 // smallest because the char code of '-' is less than the char code
7640 // of any digit. Otherwise, we make both values positive.
7641
7642 // Use unsigned values otherwise the logic is incorrect for -MIN_INT on
7643 // architectures using 32-bit Smis.
7644 uint32_t x_scaled = x_value;
7645 uint32_t y_scaled = y_value;
7646 if (x_value < 0 || y_value < 0) {
7647 if (y_value >= 0) return Smi::FromInt(LESS);
7648 if (x_value >= 0) return Smi::FromInt(GREATER);
7649 x_scaled = -x_value;
7650 y_scaled = -y_value;
7651 }
7652
7653 static const uint32_t kPowersOf10[] = {
7654 1, 10, 100, 1000, 10*1000, 100*1000,
7655 1000*1000, 10*1000*1000, 100*1000*1000,
7656 1000*1000*1000
7657 };
7658
7659 // If the integers have the same number of decimal digits they can be
7660 // compared directly as the numeric order is the same as the
7661 // lexicographic order. If one integer has fewer digits, it is scaled
7662 // by some power of 10 to have the same number of digits as the longer
7663 // integer. If the scaled integers are equal it means the shorter
7664 // integer comes first in the lexicographic order.
7665
7666 // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
7667 int x_log2 = IntegerLog2(x_scaled);
7668 int x_log10 = ((x_log2 + 1) * 1233) >> 12;
7669 x_log10 -= x_scaled < kPowersOf10[x_log10];
7670
7671 int y_log2 = IntegerLog2(y_scaled);
7672 int y_log10 = ((y_log2 + 1) * 1233) >> 12;
7673 y_log10 -= y_scaled < kPowersOf10[y_log10];
7674
7675 int tie = EQUAL;
7676
7677 if (x_log10 < y_log10) {
7678 // X has fewer digits. We would like to simply scale up X but that
7679 // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
7680 // be scaled up to 9_000_000_000. So we scale up by the next
7681 // smallest power and scale down Y to drop one digit. It is OK to
7682 // drop one digit from the longer integer since the final digit is
7683 // past the length of the shorter integer.
7684 x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
7685 y_scaled /= 10;
7686 tie = LESS;
7687 } else if (y_log10 < x_log10) {
7688 y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
7689 x_scaled /= 10;
7690 tie = GREATER;
7691 }
7692
7693 if (x_scaled < y_scaled) return Smi::FromInt(LESS);
7694 if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
7695 return Smi::FromInt(tie);
7696 }
7697
7698
RUNTIME_FUNCTION(Runtime_StringCompare)7699 RUNTIME_FUNCTION(Runtime_StringCompare) {
7700 HandleScope handle_scope(isolate);
7701 DCHECK(args.length() == 2);
7702
7703 CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
7704 CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
7705
7706 isolate->counters()->string_compare_runtime()->Increment();
7707
7708 // A few fast case tests before we flatten.
7709 if (x.is_identical_to(y)) return Smi::FromInt(EQUAL);
7710 if (y->length() == 0) {
7711 if (x->length() == 0) return Smi::FromInt(EQUAL);
7712 return Smi::FromInt(GREATER);
7713 } else if (x->length() == 0) {
7714 return Smi::FromInt(LESS);
7715 }
7716
7717 int d = x->Get(0) - y->Get(0);
7718 if (d < 0) return Smi::FromInt(LESS);
7719 else if (d > 0) return Smi::FromInt(GREATER);
7720
7721 // Slow case.
7722 x = String::Flatten(x);
7723 y = String::Flatten(y);
7724
7725 DisallowHeapAllocation no_gc;
7726 Object* equal_prefix_result = Smi::FromInt(EQUAL);
7727 int prefix_length = x->length();
7728 if (y->length() < prefix_length) {
7729 prefix_length = y->length();
7730 equal_prefix_result = Smi::FromInt(GREATER);
7731 } else if (y->length() > prefix_length) {
7732 equal_prefix_result = Smi::FromInt(LESS);
7733 }
7734 int r;
7735 String::FlatContent x_content = x->GetFlatContent();
7736 String::FlatContent y_content = y->GetFlatContent();
7737 if (x_content.IsOneByte()) {
7738 Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
7739 if (y_content.IsOneByte()) {
7740 Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
7741 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7742 } else {
7743 Vector<const uc16> y_chars = y_content.ToUC16Vector();
7744 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7745 }
7746 } else {
7747 Vector<const uc16> x_chars = x_content.ToUC16Vector();
7748 if (y_content.IsOneByte()) {
7749 Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
7750 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7751 } else {
7752 Vector<const uc16> y_chars = y_content.ToUC16Vector();
7753 r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
7754 }
7755 }
7756 Object* result;
7757 if (r == 0) {
7758 result = equal_prefix_result;
7759 } else {
7760 result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER);
7761 }
7762 return result;
7763 }
7764
7765
7766 #define RUNTIME_UNARY_MATH(Name, name) \
7767 RUNTIME_FUNCTION(Runtime_Math##Name) { \
7768 HandleScope scope(isolate); \
7769 DCHECK(args.length() == 1); \
7770 isolate->counters()->math_##name()->Increment(); \
7771 CONVERT_DOUBLE_ARG_CHECKED(x, 0); \
7772 return *isolate->factory()->NewHeapNumber(std::name(x)); \
7773 }
7774
RUNTIME_UNARY_MATH(Acos,acos)7775 RUNTIME_UNARY_MATH(Acos, acos)
7776 RUNTIME_UNARY_MATH(Asin, asin)
7777 RUNTIME_UNARY_MATH(Atan, atan)
7778 RUNTIME_UNARY_MATH(LogRT, log)
7779 #undef RUNTIME_UNARY_MATH
7780
7781
7782 RUNTIME_FUNCTION(Runtime_DoubleHi) {
7783 HandleScope scope(isolate);
7784 DCHECK(args.length() == 1);
7785 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7786 uint64_t integer = double_to_uint64(x);
7787 integer = (integer >> 32) & 0xFFFFFFFFu;
7788 return *isolate->factory()->NewNumber(static_cast<int32_t>(integer));
7789 }
7790
7791
RUNTIME_FUNCTION(Runtime_DoubleLo)7792 RUNTIME_FUNCTION(Runtime_DoubleLo) {
7793 HandleScope scope(isolate);
7794 DCHECK(args.length() == 1);
7795 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7796 return *isolate->factory()->NewNumber(
7797 static_cast<int32_t>(double_to_uint64(x) & 0xFFFFFFFFu));
7798 }
7799
7800
RUNTIME_FUNCTION(Runtime_ConstructDouble)7801 RUNTIME_FUNCTION(Runtime_ConstructDouble) {
7802 HandleScope scope(isolate);
7803 DCHECK(args.length() == 2);
7804 CONVERT_NUMBER_CHECKED(uint32_t, hi, Uint32, args[0]);
7805 CONVERT_NUMBER_CHECKED(uint32_t, lo, Uint32, args[1]);
7806 uint64_t result = (static_cast<uint64_t>(hi) << 32) | lo;
7807 return *isolate->factory()->NewNumber(uint64_to_double(result));
7808 }
7809
7810
RUNTIME_FUNCTION(Runtime_RemPiO2)7811 RUNTIME_FUNCTION(Runtime_RemPiO2) {
7812 HandleScope handle_scope(isolate);
7813 DCHECK(args.length() == 1);
7814 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7815 Factory* factory = isolate->factory();
7816 double y[2] = {0.0, 0.0};
7817 int n = fdlibm::rempio2(x, y);
7818 Handle<FixedArray> array = factory->NewFixedArray(3);
7819 Handle<HeapNumber> y0 = factory->NewHeapNumber(y[0]);
7820 Handle<HeapNumber> y1 = factory->NewHeapNumber(y[1]);
7821 array->set(0, Smi::FromInt(n));
7822 array->set(1, *y0);
7823 array->set(2, *y1);
7824 return *factory->NewJSArrayWithElements(array);
7825 }
7826
7827
7828 static const double kPiDividedBy4 = 0.78539816339744830962;
7829
7830
RUNTIME_FUNCTION(Runtime_MathAtan2)7831 RUNTIME_FUNCTION(Runtime_MathAtan2) {
7832 HandleScope scope(isolate);
7833 DCHECK(args.length() == 2);
7834 isolate->counters()->math_atan2()->Increment();
7835
7836 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7837 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7838 double result;
7839 if (std::isinf(x) && std::isinf(y)) {
7840 // Make sure that the result in case of two infinite arguments
7841 // is a multiple of Pi / 4. The sign of the result is determined
7842 // by the first argument (x) and the sign of the second argument
7843 // determines the multiplier: one or three.
7844 int multiplier = (x < 0) ? -1 : 1;
7845 if (y < 0) multiplier *= 3;
7846 result = multiplier * kPiDividedBy4;
7847 } else {
7848 result = std::atan2(x, y);
7849 }
7850 return *isolate->factory()->NewNumber(result);
7851 }
7852
7853
RUNTIME_FUNCTION(Runtime_MathExpRT)7854 RUNTIME_FUNCTION(Runtime_MathExpRT) {
7855 HandleScope scope(isolate);
7856 DCHECK(args.length() == 1);
7857 isolate->counters()->math_exp()->Increment();
7858
7859 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7860 lazily_initialize_fast_exp();
7861 return *isolate->factory()->NewNumber(fast_exp(x));
7862 }
7863
7864
RUNTIME_FUNCTION(Runtime_MathFloorRT)7865 RUNTIME_FUNCTION(Runtime_MathFloorRT) {
7866 HandleScope scope(isolate);
7867 DCHECK(args.length() == 1);
7868 isolate->counters()->math_floor()->Increment();
7869
7870 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7871 return *isolate->factory()->NewNumber(Floor(x));
7872 }
7873
7874
7875 // Slow version of Math.pow. We check for fast paths for special cases.
7876 // Used if VFP3 is not available.
RUNTIME_FUNCTION(Runtime_MathPowSlow)7877 RUNTIME_FUNCTION(Runtime_MathPowSlow) {
7878 HandleScope scope(isolate);
7879 DCHECK(args.length() == 2);
7880 isolate->counters()->math_pow()->Increment();
7881
7882 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7883
7884 // If the second argument is a smi, it is much faster to call the
7885 // custom powi() function than the generic pow().
7886 if (args[1]->IsSmi()) {
7887 int y = args.smi_at(1);
7888 return *isolate->factory()->NewNumber(power_double_int(x, y));
7889 }
7890
7891 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7892 double result = power_helper(x, y);
7893 if (std::isnan(result)) return isolate->heap()->nan_value();
7894 return *isolate->factory()->NewNumber(result);
7895 }
7896
7897
7898 // Fast version of Math.pow if we know that y is not an integer and y is not
7899 // -0.5 or 0.5. Used as slow case from full codegen.
RUNTIME_FUNCTION(Runtime_MathPowRT)7900 RUNTIME_FUNCTION(Runtime_MathPowRT) {
7901 HandleScope scope(isolate);
7902 DCHECK(args.length() == 2);
7903 isolate->counters()->math_pow()->Increment();
7904
7905 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7906 CONVERT_DOUBLE_ARG_CHECKED(y, 1);
7907 if (y == 0) {
7908 return Smi::FromInt(1);
7909 } else {
7910 double result = power_double_double(x, y);
7911 if (std::isnan(result)) return isolate->heap()->nan_value();
7912 return *isolate->factory()->NewNumber(result);
7913 }
7914 }
7915
7916
RUNTIME_FUNCTION(Runtime_RoundNumber)7917 RUNTIME_FUNCTION(Runtime_RoundNumber) {
7918 HandleScope scope(isolate);
7919 DCHECK(args.length() == 1);
7920 CONVERT_NUMBER_ARG_HANDLE_CHECKED(input, 0);
7921 isolate->counters()->math_round()->Increment();
7922
7923 if (!input->IsHeapNumber()) {
7924 DCHECK(input->IsSmi());
7925 return *input;
7926 }
7927
7928 Handle<HeapNumber> number = Handle<HeapNumber>::cast(input);
7929
7930 double value = number->value();
7931 int exponent = number->get_exponent();
7932 int sign = number->get_sign();
7933
7934 if (exponent < -1) {
7935 // Number in range ]-0.5..0.5[. These always round to +/-zero.
7936 if (sign) return isolate->heap()->minus_zero_value();
7937 return Smi::FromInt(0);
7938 }
7939
7940 // We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and
7941 // should be rounded to 2^30, which is not smi (for 31-bit smis, similar
7942 // argument holds for 32-bit smis).
7943 if (!sign && exponent < kSmiValueSize - 2) {
7944 return Smi::FromInt(static_cast<int>(value + 0.5));
7945 }
7946
7947 // If the magnitude is big enough, there's no place for fraction part. If we
7948 // try to add 0.5 to this number, 1.0 will be added instead.
7949 if (exponent >= 52) {
7950 return *number;
7951 }
7952
7953 if (sign && value >= -0.5) return isolate->heap()->minus_zero_value();
7954
7955 // Do not call NumberFromDouble() to avoid extra checks.
7956 return *isolate->factory()->NewNumber(Floor(value + 0.5));
7957 }
7958
7959
RUNTIME_FUNCTION(Runtime_MathSqrtRT)7960 RUNTIME_FUNCTION(Runtime_MathSqrtRT) {
7961 HandleScope scope(isolate);
7962 DCHECK(args.length() == 1);
7963 isolate->counters()->math_sqrt()->Increment();
7964
7965 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7966 return *isolate->factory()->NewNumber(fast_sqrt(x));
7967 }
7968
7969
RUNTIME_FUNCTION(Runtime_MathFround)7970 RUNTIME_FUNCTION(Runtime_MathFround) {
7971 HandleScope scope(isolate);
7972 DCHECK(args.length() == 1);
7973
7974 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
7975 float xf = DoubleToFloat32(x);
7976 return *isolate->factory()->NewNumber(xf);
7977 }
7978
7979
RUNTIME_FUNCTION(Runtime_DateMakeDay)7980 RUNTIME_FUNCTION(Runtime_DateMakeDay) {
7981 SealHandleScope shs(isolate);
7982 DCHECK(args.length() == 2);
7983
7984 CONVERT_SMI_ARG_CHECKED(year, 0);
7985 CONVERT_SMI_ARG_CHECKED(month, 1);
7986
7987 int days = isolate->date_cache()->DaysFromYearMonth(year, month);
7988 RUNTIME_ASSERT(Smi::IsValid(days));
7989 return Smi::FromInt(days);
7990 }
7991
7992
RUNTIME_FUNCTION(Runtime_DateSetValue)7993 RUNTIME_FUNCTION(Runtime_DateSetValue) {
7994 HandleScope scope(isolate);
7995 DCHECK(args.length() == 3);
7996
7997 CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 0);
7998 CONVERT_DOUBLE_ARG_CHECKED(time, 1);
7999 CONVERT_SMI_ARG_CHECKED(is_utc, 2);
8000
8001 DateCache* date_cache = isolate->date_cache();
8002
8003 Handle<Object> value;;
8004 bool is_value_nan = false;
8005 if (std::isnan(time)) {
8006 value = isolate->factory()->nan_value();
8007 is_value_nan = true;
8008 } else if (!is_utc &&
8009 (time < -DateCache::kMaxTimeBeforeUTCInMs ||
8010 time > DateCache::kMaxTimeBeforeUTCInMs)) {
8011 value = isolate->factory()->nan_value();
8012 is_value_nan = true;
8013 } else {
8014 time = is_utc ? time : date_cache->ToUTC(static_cast<int64_t>(time));
8015 if (time < -DateCache::kMaxTimeInMs ||
8016 time > DateCache::kMaxTimeInMs) {
8017 value = isolate->factory()->nan_value();
8018 is_value_nan = true;
8019 } else {
8020 value = isolate->factory()->NewNumber(DoubleToInteger(time));
8021 }
8022 }
8023 date->SetValue(*value, is_value_nan);
8024 return *value;
8025 }
8026
8027
NewSloppyArguments(Isolate * isolate,Handle<JSFunction> callee,Object ** parameters,int argument_count)8028 static Handle<JSObject> NewSloppyArguments(Isolate* isolate,
8029 Handle<JSFunction> callee,
8030 Object** parameters,
8031 int argument_count) {
8032 Handle<JSObject> result =
8033 isolate->factory()->NewArgumentsObject(callee, argument_count);
8034
8035 // Allocate the elements if needed.
8036 int parameter_count = callee->shared()->formal_parameter_count();
8037 if (argument_count > 0) {
8038 if (parameter_count > 0) {
8039 int mapped_count = Min(argument_count, parameter_count);
8040 Handle<FixedArray> parameter_map =
8041 isolate->factory()->NewFixedArray(mapped_count + 2, NOT_TENURED);
8042 parameter_map->set_map(
8043 isolate->heap()->sloppy_arguments_elements_map());
8044
8045 Handle<Map> map = Map::Copy(handle(result->map()));
8046 map->set_elements_kind(SLOPPY_ARGUMENTS_ELEMENTS);
8047
8048 result->set_map(*map);
8049 result->set_elements(*parameter_map);
8050
8051 // Store the context and the arguments array at the beginning of the
8052 // parameter map.
8053 Handle<Context> context(isolate->context());
8054 Handle<FixedArray> arguments =
8055 isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
8056 parameter_map->set(0, *context);
8057 parameter_map->set(1, *arguments);
8058
8059 // Loop over the actual parameters backwards.
8060 int index = argument_count - 1;
8061 while (index >= mapped_count) {
8062 // These go directly in the arguments array and have no
8063 // corresponding slot in the parameter map.
8064 arguments->set(index, *(parameters - index - 1));
8065 --index;
8066 }
8067
8068 Handle<ScopeInfo> scope_info(callee->shared()->scope_info());
8069 while (index >= 0) {
8070 // Detect duplicate names to the right in the parameter list.
8071 Handle<String> name(scope_info->ParameterName(index));
8072 int context_local_count = scope_info->ContextLocalCount();
8073 bool duplicate = false;
8074 for (int j = index + 1; j < parameter_count; ++j) {
8075 if (scope_info->ParameterName(j) == *name) {
8076 duplicate = true;
8077 break;
8078 }
8079 }
8080
8081 if (duplicate) {
8082 // This goes directly in the arguments array with a hole in the
8083 // parameter map.
8084 arguments->set(index, *(parameters - index - 1));
8085 parameter_map->set_the_hole(index + 2);
8086 } else {
8087 // The context index goes in the parameter map with a hole in the
8088 // arguments array.
8089 int context_index = -1;
8090 for (int j = 0; j < context_local_count; ++j) {
8091 if (scope_info->ContextLocalName(j) == *name) {
8092 context_index = j;
8093 break;
8094 }
8095 }
8096 DCHECK(context_index >= 0);
8097 arguments->set_the_hole(index);
8098 parameter_map->set(index + 2, Smi::FromInt(
8099 Context::MIN_CONTEXT_SLOTS + context_index));
8100 }
8101
8102 --index;
8103 }
8104 } else {
8105 // If there is no aliasing, the arguments object elements are not
8106 // special in any way.
8107 Handle<FixedArray> elements =
8108 isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
8109 result->set_elements(*elements);
8110 for (int i = 0; i < argument_count; ++i) {
8111 elements->set(i, *(parameters - i - 1));
8112 }
8113 }
8114 }
8115 return result;
8116 }
8117
8118
NewStrictArguments(Isolate * isolate,Handle<JSFunction> callee,Object ** parameters,int argument_count)8119 static Handle<JSObject> NewStrictArguments(Isolate* isolate,
8120 Handle<JSFunction> callee,
8121 Object** parameters,
8122 int argument_count) {
8123 Handle<JSObject> result =
8124 isolate->factory()->NewArgumentsObject(callee, argument_count);
8125
8126 if (argument_count > 0) {
8127 Handle<FixedArray> array =
8128 isolate->factory()->NewUninitializedFixedArray(argument_count);
8129 DisallowHeapAllocation no_gc;
8130 WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
8131 for (int i = 0; i < argument_count; i++) {
8132 array->set(i, *--parameters, mode);
8133 }
8134 result->set_elements(*array);
8135 }
8136 return result;
8137 }
8138
8139
RUNTIME_FUNCTION(Runtime_NewArguments)8140 RUNTIME_FUNCTION(Runtime_NewArguments) {
8141 HandleScope scope(isolate);
8142 DCHECK(args.length() == 1);
8143 CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
8144 JavaScriptFrameIterator it(isolate);
8145
8146 // Find the frame that holds the actual arguments passed to the function.
8147 it.AdvanceToArgumentsFrame();
8148 JavaScriptFrame* frame = it.frame();
8149
8150 // Determine parameter location on the stack and dispatch on language mode.
8151 int argument_count = frame->GetArgumentsLength();
8152 Object** parameters = reinterpret_cast<Object**>(frame->GetParameterSlot(-1));
8153 return callee->shared()->strict_mode() == STRICT
8154 ? *NewStrictArguments(isolate, callee, parameters, argument_count)
8155 : *NewSloppyArguments(isolate, callee, parameters, argument_count);
8156 }
8157
8158
RUNTIME_FUNCTION(Runtime_NewSloppyArguments)8159 RUNTIME_FUNCTION(Runtime_NewSloppyArguments) {
8160 HandleScope scope(isolate);
8161 DCHECK(args.length() == 3);
8162 CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
8163 Object** parameters = reinterpret_cast<Object**>(args[1]);
8164 CONVERT_SMI_ARG_CHECKED(argument_count, 2);
8165 return *NewSloppyArguments(isolate, callee, parameters, argument_count);
8166 }
8167
8168
RUNTIME_FUNCTION(Runtime_NewStrictArguments)8169 RUNTIME_FUNCTION(Runtime_NewStrictArguments) {
8170 HandleScope scope(isolate);
8171 DCHECK(args.length() == 3);
8172 CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0)
8173 Object** parameters = reinterpret_cast<Object**>(args[1]);
8174 CONVERT_SMI_ARG_CHECKED(argument_count, 2);
8175 return *NewStrictArguments(isolate, callee, parameters, argument_count);
8176 }
8177
8178
RUNTIME_FUNCTION(Runtime_NewClosureFromStubFailure)8179 RUNTIME_FUNCTION(Runtime_NewClosureFromStubFailure) {
8180 HandleScope scope(isolate);
8181 DCHECK(args.length() == 1);
8182 CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0);
8183 Handle<Context> context(isolate->context());
8184 PretenureFlag pretenure_flag = NOT_TENURED;
8185 return *isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
8186 pretenure_flag);
8187 }
8188
8189
RUNTIME_FUNCTION(Runtime_NewClosure)8190 RUNTIME_FUNCTION(Runtime_NewClosure) {
8191 HandleScope scope(isolate);
8192 DCHECK(args.length() == 3);
8193 CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
8194 CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 1);
8195 CONVERT_BOOLEAN_ARG_CHECKED(pretenure, 2);
8196
8197 // The caller ensures that we pretenure closures that are assigned
8198 // directly to properties.
8199 PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED;
8200 return *isolate->factory()->NewFunctionFromSharedFunctionInfo(
8201 shared, context, pretenure_flag);
8202 }
8203
8204
8205 // Find the arguments of the JavaScript function invocation that called
8206 // into C++ code. Collect these in a newly allocated array of handles (possibly
8207 // prefixed by a number of empty handles).
GetCallerArguments(Isolate * isolate,int prefix_argc,int * total_argc)8208 static SmartArrayPointer<Handle<Object> > GetCallerArguments(
8209 Isolate* isolate,
8210 int prefix_argc,
8211 int* total_argc) {
8212 // Find frame containing arguments passed to the caller.
8213 JavaScriptFrameIterator it(isolate);
8214 JavaScriptFrame* frame = it.frame();
8215 List<JSFunction*> functions(2);
8216 frame->GetFunctions(&functions);
8217 if (functions.length() > 1) {
8218 int inlined_jsframe_index = functions.length() - 1;
8219 JSFunction* inlined_function = functions[inlined_jsframe_index];
8220 SlotRefValueBuilder slot_refs(
8221 frame,
8222 inlined_jsframe_index,
8223 inlined_function->shared()->formal_parameter_count());
8224
8225 int args_count = slot_refs.args_length();
8226
8227 *total_argc = prefix_argc + args_count;
8228 SmartArrayPointer<Handle<Object> > param_data(
8229 NewArray<Handle<Object> >(*total_argc));
8230 slot_refs.Prepare(isolate);
8231 for (int i = 0; i < args_count; i++) {
8232 Handle<Object> val = slot_refs.GetNext(isolate, 0);
8233 param_data[prefix_argc + i] = val;
8234 }
8235 slot_refs.Finish(isolate);
8236
8237 return param_data;
8238 } else {
8239 it.AdvanceToArgumentsFrame();
8240 frame = it.frame();
8241 int args_count = frame->ComputeParametersCount();
8242
8243 *total_argc = prefix_argc + args_count;
8244 SmartArrayPointer<Handle<Object> > param_data(
8245 NewArray<Handle<Object> >(*total_argc));
8246 for (int i = 0; i < args_count; i++) {
8247 Handle<Object> val = Handle<Object>(frame->GetParameter(i), isolate);
8248 param_data[prefix_argc + i] = val;
8249 }
8250 return param_data;
8251 }
8252 }
8253
8254
RUNTIME_FUNCTION(Runtime_FunctionBindArguments)8255 RUNTIME_FUNCTION(Runtime_FunctionBindArguments) {
8256 HandleScope scope(isolate);
8257 DCHECK(args.length() == 4);
8258 CONVERT_ARG_HANDLE_CHECKED(JSFunction, bound_function, 0);
8259 CONVERT_ARG_HANDLE_CHECKED(Object, bindee, 1);
8260 CONVERT_ARG_HANDLE_CHECKED(Object, this_object, 2);
8261 CONVERT_NUMBER_ARG_HANDLE_CHECKED(new_length, 3);
8262
8263 // TODO(lrn): Create bound function in C++ code from premade shared info.
8264 bound_function->shared()->set_bound(true);
8265 // Get all arguments of calling function (Function.prototype.bind).
8266 int argc = 0;
8267 SmartArrayPointer<Handle<Object> > arguments =
8268 GetCallerArguments(isolate, 0, &argc);
8269 // Don't count the this-arg.
8270 if (argc > 0) {
8271 RUNTIME_ASSERT(arguments[0].is_identical_to(this_object));
8272 argc--;
8273 } else {
8274 RUNTIME_ASSERT(this_object->IsUndefined());
8275 }
8276 // Initialize array of bindings (function, this, and any existing arguments
8277 // if the function was already bound).
8278 Handle<FixedArray> new_bindings;
8279 int i;
8280 if (bindee->IsJSFunction() && JSFunction::cast(*bindee)->shared()->bound()) {
8281 Handle<FixedArray> old_bindings(
8282 JSFunction::cast(*bindee)->function_bindings());
8283 RUNTIME_ASSERT(old_bindings->length() > JSFunction::kBoundFunctionIndex);
8284 new_bindings =
8285 isolate->factory()->NewFixedArray(old_bindings->length() + argc);
8286 bindee = Handle<Object>(old_bindings->get(JSFunction::kBoundFunctionIndex),
8287 isolate);
8288 i = 0;
8289 for (int n = old_bindings->length(); i < n; i++) {
8290 new_bindings->set(i, old_bindings->get(i));
8291 }
8292 } else {
8293 int array_size = JSFunction::kBoundArgumentsStartIndex + argc;
8294 new_bindings = isolate->factory()->NewFixedArray(array_size);
8295 new_bindings->set(JSFunction::kBoundFunctionIndex, *bindee);
8296 new_bindings->set(JSFunction::kBoundThisIndex, *this_object);
8297 i = 2;
8298 }
8299 // Copy arguments, skipping the first which is "this_arg".
8300 for (int j = 0; j < argc; j++, i++) {
8301 new_bindings->set(i, *arguments[j + 1]);
8302 }
8303 new_bindings->set_map_no_write_barrier(
8304 isolate->heap()->fixed_cow_array_map());
8305 bound_function->set_function_bindings(*new_bindings);
8306
8307 // Update length. Have to remove the prototype first so that map migration
8308 // is happy about the number of fields.
8309 RUNTIME_ASSERT(bound_function->RemovePrototype());
8310 Handle<Map> bound_function_map(
8311 isolate->native_context()->bound_function_map());
8312 JSObject::MigrateToMap(bound_function, bound_function_map);
8313 Handle<String> length_string = isolate->factory()->length_string();
8314 PropertyAttributes attr =
8315 static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY);
8316 RETURN_FAILURE_ON_EXCEPTION(
8317 isolate,
8318 JSObject::SetOwnPropertyIgnoreAttributes(
8319 bound_function, length_string, new_length, attr));
8320 return *bound_function;
8321 }
8322
8323
RUNTIME_FUNCTION(Runtime_BoundFunctionGetBindings)8324 RUNTIME_FUNCTION(Runtime_BoundFunctionGetBindings) {
8325 HandleScope handles(isolate);
8326 DCHECK(args.length() == 1);
8327 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, callable, 0);
8328 if (callable->IsJSFunction()) {
8329 Handle<JSFunction> function = Handle<JSFunction>::cast(callable);
8330 if (function->shared()->bound()) {
8331 Handle<FixedArray> bindings(function->function_bindings());
8332 RUNTIME_ASSERT(bindings->map() == isolate->heap()->fixed_cow_array_map());
8333 return *isolate->factory()->NewJSArrayWithElements(bindings);
8334 }
8335 }
8336 return isolate->heap()->undefined_value();
8337 }
8338
8339
RUNTIME_FUNCTION(Runtime_NewObjectFromBound)8340 RUNTIME_FUNCTION(Runtime_NewObjectFromBound) {
8341 HandleScope scope(isolate);
8342 DCHECK(args.length() == 1);
8343 // First argument is a function to use as a constructor.
8344 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8345 RUNTIME_ASSERT(function->shared()->bound());
8346
8347 // The argument is a bound function. Extract its bound arguments
8348 // and callable.
8349 Handle<FixedArray> bound_args =
8350 Handle<FixedArray>(FixedArray::cast(function->function_bindings()));
8351 int bound_argc = bound_args->length() - JSFunction::kBoundArgumentsStartIndex;
8352 Handle<Object> bound_function(
8353 JSReceiver::cast(bound_args->get(JSFunction::kBoundFunctionIndex)),
8354 isolate);
8355 DCHECK(!bound_function->IsJSFunction() ||
8356 !Handle<JSFunction>::cast(bound_function)->shared()->bound());
8357
8358 int total_argc = 0;
8359 SmartArrayPointer<Handle<Object> > param_data =
8360 GetCallerArguments(isolate, bound_argc, &total_argc);
8361 for (int i = 0; i < bound_argc; i++) {
8362 param_data[i] = Handle<Object>(bound_args->get(
8363 JSFunction::kBoundArgumentsStartIndex + i), isolate);
8364 }
8365
8366 if (!bound_function->IsJSFunction()) {
8367 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
8368 isolate, bound_function,
8369 Execution::TryGetConstructorDelegate(isolate, bound_function));
8370 }
8371 DCHECK(bound_function->IsJSFunction());
8372
8373 Handle<Object> result;
8374 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
8375 isolate, result,
8376 Execution::New(Handle<JSFunction>::cast(bound_function),
8377 total_argc, param_data.get()));
8378 return *result;
8379 }
8380
8381
Runtime_NewObjectHelper(Isolate * isolate,Handle<Object> constructor,Handle<AllocationSite> site)8382 static Object* Runtime_NewObjectHelper(Isolate* isolate,
8383 Handle<Object> constructor,
8384 Handle<AllocationSite> site) {
8385 // If the constructor isn't a proper function we throw a type error.
8386 if (!constructor->IsJSFunction()) {
8387 Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
8388 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
8389 NewTypeError("not_constructor", arguments));
8390 }
8391
8392 Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
8393
8394 // If function should not have prototype, construction is not allowed. In this
8395 // case generated code bailouts here, since function has no initial_map.
8396 if (!function->should_have_prototype() && !function->shared()->bound()) {
8397 Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
8398 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
8399 NewTypeError("not_constructor", arguments));
8400 }
8401
8402 Debug* debug = isolate->debug();
8403 // Handle stepping into constructors if step into is active.
8404 if (debug->StepInActive()) {
8405 debug->HandleStepIn(function, Handle<Object>::null(), 0, true);
8406 }
8407
8408 if (function->has_initial_map()) {
8409 if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
8410 // The 'Function' function ignores the receiver object when
8411 // called using 'new' and creates a new JSFunction object that
8412 // is returned. The receiver object is only used for error
8413 // reporting if an error occurs when constructing the new
8414 // JSFunction. Factory::NewJSObject() should not be used to
8415 // allocate JSFunctions since it does not properly initialize
8416 // the shared part of the function. Since the receiver is
8417 // ignored anyway, we use the global object as the receiver
8418 // instead of a new JSFunction object. This way, errors are
8419 // reported the same way whether or not 'Function' is called
8420 // using 'new'.
8421 return isolate->global_proxy();
8422 }
8423 }
8424
8425 // The function should be compiled for the optimization hints to be
8426 // available.
8427 Compiler::EnsureCompiled(function, CLEAR_EXCEPTION);
8428
8429 Handle<JSObject> result;
8430 if (site.is_null()) {
8431 result = isolate->factory()->NewJSObject(function);
8432 } else {
8433 result = isolate->factory()->NewJSObjectWithMemento(function, site);
8434 }
8435
8436 isolate->counters()->constructed_objects()->Increment();
8437 isolate->counters()->constructed_objects_runtime()->Increment();
8438
8439 return *result;
8440 }
8441
8442
RUNTIME_FUNCTION(Runtime_NewObject)8443 RUNTIME_FUNCTION(Runtime_NewObject) {
8444 HandleScope scope(isolate);
8445 DCHECK(args.length() == 1);
8446 CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 0);
8447 return Runtime_NewObjectHelper(isolate,
8448 constructor,
8449 Handle<AllocationSite>::null());
8450 }
8451
8452
RUNTIME_FUNCTION(Runtime_NewObjectWithAllocationSite)8453 RUNTIME_FUNCTION(Runtime_NewObjectWithAllocationSite) {
8454 HandleScope scope(isolate);
8455 DCHECK(args.length() == 2);
8456 CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 1);
8457 CONVERT_ARG_HANDLE_CHECKED(Object, feedback, 0);
8458 Handle<AllocationSite> site;
8459 if (feedback->IsAllocationSite()) {
8460 // The feedback can be an AllocationSite or undefined.
8461 site = Handle<AllocationSite>::cast(feedback);
8462 }
8463 return Runtime_NewObjectHelper(isolate, constructor, site);
8464 }
8465
8466
RUNTIME_FUNCTION(Runtime_FinalizeInstanceSize)8467 RUNTIME_FUNCTION(Runtime_FinalizeInstanceSize) {
8468 HandleScope scope(isolate);
8469 DCHECK(args.length() == 1);
8470
8471 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8472 function->CompleteInobjectSlackTracking();
8473
8474 return isolate->heap()->undefined_value();
8475 }
8476
8477
RUNTIME_FUNCTION(Runtime_CompileLazy)8478 RUNTIME_FUNCTION(Runtime_CompileLazy) {
8479 HandleScope scope(isolate);
8480 DCHECK(args.length() == 1);
8481 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8482 #ifdef DEBUG
8483 if (FLAG_trace_lazy && !function->shared()->is_compiled()) {
8484 PrintF("[unoptimized: ");
8485 function->PrintName();
8486 PrintF("]\n");
8487 }
8488 #endif
8489
8490 // Compile the target function.
8491 DCHECK(function->shared()->allows_lazy_compilation());
8492
8493 Handle<Code> code;
8494 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, code,
8495 Compiler::GetLazyCode(function));
8496 DCHECK(code->kind() == Code::FUNCTION ||
8497 code->kind() == Code::OPTIMIZED_FUNCTION);
8498 function->ReplaceCode(*code);
8499 return *code;
8500 }
8501
8502
RUNTIME_FUNCTION(Runtime_CompileOptimized)8503 RUNTIME_FUNCTION(Runtime_CompileOptimized) {
8504 HandleScope scope(isolate);
8505 DCHECK(args.length() == 2);
8506 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8507 CONVERT_BOOLEAN_ARG_CHECKED(concurrent, 1);
8508
8509 Handle<Code> unoptimized(function->shared()->code());
8510 if (!isolate->use_crankshaft() ||
8511 function->shared()->optimization_disabled() ||
8512 isolate->DebuggerHasBreakPoints()) {
8513 // If the function is not optimizable or debugger is active continue
8514 // using the code from the full compiler.
8515 if (FLAG_trace_opt) {
8516 PrintF("[failed to optimize ");
8517 function->PrintName();
8518 PrintF(": is code optimizable: %s, is debugger enabled: %s]\n",
8519 function->shared()->optimization_disabled() ? "F" : "T",
8520 isolate->DebuggerHasBreakPoints() ? "T" : "F");
8521 }
8522 function->ReplaceCode(*unoptimized);
8523 return function->code();
8524 }
8525
8526 Compiler::ConcurrencyMode mode =
8527 concurrent ? Compiler::CONCURRENT : Compiler::NOT_CONCURRENT;
8528 Handle<Code> code;
8529 if (Compiler::GetOptimizedCode(function, unoptimized, mode).ToHandle(&code)) {
8530 function->ReplaceCode(*code);
8531 } else {
8532 function->ReplaceCode(function->shared()->code());
8533 }
8534
8535 DCHECK(function->code()->kind() == Code::FUNCTION ||
8536 function->code()->kind() == Code::OPTIMIZED_FUNCTION ||
8537 function->IsInOptimizationQueue());
8538 return function->code();
8539 }
8540
8541
8542 class ActivationsFinder : public ThreadVisitor {
8543 public:
8544 Code* code_;
8545 bool has_code_activations_;
8546
ActivationsFinder(Code * code)8547 explicit ActivationsFinder(Code* code)
8548 : code_(code),
8549 has_code_activations_(false) { }
8550
VisitThread(Isolate * isolate,ThreadLocalTop * top)8551 void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
8552 JavaScriptFrameIterator it(isolate, top);
8553 VisitFrames(&it);
8554 }
8555
VisitFrames(JavaScriptFrameIterator * it)8556 void VisitFrames(JavaScriptFrameIterator* it) {
8557 for (; !it->done(); it->Advance()) {
8558 JavaScriptFrame* frame = it->frame();
8559 if (code_->contains(frame->pc())) has_code_activations_ = true;
8560 }
8561 }
8562 };
8563
8564
RUNTIME_FUNCTION(Runtime_NotifyStubFailure)8565 RUNTIME_FUNCTION(Runtime_NotifyStubFailure) {
8566 HandleScope scope(isolate);
8567 DCHECK(args.length() == 0);
8568 Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
8569 DCHECK(AllowHeapAllocation::IsAllowed());
8570 delete deoptimizer;
8571 return isolate->heap()->undefined_value();
8572 }
8573
8574
RUNTIME_FUNCTION(Runtime_NotifyDeoptimized)8575 RUNTIME_FUNCTION(Runtime_NotifyDeoptimized) {
8576 HandleScope scope(isolate);
8577 DCHECK(args.length() == 1);
8578 CONVERT_SMI_ARG_CHECKED(type_arg, 0);
8579 Deoptimizer::BailoutType type =
8580 static_cast<Deoptimizer::BailoutType>(type_arg);
8581 Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
8582 DCHECK(AllowHeapAllocation::IsAllowed());
8583
8584 Handle<JSFunction> function = deoptimizer->function();
8585 Handle<Code> optimized_code = deoptimizer->compiled_code();
8586
8587 DCHECK(optimized_code->kind() == Code::OPTIMIZED_FUNCTION);
8588 DCHECK(type == deoptimizer->bailout_type());
8589
8590 // Make sure to materialize objects before causing any allocation.
8591 JavaScriptFrameIterator it(isolate);
8592 deoptimizer->MaterializeHeapObjects(&it);
8593 delete deoptimizer;
8594
8595 JavaScriptFrame* frame = it.frame();
8596 RUNTIME_ASSERT(frame->function()->IsJSFunction());
8597 DCHECK(frame->function() == *function);
8598
8599 // Avoid doing too much work when running with --always-opt and keep
8600 // the optimized code around.
8601 if (FLAG_always_opt || type == Deoptimizer::LAZY) {
8602 return isolate->heap()->undefined_value();
8603 }
8604
8605 // Search for other activations of the same function and code.
8606 ActivationsFinder activations_finder(*optimized_code);
8607 activations_finder.VisitFrames(&it);
8608 isolate->thread_manager()->IterateArchivedThreads(&activations_finder);
8609
8610 if (!activations_finder.has_code_activations_) {
8611 if (function->code() == *optimized_code) {
8612 if (FLAG_trace_deopt) {
8613 PrintF("[removing optimized code for: ");
8614 function->PrintName();
8615 PrintF("]\n");
8616 }
8617 function->ReplaceCode(function->shared()->code());
8618 // Evict optimized code for this function from the cache so that it
8619 // doesn't get used for new closures.
8620 function->shared()->EvictFromOptimizedCodeMap(*optimized_code,
8621 "notify deoptimized");
8622 }
8623 } else {
8624 // TODO(titzer): we should probably do DeoptimizeCodeList(code)
8625 // unconditionally if the code is not already marked for deoptimization.
8626 // If there is an index by shared function info, all the better.
8627 Deoptimizer::DeoptimizeFunction(*function);
8628 }
8629
8630 return isolate->heap()->undefined_value();
8631 }
8632
8633
RUNTIME_FUNCTION(Runtime_DeoptimizeFunction)8634 RUNTIME_FUNCTION(Runtime_DeoptimizeFunction) {
8635 HandleScope scope(isolate);
8636 DCHECK(args.length() == 1);
8637 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8638 if (!function->IsOptimized()) return isolate->heap()->undefined_value();
8639
8640 // TODO(turbofan): Deoptimization is not supported yet.
8641 if (function->code()->is_turbofanned() && !FLAG_turbo_deoptimization) {
8642 return isolate->heap()->undefined_value();
8643 }
8644
8645 Deoptimizer::DeoptimizeFunction(*function);
8646
8647 return isolate->heap()->undefined_value();
8648 }
8649
8650
RUNTIME_FUNCTION(Runtime_ClearFunctionTypeFeedback)8651 RUNTIME_FUNCTION(Runtime_ClearFunctionTypeFeedback) {
8652 HandleScope scope(isolate);
8653 DCHECK(args.length() == 1);
8654 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8655 function->shared()->ClearTypeFeedbackInfo();
8656 Code* unoptimized = function->shared()->code();
8657 if (unoptimized->kind() == Code::FUNCTION) {
8658 unoptimized->ClearInlineCaches();
8659 }
8660 return isolate->heap()->undefined_value();
8661 }
8662
8663
RUNTIME_FUNCTION(Runtime_RunningInSimulator)8664 RUNTIME_FUNCTION(Runtime_RunningInSimulator) {
8665 SealHandleScope shs(isolate);
8666 DCHECK(args.length() == 0);
8667 #if defined(USE_SIMULATOR)
8668 return isolate->heap()->true_value();
8669 #else
8670 return isolate->heap()->false_value();
8671 #endif
8672 }
8673
8674
RUNTIME_FUNCTION(Runtime_IsConcurrentRecompilationSupported)8675 RUNTIME_FUNCTION(Runtime_IsConcurrentRecompilationSupported) {
8676 SealHandleScope shs(isolate);
8677 DCHECK(args.length() == 0);
8678 return isolate->heap()->ToBoolean(
8679 isolate->concurrent_recompilation_enabled());
8680 }
8681
8682
RUNTIME_FUNCTION(Runtime_OptimizeFunctionOnNextCall)8683 RUNTIME_FUNCTION(Runtime_OptimizeFunctionOnNextCall) {
8684 HandleScope scope(isolate);
8685 RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
8686 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8687 // The following two assertions are lifted from the DCHECKs inside
8688 // JSFunction::MarkForOptimization().
8689 RUNTIME_ASSERT(!function->shared()->is_generator());
8690 RUNTIME_ASSERT(function->shared()->allows_lazy_compilation() ||
8691 (function->code()->kind() == Code::FUNCTION &&
8692 function->code()->optimizable()));
8693
8694 // If the function is optimized, just return.
8695 if (function->IsOptimized()) return isolate->heap()->undefined_value();
8696
8697 function->MarkForOptimization();
8698
8699 Code* unoptimized = function->shared()->code();
8700 if (args.length() == 2 &&
8701 unoptimized->kind() == Code::FUNCTION) {
8702 CONVERT_ARG_HANDLE_CHECKED(String, type, 1);
8703 if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("osr")) && FLAG_use_osr) {
8704 // Start patching from the currently patched loop nesting level.
8705 DCHECK(BackEdgeTable::Verify(isolate, unoptimized));
8706 isolate->runtime_profiler()->AttemptOnStackReplacement(
8707 *function, Code::kMaxLoopNestingMarker);
8708 } else if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("concurrent")) &&
8709 isolate->concurrent_recompilation_enabled()) {
8710 function->MarkForConcurrentOptimization();
8711 }
8712 }
8713
8714 return isolate->heap()->undefined_value();
8715 }
8716
8717
RUNTIME_FUNCTION(Runtime_NeverOptimizeFunction)8718 RUNTIME_FUNCTION(Runtime_NeverOptimizeFunction) {
8719 HandleScope scope(isolate);
8720 DCHECK(args.length() == 1);
8721 CONVERT_ARG_CHECKED(JSFunction, function, 0);
8722 function->shared()->set_optimization_disabled(true);
8723 return isolate->heap()->undefined_value();
8724 }
8725
8726
RUNTIME_FUNCTION(Runtime_GetOptimizationStatus)8727 RUNTIME_FUNCTION(Runtime_GetOptimizationStatus) {
8728 HandleScope scope(isolate);
8729 RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
8730 if (!isolate->use_crankshaft()) {
8731 return Smi::FromInt(4); // 4 == "never".
8732 }
8733 bool sync_with_compiler_thread = true;
8734 if (args.length() == 2) {
8735 CONVERT_ARG_HANDLE_CHECKED(String, sync, 1);
8736 if (sync->IsOneByteEqualTo(STATIC_CHAR_VECTOR("no sync"))) {
8737 sync_with_compiler_thread = false;
8738 }
8739 }
8740 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8741 if (isolate->concurrent_recompilation_enabled() &&
8742 sync_with_compiler_thread) {
8743 while (function->IsInOptimizationQueue()) {
8744 isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
8745 base::OS::Sleep(50);
8746 }
8747 }
8748 if (FLAG_always_opt) {
8749 // We may have always opt, but that is more best-effort than a real
8750 // promise, so we still say "no" if it is not optimized.
8751 return function->IsOptimized() ? Smi::FromInt(3) // 3 == "always".
8752 : Smi::FromInt(2); // 2 == "no".
8753 }
8754 if (FLAG_deopt_every_n_times) {
8755 return Smi::FromInt(6); // 6 == "maybe deopted".
8756 }
8757 if (function->IsOptimized() && function->code()->is_turbofanned()) {
8758 return Smi::FromInt(7); // 7 == "TurboFan compiler".
8759 }
8760 return function->IsOptimized() ? Smi::FromInt(1) // 1 == "yes".
8761 : Smi::FromInt(2); // 2 == "no".
8762 }
8763
8764
RUNTIME_FUNCTION(Runtime_UnblockConcurrentRecompilation)8765 RUNTIME_FUNCTION(Runtime_UnblockConcurrentRecompilation) {
8766 DCHECK(args.length() == 0);
8767 RUNTIME_ASSERT(FLAG_block_concurrent_recompilation);
8768 RUNTIME_ASSERT(isolate->concurrent_recompilation_enabled());
8769 isolate->optimizing_compiler_thread()->Unblock();
8770 return isolate->heap()->undefined_value();
8771 }
8772
8773
RUNTIME_FUNCTION(Runtime_GetOptimizationCount)8774 RUNTIME_FUNCTION(Runtime_GetOptimizationCount) {
8775 HandleScope scope(isolate);
8776 DCHECK(args.length() == 1);
8777 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8778 return Smi::FromInt(function->shared()->opt_count());
8779 }
8780
8781
IsSuitableForOnStackReplacement(Isolate * isolate,Handle<JSFunction> function,Handle<Code> current_code)8782 static bool IsSuitableForOnStackReplacement(Isolate* isolate,
8783 Handle<JSFunction> function,
8784 Handle<Code> current_code) {
8785 // Keep track of whether we've succeeded in optimizing.
8786 if (!isolate->use_crankshaft() || !current_code->optimizable()) return false;
8787 // If we are trying to do OSR when there are already optimized
8788 // activations of the function, it means (a) the function is directly or
8789 // indirectly recursive and (b) an optimized invocation has been
8790 // deoptimized so that we are currently in an unoptimized activation.
8791 // Check for optimized activations of this function.
8792 for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) {
8793 JavaScriptFrame* frame = it.frame();
8794 if (frame->is_optimized() && frame->function() == *function) return false;
8795 }
8796
8797 return true;
8798 }
8799
8800
RUNTIME_FUNCTION(Runtime_CompileForOnStackReplacement)8801 RUNTIME_FUNCTION(Runtime_CompileForOnStackReplacement) {
8802 HandleScope scope(isolate);
8803 DCHECK(args.length() == 1);
8804 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
8805 Handle<Code> caller_code(function->shared()->code());
8806
8807 // We're not prepared to handle a function with arguments object.
8808 DCHECK(!function->shared()->uses_arguments());
8809
8810 RUNTIME_ASSERT(FLAG_use_osr);
8811
8812 // Passing the PC in the javascript frame from the caller directly is
8813 // not GC safe, so we walk the stack to get it.
8814 JavaScriptFrameIterator it(isolate);
8815 JavaScriptFrame* frame = it.frame();
8816 if (!caller_code->contains(frame->pc())) {
8817 // Code on the stack may not be the code object referenced by the shared
8818 // function info. It may have been replaced to include deoptimization data.
8819 caller_code = Handle<Code>(frame->LookupCode());
8820 }
8821
8822 uint32_t pc_offset = static_cast<uint32_t>(
8823 frame->pc() - caller_code->instruction_start());
8824
8825 #ifdef DEBUG
8826 DCHECK_EQ(frame->function(), *function);
8827 DCHECK_EQ(frame->LookupCode(), *caller_code);
8828 DCHECK(caller_code->contains(frame->pc()));
8829 #endif // DEBUG
8830
8831
8832 BailoutId ast_id = caller_code->TranslatePcOffsetToAstId(pc_offset);
8833 DCHECK(!ast_id.IsNone());
8834
8835 Compiler::ConcurrencyMode mode =
8836 isolate->concurrent_osr_enabled() &&
8837 (function->shared()->ast_node_count() > 512) ? Compiler::CONCURRENT
8838 : Compiler::NOT_CONCURRENT;
8839 Handle<Code> result = Handle<Code>::null();
8840
8841 OptimizedCompileJob* job = NULL;
8842 if (mode == Compiler::CONCURRENT) {
8843 // Gate the OSR entry with a stack check.
8844 BackEdgeTable::AddStackCheck(caller_code, pc_offset);
8845 // Poll already queued compilation jobs.
8846 OptimizingCompilerThread* thread = isolate->optimizing_compiler_thread();
8847 if (thread->IsQueuedForOSR(function, ast_id)) {
8848 if (FLAG_trace_osr) {
8849 PrintF("[OSR - Still waiting for queued: ");
8850 function->PrintName();
8851 PrintF(" at AST id %d]\n", ast_id.ToInt());
8852 }
8853 return NULL;
8854 }
8855
8856 job = thread->FindReadyOSRCandidate(function, ast_id);
8857 }
8858
8859 if (job != NULL) {
8860 if (FLAG_trace_osr) {
8861 PrintF("[OSR - Found ready: ");
8862 function->PrintName();
8863 PrintF(" at AST id %d]\n", ast_id.ToInt());
8864 }
8865 result = Compiler::GetConcurrentlyOptimizedCode(job);
8866 } else if (IsSuitableForOnStackReplacement(isolate, function, caller_code)) {
8867 if (FLAG_trace_osr) {
8868 PrintF("[OSR - Compiling: ");
8869 function->PrintName();
8870 PrintF(" at AST id %d]\n", ast_id.ToInt());
8871 }
8872 MaybeHandle<Code> maybe_result = Compiler::GetOptimizedCode(
8873 function, caller_code, mode, ast_id);
8874 if (maybe_result.ToHandle(&result) &&
8875 result.is_identical_to(isolate->builtins()->InOptimizationQueue())) {
8876 // Optimization is queued. Return to check later.
8877 return NULL;
8878 }
8879 }
8880
8881 // Revert the patched back edge table, regardless of whether OSR succeeds.
8882 BackEdgeTable::Revert(isolate, *caller_code);
8883
8884 // Check whether we ended up with usable optimized code.
8885 if (!result.is_null() && result->kind() == Code::OPTIMIZED_FUNCTION) {
8886 DeoptimizationInputData* data =
8887 DeoptimizationInputData::cast(result->deoptimization_data());
8888
8889 if (data->OsrPcOffset()->value() >= 0) {
8890 DCHECK(BailoutId(data->OsrAstId()->value()) == ast_id);
8891 if (FLAG_trace_osr) {
8892 PrintF("[OSR - Entry at AST id %d, offset %d in optimized code]\n",
8893 ast_id.ToInt(), data->OsrPcOffset()->value());
8894 }
8895 // TODO(titzer): this is a massive hack to make the deopt counts
8896 // match. Fix heuristics for reenabling optimizations!
8897 function->shared()->increment_deopt_count();
8898
8899 // TODO(titzer): Do not install code into the function.
8900 function->ReplaceCode(*result);
8901 return *result;
8902 }
8903 }
8904
8905 // Failed.
8906 if (FLAG_trace_osr) {
8907 PrintF("[OSR - Failed: ");
8908 function->PrintName();
8909 PrintF(" at AST id %d]\n", ast_id.ToInt());
8910 }
8911
8912 if (!function->IsOptimized()) {
8913 function->ReplaceCode(function->shared()->code());
8914 }
8915 return NULL;
8916 }
8917
8918
RUNTIME_FUNCTION(Runtime_SetAllocationTimeout)8919 RUNTIME_FUNCTION(Runtime_SetAllocationTimeout) {
8920 SealHandleScope shs(isolate);
8921 DCHECK(args.length() == 2 || args.length() == 3);
8922 #ifdef DEBUG
8923 CONVERT_SMI_ARG_CHECKED(interval, 0);
8924 CONVERT_SMI_ARG_CHECKED(timeout, 1);
8925 isolate->heap()->set_allocation_timeout(timeout);
8926 FLAG_gc_interval = interval;
8927 if (args.length() == 3) {
8928 // Enable/disable inline allocation if requested.
8929 CONVERT_BOOLEAN_ARG_CHECKED(inline_allocation, 2);
8930 if (inline_allocation) {
8931 isolate->heap()->EnableInlineAllocation();
8932 } else {
8933 isolate->heap()->DisableInlineAllocation();
8934 }
8935 }
8936 #endif
8937 return isolate->heap()->undefined_value();
8938 }
8939
8940
RUNTIME_FUNCTION(Runtime_CheckIsBootstrapping)8941 RUNTIME_FUNCTION(Runtime_CheckIsBootstrapping) {
8942 SealHandleScope shs(isolate);
8943 DCHECK(args.length() == 0);
8944 RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
8945 return isolate->heap()->undefined_value();
8946 }
8947
8948
RUNTIME_FUNCTION(Runtime_GetRootNaN)8949 RUNTIME_FUNCTION(Runtime_GetRootNaN) {
8950 SealHandleScope shs(isolate);
8951 DCHECK(args.length() == 0);
8952 RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
8953 return isolate->heap()->nan_value();
8954 }
8955
8956
RUNTIME_FUNCTION(Runtime_Call)8957 RUNTIME_FUNCTION(Runtime_Call) {
8958 HandleScope scope(isolate);
8959 DCHECK(args.length() >= 2);
8960 int argc = args.length() - 2;
8961 CONVERT_ARG_CHECKED(JSReceiver, fun, argc + 1);
8962 Object* receiver = args[0];
8963
8964 // If there are too many arguments, allocate argv via malloc.
8965 const int argv_small_size = 10;
8966 Handle<Object> argv_small_buffer[argv_small_size];
8967 SmartArrayPointer<Handle<Object> > argv_large_buffer;
8968 Handle<Object>* argv = argv_small_buffer;
8969 if (argc > argv_small_size) {
8970 argv = new Handle<Object>[argc];
8971 if (argv == NULL) return isolate->StackOverflow();
8972 argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
8973 }
8974
8975 for (int i = 0; i < argc; ++i) {
8976 argv[i] = Handle<Object>(args[1 + i], isolate);
8977 }
8978
8979 Handle<JSReceiver> hfun(fun);
8980 Handle<Object> hreceiver(receiver, isolate);
8981 Handle<Object> result;
8982 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
8983 isolate, result,
8984 Execution::Call(isolate, hfun, hreceiver, argc, argv, true));
8985 return *result;
8986 }
8987
8988
RUNTIME_FUNCTION(Runtime_Apply)8989 RUNTIME_FUNCTION(Runtime_Apply) {
8990 HandleScope scope(isolate);
8991 DCHECK(args.length() == 5);
8992 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, fun, 0);
8993 CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1);
8994 CONVERT_ARG_HANDLE_CHECKED(JSObject, arguments, 2);
8995 CONVERT_INT32_ARG_CHECKED(offset, 3);
8996 CONVERT_INT32_ARG_CHECKED(argc, 4);
8997 RUNTIME_ASSERT(offset >= 0);
8998 // Loose upper bound to allow fuzzing. We'll most likely run out of
8999 // stack space before hitting this limit.
9000 static int kMaxArgc = 1000000;
9001 RUNTIME_ASSERT(argc >= 0 && argc <= kMaxArgc);
9002
9003 // If there are too many arguments, allocate argv via malloc.
9004 const int argv_small_size = 10;
9005 Handle<Object> argv_small_buffer[argv_small_size];
9006 SmartArrayPointer<Handle<Object> > argv_large_buffer;
9007 Handle<Object>* argv = argv_small_buffer;
9008 if (argc > argv_small_size) {
9009 argv = new Handle<Object>[argc];
9010 if (argv == NULL) return isolate->StackOverflow();
9011 argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
9012 }
9013
9014 for (int i = 0; i < argc; ++i) {
9015 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9016 isolate, argv[i],
9017 Object::GetElement(isolate, arguments, offset + i));
9018 }
9019
9020 Handle<Object> result;
9021 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9022 isolate, result,
9023 Execution::Call(isolate, fun, receiver, argc, argv, true));
9024 return *result;
9025 }
9026
9027
RUNTIME_FUNCTION(Runtime_GetFunctionDelegate)9028 RUNTIME_FUNCTION(Runtime_GetFunctionDelegate) {
9029 HandleScope scope(isolate);
9030 DCHECK(args.length() == 1);
9031 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
9032 RUNTIME_ASSERT(!object->IsJSFunction());
9033 return *Execution::GetFunctionDelegate(isolate, object);
9034 }
9035
9036
RUNTIME_FUNCTION(Runtime_GetConstructorDelegate)9037 RUNTIME_FUNCTION(Runtime_GetConstructorDelegate) {
9038 HandleScope scope(isolate);
9039 DCHECK(args.length() == 1);
9040 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
9041 RUNTIME_ASSERT(!object->IsJSFunction());
9042 return *Execution::GetConstructorDelegate(isolate, object);
9043 }
9044
9045
RUNTIME_FUNCTION(Runtime_NewGlobalContext)9046 RUNTIME_FUNCTION(Runtime_NewGlobalContext) {
9047 HandleScope scope(isolate);
9048 DCHECK(args.length() == 2);
9049
9050 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
9051 CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
9052 Handle<Context> result =
9053 isolate->factory()->NewGlobalContext(function, scope_info);
9054
9055 DCHECK(function->context() == isolate->context());
9056 DCHECK(function->context()->global_object() == result->global_object());
9057 result->global_object()->set_global_context(*result);
9058 return *result;
9059 }
9060
9061
RUNTIME_FUNCTION(Runtime_NewFunctionContext)9062 RUNTIME_FUNCTION(Runtime_NewFunctionContext) {
9063 HandleScope scope(isolate);
9064 DCHECK(args.length() == 1);
9065
9066 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
9067
9068 DCHECK(function->context() == isolate->context());
9069 int length = function->shared()->scope_info()->ContextLength();
9070 return *isolate->factory()->NewFunctionContext(length, function);
9071 }
9072
9073
RUNTIME_FUNCTION(Runtime_PushWithContext)9074 RUNTIME_FUNCTION(Runtime_PushWithContext) {
9075 HandleScope scope(isolate);
9076 DCHECK(args.length() == 2);
9077 Handle<JSReceiver> extension_object;
9078 if (args[0]->IsJSReceiver()) {
9079 extension_object = args.at<JSReceiver>(0);
9080 } else {
9081 // Try to convert the object to a proper JavaScript object.
9082 MaybeHandle<JSReceiver> maybe_object =
9083 Object::ToObject(isolate, args.at<Object>(0));
9084 if (!maybe_object.ToHandle(&extension_object)) {
9085 Handle<Object> handle = args.at<Object>(0);
9086 THROW_NEW_ERROR_RETURN_FAILURE(
9087 isolate, NewTypeError("with_expression", HandleVector(&handle, 1)));
9088 }
9089 }
9090
9091 Handle<JSFunction> function;
9092 if (args[1]->IsSmi()) {
9093 // A smi sentinel indicates a context nested inside global code rather
9094 // than some function. There is a canonical empty function that can be
9095 // gotten from the native context.
9096 function = handle(isolate->native_context()->closure());
9097 } else {
9098 function = args.at<JSFunction>(1);
9099 }
9100
9101 Handle<Context> current(isolate->context());
9102 Handle<Context> context = isolate->factory()->NewWithContext(
9103 function, current, extension_object);
9104 isolate->set_context(*context);
9105 return *context;
9106 }
9107
9108
RUNTIME_FUNCTION(Runtime_PushCatchContext)9109 RUNTIME_FUNCTION(Runtime_PushCatchContext) {
9110 HandleScope scope(isolate);
9111 DCHECK(args.length() == 3);
9112 CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
9113 CONVERT_ARG_HANDLE_CHECKED(Object, thrown_object, 1);
9114 Handle<JSFunction> function;
9115 if (args[2]->IsSmi()) {
9116 // A smi sentinel indicates a context nested inside global code rather
9117 // than some function. There is a canonical empty function that can be
9118 // gotten from the native context.
9119 function = handle(isolate->native_context()->closure());
9120 } else {
9121 function = args.at<JSFunction>(2);
9122 }
9123 Handle<Context> current(isolate->context());
9124 Handle<Context> context = isolate->factory()->NewCatchContext(
9125 function, current, name, thrown_object);
9126 isolate->set_context(*context);
9127 return *context;
9128 }
9129
9130
RUNTIME_FUNCTION(Runtime_PushBlockContext)9131 RUNTIME_FUNCTION(Runtime_PushBlockContext) {
9132 HandleScope scope(isolate);
9133 DCHECK(args.length() == 2);
9134 CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 0);
9135 Handle<JSFunction> function;
9136 if (args[1]->IsSmi()) {
9137 // A smi sentinel indicates a context nested inside global code rather
9138 // than some function. There is a canonical empty function that can be
9139 // gotten from the native context.
9140 function = handle(isolate->native_context()->closure());
9141 } else {
9142 function = args.at<JSFunction>(1);
9143 }
9144 Handle<Context> current(isolate->context());
9145 Handle<Context> context = isolate->factory()->NewBlockContext(
9146 function, current, scope_info);
9147 isolate->set_context(*context);
9148 return *context;
9149 }
9150
9151
RUNTIME_FUNCTION(Runtime_IsJSModule)9152 RUNTIME_FUNCTION(Runtime_IsJSModule) {
9153 SealHandleScope shs(isolate);
9154 DCHECK(args.length() == 1);
9155 CONVERT_ARG_CHECKED(Object, obj, 0);
9156 return isolate->heap()->ToBoolean(obj->IsJSModule());
9157 }
9158
9159
RUNTIME_FUNCTION(Runtime_PushModuleContext)9160 RUNTIME_FUNCTION(Runtime_PushModuleContext) {
9161 SealHandleScope shs(isolate);
9162 DCHECK(args.length() == 2);
9163 CONVERT_SMI_ARG_CHECKED(index, 0);
9164
9165 if (!args[1]->IsScopeInfo()) {
9166 // Module already initialized. Find hosting context and retrieve context.
9167 Context* host = Context::cast(isolate->context())->global_context();
9168 Context* context = Context::cast(host->get(index));
9169 DCHECK(context->previous() == isolate->context());
9170 isolate->set_context(context);
9171 return context;
9172 }
9173
9174 CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
9175
9176 // Allocate module context.
9177 HandleScope scope(isolate);
9178 Factory* factory = isolate->factory();
9179 Handle<Context> context = factory->NewModuleContext(scope_info);
9180 Handle<JSModule> module = factory->NewJSModule(context, scope_info);
9181 context->set_module(*module);
9182 Context* previous = isolate->context();
9183 context->set_previous(previous);
9184 context->set_closure(previous->closure());
9185 context->set_global_object(previous->global_object());
9186 isolate->set_context(*context);
9187
9188 // Find hosting scope and initialize internal variable holding module there.
9189 previous->global_context()->set(index, *context);
9190
9191 return *context;
9192 }
9193
9194
RUNTIME_FUNCTION(Runtime_DeclareModules)9195 RUNTIME_FUNCTION(Runtime_DeclareModules) {
9196 HandleScope scope(isolate);
9197 DCHECK(args.length() == 1);
9198 CONVERT_ARG_HANDLE_CHECKED(FixedArray, descriptions, 0);
9199 Context* host_context = isolate->context();
9200
9201 for (int i = 0; i < descriptions->length(); ++i) {
9202 Handle<ModuleInfo> description(ModuleInfo::cast(descriptions->get(i)));
9203 int host_index = description->host_index();
9204 Handle<Context> context(Context::cast(host_context->get(host_index)));
9205 Handle<JSModule> module(context->module());
9206
9207 for (int j = 0; j < description->length(); ++j) {
9208 Handle<String> name(description->name(j));
9209 VariableMode mode = description->mode(j);
9210 int index = description->index(j);
9211 switch (mode) {
9212 case VAR:
9213 case LET:
9214 case CONST:
9215 case CONST_LEGACY: {
9216 PropertyAttributes attr =
9217 IsImmutableVariableMode(mode) ? FROZEN : SEALED;
9218 Handle<AccessorInfo> info =
9219 Accessors::MakeModuleExport(name, index, attr);
9220 Handle<Object> result =
9221 JSObject::SetAccessor(module, info).ToHandleChecked();
9222 DCHECK(!result->IsUndefined());
9223 USE(result);
9224 break;
9225 }
9226 case MODULE: {
9227 Object* referenced_context = Context::cast(host_context)->get(index);
9228 Handle<JSModule> value(Context::cast(referenced_context)->module());
9229 JSObject::SetOwnPropertyIgnoreAttributes(module, name, value, FROZEN)
9230 .Assert();
9231 break;
9232 }
9233 case INTERNAL:
9234 case TEMPORARY:
9235 case DYNAMIC:
9236 case DYNAMIC_GLOBAL:
9237 case DYNAMIC_LOCAL:
9238 UNREACHABLE();
9239 }
9240 }
9241
9242 JSObject::PreventExtensions(module).Assert();
9243 }
9244
9245 DCHECK(!isolate->has_pending_exception());
9246 return isolate->heap()->undefined_value();
9247 }
9248
9249
RUNTIME_FUNCTION(Runtime_DeleteLookupSlot)9250 RUNTIME_FUNCTION(Runtime_DeleteLookupSlot) {
9251 HandleScope scope(isolate);
9252 DCHECK(args.length() == 2);
9253
9254 CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
9255 CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
9256
9257 int index;
9258 PropertyAttributes attributes;
9259 ContextLookupFlags flags = FOLLOW_CHAINS;
9260 BindingFlags binding_flags;
9261 Handle<Object> holder = context->Lookup(name,
9262 flags,
9263 &index,
9264 &attributes,
9265 &binding_flags);
9266
9267 // If the slot was not found the result is true.
9268 if (holder.is_null()) {
9269 return isolate->heap()->true_value();
9270 }
9271
9272 // If the slot was found in a context, it should be DONT_DELETE.
9273 if (holder->IsContext()) {
9274 return isolate->heap()->false_value();
9275 }
9276
9277 // The slot was found in a JSObject, either a context extension object,
9278 // the global object, or the subject of a with. Try to delete it
9279 // (respecting DONT_DELETE).
9280 Handle<JSObject> object = Handle<JSObject>::cast(holder);
9281 Handle<Object> result;
9282 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9283 isolate, result,
9284 JSReceiver::DeleteProperty(object, name));
9285 return *result;
9286 }
9287
9288
9289 // A mechanism to return a pair of Object pointers in registers (if possible).
9290 // How this is achieved is calling convention-dependent.
9291 // All currently supported x86 compiles uses calling conventions that are cdecl
9292 // variants where a 64-bit value is returned in two 32-bit registers
9293 // (edx:eax on ia32, r1:r0 on ARM).
9294 // In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
9295 // In Win64 calling convention, a struct of two pointers is returned in memory,
9296 // allocated by the caller, and passed as a pointer in a hidden first parameter.
9297 #ifdef V8_HOST_ARCH_64_BIT
9298 struct ObjectPair {
9299 Object* x;
9300 Object* y;
9301 };
9302
9303
MakePair(Object * x,Object * y)9304 static inline ObjectPair MakePair(Object* x, Object* y) {
9305 ObjectPair result = {x, y};
9306 // Pointers x and y returned in rax and rdx, in AMD-x64-abi.
9307 // In Win64 they are assigned to a hidden first argument.
9308 return result;
9309 }
9310 #elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
9311 // For x32 a 128-bit struct return is done as rax and rdx from the ObjectPair
9312 // are used in the full codegen and Crankshaft compiler. An alternative is
9313 // using uint64_t and modifying full codegen and Crankshaft compiler.
9314 struct ObjectPair {
9315 Object* x;
9316 uint32_t x_upper;
9317 Object* y;
9318 uint32_t y_upper;
9319 };
9320
9321
MakePair(Object * x,Object * y)9322 static inline ObjectPair MakePair(Object* x, Object* y) {
9323 ObjectPair result = {x, 0, y, 0};
9324 // Pointers x and y returned in rax and rdx, in x32-abi.
9325 return result;
9326 }
9327 #else
9328 typedef uint64_t ObjectPair;
MakePair(Object * x,Object * y)9329 static inline ObjectPair MakePair(Object* x, Object* y) {
9330 #if defined(V8_TARGET_LITTLE_ENDIAN)
9331 return reinterpret_cast<uint32_t>(x) |
9332 (reinterpret_cast<ObjectPair>(y) << 32);
9333 #elif defined(V8_TARGET_BIG_ENDIAN)
9334 return reinterpret_cast<uint32_t>(y) |
9335 (reinterpret_cast<ObjectPair>(x) << 32);
9336 #else
9337 #error Unknown endianness
9338 #endif
9339 }
9340 #endif
9341
9342
ComputeReceiverForNonGlobal(Isolate * isolate,JSObject * holder)9343 static Object* ComputeReceiverForNonGlobal(Isolate* isolate,
9344 JSObject* holder) {
9345 DCHECK(!holder->IsGlobalObject());
9346 Context* top = isolate->context();
9347 // Get the context extension function.
9348 JSFunction* context_extension_function =
9349 top->native_context()->context_extension_function();
9350 // If the holder isn't a context extension object, we just return it
9351 // as the receiver. This allows arguments objects to be used as
9352 // receivers, but only if they are put in the context scope chain
9353 // explicitly via a with-statement.
9354 Object* constructor = holder->map()->constructor();
9355 if (constructor != context_extension_function) return holder;
9356 // Fall back to using the global object as the implicit receiver if
9357 // the property turns out to be a local variable allocated in a
9358 // context extension object - introduced via eval.
9359 return isolate->heap()->undefined_value();
9360 }
9361
9362
LoadLookupSlotHelper(Arguments args,Isolate * isolate,bool throw_error)9363 static ObjectPair LoadLookupSlotHelper(Arguments args, Isolate* isolate,
9364 bool throw_error) {
9365 HandleScope scope(isolate);
9366 DCHECK_EQ(2, args.length());
9367
9368 if (!args[0]->IsContext() || !args[1]->IsString()) {
9369 return MakePair(isolate->ThrowIllegalOperation(), NULL);
9370 }
9371 Handle<Context> context = args.at<Context>(0);
9372 Handle<String> name = args.at<String>(1);
9373
9374 int index;
9375 PropertyAttributes attributes;
9376 ContextLookupFlags flags = FOLLOW_CHAINS;
9377 BindingFlags binding_flags;
9378 Handle<Object> holder = context->Lookup(name,
9379 flags,
9380 &index,
9381 &attributes,
9382 &binding_flags);
9383 if (isolate->has_pending_exception()) {
9384 return MakePair(isolate->heap()->exception(), NULL);
9385 }
9386
9387 // If the index is non-negative, the slot has been found in a context.
9388 if (index >= 0) {
9389 DCHECK(holder->IsContext());
9390 // If the "property" we were looking for is a local variable, the
9391 // receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3.
9392 Handle<Object> receiver = isolate->factory()->undefined_value();
9393 Object* value = Context::cast(*holder)->get(index);
9394 // Check for uninitialized bindings.
9395 switch (binding_flags) {
9396 case MUTABLE_CHECK_INITIALIZED:
9397 case IMMUTABLE_CHECK_INITIALIZED_HARMONY:
9398 if (value->IsTheHole()) {
9399 Handle<Object> error;
9400 MaybeHandle<Object> maybe_error =
9401 isolate->factory()->NewReferenceError("not_defined",
9402 HandleVector(&name, 1));
9403 if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
9404 return MakePair(isolate->heap()->exception(), NULL);
9405 }
9406 // FALLTHROUGH
9407 case MUTABLE_IS_INITIALIZED:
9408 case IMMUTABLE_IS_INITIALIZED:
9409 case IMMUTABLE_IS_INITIALIZED_HARMONY:
9410 DCHECK(!value->IsTheHole());
9411 return MakePair(value, *receiver);
9412 case IMMUTABLE_CHECK_INITIALIZED:
9413 if (value->IsTheHole()) {
9414 DCHECK((attributes & READ_ONLY) != 0);
9415 value = isolate->heap()->undefined_value();
9416 }
9417 return MakePair(value, *receiver);
9418 case MISSING_BINDING:
9419 UNREACHABLE();
9420 return MakePair(NULL, NULL);
9421 }
9422 }
9423
9424 // Otherwise, if the slot was found the holder is a context extension
9425 // object, subject of a with, or a global object. We read the named
9426 // property from it.
9427 if (!holder.is_null()) {
9428 Handle<JSReceiver> object = Handle<JSReceiver>::cast(holder);
9429 #ifdef DEBUG
9430 if (!object->IsJSProxy()) {
9431 Maybe<bool> maybe = JSReceiver::HasProperty(object, name);
9432 DCHECK(maybe.has_value);
9433 DCHECK(maybe.value);
9434 }
9435 #endif
9436 // GetProperty below can cause GC.
9437 Handle<Object> receiver_handle(
9438 object->IsGlobalObject()
9439 ? Object::cast(isolate->heap()->undefined_value())
9440 : object->IsJSProxy() ? static_cast<Object*>(*object)
9441 : ComputeReceiverForNonGlobal(isolate, JSObject::cast(*object)),
9442 isolate);
9443
9444 // No need to unhole the value here. This is taken care of by the
9445 // GetProperty function.
9446 Handle<Object> value;
9447 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
9448 isolate, value,
9449 Object::GetProperty(object, name),
9450 MakePair(isolate->heap()->exception(), NULL));
9451 return MakePair(*value, *receiver_handle);
9452 }
9453
9454 if (throw_error) {
9455 // The property doesn't exist - throw exception.
9456 Handle<Object> error;
9457 MaybeHandle<Object> maybe_error = isolate->factory()->NewReferenceError(
9458 "not_defined", HandleVector(&name, 1));
9459 if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
9460 return MakePair(isolate->heap()->exception(), NULL);
9461 } else {
9462 // The property doesn't exist - return undefined.
9463 return MakePair(isolate->heap()->undefined_value(),
9464 isolate->heap()->undefined_value());
9465 }
9466 }
9467
9468
RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlot)9469 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlot) {
9470 return LoadLookupSlotHelper(args, isolate, true);
9471 }
9472
9473
RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlotNoReferenceError)9474 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlotNoReferenceError) {
9475 return LoadLookupSlotHelper(args, isolate, false);
9476 }
9477
9478
RUNTIME_FUNCTION(Runtime_StoreLookupSlot)9479 RUNTIME_FUNCTION(Runtime_StoreLookupSlot) {
9480 HandleScope scope(isolate);
9481 DCHECK(args.length() == 4);
9482
9483 CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
9484 CONVERT_ARG_HANDLE_CHECKED(Context, context, 1);
9485 CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
9486 CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 3);
9487
9488 int index;
9489 PropertyAttributes attributes;
9490 ContextLookupFlags flags = FOLLOW_CHAINS;
9491 BindingFlags binding_flags;
9492 Handle<Object> holder = context->Lookup(name,
9493 flags,
9494 &index,
9495 &attributes,
9496 &binding_flags);
9497 // In case of JSProxy, an exception might have been thrown.
9498 if (isolate->has_pending_exception()) return isolate->heap()->exception();
9499
9500 // The property was found in a context slot.
9501 if (index >= 0) {
9502 if ((attributes & READ_ONLY) == 0) {
9503 Handle<Context>::cast(holder)->set(index, *value);
9504 } else if (strict_mode == STRICT) {
9505 // Setting read only property in strict mode.
9506 THROW_NEW_ERROR_RETURN_FAILURE(
9507 isolate,
9508 NewTypeError("strict_cannot_assign", HandleVector(&name, 1)));
9509 }
9510 return *value;
9511 }
9512
9513 // Slow case: The property is not in a context slot. It is either in a
9514 // context extension object, a property of the subject of a with, or a
9515 // property of the global object.
9516 Handle<JSReceiver> object;
9517 if (attributes != ABSENT) {
9518 // The property exists on the holder.
9519 object = Handle<JSReceiver>::cast(holder);
9520 } else if (strict_mode == STRICT) {
9521 // If absent in strict mode: throw.
9522 THROW_NEW_ERROR_RETURN_FAILURE(
9523 isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
9524 } else {
9525 // If absent in sloppy mode: add the property to the global object.
9526 object = Handle<JSReceiver>(context->global_object());
9527 }
9528
9529 RETURN_FAILURE_ON_EXCEPTION(
9530 isolate, Object::SetProperty(object, name, value, strict_mode));
9531
9532 return *value;
9533 }
9534
9535
RUNTIME_FUNCTION(Runtime_Throw)9536 RUNTIME_FUNCTION(Runtime_Throw) {
9537 HandleScope scope(isolate);
9538 DCHECK(args.length() == 1);
9539
9540 return isolate->Throw(args[0]);
9541 }
9542
9543
RUNTIME_FUNCTION(Runtime_ReThrow)9544 RUNTIME_FUNCTION(Runtime_ReThrow) {
9545 HandleScope scope(isolate);
9546 DCHECK(args.length() == 1);
9547
9548 return isolate->ReThrow(args[0]);
9549 }
9550
9551
RUNTIME_FUNCTION(Runtime_PromoteScheduledException)9552 RUNTIME_FUNCTION(Runtime_PromoteScheduledException) {
9553 SealHandleScope shs(isolate);
9554 DCHECK(args.length() == 0);
9555 return isolate->PromoteScheduledException();
9556 }
9557
9558
RUNTIME_FUNCTION(Runtime_ThrowReferenceError)9559 RUNTIME_FUNCTION(Runtime_ThrowReferenceError) {
9560 HandleScope scope(isolate);
9561 DCHECK(args.length() == 1);
9562 CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
9563 THROW_NEW_ERROR_RETURN_FAILURE(
9564 isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
9565 }
9566
9567
RUNTIME_FUNCTION(Runtime_ThrowNonMethodError)9568 RUNTIME_FUNCTION(Runtime_ThrowNonMethodError) {
9569 HandleScope scope(isolate);
9570 DCHECK(args.length() == 0);
9571 THROW_NEW_ERROR_RETURN_FAILURE(
9572 isolate, NewReferenceError("non_method", HandleVector<Object>(NULL, 0)));
9573 }
9574
9575
RUNTIME_FUNCTION(Runtime_ThrowUnsupportedSuperError)9576 RUNTIME_FUNCTION(Runtime_ThrowUnsupportedSuperError) {
9577 HandleScope scope(isolate);
9578 DCHECK(args.length() == 0);
9579 THROW_NEW_ERROR_RETURN_FAILURE(
9580 isolate,
9581 NewReferenceError("unsupported_super", HandleVector<Object>(NULL, 0)));
9582 }
9583
9584
RUNTIME_FUNCTION(Runtime_ThrowNotDateError)9585 RUNTIME_FUNCTION(Runtime_ThrowNotDateError) {
9586 HandleScope scope(isolate);
9587 DCHECK(args.length() == 0);
9588 THROW_NEW_ERROR_RETURN_FAILURE(
9589 isolate, NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
9590 }
9591
9592
RUNTIME_FUNCTION(Runtime_StackGuard)9593 RUNTIME_FUNCTION(Runtime_StackGuard) {
9594 SealHandleScope shs(isolate);
9595 DCHECK(args.length() == 0);
9596
9597 // First check if this is a real stack overflow.
9598 StackLimitCheck check(isolate);
9599 if (check.JsHasOverflowed()) {
9600 return isolate->StackOverflow();
9601 }
9602
9603 return isolate->stack_guard()->HandleInterrupts();
9604 }
9605
9606
RUNTIME_FUNCTION(Runtime_TryInstallOptimizedCode)9607 RUNTIME_FUNCTION(Runtime_TryInstallOptimizedCode) {
9608 HandleScope scope(isolate);
9609 DCHECK(args.length() == 1);
9610 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
9611
9612 // First check if this is a real stack overflow.
9613 StackLimitCheck check(isolate);
9614 if (check.JsHasOverflowed()) {
9615 SealHandleScope shs(isolate);
9616 return isolate->StackOverflow();
9617 }
9618
9619 isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
9620 return (function->IsOptimized()) ? function->code()
9621 : function->shared()->code();
9622 }
9623
9624
RUNTIME_FUNCTION(Runtime_Interrupt)9625 RUNTIME_FUNCTION(Runtime_Interrupt) {
9626 SealHandleScope shs(isolate);
9627 DCHECK(args.length() == 0);
9628 return isolate->stack_guard()->HandleInterrupts();
9629 }
9630
9631
StackSize(Isolate * isolate)9632 static int StackSize(Isolate* isolate) {
9633 int n = 0;
9634 for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) n++;
9635 return n;
9636 }
9637
9638
PrintTransition(Isolate * isolate,Object * result)9639 static void PrintTransition(Isolate* isolate, Object* result) {
9640 // indentation
9641 { const int nmax = 80;
9642 int n = StackSize(isolate);
9643 if (n <= nmax)
9644 PrintF("%4d:%*s", n, n, "");
9645 else
9646 PrintF("%4d:%*s", n, nmax, "...");
9647 }
9648
9649 if (result == NULL) {
9650 JavaScriptFrame::PrintTop(isolate, stdout, true, false);
9651 PrintF(" {\n");
9652 } else {
9653 // function result
9654 PrintF("} -> ");
9655 result->ShortPrint();
9656 PrintF("\n");
9657 }
9658 }
9659
9660
RUNTIME_FUNCTION(Runtime_TraceEnter)9661 RUNTIME_FUNCTION(Runtime_TraceEnter) {
9662 SealHandleScope shs(isolate);
9663 DCHECK(args.length() == 0);
9664 PrintTransition(isolate, NULL);
9665 return isolate->heap()->undefined_value();
9666 }
9667
9668
RUNTIME_FUNCTION(Runtime_TraceExit)9669 RUNTIME_FUNCTION(Runtime_TraceExit) {
9670 SealHandleScope shs(isolate);
9671 DCHECK(args.length() == 1);
9672 CONVERT_ARG_CHECKED(Object, obj, 0);
9673 PrintTransition(isolate, obj);
9674 return obj; // return TOS
9675 }
9676
9677
RUNTIME_FUNCTION(Runtime_DebugPrint)9678 RUNTIME_FUNCTION(Runtime_DebugPrint) {
9679 SealHandleScope shs(isolate);
9680 DCHECK(args.length() == 1);
9681
9682 OFStream os(stdout);
9683 #ifdef DEBUG
9684 if (args[0]->IsString()) {
9685 // If we have a string, assume it's a code "marker"
9686 // and print some interesting cpu debugging info.
9687 JavaScriptFrameIterator it(isolate);
9688 JavaScriptFrame* frame = it.frame();
9689 os << "fp = " << frame->fp() << ", sp = " << frame->sp()
9690 << ", caller_sp = " << frame->caller_sp() << ": ";
9691 } else {
9692 os << "DebugPrint: ";
9693 }
9694 args[0]->Print(os);
9695 if (args[0]->IsHeapObject()) {
9696 os << "\n";
9697 HeapObject::cast(args[0])->map()->Print(os);
9698 }
9699 #else
9700 // ShortPrint is available in release mode. Print is not.
9701 os << Brief(args[0]);
9702 #endif
9703 os << endl;
9704
9705 return args[0]; // return TOS
9706 }
9707
9708
RUNTIME_FUNCTION(Runtime_DebugTrace)9709 RUNTIME_FUNCTION(Runtime_DebugTrace) {
9710 SealHandleScope shs(isolate);
9711 DCHECK(args.length() == 0);
9712 isolate->PrintStack(stdout);
9713 return isolate->heap()->undefined_value();
9714 }
9715
9716
RUNTIME_FUNCTION(Runtime_DateCurrentTime)9717 RUNTIME_FUNCTION(Runtime_DateCurrentTime) {
9718 HandleScope scope(isolate);
9719 DCHECK(args.length() == 0);
9720 if (FLAG_log_timer_events) LOG(isolate, CurrentTimeEvent());
9721
9722 // According to ECMA-262, section 15.9.1, page 117, the precision of
9723 // the number in a Date object representing a particular instant in
9724 // time is milliseconds. Therefore, we floor the result of getting
9725 // the OS time.
9726 double millis;
9727 if (FLAG_verify_predictable) {
9728 millis = 1388534400000.0; // Jan 1 2014 00:00:00 GMT+0000
9729 millis += Floor(isolate->heap()->synthetic_time());
9730 } else {
9731 millis = Floor(base::OS::TimeCurrentMillis());
9732 }
9733 return *isolate->factory()->NewNumber(millis);
9734 }
9735
9736
RUNTIME_FUNCTION(Runtime_DateParseString)9737 RUNTIME_FUNCTION(Runtime_DateParseString) {
9738 HandleScope scope(isolate);
9739 DCHECK(args.length() == 2);
9740 CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
9741 CONVERT_ARG_HANDLE_CHECKED(JSArray, output, 1);
9742
9743 RUNTIME_ASSERT(output->HasFastElements());
9744 JSObject::EnsureCanContainHeapObjectElements(output);
9745 RUNTIME_ASSERT(output->HasFastObjectElements());
9746 Handle<FixedArray> output_array(FixedArray::cast(output->elements()));
9747 RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
9748
9749 str = String::Flatten(str);
9750 DisallowHeapAllocation no_gc;
9751
9752 bool result;
9753 String::FlatContent str_content = str->GetFlatContent();
9754 if (str_content.IsOneByte()) {
9755 result = DateParser::Parse(str_content.ToOneByteVector(),
9756 *output_array,
9757 isolate->unicode_cache());
9758 } else {
9759 DCHECK(str_content.IsTwoByte());
9760 result = DateParser::Parse(str_content.ToUC16Vector(),
9761 *output_array,
9762 isolate->unicode_cache());
9763 }
9764
9765 if (result) {
9766 return *output;
9767 } else {
9768 return isolate->heap()->null_value();
9769 }
9770 }
9771
9772
RUNTIME_FUNCTION(Runtime_DateLocalTimezone)9773 RUNTIME_FUNCTION(Runtime_DateLocalTimezone) {
9774 HandleScope scope(isolate);
9775 DCHECK(args.length() == 1);
9776
9777 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
9778 RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
9779 x <= DateCache::kMaxTimeBeforeUTCInMs);
9780 const char* zone =
9781 isolate->date_cache()->LocalTimezone(static_cast<int64_t>(x));
9782 Handle<String> result = isolate->factory()->NewStringFromUtf8(
9783 CStrVector(zone)).ToHandleChecked();
9784 return *result;
9785 }
9786
9787
RUNTIME_FUNCTION(Runtime_DateToUTC)9788 RUNTIME_FUNCTION(Runtime_DateToUTC) {
9789 HandleScope scope(isolate);
9790 DCHECK(args.length() == 1);
9791
9792 CONVERT_DOUBLE_ARG_CHECKED(x, 0);
9793 RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
9794 x <= DateCache::kMaxTimeBeforeUTCInMs);
9795 int64_t time = isolate->date_cache()->ToUTC(static_cast<int64_t>(x));
9796
9797 return *isolate->factory()->NewNumber(static_cast<double>(time));
9798 }
9799
9800
RUNTIME_FUNCTION(Runtime_DateCacheVersion)9801 RUNTIME_FUNCTION(Runtime_DateCacheVersion) {
9802 HandleScope hs(isolate);
9803 DCHECK(args.length() == 0);
9804 if (!isolate->eternal_handles()->Exists(EternalHandles::DATE_CACHE_VERSION)) {
9805 Handle<FixedArray> date_cache_version =
9806 isolate->factory()->NewFixedArray(1, TENURED);
9807 date_cache_version->set(0, Smi::FromInt(0));
9808 isolate->eternal_handles()->CreateSingleton(
9809 isolate, *date_cache_version, EternalHandles::DATE_CACHE_VERSION);
9810 }
9811 Handle<FixedArray> date_cache_version =
9812 Handle<FixedArray>::cast(isolate->eternal_handles()->GetSingleton(
9813 EternalHandles::DATE_CACHE_VERSION));
9814 // Return result as a JS array.
9815 Handle<JSObject> result =
9816 isolate->factory()->NewJSObject(isolate->array_function());
9817 JSArray::SetContent(Handle<JSArray>::cast(result), date_cache_version);
9818 return *result;
9819 }
9820
9821
RUNTIME_FUNCTION(Runtime_GlobalProxy)9822 RUNTIME_FUNCTION(Runtime_GlobalProxy) {
9823 SealHandleScope shs(isolate);
9824 DCHECK(args.length() == 1);
9825 CONVERT_ARG_CHECKED(Object, global, 0);
9826 if (!global->IsJSGlobalObject()) return isolate->heap()->null_value();
9827 return JSGlobalObject::cast(global)->global_proxy();
9828 }
9829
9830
RUNTIME_FUNCTION(Runtime_IsAttachedGlobal)9831 RUNTIME_FUNCTION(Runtime_IsAttachedGlobal) {
9832 SealHandleScope shs(isolate);
9833 DCHECK(args.length() == 1);
9834 CONVERT_ARG_CHECKED(Object, global, 0);
9835 if (!global->IsJSGlobalObject()) return isolate->heap()->false_value();
9836 return isolate->heap()->ToBoolean(
9837 !JSGlobalObject::cast(global)->IsDetached());
9838 }
9839
9840
RUNTIME_FUNCTION(Runtime_ParseJson)9841 RUNTIME_FUNCTION(Runtime_ParseJson) {
9842 HandleScope scope(isolate);
9843 DCHECK(args.length() == 1);
9844 CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
9845
9846 source = String::Flatten(source);
9847 // Optimized fast case where we only have Latin1 characters.
9848 Handle<Object> result;
9849 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9850 isolate, result,
9851 source->IsSeqOneByteString() ? JsonParser<true>::Parse(source)
9852 : JsonParser<false>::Parse(source));
9853 return *result;
9854 }
9855
9856
CodeGenerationFromStringsAllowed(Isolate * isolate,Handle<Context> context)9857 bool CodeGenerationFromStringsAllowed(Isolate* isolate,
9858 Handle<Context> context) {
9859 DCHECK(context->allow_code_gen_from_strings()->IsFalse());
9860 // Check with callback if set.
9861 AllowCodeGenerationFromStringsCallback callback =
9862 isolate->allow_code_gen_callback();
9863 if (callback == NULL) {
9864 // No callback set and code generation disallowed.
9865 return false;
9866 } else {
9867 // Callback set. Let it decide if code generation is allowed.
9868 VMState<EXTERNAL> state(isolate);
9869 return callback(v8::Utils::ToLocal(context));
9870 }
9871 }
9872
9873
RUNTIME_FUNCTION(Runtime_CompileString)9874 RUNTIME_FUNCTION(Runtime_CompileString) {
9875 HandleScope scope(isolate);
9876 DCHECK(args.length() == 2);
9877 CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
9878 CONVERT_BOOLEAN_ARG_CHECKED(function_literal_only, 1);
9879
9880 // Extract native context.
9881 Handle<Context> context(isolate->native_context());
9882
9883 // Check if native context allows code generation from
9884 // strings. Throw an exception if it doesn't.
9885 if (context->allow_code_gen_from_strings()->IsFalse() &&
9886 !CodeGenerationFromStringsAllowed(isolate, context)) {
9887 Handle<Object> error_message =
9888 context->ErrorMessageForCodeGenerationFromStrings();
9889 THROW_NEW_ERROR_RETURN_FAILURE(
9890 isolate, NewEvalError("code_gen_from_strings",
9891 HandleVector<Object>(&error_message, 1)));
9892 }
9893
9894 // Compile source string in the native context.
9895 ParseRestriction restriction = function_literal_only
9896 ? ONLY_SINGLE_FUNCTION_LITERAL : NO_PARSE_RESTRICTION;
9897 Handle<SharedFunctionInfo> outer_info(context->closure()->shared(), isolate);
9898 Handle<JSFunction> fun;
9899 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
9900 isolate, fun,
9901 Compiler::GetFunctionFromEval(
9902 source, outer_info,
9903 context, SLOPPY, restriction, RelocInfo::kNoPosition));
9904 return *fun;
9905 }
9906
9907
CompileGlobalEval(Isolate * isolate,Handle<String> source,Handle<SharedFunctionInfo> outer_info,Handle<Object> receiver,StrictMode strict_mode,int scope_position)9908 static ObjectPair CompileGlobalEval(Isolate* isolate,
9909 Handle<String> source,
9910 Handle<SharedFunctionInfo> outer_info,
9911 Handle<Object> receiver,
9912 StrictMode strict_mode,
9913 int scope_position) {
9914 Handle<Context> context = Handle<Context>(isolate->context());
9915 Handle<Context> native_context = Handle<Context>(context->native_context());
9916
9917 // Check if native context allows code generation from
9918 // strings. Throw an exception if it doesn't.
9919 if (native_context->allow_code_gen_from_strings()->IsFalse() &&
9920 !CodeGenerationFromStringsAllowed(isolate, native_context)) {
9921 Handle<Object> error_message =
9922 native_context->ErrorMessageForCodeGenerationFromStrings();
9923 Handle<Object> error;
9924 MaybeHandle<Object> maybe_error = isolate->factory()->NewEvalError(
9925 "code_gen_from_strings", HandleVector<Object>(&error_message, 1));
9926 if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
9927 return MakePair(isolate->heap()->exception(), NULL);
9928 }
9929
9930 // Deal with a normal eval call with a string argument. Compile it
9931 // and return the compiled function bound in the local context.
9932 static const ParseRestriction restriction = NO_PARSE_RESTRICTION;
9933 Handle<JSFunction> compiled;
9934 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
9935 isolate, compiled,
9936 Compiler::GetFunctionFromEval(
9937 source, outer_info,
9938 context, strict_mode, restriction, scope_position),
9939 MakePair(isolate->heap()->exception(), NULL));
9940 return MakePair(*compiled, *receiver);
9941 }
9942
9943
RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ResolvePossiblyDirectEval)9944 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ResolvePossiblyDirectEval) {
9945 HandleScope scope(isolate);
9946 DCHECK(args.length() == 6);
9947
9948 Handle<Object> callee = args.at<Object>(0);
9949
9950 // If "eval" didn't refer to the original GlobalEval, it's not a
9951 // direct call to eval.
9952 // (And even if it is, but the first argument isn't a string, just let
9953 // execution default to an indirect call to eval, which will also return
9954 // the first argument without doing anything).
9955 if (*callee != isolate->native_context()->global_eval_fun() ||
9956 !args[1]->IsString()) {
9957 return MakePair(*callee, isolate->heap()->undefined_value());
9958 }
9959
9960 DCHECK(args[4]->IsSmi());
9961 DCHECK(args.smi_at(4) == SLOPPY || args.smi_at(4) == STRICT);
9962 StrictMode strict_mode = static_cast<StrictMode>(args.smi_at(4));
9963 DCHECK(args[5]->IsSmi());
9964 Handle<SharedFunctionInfo> outer_info(args.at<JSFunction>(2)->shared(),
9965 isolate);
9966 return CompileGlobalEval(isolate,
9967 args.at<String>(1),
9968 outer_info,
9969 args.at<Object>(3),
9970 strict_mode,
9971 args.smi_at(5));
9972 }
9973
9974
RUNTIME_FUNCTION(Runtime_AllocateInNewSpace)9975 RUNTIME_FUNCTION(Runtime_AllocateInNewSpace) {
9976 HandleScope scope(isolate);
9977 DCHECK(args.length() == 1);
9978 CONVERT_SMI_ARG_CHECKED(size, 0);
9979 RUNTIME_ASSERT(IsAligned(size, kPointerSize));
9980 RUNTIME_ASSERT(size > 0);
9981 RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
9982 return *isolate->factory()->NewFillerObject(size, false, NEW_SPACE);
9983 }
9984
9985
RUNTIME_FUNCTION(Runtime_AllocateInTargetSpace)9986 RUNTIME_FUNCTION(Runtime_AllocateInTargetSpace) {
9987 HandleScope scope(isolate);
9988 DCHECK(args.length() == 2);
9989 CONVERT_SMI_ARG_CHECKED(size, 0);
9990 CONVERT_SMI_ARG_CHECKED(flags, 1);
9991 RUNTIME_ASSERT(IsAligned(size, kPointerSize));
9992 RUNTIME_ASSERT(size > 0);
9993 RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
9994 bool double_align = AllocateDoubleAlignFlag::decode(flags);
9995 AllocationSpace space = AllocateTargetSpace::decode(flags);
9996 return *isolate->factory()->NewFillerObject(size, double_align, space);
9997 }
9998
9999
10000 // Push an object unto an array of objects if it is not already in the
10001 // array. Returns true if the element was pushed on the stack and
10002 // false otherwise.
RUNTIME_FUNCTION(Runtime_PushIfAbsent)10003 RUNTIME_FUNCTION(Runtime_PushIfAbsent) {
10004 HandleScope scope(isolate);
10005 DCHECK(args.length() == 2);
10006 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
10007 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, element, 1);
10008 RUNTIME_ASSERT(array->HasFastSmiOrObjectElements());
10009 int length = Smi::cast(array->length())->value();
10010 FixedArray* elements = FixedArray::cast(array->elements());
10011 for (int i = 0; i < length; i++) {
10012 if (elements->get(i) == *element) return isolate->heap()->false_value();
10013 }
10014
10015 // Strict not needed. Used for cycle detection in Array join implementation.
10016 RETURN_FAILURE_ON_EXCEPTION(
10017 isolate,
10018 JSObject::SetFastElement(array, length, element, SLOPPY, true));
10019 return isolate->heap()->true_value();
10020 }
10021
10022
10023 /**
10024 * A simple visitor visits every element of Array's.
10025 * The backend storage can be a fixed array for fast elements case,
10026 * or a dictionary for sparse array. Since Dictionary is a subtype
10027 * of FixedArray, the class can be used by both fast and slow cases.
10028 * The second parameter of the constructor, fast_elements, specifies
10029 * whether the storage is a FixedArray or Dictionary.
10030 *
10031 * An index limit is used to deal with the situation that a result array
10032 * length overflows 32-bit non-negative integer.
10033 */
10034 class ArrayConcatVisitor {
10035 public:
ArrayConcatVisitor(Isolate * isolate,Handle<FixedArray> storage,bool fast_elements)10036 ArrayConcatVisitor(Isolate* isolate,
10037 Handle<FixedArray> storage,
10038 bool fast_elements) :
10039 isolate_(isolate),
10040 storage_(Handle<FixedArray>::cast(
10041 isolate->global_handles()->Create(*storage))),
10042 index_offset_(0u),
10043 fast_elements_(fast_elements),
10044 exceeds_array_limit_(false) { }
10045
~ArrayConcatVisitor()10046 ~ArrayConcatVisitor() {
10047 clear_storage();
10048 }
10049
visit(uint32_t i,Handle<Object> elm)10050 void visit(uint32_t i, Handle<Object> elm) {
10051 if (i > JSObject::kMaxElementCount - index_offset_) {
10052 exceeds_array_limit_ = true;
10053 return;
10054 }
10055 uint32_t index = index_offset_ + i;
10056
10057 if (fast_elements_) {
10058 if (index < static_cast<uint32_t>(storage_->length())) {
10059 storage_->set(index, *elm);
10060 return;
10061 }
10062 // Our initial estimate of length was foiled, possibly by
10063 // getters on the arrays increasing the length of later arrays
10064 // during iteration.
10065 // This shouldn't happen in anything but pathological cases.
10066 SetDictionaryMode();
10067 // Fall-through to dictionary mode.
10068 }
10069 DCHECK(!fast_elements_);
10070 Handle<SeededNumberDictionary> dict(
10071 SeededNumberDictionary::cast(*storage_));
10072 Handle<SeededNumberDictionary> result =
10073 SeededNumberDictionary::AtNumberPut(dict, index, elm);
10074 if (!result.is_identical_to(dict)) {
10075 // Dictionary needed to grow.
10076 clear_storage();
10077 set_storage(*result);
10078 }
10079 }
10080
increase_index_offset(uint32_t delta)10081 void increase_index_offset(uint32_t delta) {
10082 if (JSObject::kMaxElementCount - index_offset_ < delta) {
10083 index_offset_ = JSObject::kMaxElementCount;
10084 } else {
10085 index_offset_ += delta;
10086 }
10087 // If the initial length estimate was off (see special case in visit()),
10088 // but the array blowing the limit didn't contain elements beyond the
10089 // provided-for index range, go to dictionary mode now.
10090 if (fast_elements_ &&
10091 index_offset_ >
10092 static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
10093 SetDictionaryMode();
10094 }
10095 }
10096
exceeds_array_limit()10097 bool exceeds_array_limit() {
10098 return exceeds_array_limit_;
10099 }
10100
ToArray()10101 Handle<JSArray> ToArray() {
10102 Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
10103 Handle<Object> length =
10104 isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
10105 Handle<Map> map = JSObject::GetElementsTransitionMap(
10106 array,
10107 fast_elements_ ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
10108 array->set_map(*map);
10109 array->set_length(*length);
10110 array->set_elements(*storage_);
10111 return array;
10112 }
10113
10114 private:
10115 // Convert storage to dictionary mode.
SetDictionaryMode()10116 void SetDictionaryMode() {
10117 DCHECK(fast_elements_);
10118 Handle<FixedArray> current_storage(*storage_);
10119 Handle<SeededNumberDictionary> slow_storage(
10120 SeededNumberDictionary::New(isolate_, current_storage->length()));
10121 uint32_t current_length = static_cast<uint32_t>(current_storage->length());
10122 for (uint32_t i = 0; i < current_length; i++) {
10123 HandleScope loop_scope(isolate_);
10124 Handle<Object> element(current_storage->get(i), isolate_);
10125 if (!element->IsTheHole()) {
10126 Handle<SeededNumberDictionary> new_storage =
10127 SeededNumberDictionary::AtNumberPut(slow_storage, i, element);
10128 if (!new_storage.is_identical_to(slow_storage)) {
10129 slow_storage = loop_scope.CloseAndEscape(new_storage);
10130 }
10131 }
10132 }
10133 clear_storage();
10134 set_storage(*slow_storage);
10135 fast_elements_ = false;
10136 }
10137
clear_storage()10138 inline void clear_storage() {
10139 GlobalHandles::Destroy(Handle<Object>::cast(storage_).location());
10140 }
10141
set_storage(FixedArray * storage)10142 inline void set_storage(FixedArray* storage) {
10143 storage_ = Handle<FixedArray>::cast(
10144 isolate_->global_handles()->Create(storage));
10145 }
10146
10147 Isolate* isolate_;
10148 Handle<FixedArray> storage_; // Always a global handle.
10149 // Index after last seen index. Always less than or equal to
10150 // JSObject::kMaxElementCount.
10151 uint32_t index_offset_;
10152 bool fast_elements_ : 1;
10153 bool exceeds_array_limit_ : 1;
10154 };
10155
10156
EstimateElementCount(Handle<JSArray> array)10157 static uint32_t EstimateElementCount(Handle<JSArray> array) {
10158 uint32_t length = static_cast<uint32_t>(array->length()->Number());
10159 int element_count = 0;
10160 switch (array->GetElementsKind()) {
10161 case FAST_SMI_ELEMENTS:
10162 case FAST_HOLEY_SMI_ELEMENTS:
10163 case FAST_ELEMENTS:
10164 case FAST_HOLEY_ELEMENTS: {
10165 // Fast elements can't have lengths that are not representable by
10166 // a 32-bit signed integer.
10167 DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
10168 int fast_length = static_cast<int>(length);
10169 Handle<FixedArray> elements(FixedArray::cast(array->elements()));
10170 for (int i = 0; i < fast_length; i++) {
10171 if (!elements->get(i)->IsTheHole()) element_count++;
10172 }
10173 break;
10174 }
10175 case FAST_DOUBLE_ELEMENTS:
10176 case FAST_HOLEY_DOUBLE_ELEMENTS: {
10177 // Fast elements can't have lengths that are not representable by
10178 // a 32-bit signed integer.
10179 DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
10180 int fast_length = static_cast<int>(length);
10181 if (array->elements()->IsFixedArray()) {
10182 DCHECK(FixedArray::cast(array->elements())->length() == 0);
10183 break;
10184 }
10185 Handle<FixedDoubleArray> elements(
10186 FixedDoubleArray::cast(array->elements()));
10187 for (int i = 0; i < fast_length; i++) {
10188 if (!elements->is_the_hole(i)) element_count++;
10189 }
10190 break;
10191 }
10192 case DICTIONARY_ELEMENTS: {
10193 Handle<SeededNumberDictionary> dictionary(
10194 SeededNumberDictionary::cast(array->elements()));
10195 int capacity = dictionary->Capacity();
10196 for (int i = 0; i < capacity; i++) {
10197 Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate());
10198 if (dictionary->IsKey(*key)) {
10199 element_count++;
10200 }
10201 }
10202 break;
10203 }
10204 case SLOPPY_ARGUMENTS_ELEMENTS:
10205 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
10206 case EXTERNAL_##TYPE##_ELEMENTS: \
10207 case TYPE##_ELEMENTS: \
10208
10209 TYPED_ARRAYS(TYPED_ARRAY_CASE)
10210 #undef TYPED_ARRAY_CASE
10211 // External arrays are always dense.
10212 return length;
10213 }
10214 // As an estimate, we assume that the prototype doesn't contain any
10215 // inherited elements.
10216 return element_count;
10217 }
10218
10219
10220
10221 template<class ExternalArrayClass, class ElementType>
IterateExternalArrayElements(Isolate * isolate,Handle<JSObject> receiver,bool elements_are_ints,bool elements_are_guaranteed_smis,ArrayConcatVisitor * visitor)10222 static void IterateExternalArrayElements(Isolate* isolate,
10223 Handle<JSObject> receiver,
10224 bool elements_are_ints,
10225 bool elements_are_guaranteed_smis,
10226 ArrayConcatVisitor* visitor) {
10227 Handle<ExternalArrayClass> array(
10228 ExternalArrayClass::cast(receiver->elements()));
10229 uint32_t len = static_cast<uint32_t>(array->length());
10230
10231 DCHECK(visitor != NULL);
10232 if (elements_are_ints) {
10233 if (elements_are_guaranteed_smis) {
10234 for (uint32_t j = 0; j < len; j++) {
10235 HandleScope loop_scope(isolate);
10236 Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))),
10237 isolate);
10238 visitor->visit(j, e);
10239 }
10240 } else {
10241 for (uint32_t j = 0; j < len; j++) {
10242 HandleScope loop_scope(isolate);
10243 int64_t val = static_cast<int64_t>(array->get_scalar(j));
10244 if (Smi::IsValid(static_cast<intptr_t>(val))) {
10245 Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate);
10246 visitor->visit(j, e);
10247 } else {
10248 Handle<Object> e =
10249 isolate->factory()->NewNumber(static_cast<ElementType>(val));
10250 visitor->visit(j, e);
10251 }
10252 }
10253 }
10254 } else {
10255 for (uint32_t j = 0; j < len; j++) {
10256 HandleScope loop_scope(isolate);
10257 Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j));
10258 visitor->visit(j, e);
10259 }
10260 }
10261 }
10262
10263
10264 // Used for sorting indices in a List<uint32_t>.
compareUInt32(const uint32_t * ap,const uint32_t * bp)10265 static int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
10266 uint32_t a = *ap;
10267 uint32_t b = *bp;
10268 return (a == b) ? 0 : (a < b) ? -1 : 1;
10269 }
10270
10271
CollectElementIndices(Handle<JSObject> object,uint32_t range,List<uint32_t> * indices)10272 static void CollectElementIndices(Handle<JSObject> object,
10273 uint32_t range,
10274 List<uint32_t>* indices) {
10275 Isolate* isolate = object->GetIsolate();
10276 ElementsKind kind = object->GetElementsKind();
10277 switch (kind) {
10278 case FAST_SMI_ELEMENTS:
10279 case FAST_ELEMENTS:
10280 case FAST_HOLEY_SMI_ELEMENTS:
10281 case FAST_HOLEY_ELEMENTS: {
10282 Handle<FixedArray> elements(FixedArray::cast(object->elements()));
10283 uint32_t length = static_cast<uint32_t>(elements->length());
10284 if (range < length) length = range;
10285 for (uint32_t i = 0; i < length; i++) {
10286 if (!elements->get(i)->IsTheHole()) {
10287 indices->Add(i);
10288 }
10289 }
10290 break;
10291 }
10292 case FAST_HOLEY_DOUBLE_ELEMENTS:
10293 case FAST_DOUBLE_ELEMENTS: {
10294 if (object->elements()->IsFixedArray()) {
10295 DCHECK(object->elements()->length() == 0);
10296 break;
10297 }
10298 Handle<FixedDoubleArray> elements(
10299 FixedDoubleArray::cast(object->elements()));
10300 uint32_t length = static_cast<uint32_t>(elements->length());
10301 if (range < length) length = range;
10302 for (uint32_t i = 0; i < length; i++) {
10303 if (!elements->is_the_hole(i)) {
10304 indices->Add(i);
10305 }
10306 }
10307 break;
10308 }
10309 case DICTIONARY_ELEMENTS: {
10310 Handle<SeededNumberDictionary> dict(
10311 SeededNumberDictionary::cast(object->elements()));
10312 uint32_t capacity = dict->Capacity();
10313 for (uint32_t j = 0; j < capacity; j++) {
10314 HandleScope loop_scope(isolate);
10315 Handle<Object> k(dict->KeyAt(j), isolate);
10316 if (dict->IsKey(*k)) {
10317 DCHECK(k->IsNumber());
10318 uint32_t index = static_cast<uint32_t>(k->Number());
10319 if (index < range) {
10320 indices->Add(index);
10321 }
10322 }
10323 }
10324 break;
10325 }
10326 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
10327 case TYPE##_ELEMENTS: \
10328 case EXTERNAL_##TYPE##_ELEMENTS:
10329
10330 TYPED_ARRAYS(TYPED_ARRAY_CASE)
10331 #undef TYPED_ARRAY_CASE
10332 {
10333 uint32_t length = static_cast<uint32_t>(
10334 FixedArrayBase::cast(object->elements())->length());
10335 if (range <= length) {
10336 length = range;
10337 // We will add all indices, so we might as well clear it first
10338 // and avoid duplicates.
10339 indices->Clear();
10340 }
10341 for (uint32_t i = 0; i < length; i++) {
10342 indices->Add(i);
10343 }
10344 if (length == range) return; // All indices accounted for already.
10345 break;
10346 }
10347 case SLOPPY_ARGUMENTS_ELEMENTS: {
10348 MaybeHandle<Object> length_obj =
10349 Object::GetProperty(object, isolate->factory()->length_string());
10350 double length_num = length_obj.ToHandleChecked()->Number();
10351 uint32_t length = static_cast<uint32_t>(DoubleToInt32(length_num));
10352 ElementsAccessor* accessor = object->GetElementsAccessor();
10353 for (uint32_t i = 0; i < length; i++) {
10354 if (accessor->HasElement(object, object, i)) {
10355 indices->Add(i);
10356 }
10357 }
10358 break;
10359 }
10360 }
10361
10362 PrototypeIterator iter(isolate, object);
10363 if (!iter.IsAtEnd()) {
10364 // The prototype will usually have no inherited element indices,
10365 // but we have to check.
10366 CollectElementIndices(
10367 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), range,
10368 indices);
10369 }
10370 }
10371
10372
10373 /**
10374 * A helper function that visits elements of a JSArray in numerical
10375 * order.
10376 *
10377 * The visitor argument called for each existing element in the array
10378 * with the element index and the element's value.
10379 * Afterwards it increments the base-index of the visitor by the array
10380 * length.
10381 * Returns false if any access threw an exception, otherwise true.
10382 */
IterateElements(Isolate * isolate,Handle<JSArray> receiver,ArrayConcatVisitor * visitor)10383 static bool IterateElements(Isolate* isolate,
10384 Handle<JSArray> receiver,
10385 ArrayConcatVisitor* visitor) {
10386 uint32_t length = static_cast<uint32_t>(receiver->length()->Number());
10387 switch (receiver->GetElementsKind()) {
10388 case FAST_SMI_ELEMENTS:
10389 case FAST_ELEMENTS:
10390 case FAST_HOLEY_SMI_ELEMENTS:
10391 case FAST_HOLEY_ELEMENTS: {
10392 // Run through the elements FixedArray and use HasElement and GetElement
10393 // to check the prototype for missing elements.
10394 Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
10395 int fast_length = static_cast<int>(length);
10396 DCHECK(fast_length <= elements->length());
10397 for (int j = 0; j < fast_length; j++) {
10398 HandleScope loop_scope(isolate);
10399 Handle<Object> element_value(elements->get(j), isolate);
10400 if (!element_value->IsTheHole()) {
10401 visitor->visit(j, element_value);
10402 } else {
10403 Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
10404 if (!maybe.has_value) return false;
10405 if (maybe.value) {
10406 // Call GetElement on receiver, not its prototype, or getters won't
10407 // have the correct receiver.
10408 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
10409 isolate, element_value,
10410 Object::GetElement(isolate, receiver, j), false);
10411 visitor->visit(j, element_value);
10412 }
10413 }
10414 }
10415 break;
10416 }
10417 case FAST_HOLEY_DOUBLE_ELEMENTS:
10418 case FAST_DOUBLE_ELEMENTS: {
10419 // Empty array is FixedArray but not FixedDoubleArray.
10420 if (length == 0) break;
10421 // Run through the elements FixedArray and use HasElement and GetElement
10422 // to check the prototype for missing elements.
10423 if (receiver->elements()->IsFixedArray()) {
10424 DCHECK(receiver->elements()->length() == 0);
10425 break;
10426 }
10427 Handle<FixedDoubleArray> elements(
10428 FixedDoubleArray::cast(receiver->elements()));
10429 int fast_length = static_cast<int>(length);
10430 DCHECK(fast_length <= elements->length());
10431 for (int j = 0; j < fast_length; j++) {
10432 HandleScope loop_scope(isolate);
10433 if (!elements->is_the_hole(j)) {
10434 double double_value = elements->get_scalar(j);
10435 Handle<Object> element_value =
10436 isolate->factory()->NewNumber(double_value);
10437 visitor->visit(j, element_value);
10438 } else {
10439 Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
10440 if (!maybe.has_value) return false;
10441 if (maybe.value) {
10442 // Call GetElement on receiver, not its prototype, or getters won't
10443 // have the correct receiver.
10444 Handle<Object> element_value;
10445 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
10446 isolate, element_value,
10447 Object::GetElement(isolate, receiver, j), false);
10448 visitor->visit(j, element_value);
10449 }
10450 }
10451 }
10452 break;
10453 }
10454 case DICTIONARY_ELEMENTS: {
10455 Handle<SeededNumberDictionary> dict(receiver->element_dictionary());
10456 List<uint32_t> indices(dict->Capacity() / 2);
10457 // Collect all indices in the object and the prototypes less
10458 // than length. This might introduce duplicates in the indices list.
10459 CollectElementIndices(receiver, length, &indices);
10460 indices.Sort(&compareUInt32);
10461 int j = 0;
10462 int n = indices.length();
10463 while (j < n) {
10464 HandleScope loop_scope(isolate);
10465 uint32_t index = indices[j];
10466 Handle<Object> element;
10467 ASSIGN_RETURN_ON_EXCEPTION_VALUE(
10468 isolate, element,
10469 Object::GetElement(isolate, receiver, index),
10470 false);
10471 visitor->visit(index, element);
10472 // Skip to next different index (i.e., omit duplicates).
10473 do {
10474 j++;
10475 } while (j < n && indices[j] == index);
10476 }
10477 break;
10478 }
10479 case EXTERNAL_UINT8_CLAMPED_ELEMENTS: {
10480 Handle<ExternalUint8ClampedArray> pixels(ExternalUint8ClampedArray::cast(
10481 receiver->elements()));
10482 for (uint32_t j = 0; j < length; j++) {
10483 Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
10484 visitor->visit(j, e);
10485 }
10486 break;
10487 }
10488 case EXTERNAL_INT8_ELEMENTS: {
10489 IterateExternalArrayElements<ExternalInt8Array, int8_t>(
10490 isolate, receiver, true, true, visitor);
10491 break;
10492 }
10493 case EXTERNAL_UINT8_ELEMENTS: {
10494 IterateExternalArrayElements<ExternalUint8Array, uint8_t>(
10495 isolate, receiver, true, true, visitor);
10496 break;
10497 }
10498 case EXTERNAL_INT16_ELEMENTS: {
10499 IterateExternalArrayElements<ExternalInt16Array, int16_t>(
10500 isolate, receiver, true, true, visitor);
10501 break;
10502 }
10503 case EXTERNAL_UINT16_ELEMENTS: {
10504 IterateExternalArrayElements<ExternalUint16Array, uint16_t>(
10505 isolate, receiver, true, true, visitor);
10506 break;
10507 }
10508 case EXTERNAL_INT32_ELEMENTS: {
10509 IterateExternalArrayElements<ExternalInt32Array, int32_t>(
10510 isolate, receiver, true, false, visitor);
10511 break;
10512 }
10513 case EXTERNAL_UINT32_ELEMENTS: {
10514 IterateExternalArrayElements<ExternalUint32Array, uint32_t>(
10515 isolate, receiver, true, false, visitor);
10516 break;
10517 }
10518 case EXTERNAL_FLOAT32_ELEMENTS: {
10519 IterateExternalArrayElements<ExternalFloat32Array, float>(
10520 isolate, receiver, false, false, visitor);
10521 break;
10522 }
10523 case EXTERNAL_FLOAT64_ELEMENTS: {
10524 IterateExternalArrayElements<ExternalFloat64Array, double>(
10525 isolate, receiver, false, false, visitor);
10526 break;
10527 }
10528 default:
10529 UNREACHABLE();
10530 break;
10531 }
10532 visitor->increase_index_offset(length);
10533 return true;
10534 }
10535
10536
10537 /**
10538 * Array::concat implementation.
10539 * See ECMAScript 262, 15.4.4.4.
10540 * TODO(581): Fix non-compliance for very large concatenations and update to
10541 * following the ECMAScript 5 specification.
10542 */
RUNTIME_FUNCTION(Runtime_ArrayConcat)10543 RUNTIME_FUNCTION(Runtime_ArrayConcat) {
10544 HandleScope handle_scope(isolate);
10545 DCHECK(args.length() == 1);
10546
10547 CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0);
10548 int argument_count = static_cast<int>(arguments->length()->Number());
10549 RUNTIME_ASSERT(arguments->HasFastObjectElements());
10550 Handle<FixedArray> elements(FixedArray::cast(arguments->elements()));
10551
10552 // Pass 1: estimate the length and number of elements of the result.
10553 // The actual length can be larger if any of the arguments have getters
10554 // that mutate other arguments (but will otherwise be precise).
10555 // The number of elements is precise if there are no inherited elements.
10556
10557 ElementsKind kind = FAST_SMI_ELEMENTS;
10558
10559 uint32_t estimate_result_length = 0;
10560 uint32_t estimate_nof_elements = 0;
10561 for (int i = 0; i < argument_count; i++) {
10562 HandleScope loop_scope(isolate);
10563 Handle<Object> obj(elements->get(i), isolate);
10564 uint32_t length_estimate;
10565 uint32_t element_estimate;
10566 if (obj->IsJSArray()) {
10567 Handle<JSArray> array(Handle<JSArray>::cast(obj));
10568 length_estimate = static_cast<uint32_t>(array->length()->Number());
10569 if (length_estimate != 0) {
10570 ElementsKind array_kind =
10571 GetPackedElementsKind(array->map()->elements_kind());
10572 if (IsMoreGeneralElementsKindTransition(kind, array_kind)) {
10573 kind = array_kind;
10574 }
10575 }
10576 element_estimate = EstimateElementCount(array);
10577 } else {
10578 if (obj->IsHeapObject()) {
10579 if (obj->IsNumber()) {
10580 if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) {
10581 kind = FAST_DOUBLE_ELEMENTS;
10582 }
10583 } else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) {
10584 kind = FAST_ELEMENTS;
10585 }
10586 }
10587 length_estimate = 1;
10588 element_estimate = 1;
10589 }
10590 // Avoid overflows by capping at kMaxElementCount.
10591 if (JSObject::kMaxElementCount - estimate_result_length <
10592 length_estimate) {
10593 estimate_result_length = JSObject::kMaxElementCount;
10594 } else {
10595 estimate_result_length += length_estimate;
10596 }
10597 if (JSObject::kMaxElementCount - estimate_nof_elements <
10598 element_estimate) {
10599 estimate_nof_elements = JSObject::kMaxElementCount;
10600 } else {
10601 estimate_nof_elements += element_estimate;
10602 }
10603 }
10604
10605 // If estimated number of elements is more than half of length, a
10606 // fixed array (fast case) is more time and space-efficient than a
10607 // dictionary.
10608 bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
10609
10610 if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
10611 Handle<FixedArrayBase> storage =
10612 isolate->factory()->NewFixedDoubleArray(estimate_result_length);
10613 int j = 0;
10614 bool failure = false;
10615 if (estimate_result_length > 0) {
10616 Handle<FixedDoubleArray> double_storage =
10617 Handle<FixedDoubleArray>::cast(storage);
10618 for (int i = 0; i < argument_count; i++) {
10619 Handle<Object> obj(elements->get(i), isolate);
10620 if (obj->IsSmi()) {
10621 double_storage->set(j, Smi::cast(*obj)->value());
10622 j++;
10623 } else if (obj->IsNumber()) {
10624 double_storage->set(j, obj->Number());
10625 j++;
10626 } else {
10627 JSArray* array = JSArray::cast(*obj);
10628 uint32_t length = static_cast<uint32_t>(array->length()->Number());
10629 switch (array->map()->elements_kind()) {
10630 case FAST_HOLEY_DOUBLE_ELEMENTS:
10631 case FAST_DOUBLE_ELEMENTS: {
10632 // Empty array is FixedArray but not FixedDoubleArray.
10633 if (length == 0) break;
10634 FixedDoubleArray* elements =
10635 FixedDoubleArray::cast(array->elements());
10636 for (uint32_t i = 0; i < length; i++) {
10637 if (elements->is_the_hole(i)) {
10638 // TODO(jkummerow/verwaest): We could be a bit more clever
10639 // here: Check if there are no elements/getters on the
10640 // prototype chain, and if so, allow creation of a holey
10641 // result array.
10642 // Same thing below (holey smi case).
10643 failure = true;
10644 break;
10645 }
10646 double double_value = elements->get_scalar(i);
10647 double_storage->set(j, double_value);
10648 j++;
10649 }
10650 break;
10651 }
10652 case FAST_HOLEY_SMI_ELEMENTS:
10653 case FAST_SMI_ELEMENTS: {
10654 FixedArray* elements(
10655 FixedArray::cast(array->elements()));
10656 for (uint32_t i = 0; i < length; i++) {
10657 Object* element = elements->get(i);
10658 if (element->IsTheHole()) {
10659 failure = true;
10660 break;
10661 }
10662 int32_t int_value = Smi::cast(element)->value();
10663 double_storage->set(j, int_value);
10664 j++;
10665 }
10666 break;
10667 }
10668 case FAST_HOLEY_ELEMENTS:
10669 case FAST_ELEMENTS:
10670 DCHECK_EQ(0, length);
10671 break;
10672 default:
10673 UNREACHABLE();
10674 }
10675 }
10676 if (failure) break;
10677 }
10678 }
10679 if (!failure) {
10680 Handle<JSArray> array = isolate->factory()->NewJSArray(0);
10681 Smi* length = Smi::FromInt(j);
10682 Handle<Map> map;
10683 map = JSObject::GetElementsTransitionMap(array, kind);
10684 array->set_map(*map);
10685 array->set_length(length);
10686 array->set_elements(*storage);
10687 return *array;
10688 }
10689 // In case of failure, fall through.
10690 }
10691
10692 Handle<FixedArray> storage;
10693 if (fast_case) {
10694 // The backing storage array must have non-existing elements to preserve
10695 // holes across concat operations.
10696 storage = isolate->factory()->NewFixedArrayWithHoles(
10697 estimate_result_length);
10698 } else {
10699 // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
10700 uint32_t at_least_space_for = estimate_nof_elements +
10701 (estimate_nof_elements >> 2);
10702 storage = Handle<FixedArray>::cast(
10703 SeededNumberDictionary::New(isolate, at_least_space_for));
10704 }
10705
10706 ArrayConcatVisitor visitor(isolate, storage, fast_case);
10707
10708 for (int i = 0; i < argument_count; i++) {
10709 Handle<Object> obj(elements->get(i), isolate);
10710 if (obj->IsJSArray()) {
10711 Handle<JSArray> array = Handle<JSArray>::cast(obj);
10712 if (!IterateElements(isolate, array, &visitor)) {
10713 return isolate->heap()->exception();
10714 }
10715 } else {
10716 visitor.visit(0, obj);
10717 visitor.increase_index_offset(1);
10718 }
10719 }
10720
10721 if (visitor.exceeds_array_limit()) {
10722 THROW_NEW_ERROR_RETURN_FAILURE(
10723 isolate,
10724 NewRangeError("invalid_array_length", HandleVector<Object>(NULL, 0)));
10725 }
10726 return *visitor.ToArray();
10727 }
10728
10729
10730 // This will not allocate (flatten the string), but it may run
10731 // very slowly for very deeply nested ConsStrings. For debugging use only.
RUNTIME_FUNCTION(Runtime_GlobalPrint)10732 RUNTIME_FUNCTION(Runtime_GlobalPrint) {
10733 SealHandleScope shs(isolate);
10734 DCHECK(args.length() == 1);
10735
10736 CONVERT_ARG_CHECKED(String, string, 0);
10737 ConsStringIteratorOp op;
10738 StringCharacterStream stream(string, &op);
10739 while (stream.HasMore()) {
10740 uint16_t character = stream.GetNext();
10741 PrintF("%c", character);
10742 }
10743 return string;
10744 }
10745
10746
10747 // Moves all own elements of an object, that are below a limit, to positions
10748 // starting at zero. All undefined values are placed after non-undefined values,
10749 // and are followed by non-existing element. Does not change the length
10750 // property.
10751 // Returns the number of non-undefined elements collected.
10752 // Returns -1 if hole removal is not supported by this method.
RUNTIME_FUNCTION(Runtime_RemoveArrayHoles)10753 RUNTIME_FUNCTION(Runtime_RemoveArrayHoles) {
10754 HandleScope scope(isolate);
10755 DCHECK(args.length() == 2);
10756 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
10757 CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
10758 return *JSObject::PrepareElementsForSort(object, limit);
10759 }
10760
10761
10762 // Move contents of argument 0 (an array) to argument 1 (an array)
RUNTIME_FUNCTION(Runtime_MoveArrayContents)10763 RUNTIME_FUNCTION(Runtime_MoveArrayContents) {
10764 HandleScope scope(isolate);
10765 DCHECK(args.length() == 2);
10766 CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0);
10767 CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1);
10768 JSObject::ValidateElements(from);
10769 JSObject::ValidateElements(to);
10770
10771 Handle<FixedArrayBase> new_elements(from->elements());
10772 ElementsKind from_kind = from->GetElementsKind();
10773 Handle<Map> new_map = JSObject::GetElementsTransitionMap(to, from_kind);
10774 JSObject::SetMapAndElements(to, new_map, new_elements);
10775 to->set_length(from->length());
10776
10777 JSObject::ResetElements(from);
10778 from->set_length(Smi::FromInt(0));
10779
10780 JSObject::ValidateElements(to);
10781 return *to;
10782 }
10783
10784
10785 // How many elements does this object/array have?
RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements)10786 RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) {
10787 HandleScope scope(isolate);
10788 DCHECK(args.length() == 1);
10789 CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
10790 Handle<FixedArrayBase> elements(array->elements(), isolate);
10791 SealHandleScope shs(isolate);
10792 if (elements->IsDictionary()) {
10793 int result =
10794 Handle<SeededNumberDictionary>::cast(elements)->NumberOfElements();
10795 return Smi::FromInt(result);
10796 } else {
10797 DCHECK(array->length()->IsSmi());
10798 // For packed elements, we know the exact number of elements
10799 int length = elements->length();
10800 ElementsKind kind = array->GetElementsKind();
10801 if (IsFastPackedElementsKind(kind)) {
10802 return Smi::FromInt(length);
10803 }
10804 // For holey elements, take samples from the buffer checking for holes
10805 // to generate the estimate.
10806 const int kNumberOfHoleCheckSamples = 97;
10807 int increment = (length < kNumberOfHoleCheckSamples)
10808 ? 1
10809 : static_cast<int>(length / kNumberOfHoleCheckSamples);
10810 ElementsAccessor* accessor = array->GetElementsAccessor();
10811 int holes = 0;
10812 for (int i = 0; i < length; i += increment) {
10813 if (!accessor->HasElement(array, array, i, elements)) {
10814 ++holes;
10815 }
10816 }
10817 int estimate = static_cast<int>((kNumberOfHoleCheckSamples - holes) /
10818 kNumberOfHoleCheckSamples * length);
10819 return Smi::FromInt(estimate);
10820 }
10821 }
10822
10823
10824 // Returns an array that tells you where in the [0, length) interval an array
10825 // might have elements. Can either return an array of keys (positive integers
10826 // or undefined) or a number representing the positive length of an interval
10827 // starting at index 0.
10828 // Intervals can span over some keys that are not in the object.
RUNTIME_FUNCTION(Runtime_GetArrayKeys)10829 RUNTIME_FUNCTION(Runtime_GetArrayKeys) {
10830 HandleScope scope(isolate);
10831 DCHECK(args.length() == 2);
10832 CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
10833 CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
10834 if (array->elements()->IsDictionary()) {
10835 Handle<FixedArray> keys = isolate->factory()->empty_fixed_array();
10836 for (PrototypeIterator iter(isolate, array,
10837 PrototypeIterator::START_AT_RECEIVER);
10838 !iter.IsAtEnd(); iter.Advance()) {
10839 if (PrototypeIterator::GetCurrent(iter)->IsJSProxy() ||
10840 JSObject::cast(*PrototypeIterator::GetCurrent(iter))
10841 ->HasIndexedInterceptor()) {
10842 // Bail out if we find a proxy or interceptor, likely not worth
10843 // collecting keys in that case.
10844 return *isolate->factory()->NewNumberFromUint(length);
10845 }
10846 Handle<JSObject> current =
10847 Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
10848 Handle<FixedArray> current_keys =
10849 isolate->factory()->NewFixedArray(current->NumberOfOwnElements(NONE));
10850 current->GetOwnElementKeys(*current_keys, NONE);
10851 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
10852 isolate, keys, FixedArray::UnionOfKeys(keys, current_keys));
10853 }
10854 // Erase any keys >= length.
10855 // TODO(adamk): Remove this step when the contract of %GetArrayKeys
10856 // is changed to let this happen on the JS side.
10857 for (int i = 0; i < keys->length(); i++) {
10858 if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i);
10859 }
10860 return *isolate->factory()->NewJSArrayWithElements(keys);
10861 } else {
10862 RUNTIME_ASSERT(array->HasFastSmiOrObjectElements() ||
10863 array->HasFastDoubleElements());
10864 uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
10865 return *isolate->factory()->NewNumberFromUint(Min(actual_length, length));
10866 }
10867 }
10868
10869
RUNTIME_FUNCTION(Runtime_LookupAccessor)10870 RUNTIME_FUNCTION(Runtime_LookupAccessor) {
10871 HandleScope scope(isolate);
10872 DCHECK(args.length() == 3);
10873 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
10874 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
10875 CONVERT_SMI_ARG_CHECKED(flag, 2);
10876 AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER;
10877 if (!receiver->IsJSObject()) return isolate->heap()->undefined_value();
10878 Handle<Object> result;
10879 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
10880 isolate, result,
10881 JSObject::GetAccessor(Handle<JSObject>::cast(receiver), name, component));
10882 return *result;
10883 }
10884
10885
RUNTIME_FUNCTION(Runtime_DebugBreak)10886 RUNTIME_FUNCTION(Runtime_DebugBreak) {
10887 SealHandleScope shs(isolate);
10888 DCHECK(args.length() == 0);
10889 isolate->debug()->HandleDebugBreak();
10890 return isolate->heap()->undefined_value();
10891 }
10892
10893
10894 // Helper functions for wrapping and unwrapping stack frame ids.
WrapFrameId(StackFrame::Id id)10895 static Smi* WrapFrameId(StackFrame::Id id) {
10896 DCHECK(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
10897 return Smi::FromInt(id >> 2);
10898 }
10899
10900
UnwrapFrameId(int wrapped)10901 static StackFrame::Id UnwrapFrameId(int wrapped) {
10902 return static_cast<StackFrame::Id>(wrapped << 2);
10903 }
10904
10905
10906 // Adds a JavaScript function as a debug event listener.
10907 // args[0]: debug event listener function to set or null or undefined for
10908 // clearing the event listener function
10909 // args[1]: object supplied during callback
RUNTIME_FUNCTION(Runtime_SetDebugEventListener)10910 RUNTIME_FUNCTION(Runtime_SetDebugEventListener) {
10911 SealHandleScope shs(isolate);
10912 DCHECK(args.length() == 2);
10913 RUNTIME_ASSERT(args[0]->IsJSFunction() ||
10914 args[0]->IsUndefined() ||
10915 args[0]->IsNull());
10916 CONVERT_ARG_HANDLE_CHECKED(Object, callback, 0);
10917 CONVERT_ARG_HANDLE_CHECKED(Object, data, 1);
10918 isolate->debug()->SetEventListener(callback, data);
10919
10920 return isolate->heap()->undefined_value();
10921 }
10922
10923
RUNTIME_FUNCTION(Runtime_Break)10924 RUNTIME_FUNCTION(Runtime_Break) {
10925 SealHandleScope shs(isolate);
10926 DCHECK(args.length() == 0);
10927 isolate->stack_guard()->RequestDebugBreak();
10928 return isolate->heap()->undefined_value();
10929 }
10930
10931
DebugGetProperty(LookupIterator * it,bool * has_caught=NULL)10932 static Handle<Object> DebugGetProperty(LookupIterator* it,
10933 bool* has_caught = NULL) {
10934 for (; it->IsFound(); it->Next()) {
10935 switch (it->state()) {
10936 case LookupIterator::NOT_FOUND:
10937 case LookupIterator::TRANSITION:
10938 UNREACHABLE();
10939 case LookupIterator::ACCESS_CHECK:
10940 // Ignore access checks.
10941 break;
10942 case LookupIterator::INTERCEPTOR:
10943 case LookupIterator::JSPROXY:
10944 return it->isolate()->factory()->undefined_value();
10945 case LookupIterator::ACCESSOR: {
10946 Handle<Object> accessors = it->GetAccessors();
10947 if (!accessors->IsAccessorInfo()) {
10948 return it->isolate()->factory()->undefined_value();
10949 }
10950 MaybeHandle<Object> maybe_result = JSObject::GetPropertyWithAccessor(
10951 it->GetReceiver(), it->name(), it->GetHolder<JSObject>(),
10952 accessors);
10953 Handle<Object> result;
10954 if (!maybe_result.ToHandle(&result)) {
10955 result = handle(it->isolate()->pending_exception(), it->isolate());
10956 it->isolate()->clear_pending_exception();
10957 if (has_caught != NULL) *has_caught = true;
10958 }
10959 return result;
10960 }
10961
10962 case LookupIterator::DATA:
10963 return it->GetDataValue();
10964 }
10965 }
10966
10967 return it->isolate()->factory()->undefined_value();
10968 }
10969
10970
10971 // Get debugger related details for an object property, in the following format:
10972 // 0: Property value
10973 // 1: Property details
10974 // 2: Property value is exception
10975 // 3: Getter function if defined
10976 // 4: Setter function if defined
10977 // Items 2-4 are only filled if the property has either a getter or a setter.
RUNTIME_FUNCTION(Runtime_DebugGetPropertyDetails)10978 RUNTIME_FUNCTION(Runtime_DebugGetPropertyDetails) {
10979 HandleScope scope(isolate);
10980
10981 DCHECK(args.length() == 2);
10982
10983 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
10984 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
10985
10986 // Make sure to set the current context to the context before the debugger was
10987 // entered (if the debugger is entered). The reason for switching context here
10988 // is that for some property lookups (accessors and interceptors) callbacks
10989 // into the embedding application can occour, and the embedding application
10990 // could have the assumption that its own native context is the current
10991 // context and not some internal debugger context.
10992 SaveContext save(isolate);
10993 if (isolate->debug()->in_debug_scope()) {
10994 isolate->set_context(*isolate->debug()->debugger_entry()->GetContext());
10995 }
10996
10997 // Check if the name is trivially convertible to an index and get the element
10998 // if so.
10999 uint32_t index;
11000 if (name->AsArrayIndex(&index)) {
11001 Handle<FixedArray> details = isolate->factory()->NewFixedArray(2);
11002 Handle<Object> element_or_char;
11003 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
11004 isolate, element_or_char,
11005 Runtime::GetElementOrCharAt(isolate, obj, index));
11006 details->set(0, *element_or_char);
11007 details->set(
11008 1, PropertyDetails(NONE, NORMAL, Representation::None()).AsSmi());
11009 return *isolate->factory()->NewJSArrayWithElements(details);
11010 }
11011
11012 LookupIterator it(obj, name, LookupIterator::HIDDEN);
11013 bool has_caught = false;
11014 Handle<Object> value = DebugGetProperty(&it, &has_caught);
11015 if (!it.IsFound()) return isolate->heap()->undefined_value();
11016
11017 Handle<Object> maybe_pair;
11018 if (it.state() == LookupIterator::ACCESSOR) {
11019 maybe_pair = it.GetAccessors();
11020 }
11021
11022 // If the callback object is a fixed array then it contains JavaScript
11023 // getter and/or setter.
11024 bool has_js_accessors = !maybe_pair.is_null() && maybe_pair->IsAccessorPair();
11025 Handle<FixedArray> details =
11026 isolate->factory()->NewFixedArray(has_js_accessors ? 6 : 3);
11027 details->set(0, *value);
11028 // TODO(verwaest): Get rid of this random way of handling interceptors.
11029 PropertyDetails d = it.state() == LookupIterator::INTERCEPTOR
11030 ? PropertyDetails(NONE, NORMAL, 0)
11031 : it.property_details();
11032 details->set(1, d.AsSmi());
11033 details->set(
11034 2, isolate->heap()->ToBoolean(it.state() == LookupIterator::INTERCEPTOR));
11035 if (has_js_accessors) {
11036 AccessorPair* accessors = AccessorPair::cast(*maybe_pair);
11037 details->set(3, isolate->heap()->ToBoolean(has_caught));
11038 details->set(4, accessors->GetComponent(ACCESSOR_GETTER));
11039 details->set(5, accessors->GetComponent(ACCESSOR_SETTER));
11040 }
11041
11042 return *isolate->factory()->NewJSArrayWithElements(details);
11043 }
11044
11045
RUNTIME_FUNCTION(Runtime_DebugGetProperty)11046 RUNTIME_FUNCTION(Runtime_DebugGetProperty) {
11047 HandleScope scope(isolate);
11048
11049 DCHECK(args.length() == 2);
11050
11051 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
11052 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
11053
11054 LookupIterator it(obj, name);
11055 return *DebugGetProperty(&it);
11056 }
11057
11058
11059 // Return the property type calculated from the property details.
11060 // args[0]: smi with property details.
RUNTIME_FUNCTION(Runtime_DebugPropertyTypeFromDetails)11061 RUNTIME_FUNCTION(Runtime_DebugPropertyTypeFromDetails) {
11062 SealHandleScope shs(isolate);
11063 DCHECK(args.length() == 1);
11064 CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
11065 return Smi::FromInt(static_cast<int>(details.type()));
11066 }
11067
11068
11069 // Return the property attribute calculated from the property details.
11070 // args[0]: smi with property details.
RUNTIME_FUNCTION(Runtime_DebugPropertyAttributesFromDetails)11071 RUNTIME_FUNCTION(Runtime_DebugPropertyAttributesFromDetails) {
11072 SealHandleScope shs(isolate);
11073 DCHECK(args.length() == 1);
11074 CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
11075 return Smi::FromInt(static_cast<int>(details.attributes()));
11076 }
11077
11078
11079 // Return the property insertion index calculated from the property details.
11080 // args[0]: smi with property details.
RUNTIME_FUNCTION(Runtime_DebugPropertyIndexFromDetails)11081 RUNTIME_FUNCTION(Runtime_DebugPropertyIndexFromDetails) {
11082 SealHandleScope shs(isolate);
11083 DCHECK(args.length() == 1);
11084 CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
11085 // TODO(verwaest): Depends on the type of details.
11086 return Smi::FromInt(details.dictionary_index());
11087 }
11088
11089
11090 // Return property value from named interceptor.
11091 // args[0]: object
11092 // args[1]: property name
RUNTIME_FUNCTION(Runtime_DebugNamedInterceptorPropertyValue)11093 RUNTIME_FUNCTION(Runtime_DebugNamedInterceptorPropertyValue) {
11094 HandleScope scope(isolate);
11095 DCHECK(args.length() == 2);
11096 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
11097 RUNTIME_ASSERT(obj->HasNamedInterceptor());
11098 CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
11099
11100 Handle<Object> result;
11101 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
11102 isolate, result, JSObject::GetProperty(obj, name));
11103 return *result;
11104 }
11105
11106
11107 // Return element value from indexed interceptor.
11108 // args[0]: object
11109 // args[1]: index
RUNTIME_FUNCTION(Runtime_DebugIndexedInterceptorElementValue)11110 RUNTIME_FUNCTION(Runtime_DebugIndexedInterceptorElementValue) {
11111 HandleScope scope(isolate);
11112 DCHECK(args.length() == 2);
11113 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
11114 RUNTIME_ASSERT(obj->HasIndexedInterceptor());
11115 CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
11116 Handle<Object> result;
11117 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
11118 isolate, result, JSObject::GetElementWithInterceptor(obj, obj, index));
11119 return *result;
11120 }
11121
11122
CheckExecutionState(Isolate * isolate,int break_id)11123 static bool CheckExecutionState(Isolate* isolate, int break_id) {
11124 return !isolate->debug()->debug_context().is_null() &&
11125 isolate->debug()->break_id() != 0 &&
11126 isolate->debug()->break_id() == break_id;
11127 }
11128
11129
RUNTIME_FUNCTION(Runtime_CheckExecutionState)11130 RUNTIME_FUNCTION(Runtime_CheckExecutionState) {
11131 SealHandleScope shs(isolate);
11132 DCHECK(args.length() == 1);
11133 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
11134 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
11135 return isolate->heap()->true_value();
11136 }
11137
11138
RUNTIME_FUNCTION(Runtime_GetFrameCount)11139 RUNTIME_FUNCTION(Runtime_GetFrameCount) {
11140 HandleScope scope(isolate);
11141 DCHECK(args.length() == 1);
11142 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
11143 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
11144
11145 // Count all frames which are relevant to debugging stack trace.
11146 int n = 0;
11147 StackFrame::Id id = isolate->debug()->break_frame_id();
11148 if (id == StackFrame::NO_ID) {
11149 // If there is no JavaScript stack frame count is 0.
11150 return Smi::FromInt(0);
11151 }
11152
11153 for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) {
11154 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
11155 it.frame()->Summarize(&frames);
11156 for (int i = frames.length() - 1; i >= 0; i--) {
11157 // Omit functions from native scripts.
11158 if (!frames[i].function()->IsFromNativeScript()) n++;
11159 }
11160 }
11161 return Smi::FromInt(n);
11162 }
11163
11164
11165 class FrameInspector {
11166 public:
FrameInspector(JavaScriptFrame * frame,int inlined_jsframe_index,Isolate * isolate)11167 FrameInspector(JavaScriptFrame* frame,
11168 int inlined_jsframe_index,
11169 Isolate* isolate)
11170 : frame_(frame), deoptimized_frame_(NULL), isolate_(isolate) {
11171 // Calculate the deoptimized frame.
11172 if (frame->is_optimized()) {
11173 deoptimized_frame_ = Deoptimizer::DebuggerInspectableFrame(
11174 frame, inlined_jsframe_index, isolate);
11175 }
11176 has_adapted_arguments_ = frame_->has_adapted_arguments();
11177 is_bottommost_ = inlined_jsframe_index == 0;
11178 is_optimized_ = frame_->is_optimized();
11179 }
11180
~FrameInspector()11181 ~FrameInspector() {
11182 // Get rid of the calculated deoptimized frame if any.
11183 if (deoptimized_frame_ != NULL) {
11184 Deoptimizer::DeleteDebuggerInspectableFrame(deoptimized_frame_,
11185 isolate_);
11186 }
11187 }
11188
GetParametersCount()11189 int GetParametersCount() {
11190 return is_optimized_
11191 ? deoptimized_frame_->parameters_count()
11192 : frame_->ComputeParametersCount();
11193 }
expression_count()11194 int expression_count() { return deoptimized_frame_->expression_count(); }
GetFunction()11195 Object* GetFunction() {
11196 return is_optimized_
11197 ? deoptimized_frame_->GetFunction()
11198 : frame_->function();
11199 }
GetParameter(int index)11200 Object* GetParameter(int index) {
11201 return is_optimized_
11202 ? deoptimized_frame_->GetParameter(index)
11203 : frame_->GetParameter(index);
11204 }
GetExpression(int index)11205 Object* GetExpression(int index) {
11206 return is_optimized_
11207 ? deoptimized_frame_->GetExpression(index)
11208 : frame_->GetExpression(index);
11209 }
GetSourcePosition()11210 int GetSourcePosition() {
11211 return is_optimized_
11212 ? deoptimized_frame_->GetSourcePosition()
11213 : frame_->LookupCode()->SourcePosition(frame_->pc());
11214 }
IsConstructor()11215 bool IsConstructor() {
11216 return is_optimized_ && !is_bottommost_
11217 ? deoptimized_frame_->HasConstructStub()
11218 : frame_->IsConstructor();
11219 }
GetContext()11220 Object* GetContext() {
11221 return is_optimized_ ? deoptimized_frame_->GetContext() : frame_->context();
11222 }
11223
11224 // To inspect all the provided arguments the frame might need to be
11225 // replaced with the arguments frame.
SetArgumentsFrame(JavaScriptFrame * frame)11226 void SetArgumentsFrame(JavaScriptFrame* frame) {
11227 DCHECK(has_adapted_arguments_);
11228 frame_ = frame;
11229 is_optimized_ = frame_->is_optimized();
11230 DCHECK(!is_optimized_);
11231 }
11232
11233 private:
11234 JavaScriptFrame* frame_;
11235 DeoptimizedFrameInfo* deoptimized_frame_;
11236 Isolate* isolate_;
11237 bool is_optimized_;
11238 bool is_bottommost_;
11239 bool has_adapted_arguments_;
11240
11241 DISALLOW_COPY_AND_ASSIGN(FrameInspector);
11242 };
11243
11244
11245 static const int kFrameDetailsFrameIdIndex = 0;
11246 static const int kFrameDetailsReceiverIndex = 1;
11247 static const int kFrameDetailsFunctionIndex = 2;
11248 static const int kFrameDetailsArgumentCountIndex = 3;
11249 static const int kFrameDetailsLocalCountIndex = 4;
11250 static const int kFrameDetailsSourcePositionIndex = 5;
11251 static const int kFrameDetailsConstructCallIndex = 6;
11252 static const int kFrameDetailsAtReturnIndex = 7;
11253 static const int kFrameDetailsFlagsIndex = 8;
11254 static const int kFrameDetailsFirstDynamicIndex = 9;
11255
11256
FindSavedContextForFrame(Isolate * isolate,JavaScriptFrame * frame)11257 static SaveContext* FindSavedContextForFrame(Isolate* isolate,
11258 JavaScriptFrame* frame) {
11259 SaveContext* save = isolate->save_context();
11260 while (save != NULL && !save->IsBelowFrame(frame)) {
11261 save = save->prev();
11262 }
11263 DCHECK(save != NULL);
11264 return save;
11265 }
11266
11267
11268 // Advances the iterator to the frame that matches the index and returns the
11269 // inlined frame index, or -1 if not found. Skips native JS functions.
FindIndexedNonNativeFrame(JavaScriptFrameIterator * it,int index)11270 static int FindIndexedNonNativeFrame(JavaScriptFrameIterator* it, int index) {
11271 int count = -1;
11272 for (; !it->done(); it->Advance()) {
11273 List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
11274 it->frame()->Summarize(&frames);
11275 for (int i = frames.length() - 1; i >= 0; i--) {
11276 // Omit functions from native scripts.
11277 if (frames[i].function()->IsFromNativeScript()) continue;
11278 if (++count == index) return i;
11279 }
11280 }
11281 return -1;
11282 }
11283
11284
11285 // Return an array with frame details
11286 // args[0]: number: break id
11287 // args[1]: number: frame index
11288 //
11289 // The array returned contains the following information:
11290 // 0: Frame id
11291 // 1: Receiver
11292 // 2: Function
11293 // 3: Argument count
11294 // 4: Local count
11295 // 5: Source position
11296 // 6: Constructor call
11297 // 7: Is at return
11298 // 8: Flags
11299 // Arguments name, value
11300 // Locals name, value
11301 // Return value if any
RUNTIME_FUNCTION(Runtime_GetFrameDetails)11302 RUNTIME_FUNCTION(Runtime_GetFrameDetails) {
11303 HandleScope scope(isolate);
11304 DCHECK(args.length() == 2);
11305 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
11306 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
11307
11308 CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
11309 Heap* heap = isolate->heap();
11310
11311 // Find the relevant frame with the requested index.
11312 StackFrame::Id id = isolate->debug()->break_frame_id();
11313 if (id == StackFrame::NO_ID) {
11314 // If there are no JavaScript stack frames return undefined.
11315 return heap->undefined_value();
11316 }
11317
11318 JavaScriptFrameIterator it(isolate, id);
11319 // Inlined frame index in optimized frame, starting from outer function.
11320 int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index);
11321 if (inlined_jsframe_index == -1) return heap->undefined_value();
11322
11323 FrameInspector frame_inspector(it.frame(), inlined_jsframe_index, isolate);
11324 bool is_optimized = it.frame()->is_optimized();
11325
11326 // Traverse the saved contexts chain to find the active context for the
11327 // selected frame.
11328 SaveContext* save = FindSavedContextForFrame(isolate, it.frame());
11329
11330 // Get the frame id.
11331 Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate);
11332
11333 // Find source position in unoptimized code.
11334 int position = frame_inspector.GetSourcePosition();
11335
11336 // Check for constructor frame.
11337 bool constructor = frame_inspector.IsConstructor();
11338
11339 // Get scope info and read from it for local variable information.
11340 Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
11341 Handle<SharedFunctionInfo> shared(function->shared());
11342 Handle<ScopeInfo> scope_info(shared->scope_info());
11343 DCHECK(*scope_info != ScopeInfo::Empty(isolate));
11344
11345 // Get the locals names and values into a temporary array.
11346 int local_count = scope_info->LocalCount();
11347 for (int slot = 0; slot < scope_info->LocalCount(); ++slot) {
11348 // Hide compiler-introduced temporary variables, whether on the stack or on
11349 // the context.
11350 if (scope_info->LocalIsSynthetic(slot))
11351 local_count--;
11352 }
11353
11354 Handle<FixedArray> locals =
11355 isolate->factory()->NewFixedArray(local_count * 2);
11356
11357 // Fill in the values of the locals.
11358 int local = 0;
11359 int i = 0;
11360 for (; i < scope_info->StackLocalCount(); ++i) {
11361 // Use the value from the stack.
11362 if (scope_info->LocalIsSynthetic(i))
11363 continue;
11364 locals->set(local * 2, scope_info->LocalName(i));
11365 locals->set(local * 2 + 1, frame_inspector.GetExpression(i));
11366 local++;
11367 }
11368 if (local < local_count) {
11369 // Get the context containing declarations.
11370 Handle<Context> context(
11371 Context::cast(frame_inspector.GetContext())->declaration_context());
11372 for (; i < scope_info->LocalCount(); ++i) {
11373 if (scope_info->LocalIsSynthetic(i))
11374 continue;
11375 Handle<String> name(scope_info->LocalName(i));
11376 VariableMode mode;
11377 InitializationFlag init_flag;
11378 MaybeAssignedFlag maybe_assigned_flag;
11379 locals->set(local * 2, *name);
11380 int context_slot_index = ScopeInfo::ContextSlotIndex(
11381 scope_info, name, &mode, &init_flag, &maybe_assigned_flag);
11382 Object* value = context->get(context_slot_index);
11383 locals->set(local * 2 + 1, value);
11384 local++;
11385 }
11386 }
11387
11388 // Check whether this frame is positioned at return. If not top
11389 // frame or if the frame is optimized it cannot be at a return.
11390 bool at_return = false;
11391 if (!is_optimized && index == 0) {
11392 at_return = isolate->debug()->IsBreakAtReturn(it.frame());
11393 }
11394
11395 // If positioned just before return find the value to be returned and add it
11396 // to the frame information.
11397 Handle<Object> return_value = isolate->factory()->undefined_value();
11398 if (at_return) {
11399 StackFrameIterator it2(isolate);
11400 Address internal_frame_sp = NULL;
11401 while (!it2.done()) {
11402 if (it2.frame()->is_internal()) {
11403 internal_frame_sp = it2.frame()->sp();
11404 } else {
11405 if (it2.frame()->is_java_script()) {
11406 if (it2.frame()->id() == it.frame()->id()) {
11407 // The internal frame just before the JavaScript frame contains the
11408 // value to return on top. A debug break at return will create an
11409 // internal frame to store the return value (eax/rax/r0) before
11410 // entering the debug break exit frame.
11411 if (internal_frame_sp != NULL) {
11412 return_value =
11413 Handle<Object>(Memory::Object_at(internal_frame_sp),
11414 isolate);
11415 break;
11416 }
11417 }
11418 }
11419
11420 // Indicate that the previous frame was not an internal frame.
11421 internal_frame_sp = NULL;
11422 }
11423 it2.Advance();
11424 }
11425 }
11426
11427 // Now advance to the arguments adapter frame (if any). It contains all
11428 // the provided parameters whereas the function frame always have the number
11429 // of arguments matching the functions parameters. The rest of the
11430 // information (except for what is collected above) is the same.
11431 if ((inlined_jsframe_index == 0) && it.frame()->has_adapted_arguments()) {
11432 it.AdvanceToArgumentsFrame();
11433 frame_inspector.SetArgumentsFrame(it.frame());
11434 }
11435
11436 // Find the number of arguments to fill. At least fill the number of
11437 // parameters for the function and fill more if more parameters are provided.
11438 int argument_count = scope_info->ParameterCount();
11439 if (argument_count < frame_inspector.GetParametersCount()) {
11440 argument_count = frame_inspector.GetParametersCount();
11441 }
11442
11443 // Calculate the size of the result.
11444 int details_size = kFrameDetailsFirstDynamicIndex +
11445 2 * (argument_count + local_count) +
11446 (at_return ? 1 : 0);
11447 Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
11448
11449 // Add the frame id.
11450 details->set(kFrameDetailsFrameIdIndex, *frame_id);
11451
11452 // Add the function (same as in function frame).
11453 details->set(kFrameDetailsFunctionIndex, frame_inspector.GetFunction());
11454
11455 // Add the arguments count.
11456 details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
11457
11458 // Add the locals count
11459 details->set(kFrameDetailsLocalCountIndex,
11460 Smi::FromInt(local_count));
11461
11462 // Add the source position.
11463 if (position != RelocInfo::kNoPosition) {
11464 details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
11465 } else {
11466 details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value());
11467 }
11468
11469 // Add the constructor information.
11470 details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor));
11471
11472 // Add the at return information.
11473 details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return));
11474
11475 // Add flags to indicate information on whether this frame is
11476 // bit 0: invoked in the debugger context.
11477 // bit 1: optimized frame.
11478 // bit 2: inlined in optimized frame
11479 int flags = 0;
11480 if (*save->context() == *isolate->debug()->debug_context()) {
11481 flags |= 1 << 0;
11482 }
11483 if (is_optimized) {
11484 flags |= 1 << 1;
11485 flags |= inlined_jsframe_index << 2;
11486 }
11487 details->set(kFrameDetailsFlagsIndex, Smi::FromInt(flags));
11488
11489 // Fill the dynamic part.
11490 int details_index = kFrameDetailsFirstDynamicIndex;
11491
11492 // Add arguments name and value.
11493 for (int i = 0; i < argument_count; i++) {
11494 // Name of the argument.
11495 if (i < scope_info->ParameterCount()) {
11496 details->set(details_index++, scope_info->ParameterName(i));
11497 } else {
11498 details->set(details_index++, heap->undefined_value());
11499 }
11500
11501 // Parameter value.
11502 if (i < frame_inspector.GetParametersCount()) {
11503 // Get the value from the stack.
11504 details->set(details_index++, frame_inspector.GetParameter(i));
11505 } else {
11506 details->set(details_index++, heap->undefined_value());
11507 }
11508 }
11509
11510 // Add locals name and value from the temporary copy from the function frame.
11511 for (int i = 0; i < local_count * 2; i++) {
11512 details->set(details_index++, locals->get(i));
11513 }
11514
11515 // Add the value being returned.
11516 if (at_return) {
11517 details->set(details_index++, *return_value);
11518 }
11519
11520 // Add the receiver (same as in function frame).
11521 // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
11522 // THE FRAME ITERATOR TO WRAP THE RECEIVER.
11523 Handle<Object> receiver(it.frame()->receiver(), isolate);
11524 if (!receiver->IsJSObject() &&
11525 shared->strict_mode() == SLOPPY &&
11526 !function->IsBuiltin()) {
11527 // If the receiver is not a JSObject and the function is not a
11528 // builtin or strict-mode we have hit an optimization where a
11529 // value object is not converted into a wrapped JS objects. To
11530 // hide this optimization from the debugger, we wrap the receiver
11531 // by creating correct wrapper object based on the calling frame's
11532 // native context.
11533 it.Advance();
11534 if (receiver->IsUndefined()) {
11535 receiver = handle(function->global_proxy());
11536 } else {
11537 Context* context = Context::cast(it.frame()->context());
11538 Handle<Context> native_context(Context::cast(context->native_context()));
11539 if (!Object::ToObject(isolate, receiver, native_context)
11540 .ToHandle(&receiver)) {
11541 // This only happens if the receiver is forcibly set in %_CallFunction.
11542 return heap->undefined_value();
11543 }
11544 }
11545 }
11546 details->set(kFrameDetailsReceiverIndex, *receiver);
11547
11548 DCHECK_EQ(details_size, details_index);
11549 return *isolate->factory()->NewJSArrayWithElements(details);
11550 }
11551
11552
ParameterIsShadowedByContextLocal(Handle<ScopeInfo> info,Handle<String> parameter_name)11553 static bool ParameterIsShadowedByContextLocal(Handle<ScopeInfo> info,
11554 Handle<String> parameter_name) {
11555 VariableMode mode;
11556 InitializationFlag init_flag;
11557 MaybeAssignedFlag maybe_assigned_flag;
11558 return ScopeInfo::ContextSlotIndex(info, parameter_name, &mode, &init_flag,
11559 &maybe_assigned_flag) != -1;
11560 }
11561
11562
11563 // Create a plain JSObject which materializes the local scope for the specified
11564 // frame.
11565 MUST_USE_RESULT
MaterializeStackLocalsWithFrameInspector(Isolate * isolate,Handle<JSObject> target,Handle<JSFunction> function,FrameInspector * frame_inspector)11566 static MaybeHandle<JSObject> MaterializeStackLocalsWithFrameInspector(
11567 Isolate* isolate,
11568 Handle<JSObject> target,
11569 Handle<JSFunction> function,
11570 FrameInspector* frame_inspector) {
11571 Handle<SharedFunctionInfo> shared(function->shared());
11572 Handle<ScopeInfo> scope_info(shared->scope_info());
11573
11574 // First fill all parameters.
11575 for (int i = 0; i < scope_info->ParameterCount(); ++i) {
11576 // Do not materialize the parameter if it is shadowed by a context local.
11577 Handle<String> name(scope_info->ParameterName(i));
11578 if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
11579
11580 HandleScope scope(isolate);
11581 Handle<Object> value(i < frame_inspector->GetParametersCount()
11582 ? frame_inspector->GetParameter(i)
11583 : isolate->heap()->undefined_value(),
11584 isolate);
11585 DCHECK(!value->IsTheHole());
11586
11587 RETURN_ON_EXCEPTION(
11588 isolate,
11589 Runtime::SetObjectProperty(isolate, target, name, value, SLOPPY),
11590 JSObject);
11591 }
11592
11593 // Second fill all stack locals.
11594 for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
11595 if (scope_info->LocalIsSynthetic(i)) continue;
11596 Handle<String> name(scope_info->StackLocalName(i));
11597 Handle<Object> value(frame_inspector->GetExpression(i), isolate);
11598 if (value->IsTheHole()) continue;
11599
11600 RETURN_ON_EXCEPTION(
11601 isolate,
11602 Runtime::SetObjectProperty(isolate, target, name, value, SLOPPY),
11603 JSObject);
11604 }
11605
11606 return target;
11607 }
11608
11609
UpdateStackLocalsFromMaterializedObject(Isolate * isolate,Handle<JSObject> target,Handle<JSFunction> function,JavaScriptFrame * frame,int inlined_jsframe_index)11610 static void UpdateStackLocalsFromMaterializedObject(Isolate* isolate,
11611 Handle<JSObject> target,
11612 Handle<JSFunction> function,
11613 JavaScriptFrame* frame,
11614 int inlined_jsframe_index) {
11615 if (inlined_jsframe_index != 0 || frame->is_optimized()) {
11616 // Optimized frames are not supported.
11617 // TODO(yangguo): make sure all code deoptimized when debugger is active
11618 // and assert that this cannot happen.
11619 return;
11620 }
11621
11622 Handle<SharedFunctionInfo> shared(function->shared());
11623 Handle<ScopeInfo> scope_info(shared->scope_info());
11624
11625 // Parameters.
11626 for (int i = 0; i < scope_info->ParameterCount(); ++i) {
11627 // Shadowed parameters were not materialized.
11628 Handle<String> name(scope_info->ParameterName(i));
11629 if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
11630
11631 DCHECK(!frame->GetParameter(i)->IsTheHole());
11632 HandleScope scope(isolate);
11633 Handle<Object> value =
11634 Object::GetPropertyOrElement(target, name).ToHandleChecked();
11635 frame->SetParameterValue(i, *value);
11636 }
11637
11638 // Stack locals.
11639 for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
11640 if (scope_info->LocalIsSynthetic(i)) continue;
11641 if (frame->GetExpression(i)->IsTheHole()) continue;
11642 HandleScope scope(isolate);
11643 Handle<Object> value = Object::GetPropertyOrElement(
11644 target,
11645 handle(scope_info->StackLocalName(i), isolate)).ToHandleChecked();
11646 frame->SetExpression(i, *value);
11647 }
11648 }
11649
11650
MaterializeLocalContext(Isolate * isolate,Handle<JSObject> target,Handle<JSFunction> function,JavaScriptFrame * frame)11651 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalContext(
11652 Isolate* isolate,
11653 Handle<JSObject> target,
11654 Handle<JSFunction> function,
11655 JavaScriptFrame* frame) {
11656 HandleScope scope(isolate);
11657 Handle<SharedFunctionInfo> shared(function->shared());
11658 Handle<ScopeInfo> scope_info(shared->scope_info());
11659
11660 if (!scope_info->HasContext()) return target;
11661
11662 // Third fill all context locals.
11663 Handle<Context> frame_context(Context::cast(frame->context()));
11664 Handle<Context> function_context(frame_context->declaration_context());
11665 if (!ScopeInfo::CopyContextLocalsToScopeObject(
11666 scope_info, function_context, target)) {
11667 return MaybeHandle<JSObject>();
11668 }
11669
11670 // Finally copy any properties from the function context extension.
11671 // These will be variables introduced by eval.
11672 if (function_context->closure() == *function) {
11673 if (function_context->has_extension() &&
11674 !function_context->IsNativeContext()) {
11675 Handle<JSObject> ext(JSObject::cast(function_context->extension()));
11676 Handle<FixedArray> keys;
11677 ASSIGN_RETURN_ON_EXCEPTION(
11678 isolate, keys,
11679 JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS),
11680 JSObject);
11681
11682 for (int i = 0; i < keys->length(); i++) {
11683 // Names of variables introduced by eval are strings.
11684 DCHECK(keys->get(i)->IsString());
11685 Handle<String> key(String::cast(keys->get(i)));
11686 Handle<Object> value;
11687 ASSIGN_RETURN_ON_EXCEPTION(
11688 isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
11689 RETURN_ON_EXCEPTION(
11690 isolate,
11691 Runtime::SetObjectProperty(isolate, target, key, value, SLOPPY),
11692 JSObject);
11693 }
11694 }
11695 }
11696
11697 return target;
11698 }
11699
11700
MaterializeLocalScope(Isolate * isolate,JavaScriptFrame * frame,int inlined_jsframe_index)11701 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalScope(
11702 Isolate* isolate,
11703 JavaScriptFrame* frame,
11704 int inlined_jsframe_index) {
11705 FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
11706 Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
11707
11708 Handle<JSObject> local_scope =
11709 isolate->factory()->NewJSObject(isolate->object_function());
11710 ASSIGN_RETURN_ON_EXCEPTION(
11711 isolate, local_scope,
11712 MaterializeStackLocalsWithFrameInspector(
11713 isolate, local_scope, function, &frame_inspector),
11714 JSObject);
11715
11716 return MaterializeLocalContext(isolate, local_scope, function, frame);
11717 }
11718
11719
11720 // Set the context local variable value.
SetContextLocalValue(Isolate * isolate,Handle<ScopeInfo> scope_info,Handle<Context> context,Handle<String> variable_name,Handle<Object> new_value)11721 static bool SetContextLocalValue(Isolate* isolate,
11722 Handle<ScopeInfo> scope_info,
11723 Handle<Context> context,
11724 Handle<String> variable_name,
11725 Handle<Object> new_value) {
11726 for (int i = 0; i < scope_info->ContextLocalCount(); i++) {
11727 Handle<String> next_name(scope_info->ContextLocalName(i));
11728 if (String::Equals(variable_name, next_name)) {
11729 VariableMode mode;
11730 InitializationFlag init_flag;
11731 MaybeAssignedFlag maybe_assigned_flag;
11732 int context_index = ScopeInfo::ContextSlotIndex(
11733 scope_info, next_name, &mode, &init_flag, &maybe_assigned_flag);
11734 context->set(context_index, *new_value);
11735 return true;
11736 }
11737 }
11738
11739 return false;
11740 }
11741
11742
SetLocalVariableValue(Isolate * isolate,JavaScriptFrame * frame,int inlined_jsframe_index,Handle<String> variable_name,Handle<Object> new_value)11743 static bool SetLocalVariableValue(Isolate* isolate,
11744 JavaScriptFrame* frame,
11745 int inlined_jsframe_index,
11746 Handle<String> variable_name,
11747 Handle<Object> new_value) {
11748 if (inlined_jsframe_index != 0 || frame->is_optimized()) {
11749 // Optimized frames are not supported.
11750 return false;
11751 }
11752
11753 Handle<JSFunction> function(frame->function());
11754 Handle<SharedFunctionInfo> shared(function->shared());
11755 Handle<ScopeInfo> scope_info(shared->scope_info());
11756
11757 bool default_result = false;
11758
11759 // Parameters.
11760 for (int i = 0; i < scope_info->ParameterCount(); ++i) {
11761 HandleScope scope(isolate);
11762 if (String::Equals(handle(scope_info->ParameterName(i)), variable_name)) {
11763 frame->SetParameterValue(i, *new_value);
11764 // Argument might be shadowed in heap context, don't stop here.
11765 default_result = true;
11766 }
11767 }
11768
11769 // Stack locals.
11770 for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
11771 HandleScope scope(isolate);
11772 if (String::Equals(handle(scope_info->StackLocalName(i)), variable_name)) {
11773 frame->SetExpression(i, *new_value);
11774 return true;
11775 }
11776 }
11777
11778 if (scope_info->HasContext()) {
11779 // Context locals.
11780 Handle<Context> frame_context(Context::cast(frame->context()));
11781 Handle<Context> function_context(frame_context->declaration_context());
11782 if (SetContextLocalValue(
11783 isolate, scope_info, function_context, variable_name, new_value)) {
11784 return true;
11785 }
11786
11787 // Function context extension. These are variables introduced by eval.
11788 if (function_context->closure() == *function) {
11789 if (function_context->has_extension() &&
11790 !function_context->IsNativeContext()) {
11791 Handle<JSObject> ext(JSObject::cast(function_context->extension()));
11792
11793 Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
11794 DCHECK(maybe.has_value);
11795 if (maybe.value) {
11796 // We don't expect this to do anything except replacing
11797 // property value.
11798 Runtime::SetObjectProperty(isolate, ext, variable_name, new_value,
11799 SLOPPY).Assert();
11800 return true;
11801 }
11802 }
11803 }
11804 }
11805
11806 return default_result;
11807 }
11808
11809
11810 // Create a plain JSObject which materializes the closure content for the
11811 // context.
MaterializeClosure(Isolate * isolate,Handle<Context> context)11812 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeClosure(
11813 Isolate* isolate,
11814 Handle<Context> context) {
11815 DCHECK(context->IsFunctionContext());
11816
11817 Handle<SharedFunctionInfo> shared(context->closure()->shared());
11818 Handle<ScopeInfo> scope_info(shared->scope_info());
11819
11820 // Allocate and initialize a JSObject with all the content of this function
11821 // closure.
11822 Handle<JSObject> closure_scope =
11823 isolate->factory()->NewJSObject(isolate->object_function());
11824
11825 // Fill all context locals to the context extension.
11826 if (!ScopeInfo::CopyContextLocalsToScopeObject(
11827 scope_info, context, closure_scope)) {
11828 return MaybeHandle<JSObject>();
11829 }
11830
11831 // Finally copy any properties from the function context extension. This will
11832 // be variables introduced by eval.
11833 if (context->has_extension()) {
11834 Handle<JSObject> ext(JSObject::cast(context->extension()));
11835 Handle<FixedArray> keys;
11836 ASSIGN_RETURN_ON_EXCEPTION(
11837 isolate, keys,
11838 JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS), JSObject);
11839
11840 for (int i = 0; i < keys->length(); i++) {
11841 HandleScope scope(isolate);
11842 // Names of variables introduced by eval are strings.
11843 DCHECK(keys->get(i)->IsString());
11844 Handle<String> key(String::cast(keys->get(i)));
11845 Handle<Object> value;
11846 ASSIGN_RETURN_ON_EXCEPTION(
11847 isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
11848 RETURN_ON_EXCEPTION(
11849 isolate,
11850 Runtime::DefineObjectProperty(closure_scope, key, value, NONE),
11851 JSObject);
11852 }
11853 }
11854
11855 return closure_scope;
11856 }
11857
11858
11859 // This method copies structure of MaterializeClosure method above.
SetClosureVariableValue(Isolate * isolate,Handle<Context> context,Handle<String> variable_name,Handle<Object> new_value)11860 static bool SetClosureVariableValue(Isolate* isolate,
11861 Handle<Context> context,
11862 Handle<String> variable_name,
11863 Handle<Object> new_value) {
11864 DCHECK(context->IsFunctionContext());
11865
11866 Handle<SharedFunctionInfo> shared(context->closure()->shared());
11867 Handle<ScopeInfo> scope_info(shared->scope_info());
11868
11869 // Context locals to the context extension.
11870 if (SetContextLocalValue(
11871 isolate, scope_info, context, variable_name, new_value)) {
11872 return true;
11873 }
11874
11875 // Properties from the function context extension. This will
11876 // be variables introduced by eval.
11877 if (context->has_extension()) {
11878 Handle<JSObject> ext(JSObject::cast(context->extension()));
11879 Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
11880 DCHECK(maybe.has_value);
11881 if (maybe.value) {
11882 // We don't expect this to do anything except replacing property value.
11883 Runtime::DefineObjectProperty(
11884 ext, variable_name, new_value, NONE).Assert();
11885 return true;
11886 }
11887 }
11888
11889 return false;
11890 }
11891
11892
11893 // Create a plain JSObject which materializes the scope for the specified
11894 // catch context.
MaterializeCatchScope(Isolate * isolate,Handle<Context> context)11895 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeCatchScope(
11896 Isolate* isolate,
11897 Handle<Context> context) {
11898 DCHECK(context->IsCatchContext());
11899 Handle<String> name(String::cast(context->extension()));
11900 Handle<Object> thrown_object(context->get(Context::THROWN_OBJECT_INDEX),
11901 isolate);
11902 Handle<JSObject> catch_scope =
11903 isolate->factory()->NewJSObject(isolate->object_function());
11904 RETURN_ON_EXCEPTION(
11905 isolate,
11906 Runtime::DefineObjectProperty(catch_scope, name, thrown_object, NONE),
11907 JSObject);
11908 return catch_scope;
11909 }
11910
11911
SetCatchVariableValue(Isolate * isolate,Handle<Context> context,Handle<String> variable_name,Handle<Object> new_value)11912 static bool SetCatchVariableValue(Isolate* isolate,
11913 Handle<Context> context,
11914 Handle<String> variable_name,
11915 Handle<Object> new_value) {
11916 DCHECK(context->IsCatchContext());
11917 Handle<String> name(String::cast(context->extension()));
11918 if (!String::Equals(name, variable_name)) {
11919 return false;
11920 }
11921 context->set(Context::THROWN_OBJECT_INDEX, *new_value);
11922 return true;
11923 }
11924
11925
11926 // Create a plain JSObject which materializes the block scope for the specified
11927 // block context.
MaterializeBlockScope(Isolate * isolate,Handle<Context> context)11928 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeBlockScope(
11929 Isolate* isolate,
11930 Handle<Context> context) {
11931 DCHECK(context->IsBlockContext());
11932 Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
11933
11934 // Allocate and initialize a JSObject with all the arguments, stack locals
11935 // heap locals and extension properties of the debugged function.
11936 Handle<JSObject> block_scope =
11937 isolate->factory()->NewJSObject(isolate->object_function());
11938
11939 // Fill all context locals.
11940 if (!ScopeInfo::CopyContextLocalsToScopeObject(
11941 scope_info, context, block_scope)) {
11942 return MaybeHandle<JSObject>();
11943 }
11944
11945 return block_scope;
11946 }
11947
11948
11949 // Create a plain JSObject which materializes the module scope for the specified
11950 // module context.
MaterializeModuleScope(Isolate * isolate,Handle<Context> context)11951 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeModuleScope(
11952 Isolate* isolate,
11953 Handle<Context> context) {
11954 DCHECK(context->IsModuleContext());
11955 Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
11956
11957 // Allocate and initialize a JSObject with all the members of the debugged
11958 // module.
11959 Handle<JSObject> module_scope =
11960 isolate->factory()->NewJSObject(isolate->object_function());
11961
11962 // Fill all context locals.
11963 if (!ScopeInfo::CopyContextLocalsToScopeObject(
11964 scope_info, context, module_scope)) {
11965 return MaybeHandle<JSObject>();
11966 }
11967
11968 return module_scope;
11969 }
11970
11971
11972 // Iterate over the actual scopes visible from a stack frame or from a closure.
11973 // The iteration proceeds from the innermost visible nested scope outwards.
11974 // All scopes are backed by an actual context except the local scope,
11975 // which is inserted "artificially" in the context chain.
11976 class ScopeIterator {
11977 public:
11978 enum ScopeType {
11979 ScopeTypeGlobal = 0,
11980 ScopeTypeLocal,
11981 ScopeTypeWith,
11982 ScopeTypeClosure,
11983 ScopeTypeCatch,
11984 ScopeTypeBlock,
11985 ScopeTypeModule
11986 };
11987
ScopeIterator(Isolate * isolate,JavaScriptFrame * frame,int inlined_jsframe_index,bool ignore_nested_scopes=false)11988 ScopeIterator(Isolate* isolate,
11989 JavaScriptFrame* frame,
11990 int inlined_jsframe_index,
11991 bool ignore_nested_scopes = false)
11992 : isolate_(isolate),
11993 frame_(frame),
11994 inlined_jsframe_index_(inlined_jsframe_index),
11995 function_(frame->function()),
11996 context_(Context::cast(frame->context())),
11997 nested_scope_chain_(4),
11998 failed_(false) {
11999
12000 // Catch the case when the debugger stops in an internal function.
12001 Handle<SharedFunctionInfo> shared_info(function_->shared());
12002 Handle<ScopeInfo> scope_info(shared_info->scope_info());
12003 if (shared_info->script() == isolate->heap()->undefined_value()) {
12004 while (context_->closure() == *function_) {
12005 context_ = Handle<Context>(context_->previous(), isolate_);
12006 }
12007 return;
12008 }
12009
12010 // Get the debug info (create it if it does not exist).
12011 if (!isolate->debug()->EnsureDebugInfo(shared_info, function_)) {
12012 // Return if ensuring debug info failed.
12013 return;
12014 }
12015
12016 // Currently it takes too much time to find nested scopes due to script
12017 // parsing. Sometimes we want to run the ScopeIterator as fast as possible
12018 // (for example, while collecting async call stacks on every
12019 // addEventListener call), even if we drop some nested scopes.
12020 // Later we may optimize getting the nested scopes (cache the result?)
12021 // and include nested scopes into the "fast" iteration case as well.
12022 if (!ignore_nested_scopes) {
12023 Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared_info);
12024
12025 // Find the break point where execution has stopped.
12026 BreakLocationIterator break_location_iterator(debug_info,
12027 ALL_BREAK_LOCATIONS);
12028 // pc points to the instruction after the current one, possibly a break
12029 // location as well. So the "- 1" to exclude it from the search.
12030 break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
12031
12032 // Within the return sequence at the moment it is not possible to
12033 // get a source position which is consistent with the current scope chain.
12034 // Thus all nested with, catch and block contexts are skipped and we only
12035 // provide the function scope.
12036 ignore_nested_scopes = break_location_iterator.IsExit();
12037 }
12038
12039 if (ignore_nested_scopes) {
12040 if (scope_info->HasContext()) {
12041 context_ = Handle<Context>(context_->declaration_context(), isolate_);
12042 } else {
12043 while (context_->closure() == *function_) {
12044 context_ = Handle<Context>(context_->previous(), isolate_);
12045 }
12046 }
12047 if (scope_info->scope_type() == FUNCTION_SCOPE) {
12048 nested_scope_chain_.Add(scope_info);
12049 }
12050 } else {
12051 // Reparse the code and analyze the scopes.
12052 Handle<Script> script(Script::cast(shared_info->script()));
12053 Scope* scope = NULL;
12054
12055 // Check whether we are in global, eval or function code.
12056 Handle<ScopeInfo> scope_info(shared_info->scope_info());
12057 if (scope_info->scope_type() != FUNCTION_SCOPE) {
12058 // Global or eval code.
12059 CompilationInfoWithZone info(script);
12060 if (scope_info->scope_type() == GLOBAL_SCOPE) {
12061 info.MarkAsGlobal();
12062 } else {
12063 DCHECK(scope_info->scope_type() == EVAL_SCOPE);
12064 info.MarkAsEval();
12065 info.SetContext(Handle<Context>(function_->context()));
12066 }
12067 if (Parser::Parse(&info) && Scope::Analyze(&info)) {
12068 scope = info.function()->scope();
12069 }
12070 RetrieveScopeChain(scope, shared_info);
12071 } else {
12072 // Function code
12073 CompilationInfoWithZone info(shared_info);
12074 if (Parser::Parse(&info) && Scope::Analyze(&info)) {
12075 scope = info.function()->scope();
12076 }
12077 RetrieveScopeChain(scope, shared_info);
12078 }
12079 }
12080 }
12081
ScopeIterator(Isolate * isolate,Handle<JSFunction> function)12082 ScopeIterator(Isolate* isolate,
12083 Handle<JSFunction> function)
12084 : isolate_(isolate),
12085 frame_(NULL),
12086 inlined_jsframe_index_(0),
12087 function_(function),
12088 context_(function->context()),
12089 failed_(false) {
12090 if (function->IsBuiltin()) {
12091 context_ = Handle<Context>();
12092 }
12093 }
12094
12095 // More scopes?
Done()12096 bool Done() {
12097 DCHECK(!failed_);
12098 return context_.is_null();
12099 }
12100
Failed()12101 bool Failed() { return failed_; }
12102
12103 // Move to the next scope.
Next()12104 void Next() {
12105 DCHECK(!failed_);
12106 ScopeType scope_type = Type();
12107 if (scope_type == ScopeTypeGlobal) {
12108 // The global scope is always the last in the chain.
12109 DCHECK(context_->IsNativeContext());
12110 context_ = Handle<Context>();
12111 return;
12112 }
12113 if (nested_scope_chain_.is_empty()) {
12114 context_ = Handle<Context>(context_->previous(), isolate_);
12115 } else {
12116 if (nested_scope_chain_.last()->HasContext()) {
12117 DCHECK(context_->previous() != NULL);
12118 context_ = Handle<Context>(context_->previous(), isolate_);
12119 }
12120 nested_scope_chain_.RemoveLast();
12121 }
12122 }
12123
12124 // Return the type of the current scope.
Type()12125 ScopeType Type() {
12126 DCHECK(!failed_);
12127 if (!nested_scope_chain_.is_empty()) {
12128 Handle<ScopeInfo> scope_info = nested_scope_chain_.last();
12129 switch (scope_info->scope_type()) {
12130 case FUNCTION_SCOPE:
12131 DCHECK(context_->IsFunctionContext() ||
12132 !scope_info->HasContext());
12133 return ScopeTypeLocal;
12134 case MODULE_SCOPE:
12135 DCHECK(context_->IsModuleContext());
12136 return ScopeTypeModule;
12137 case GLOBAL_SCOPE:
12138 DCHECK(context_->IsNativeContext());
12139 return ScopeTypeGlobal;
12140 case WITH_SCOPE:
12141 DCHECK(context_->IsWithContext());
12142 return ScopeTypeWith;
12143 case CATCH_SCOPE:
12144 DCHECK(context_->IsCatchContext());
12145 return ScopeTypeCatch;
12146 case BLOCK_SCOPE:
12147 DCHECK(!scope_info->HasContext() ||
12148 context_->IsBlockContext());
12149 return ScopeTypeBlock;
12150 case EVAL_SCOPE:
12151 UNREACHABLE();
12152 }
12153 }
12154 if (context_->IsNativeContext()) {
12155 DCHECK(context_->global_object()->IsGlobalObject());
12156 return ScopeTypeGlobal;
12157 }
12158 if (context_->IsFunctionContext()) {
12159 return ScopeTypeClosure;
12160 }
12161 if (context_->IsCatchContext()) {
12162 return ScopeTypeCatch;
12163 }
12164 if (context_->IsBlockContext()) {
12165 return ScopeTypeBlock;
12166 }
12167 if (context_->IsModuleContext()) {
12168 return ScopeTypeModule;
12169 }
12170 DCHECK(context_->IsWithContext());
12171 return ScopeTypeWith;
12172 }
12173
12174 // Return the JavaScript object with the content of the current scope.
ScopeObject()12175 MaybeHandle<JSObject> ScopeObject() {
12176 DCHECK(!failed_);
12177 switch (Type()) {
12178 case ScopeIterator::ScopeTypeGlobal:
12179 return Handle<JSObject>(CurrentContext()->global_object());
12180 case ScopeIterator::ScopeTypeLocal:
12181 // Materialize the content of the local scope into a JSObject.
12182 DCHECK(nested_scope_chain_.length() == 1);
12183 return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_);
12184 case ScopeIterator::ScopeTypeWith:
12185 // Return the with object.
12186 return Handle<JSObject>(JSObject::cast(CurrentContext()->extension()));
12187 case ScopeIterator::ScopeTypeCatch:
12188 return MaterializeCatchScope(isolate_, CurrentContext());
12189 case ScopeIterator::ScopeTypeClosure:
12190 // Materialize the content of the closure scope into a JSObject.
12191 return MaterializeClosure(isolate_, CurrentContext());
12192 case ScopeIterator::ScopeTypeBlock:
12193 return MaterializeBlockScope(isolate_, CurrentContext());
12194 case ScopeIterator::ScopeTypeModule:
12195 return MaterializeModuleScope(isolate_, CurrentContext());
12196 }
12197 UNREACHABLE();
12198 return Handle<JSObject>();
12199 }
12200
SetVariableValue(Handle<String> variable_name,Handle<Object> new_value)12201 bool SetVariableValue(Handle<String> variable_name,
12202 Handle<Object> new_value) {
12203 DCHECK(!failed_);
12204 switch (Type()) {
12205 case ScopeIterator::ScopeTypeGlobal:
12206 break;
12207 case ScopeIterator::ScopeTypeLocal:
12208 return SetLocalVariableValue(isolate_, frame_, inlined_jsframe_index_,
12209 variable_name, new_value);
12210 case ScopeIterator::ScopeTypeWith:
12211 break;
12212 case ScopeIterator::ScopeTypeCatch:
12213 return SetCatchVariableValue(isolate_, CurrentContext(),
12214 variable_name, new_value);
12215 case ScopeIterator::ScopeTypeClosure:
12216 return SetClosureVariableValue(isolate_, CurrentContext(),
12217 variable_name, new_value);
12218 case ScopeIterator::ScopeTypeBlock:
12219 // TODO(2399): should we implement it?
12220 break;
12221 case ScopeIterator::ScopeTypeModule:
12222 // TODO(2399): should we implement it?
12223 break;
12224 }
12225 return false;
12226 }
12227
CurrentScopeInfo()12228 Handle<ScopeInfo> CurrentScopeInfo() {
12229 DCHECK(!failed_);
12230 if (!nested_scope_chain_.is_empty()) {
12231 return nested_scope_chain_.last();
12232 } else if (context_->IsBlockContext()) {
12233 return Handle<ScopeInfo>(ScopeInfo::cast(context_->extension()));
12234 } else if (context_->IsFunctionContext()) {
12235 return Handle<ScopeInfo>(context_->closure()->shared()->scope_info());
12236 }
12237 return Handle<ScopeInfo>::null();
12238 }
12239
12240 // Return the context for this scope. For the local context there might not
12241 // be an actual context.
CurrentContext()12242 Handle<Context> CurrentContext() {
12243 DCHECK(!failed_);
12244 if (Type() == ScopeTypeGlobal ||
12245 nested_scope_chain_.is_empty()) {
12246 return context_;
12247 } else if (nested_scope_chain_.last()->HasContext()) {
12248 return context_;
12249 } else {
12250 return Handle<Context>();
12251 }
12252 }
12253
12254 #ifdef DEBUG
12255 // Debug print of the content of the current scope.
DebugPrint()12256 void DebugPrint() {
12257 OFStream os(stdout);
12258 DCHECK(!failed_);
12259 switch (Type()) {
12260 case ScopeIterator::ScopeTypeGlobal:
12261 os << "Global:\n";
12262 CurrentContext()->Print(os);
12263 break;
12264
12265 case ScopeIterator::ScopeTypeLocal: {
12266 os << "Local:\n";
12267 function_->shared()->scope_info()->Print();
12268 if (!CurrentContext().is_null()) {
12269 CurrentContext()->Print(os);
12270 if (CurrentContext()->has_extension()) {
12271 Handle<Object> extension(CurrentContext()->extension(), isolate_);
12272 if (extension->IsJSContextExtensionObject()) {
12273 extension->Print(os);
12274 }
12275 }
12276 }
12277 break;
12278 }
12279
12280 case ScopeIterator::ScopeTypeWith:
12281 os << "With:\n";
12282 CurrentContext()->extension()->Print(os);
12283 break;
12284
12285 case ScopeIterator::ScopeTypeCatch:
12286 os << "Catch:\n";
12287 CurrentContext()->extension()->Print(os);
12288 CurrentContext()->get(Context::THROWN_OBJECT_INDEX)->Print(os);
12289 break;
12290
12291 case ScopeIterator::ScopeTypeClosure:
12292 os << "Closure:\n";
12293 CurrentContext()->Print(os);
12294 if (CurrentContext()->has_extension()) {
12295 Handle<Object> extension(CurrentContext()->extension(), isolate_);
12296 if (extension->IsJSContextExtensionObject()) {
12297 extension->Print(os);
12298 }
12299 }
12300 break;
12301
12302 default:
12303 UNREACHABLE();
12304 }
12305 PrintF("\n");
12306 }
12307 #endif
12308
12309 private:
12310 Isolate* isolate_;
12311 JavaScriptFrame* frame_;
12312 int inlined_jsframe_index_;
12313 Handle<JSFunction> function_;
12314 Handle<Context> context_;
12315 List<Handle<ScopeInfo> > nested_scope_chain_;
12316 bool failed_;
12317
RetrieveScopeChain(Scope * scope,Handle<SharedFunctionInfo> shared_info)12318 void RetrieveScopeChain(Scope* scope,
12319 Handle<SharedFunctionInfo> shared_info) {
12320 if (scope != NULL) {
12321 int source_position = shared_info->code()->SourcePosition(frame_->pc());
12322 scope->GetNestedScopeChain(&nested_scope_chain_, source_position);
12323 } else {
12324 // A failed reparse indicates that the preparser has diverged from the
12325 // parser or that the preparse data given to the initial parse has been
12326 // faulty. We fail in debug mode but in release mode we only provide the
12327 // information we get from the context chain but nothing about
12328 // completely stack allocated scopes or stack allocated locals.
12329 // Or it could be due to stack overflow.
12330 DCHECK(isolate_->has_pending_exception());
12331 failed_ = true;
12332 }
12333 }
12334
12335 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
12336 };
12337
12338
RUNTIME_FUNCTION(Runtime_GetScopeCount)12339 RUNTIME_FUNCTION(Runtime_GetScopeCount) {
12340 HandleScope scope(isolate);
12341 DCHECK(args.length() == 2);
12342 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12343 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12344
12345 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12346
12347 // Get the frame where the debugging is performed.
12348 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12349 JavaScriptFrameIterator it(isolate, id);
12350 JavaScriptFrame* frame = it.frame();
12351
12352 // Count the visible scopes.
12353 int n = 0;
12354 for (ScopeIterator it(isolate, frame, 0);
12355 !it.Done();
12356 it.Next()) {
12357 n++;
12358 }
12359
12360 return Smi::FromInt(n);
12361 }
12362
12363
12364 // Returns the list of step-in positions (text offset) in a function of the
12365 // stack frame in a range from the current debug break position to the end
12366 // of the corresponding statement.
RUNTIME_FUNCTION(Runtime_GetStepInPositions)12367 RUNTIME_FUNCTION(Runtime_GetStepInPositions) {
12368 HandleScope scope(isolate);
12369 DCHECK(args.length() == 2);
12370 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12371 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12372
12373 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12374
12375 // Get the frame where the debugging is performed.
12376 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12377 JavaScriptFrameIterator frame_it(isolate, id);
12378 RUNTIME_ASSERT(!frame_it.done());
12379
12380 JavaScriptFrame* frame = frame_it.frame();
12381
12382 Handle<JSFunction> fun =
12383 Handle<JSFunction>(frame->function());
12384 Handle<SharedFunctionInfo> shared =
12385 Handle<SharedFunctionInfo>(fun->shared());
12386
12387 if (!isolate->debug()->EnsureDebugInfo(shared, fun)) {
12388 return isolate->heap()->undefined_value();
12389 }
12390
12391 Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared);
12392
12393 int len = 0;
12394 Handle<JSArray> array(isolate->factory()->NewJSArray(10));
12395 // Find the break point where execution has stopped.
12396 BreakLocationIterator break_location_iterator(debug_info,
12397 ALL_BREAK_LOCATIONS);
12398
12399 break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
12400 int current_statement_pos = break_location_iterator.statement_position();
12401
12402 while (!break_location_iterator.Done()) {
12403 bool accept;
12404 if (break_location_iterator.pc() > frame->pc()) {
12405 accept = true;
12406 } else {
12407 StackFrame::Id break_frame_id = isolate->debug()->break_frame_id();
12408 // The break point is near our pc. Could be a step-in possibility,
12409 // that is currently taken by active debugger call.
12410 if (break_frame_id == StackFrame::NO_ID) {
12411 // We are not stepping.
12412 accept = false;
12413 } else {
12414 JavaScriptFrameIterator additional_frame_it(isolate, break_frame_id);
12415 // If our frame is a top frame and we are stepping, we can do step-in
12416 // at this place.
12417 accept = additional_frame_it.frame()->id() == id;
12418 }
12419 }
12420 if (accept) {
12421 if (break_location_iterator.IsStepInLocation(isolate)) {
12422 Smi* position_value = Smi::FromInt(break_location_iterator.position());
12423 RETURN_FAILURE_ON_EXCEPTION(
12424 isolate,
12425 JSObject::SetElement(array, len,
12426 Handle<Object>(position_value, isolate),
12427 NONE, SLOPPY));
12428 len++;
12429 }
12430 }
12431 // Advance iterator.
12432 break_location_iterator.Next();
12433 if (current_statement_pos !=
12434 break_location_iterator.statement_position()) {
12435 break;
12436 }
12437 }
12438 return *array;
12439 }
12440
12441
12442 static const int kScopeDetailsTypeIndex = 0;
12443 static const int kScopeDetailsObjectIndex = 1;
12444 static const int kScopeDetailsSize = 2;
12445
12446
MaterializeScopeDetails(Isolate * isolate,ScopeIterator * it)12447 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeScopeDetails(
12448 Isolate* isolate,
12449 ScopeIterator* it) {
12450 // Calculate the size of the result.
12451 int details_size = kScopeDetailsSize;
12452 Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
12453
12454 // Fill in scope details.
12455 details->set(kScopeDetailsTypeIndex, Smi::FromInt(it->Type()));
12456 Handle<JSObject> scope_object;
12457 ASSIGN_RETURN_ON_EXCEPTION(
12458 isolate, scope_object, it->ScopeObject(), JSObject);
12459 details->set(kScopeDetailsObjectIndex, *scope_object);
12460
12461 return isolate->factory()->NewJSArrayWithElements(details);
12462 }
12463
12464
12465 // Return an array with scope details
12466 // args[0]: number: break id
12467 // args[1]: number: frame index
12468 // args[2]: number: inlined frame index
12469 // args[3]: number: scope index
12470 //
12471 // The array returned contains the following information:
12472 // 0: Scope type
12473 // 1: Scope object
RUNTIME_FUNCTION(Runtime_GetScopeDetails)12474 RUNTIME_FUNCTION(Runtime_GetScopeDetails) {
12475 HandleScope scope(isolate);
12476 DCHECK(args.length() == 4);
12477 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12478 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12479
12480 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12481 CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
12482 CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
12483
12484 // Get the frame where the debugging is performed.
12485 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12486 JavaScriptFrameIterator frame_it(isolate, id);
12487 JavaScriptFrame* frame = frame_it.frame();
12488
12489 // Find the requested scope.
12490 int n = 0;
12491 ScopeIterator it(isolate, frame, inlined_jsframe_index);
12492 for (; !it.Done() && n < index; it.Next()) {
12493 n++;
12494 }
12495 if (it.Done()) {
12496 return isolate->heap()->undefined_value();
12497 }
12498 Handle<JSObject> details;
12499 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
12500 isolate, details, MaterializeScopeDetails(isolate, &it));
12501 return *details;
12502 }
12503
12504
12505 // Return an array of scope details
12506 // args[0]: number: break id
12507 // args[1]: number: frame index
12508 // args[2]: number: inlined frame index
12509 // args[3]: boolean: ignore nested scopes
12510 //
12511 // The array returned contains arrays with the following information:
12512 // 0: Scope type
12513 // 1: Scope object
RUNTIME_FUNCTION(Runtime_GetAllScopesDetails)12514 RUNTIME_FUNCTION(Runtime_GetAllScopesDetails) {
12515 HandleScope scope(isolate);
12516 DCHECK(args.length() == 3 || args.length() == 4);
12517 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12518 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12519
12520 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12521 CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
12522
12523 bool ignore_nested_scopes = false;
12524 if (args.length() == 4) {
12525 CONVERT_BOOLEAN_ARG_CHECKED(flag, 3);
12526 ignore_nested_scopes = flag;
12527 }
12528
12529 // Get the frame where the debugging is performed.
12530 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12531 JavaScriptFrameIterator frame_it(isolate, id);
12532 JavaScriptFrame* frame = frame_it.frame();
12533
12534 List<Handle<JSObject> > result(4);
12535 ScopeIterator it(isolate, frame, inlined_jsframe_index, ignore_nested_scopes);
12536 for (; !it.Done(); it.Next()) {
12537 Handle<JSObject> details;
12538 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
12539 isolate, details, MaterializeScopeDetails(isolate, &it));
12540 result.Add(details);
12541 }
12542
12543 Handle<FixedArray> array = isolate->factory()->NewFixedArray(result.length());
12544 for (int i = 0; i < result.length(); ++i) {
12545 array->set(i, *result[i]);
12546 }
12547 return *isolate->factory()->NewJSArrayWithElements(array);
12548 }
12549
12550
RUNTIME_FUNCTION(Runtime_GetFunctionScopeCount)12551 RUNTIME_FUNCTION(Runtime_GetFunctionScopeCount) {
12552 HandleScope scope(isolate);
12553 DCHECK(args.length() == 1);
12554
12555 // Check arguments.
12556 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12557
12558 // Count the visible scopes.
12559 int n = 0;
12560 for (ScopeIterator it(isolate, fun); !it.Done(); it.Next()) {
12561 n++;
12562 }
12563
12564 return Smi::FromInt(n);
12565 }
12566
12567
RUNTIME_FUNCTION(Runtime_GetFunctionScopeDetails)12568 RUNTIME_FUNCTION(Runtime_GetFunctionScopeDetails) {
12569 HandleScope scope(isolate);
12570 DCHECK(args.length() == 2);
12571
12572 // Check arguments.
12573 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12574 CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
12575
12576 // Find the requested scope.
12577 int n = 0;
12578 ScopeIterator it(isolate, fun);
12579 for (; !it.Done() && n < index; it.Next()) {
12580 n++;
12581 }
12582 if (it.Done()) {
12583 return isolate->heap()->undefined_value();
12584 }
12585
12586 Handle<JSObject> details;
12587 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
12588 isolate, details, MaterializeScopeDetails(isolate, &it));
12589 return *details;
12590 }
12591
12592
SetScopeVariableValue(ScopeIterator * it,int index,Handle<String> variable_name,Handle<Object> new_value)12593 static bool SetScopeVariableValue(ScopeIterator* it, int index,
12594 Handle<String> variable_name,
12595 Handle<Object> new_value) {
12596 for (int n = 0; !it->Done() && n < index; it->Next()) {
12597 n++;
12598 }
12599 if (it->Done()) {
12600 return false;
12601 }
12602 return it->SetVariableValue(variable_name, new_value);
12603 }
12604
12605
12606 // Change variable value in closure or local scope
12607 // args[0]: number or JsFunction: break id or function
12608 // args[1]: number: frame index (when arg[0] is break id)
12609 // args[2]: number: inlined frame index (when arg[0] is break id)
12610 // args[3]: number: scope index
12611 // args[4]: string: variable name
12612 // args[5]: object: new value
12613 //
12614 // Return true if success and false otherwise
RUNTIME_FUNCTION(Runtime_SetScopeVariableValue)12615 RUNTIME_FUNCTION(Runtime_SetScopeVariableValue) {
12616 HandleScope scope(isolate);
12617 DCHECK(args.length() == 6);
12618
12619 // Check arguments.
12620 CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
12621 CONVERT_ARG_HANDLE_CHECKED(String, variable_name, 4);
12622 CONVERT_ARG_HANDLE_CHECKED(Object, new_value, 5);
12623
12624 bool res;
12625 if (args[0]->IsNumber()) {
12626 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12627 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12628
12629 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
12630 CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
12631
12632 // Get the frame where the debugging is performed.
12633 StackFrame::Id id = UnwrapFrameId(wrapped_id);
12634 JavaScriptFrameIterator frame_it(isolate, id);
12635 JavaScriptFrame* frame = frame_it.frame();
12636
12637 ScopeIterator it(isolate, frame, inlined_jsframe_index);
12638 res = SetScopeVariableValue(&it, index, variable_name, new_value);
12639 } else {
12640 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12641 ScopeIterator it(isolate, fun);
12642 res = SetScopeVariableValue(&it, index, variable_name, new_value);
12643 }
12644
12645 return isolate->heap()->ToBoolean(res);
12646 }
12647
12648
RUNTIME_FUNCTION(Runtime_DebugPrintScopes)12649 RUNTIME_FUNCTION(Runtime_DebugPrintScopes) {
12650 HandleScope scope(isolate);
12651 DCHECK(args.length() == 0);
12652
12653 #ifdef DEBUG
12654 // Print the scopes for the top frame.
12655 StackFrameLocator locator(isolate);
12656 JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
12657 for (ScopeIterator it(isolate, frame, 0);
12658 !it.Done();
12659 it.Next()) {
12660 it.DebugPrint();
12661 }
12662 #endif
12663 return isolate->heap()->undefined_value();
12664 }
12665
12666
RUNTIME_FUNCTION(Runtime_GetThreadCount)12667 RUNTIME_FUNCTION(Runtime_GetThreadCount) {
12668 HandleScope scope(isolate);
12669 DCHECK(args.length() == 1);
12670 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12671 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12672
12673 // Count all archived V8 threads.
12674 int n = 0;
12675 for (ThreadState* thread =
12676 isolate->thread_manager()->FirstThreadStateInUse();
12677 thread != NULL;
12678 thread = thread->Next()) {
12679 n++;
12680 }
12681
12682 // Total number of threads is current thread and archived threads.
12683 return Smi::FromInt(n + 1);
12684 }
12685
12686
12687 static const int kThreadDetailsCurrentThreadIndex = 0;
12688 static const int kThreadDetailsThreadIdIndex = 1;
12689 static const int kThreadDetailsSize = 2;
12690
12691 // Return an array with thread details
12692 // args[0]: number: break id
12693 // args[1]: number: thread index
12694 //
12695 // The array returned contains the following information:
12696 // 0: Is current thread?
12697 // 1: Thread id
RUNTIME_FUNCTION(Runtime_GetThreadDetails)12698 RUNTIME_FUNCTION(Runtime_GetThreadDetails) {
12699 HandleScope scope(isolate);
12700 DCHECK(args.length() == 2);
12701 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12702 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12703
12704 CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
12705
12706 // Allocate array for result.
12707 Handle<FixedArray> details =
12708 isolate->factory()->NewFixedArray(kThreadDetailsSize);
12709
12710 // Thread index 0 is current thread.
12711 if (index == 0) {
12712 // Fill the details.
12713 details->set(kThreadDetailsCurrentThreadIndex,
12714 isolate->heap()->true_value());
12715 details->set(kThreadDetailsThreadIdIndex,
12716 Smi::FromInt(ThreadId::Current().ToInteger()));
12717 } else {
12718 // Find the thread with the requested index.
12719 int n = 1;
12720 ThreadState* thread =
12721 isolate->thread_manager()->FirstThreadStateInUse();
12722 while (index != n && thread != NULL) {
12723 thread = thread->Next();
12724 n++;
12725 }
12726 if (thread == NULL) {
12727 return isolate->heap()->undefined_value();
12728 }
12729
12730 // Fill the details.
12731 details->set(kThreadDetailsCurrentThreadIndex,
12732 isolate->heap()->false_value());
12733 details->set(kThreadDetailsThreadIdIndex,
12734 Smi::FromInt(thread->id().ToInteger()));
12735 }
12736
12737 // Convert to JS array and return.
12738 return *isolate->factory()->NewJSArrayWithElements(details);
12739 }
12740
12741
12742 // Sets the disable break state
12743 // args[0]: disable break state
RUNTIME_FUNCTION(Runtime_SetDisableBreak)12744 RUNTIME_FUNCTION(Runtime_SetDisableBreak) {
12745 HandleScope scope(isolate);
12746 DCHECK(args.length() == 1);
12747 CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 0);
12748 isolate->debug()->set_disable_break(disable_break);
12749 return isolate->heap()->undefined_value();
12750 }
12751
12752
IsPositionAlignmentCodeCorrect(int alignment)12753 static bool IsPositionAlignmentCodeCorrect(int alignment) {
12754 return alignment == STATEMENT_ALIGNED || alignment == BREAK_POSITION_ALIGNED;
12755 }
12756
12757
RUNTIME_FUNCTION(Runtime_GetBreakLocations)12758 RUNTIME_FUNCTION(Runtime_GetBreakLocations) {
12759 HandleScope scope(isolate);
12760 DCHECK(args.length() == 2);
12761
12762 CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
12763 CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[1]);
12764
12765 if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
12766 return isolate->ThrowIllegalOperation();
12767 }
12768 BreakPositionAlignment alignment =
12769 static_cast<BreakPositionAlignment>(statement_aligned_code);
12770
12771 Handle<SharedFunctionInfo> shared(fun->shared());
12772 // Find the number of break points
12773 Handle<Object> break_locations =
12774 Debug::GetSourceBreakLocations(shared, alignment);
12775 if (break_locations->IsUndefined()) return isolate->heap()->undefined_value();
12776 // Return array as JS array
12777 return *isolate->factory()->NewJSArrayWithElements(
12778 Handle<FixedArray>::cast(break_locations));
12779 }
12780
12781
12782 // Set a break point in a function.
12783 // args[0]: function
12784 // args[1]: number: break source position (within the function source)
12785 // args[2]: number: break point object
RUNTIME_FUNCTION(Runtime_SetFunctionBreakPoint)12786 RUNTIME_FUNCTION(Runtime_SetFunctionBreakPoint) {
12787 HandleScope scope(isolate);
12788 DCHECK(args.length() == 3);
12789 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
12790 CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
12791 RUNTIME_ASSERT(source_position >= function->shared()->start_position() &&
12792 source_position <= function->shared()->end_position());
12793 CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 2);
12794
12795 // Set break point.
12796 RUNTIME_ASSERT(isolate->debug()->SetBreakPoint(
12797 function, break_point_object_arg, &source_position));
12798
12799 return Smi::FromInt(source_position);
12800 }
12801
12802
12803 // Changes the state of a break point in a script and returns source position
12804 // where break point was set. NOTE: Regarding performance see the NOTE for
12805 // GetScriptFromScriptData.
12806 // args[0]: script to set break point in
12807 // args[1]: number: break source position (within the script source)
12808 // args[2]: number, breakpoint position alignment
12809 // args[3]: number: break point object
RUNTIME_FUNCTION(Runtime_SetScriptBreakPoint)12810 RUNTIME_FUNCTION(Runtime_SetScriptBreakPoint) {
12811 HandleScope scope(isolate);
12812 DCHECK(args.length() == 4);
12813 CONVERT_ARG_HANDLE_CHECKED(JSValue, wrapper, 0);
12814 CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
12815 RUNTIME_ASSERT(source_position >= 0);
12816 CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[2]);
12817 CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 3);
12818
12819 if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
12820 return isolate->ThrowIllegalOperation();
12821 }
12822 BreakPositionAlignment alignment =
12823 static_cast<BreakPositionAlignment>(statement_aligned_code);
12824
12825 // Get the script from the script wrapper.
12826 RUNTIME_ASSERT(wrapper->value()->IsScript());
12827 Handle<Script> script(Script::cast(wrapper->value()));
12828
12829 // Set break point.
12830 if (!isolate->debug()->SetBreakPointForScript(script, break_point_object_arg,
12831 &source_position,
12832 alignment)) {
12833 return isolate->heap()->undefined_value();
12834 }
12835
12836 return Smi::FromInt(source_position);
12837 }
12838
12839
12840 // Clear a break point
12841 // args[0]: number: break point object
RUNTIME_FUNCTION(Runtime_ClearBreakPoint)12842 RUNTIME_FUNCTION(Runtime_ClearBreakPoint) {
12843 HandleScope scope(isolate);
12844 DCHECK(args.length() == 1);
12845 CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 0);
12846
12847 // Clear break point.
12848 isolate->debug()->ClearBreakPoint(break_point_object_arg);
12849
12850 return isolate->heap()->undefined_value();
12851 }
12852
12853
12854 // Change the state of break on exceptions.
12855 // args[0]: Enum value indicating whether to affect caught/uncaught exceptions.
12856 // args[1]: Boolean indicating on/off.
RUNTIME_FUNCTION(Runtime_ChangeBreakOnException)12857 RUNTIME_FUNCTION(Runtime_ChangeBreakOnException) {
12858 HandleScope scope(isolate);
12859 DCHECK(args.length() == 2);
12860 CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
12861 CONVERT_BOOLEAN_ARG_CHECKED(enable, 1);
12862
12863 // If the number doesn't match an enum value, the ChangeBreakOnException
12864 // function will default to affecting caught exceptions.
12865 ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
12866 // Update break point state.
12867 isolate->debug()->ChangeBreakOnException(type, enable);
12868 return isolate->heap()->undefined_value();
12869 }
12870
12871
12872 // Returns the state of break on exceptions
12873 // args[0]: boolean indicating uncaught exceptions
RUNTIME_FUNCTION(Runtime_IsBreakOnException)12874 RUNTIME_FUNCTION(Runtime_IsBreakOnException) {
12875 HandleScope scope(isolate);
12876 DCHECK(args.length() == 1);
12877 CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
12878
12879 ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
12880 bool result = isolate->debug()->IsBreakOnException(type);
12881 return Smi::FromInt(result);
12882 }
12883
12884
12885 // Prepare for stepping
12886 // args[0]: break id for checking execution state
12887 // args[1]: step action from the enumeration StepAction
12888 // args[2]: number of times to perform the step, for step out it is the number
12889 // of frames to step down.
RUNTIME_FUNCTION(Runtime_PrepareStep)12890 RUNTIME_FUNCTION(Runtime_PrepareStep) {
12891 HandleScope scope(isolate);
12892 DCHECK(args.length() == 4);
12893 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
12894 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
12895
12896 if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
12897 return isolate->Throw(isolate->heap()->illegal_argument_string());
12898 }
12899
12900 CONVERT_NUMBER_CHECKED(int, wrapped_frame_id, Int32, args[3]);
12901
12902 StackFrame::Id frame_id;
12903 if (wrapped_frame_id == 0) {
12904 frame_id = StackFrame::NO_ID;
12905 } else {
12906 frame_id = UnwrapFrameId(wrapped_frame_id);
12907 }
12908
12909 // Get the step action and check validity.
12910 StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
12911 if (step_action != StepIn &&
12912 step_action != StepNext &&
12913 step_action != StepOut &&
12914 step_action != StepInMin &&
12915 step_action != StepMin) {
12916 return isolate->Throw(isolate->heap()->illegal_argument_string());
12917 }
12918
12919 if (frame_id != StackFrame::NO_ID && step_action != StepNext &&
12920 step_action != StepMin && step_action != StepOut) {
12921 return isolate->ThrowIllegalOperation();
12922 }
12923
12924 // Get the number of steps.
12925 int step_count = NumberToInt32(args[2]);
12926 if (step_count < 1) {
12927 return isolate->Throw(isolate->heap()->illegal_argument_string());
12928 }
12929
12930 // Clear all current stepping setup.
12931 isolate->debug()->ClearStepping();
12932
12933 // Prepare step.
12934 isolate->debug()->PrepareStep(static_cast<StepAction>(step_action),
12935 step_count,
12936 frame_id);
12937 return isolate->heap()->undefined_value();
12938 }
12939
12940
12941 // Clear all stepping set by PrepareStep.
RUNTIME_FUNCTION(Runtime_ClearStepping)12942 RUNTIME_FUNCTION(Runtime_ClearStepping) {
12943 HandleScope scope(isolate);
12944 DCHECK(args.length() == 0);
12945 isolate->debug()->ClearStepping();
12946 return isolate->heap()->undefined_value();
12947 }
12948
12949
12950 // Helper function to find or create the arguments object for
12951 // Runtime_DebugEvaluate.
MaterializeArgumentsObject(Isolate * isolate,Handle<JSObject> target,Handle<JSFunction> function)12952 MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeArgumentsObject(
12953 Isolate* isolate,
12954 Handle<JSObject> target,
12955 Handle<JSFunction> function) {
12956 // Do not materialize the arguments object for eval or top-level code.
12957 // Skip if "arguments" is already taken.
12958 if (!function->shared()->is_function()) return target;
12959 Maybe<bool> maybe = JSReceiver::HasOwnProperty(
12960 target, isolate->factory()->arguments_string());
12961 if (!maybe.has_value) return MaybeHandle<JSObject>();
12962 if (maybe.value) return target;
12963
12964 // FunctionGetArguments can't throw an exception.
12965 Handle<JSObject> arguments = Handle<JSObject>::cast(
12966 Accessors::FunctionGetArguments(function));
12967 Handle<String> arguments_str = isolate->factory()->arguments_string();
12968 RETURN_ON_EXCEPTION(
12969 isolate,
12970 Runtime::DefineObjectProperty(target, arguments_str, arguments, NONE),
12971 JSObject);
12972 return target;
12973 }
12974
12975
12976 // Compile and evaluate source for the given context.
DebugEvaluate(Isolate * isolate,Handle<SharedFunctionInfo> outer_info,Handle<Context> context,Handle<Object> context_extension,Handle<Object> receiver,Handle<String> source)12977 static MaybeHandle<Object> DebugEvaluate(Isolate* isolate,
12978 Handle<SharedFunctionInfo> outer_info,
12979 Handle<Context> context,
12980 Handle<Object> context_extension,
12981 Handle<Object> receiver,
12982 Handle<String> source) {
12983 if (context_extension->IsJSObject()) {
12984 Handle<JSObject> extension = Handle<JSObject>::cast(context_extension);
12985 Handle<JSFunction> closure(context->closure(), isolate);
12986 context = isolate->factory()->NewWithContext(closure, context, extension);
12987 }
12988
12989 Handle<JSFunction> eval_fun;
12990 ASSIGN_RETURN_ON_EXCEPTION(
12991 isolate, eval_fun,
12992 Compiler::GetFunctionFromEval(source,
12993 outer_info,
12994 context,
12995 SLOPPY,
12996 NO_PARSE_RESTRICTION,
12997 RelocInfo::kNoPosition),
12998 Object);
12999
13000 Handle<Object> result;
13001 ASSIGN_RETURN_ON_EXCEPTION(
13002 isolate, result,
13003 Execution::Call(isolate, eval_fun, receiver, 0, NULL),
13004 Object);
13005
13006 // Skip the global proxy as it has no properties and always delegates to the
13007 // real global object.
13008 if (result->IsJSGlobalProxy()) {
13009 PrototypeIterator iter(isolate, result);
13010 // TODO(verwaest): This will crash when the global proxy is detached.
13011 result = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
13012 }
13013
13014 // Clear the oneshot breakpoints so that the debugger does not step further.
13015 isolate->debug()->ClearStepping();
13016 return result;
13017 }
13018
13019
NewJSObjectWithNullProto(Isolate * isolate)13020 static Handle<JSObject> NewJSObjectWithNullProto(Isolate* isolate) {
13021 Handle<JSObject> result =
13022 isolate->factory()->NewJSObject(isolate->object_function());
13023 Handle<Map> new_map = Map::Copy(Handle<Map>(result->map()));
13024 new_map->set_prototype(*isolate->factory()->null_value());
13025 JSObject::MigrateToMap(result, new_map);
13026 return result;
13027 }
13028
13029
13030 // Evaluate a piece of JavaScript in the context of a stack frame for
13031 // debugging. Things that need special attention are:
13032 // - Parameters and stack-allocated locals need to be materialized. Altered
13033 // values need to be written back to the stack afterwards.
13034 // - The arguments object needs to materialized.
RUNTIME_FUNCTION(Runtime_DebugEvaluate)13035 RUNTIME_FUNCTION(Runtime_DebugEvaluate) {
13036 HandleScope scope(isolate);
13037
13038 // Check the execution state and decode arguments frame and source to be
13039 // evaluated.
13040 DCHECK(args.length() == 6);
13041 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
13042 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
13043
13044 CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
13045 CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
13046 CONVERT_ARG_HANDLE_CHECKED(String, source, 3);
13047 CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 4);
13048 CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 5);
13049
13050 // Handle the processing of break.
13051 DisableBreak disable_break_scope(isolate->debug(), disable_break);
13052
13053 // Get the frame where the debugging is performed.
13054 StackFrame::Id id = UnwrapFrameId(wrapped_id);
13055 JavaScriptFrameIterator it(isolate, id);
13056 JavaScriptFrame* frame = it.frame();
13057 FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
13058 Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
13059 Handle<SharedFunctionInfo> outer_info(function->shared());
13060
13061 // Traverse the saved contexts chain to find the active context for the
13062 // selected frame.
13063 SaveContext* save = FindSavedContextForFrame(isolate, frame);
13064
13065 SaveContext savex(isolate);
13066 isolate->set_context(*(save->context()));
13067
13068 // Evaluate on the context of the frame.
13069 Handle<Context> context(Context::cast(frame_inspector.GetContext()));
13070 DCHECK(!context.is_null());
13071
13072 // Materialize stack locals and the arguments object.
13073 Handle<JSObject> materialized = NewJSObjectWithNullProto(isolate);
13074
13075 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13076 isolate, materialized,
13077 MaterializeStackLocalsWithFrameInspector(
13078 isolate, materialized, function, &frame_inspector));
13079
13080 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13081 isolate, materialized,
13082 MaterializeArgumentsObject(isolate, materialized, function));
13083
13084 // Add the materialized object in a with-scope to shadow the stack locals.
13085 context = isolate->factory()->NewWithContext(function, context, materialized);
13086
13087 Handle<Object> receiver(frame->receiver(), isolate);
13088 Handle<Object> result;
13089 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13090 isolate, result,
13091 DebugEvaluate(isolate, outer_info,
13092 context, context_extension, receiver, source));
13093
13094 // Write back potential changes to materialized stack locals to the stack.
13095 UpdateStackLocalsFromMaterializedObject(
13096 isolate, materialized, function, frame, inlined_jsframe_index);
13097
13098 return *result;
13099 }
13100
13101
RUNTIME_FUNCTION(Runtime_DebugEvaluateGlobal)13102 RUNTIME_FUNCTION(Runtime_DebugEvaluateGlobal) {
13103 HandleScope scope(isolate);
13104
13105 // Check the execution state and decode arguments frame and source to be
13106 // evaluated.
13107 DCHECK(args.length() == 4);
13108 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
13109 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
13110
13111 CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
13112 CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 2);
13113 CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 3);
13114
13115 // Handle the processing of break.
13116 DisableBreak disable_break_scope(isolate->debug(), disable_break);
13117
13118 // Enter the top context from before the debugger was invoked.
13119 SaveContext save(isolate);
13120 SaveContext* top = &save;
13121 while (top != NULL && *top->context() == *isolate->debug()->debug_context()) {
13122 top = top->prev();
13123 }
13124 if (top != NULL) {
13125 isolate->set_context(*top->context());
13126 }
13127
13128 // Get the native context now set to the top context from before the
13129 // debugger was invoked.
13130 Handle<Context> context = isolate->native_context();
13131 Handle<JSObject> receiver(context->global_proxy());
13132 Handle<SharedFunctionInfo> outer_info(context->closure()->shared(), isolate);
13133 Handle<Object> result;
13134 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13135 isolate, result,
13136 DebugEvaluate(isolate, outer_info,
13137 context, context_extension, receiver, source));
13138 return *result;
13139 }
13140
13141
RUNTIME_FUNCTION(Runtime_DebugGetLoadedScripts)13142 RUNTIME_FUNCTION(Runtime_DebugGetLoadedScripts) {
13143 HandleScope scope(isolate);
13144 DCHECK(args.length() == 0);
13145
13146 // Fill the script objects.
13147 Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts();
13148
13149 // Convert the script objects to proper JS objects.
13150 for (int i = 0; i < instances->length(); i++) {
13151 Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
13152 // Get the script wrapper in a local handle before calling GetScriptWrapper,
13153 // because using
13154 // instances->set(i, *GetScriptWrapper(script))
13155 // is unsafe as GetScriptWrapper might call GC and the C++ compiler might
13156 // already have dereferenced the instances handle.
13157 Handle<JSObject> wrapper = Script::GetWrapper(script);
13158 instances->set(i, *wrapper);
13159 }
13160
13161 // Return result as a JS array.
13162 Handle<JSObject> result =
13163 isolate->factory()->NewJSObject(isolate->array_function());
13164 JSArray::SetContent(Handle<JSArray>::cast(result), instances);
13165 return *result;
13166 }
13167
13168
13169 // Helper function used by Runtime_DebugReferencedBy below.
DebugReferencedBy(HeapIterator * iterator,JSObject * target,Object * instance_filter,int max_references,FixedArray * instances,int instances_size,JSFunction * arguments_function)13170 static int DebugReferencedBy(HeapIterator* iterator,
13171 JSObject* target,
13172 Object* instance_filter, int max_references,
13173 FixedArray* instances, int instances_size,
13174 JSFunction* arguments_function) {
13175 Isolate* isolate = target->GetIsolate();
13176 SealHandleScope shs(isolate);
13177 DisallowHeapAllocation no_allocation;
13178
13179 // Iterate the heap.
13180 int count = 0;
13181 JSObject* last = NULL;
13182 HeapObject* heap_obj = NULL;
13183 while (((heap_obj = iterator->next()) != NULL) &&
13184 (max_references == 0 || count < max_references)) {
13185 // Only look at all JSObjects.
13186 if (heap_obj->IsJSObject()) {
13187 // Skip context extension objects and argument arrays as these are
13188 // checked in the context of functions using them.
13189 JSObject* obj = JSObject::cast(heap_obj);
13190 if (obj->IsJSContextExtensionObject() ||
13191 obj->map()->constructor() == arguments_function) {
13192 continue;
13193 }
13194
13195 // Check if the JS object has a reference to the object looked for.
13196 if (obj->ReferencesObject(target)) {
13197 // Check instance filter if supplied. This is normally used to avoid
13198 // references from mirror objects (see Runtime_IsInPrototypeChain).
13199 if (!instance_filter->IsUndefined()) {
13200 for (PrototypeIterator iter(isolate, obj); !iter.IsAtEnd();
13201 iter.Advance()) {
13202 if (iter.GetCurrent() == instance_filter) {
13203 obj = NULL; // Don't add this object.
13204 break;
13205 }
13206 }
13207 }
13208
13209 if (obj != NULL) {
13210 // Valid reference found add to instance array if supplied an update
13211 // count.
13212 if (instances != NULL && count < instances_size) {
13213 instances->set(count, obj);
13214 }
13215 last = obj;
13216 count++;
13217 }
13218 }
13219 }
13220 }
13221
13222 // Check for circular reference only. This can happen when the object is only
13223 // referenced from mirrors and has a circular reference in which case the
13224 // object is not really alive and would have been garbage collected if not
13225 // referenced from the mirror.
13226 if (count == 1 && last == target) {
13227 count = 0;
13228 }
13229
13230 // Return the number of referencing objects found.
13231 return count;
13232 }
13233
13234
13235 // Scan the heap for objects with direct references to an object
13236 // args[0]: the object to find references to
13237 // args[1]: constructor function for instances to exclude (Mirror)
13238 // args[2]: the the maximum number of objects to return
RUNTIME_FUNCTION(Runtime_DebugReferencedBy)13239 RUNTIME_FUNCTION(Runtime_DebugReferencedBy) {
13240 HandleScope scope(isolate);
13241 DCHECK(args.length() == 3);
13242
13243 // Check parameters.
13244 CONVERT_ARG_HANDLE_CHECKED(JSObject, target, 0);
13245 CONVERT_ARG_HANDLE_CHECKED(Object, instance_filter, 1);
13246 RUNTIME_ASSERT(instance_filter->IsUndefined() ||
13247 instance_filter->IsJSObject());
13248 CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
13249 RUNTIME_ASSERT(max_references >= 0);
13250
13251
13252 // Get the constructor function for context extension and arguments array.
13253 Handle<JSFunction> arguments_function(
13254 JSFunction::cast(isolate->sloppy_arguments_map()->constructor()));
13255
13256 // Get the number of referencing objects.
13257 int count;
13258 // First perform a full GC in order to avoid dead objects and to make the heap
13259 // iterable.
13260 Heap* heap = isolate->heap();
13261 heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
13262 {
13263 HeapIterator heap_iterator(heap);
13264 count = DebugReferencedBy(&heap_iterator,
13265 *target, *instance_filter, max_references,
13266 NULL, 0, *arguments_function);
13267 }
13268
13269 // Allocate an array to hold the result.
13270 Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
13271
13272 // Fill the referencing objects.
13273 {
13274 HeapIterator heap_iterator(heap);
13275 count = DebugReferencedBy(&heap_iterator,
13276 *target, *instance_filter, max_references,
13277 *instances, count, *arguments_function);
13278 }
13279
13280 // Return result as JS array.
13281 Handle<JSFunction> constructor = isolate->array_function();
13282
13283 Handle<JSObject> result = isolate->factory()->NewJSObject(constructor);
13284 JSArray::SetContent(Handle<JSArray>::cast(result), instances);
13285 return *result;
13286 }
13287
13288
13289 // Helper function used by Runtime_DebugConstructedBy below.
DebugConstructedBy(HeapIterator * iterator,JSFunction * constructor,int max_references,FixedArray * instances,int instances_size)13290 static int DebugConstructedBy(HeapIterator* iterator,
13291 JSFunction* constructor,
13292 int max_references,
13293 FixedArray* instances,
13294 int instances_size) {
13295 DisallowHeapAllocation no_allocation;
13296
13297 // Iterate the heap.
13298 int count = 0;
13299 HeapObject* heap_obj = NULL;
13300 while (((heap_obj = iterator->next()) != NULL) &&
13301 (max_references == 0 || count < max_references)) {
13302 // Only look at all JSObjects.
13303 if (heap_obj->IsJSObject()) {
13304 JSObject* obj = JSObject::cast(heap_obj);
13305 if (obj->map()->constructor() == constructor) {
13306 // Valid reference found add to instance array if supplied an update
13307 // count.
13308 if (instances != NULL && count < instances_size) {
13309 instances->set(count, obj);
13310 }
13311 count++;
13312 }
13313 }
13314 }
13315
13316 // Return the number of referencing objects found.
13317 return count;
13318 }
13319
13320
13321 // Scan the heap for objects constructed by a specific function.
13322 // args[0]: the constructor to find instances of
13323 // args[1]: the the maximum number of objects to return
RUNTIME_FUNCTION(Runtime_DebugConstructedBy)13324 RUNTIME_FUNCTION(Runtime_DebugConstructedBy) {
13325 HandleScope scope(isolate);
13326 DCHECK(args.length() == 2);
13327
13328
13329 // Check parameters.
13330 CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, 0);
13331 CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
13332 RUNTIME_ASSERT(max_references >= 0);
13333
13334 // Get the number of referencing objects.
13335 int count;
13336 // First perform a full GC in order to avoid dead objects and to make the heap
13337 // iterable.
13338 Heap* heap = isolate->heap();
13339 heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
13340 {
13341 HeapIterator heap_iterator(heap);
13342 count = DebugConstructedBy(&heap_iterator,
13343 *constructor,
13344 max_references,
13345 NULL,
13346 0);
13347 }
13348
13349 // Allocate an array to hold the result.
13350 Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
13351
13352 // Fill the referencing objects.
13353 {
13354 HeapIterator heap_iterator2(heap);
13355 count = DebugConstructedBy(&heap_iterator2,
13356 *constructor,
13357 max_references,
13358 *instances,
13359 count);
13360 }
13361
13362 // Return result as JS array.
13363 Handle<JSFunction> array_function = isolate->array_function();
13364 Handle<JSObject> result = isolate->factory()->NewJSObject(array_function);
13365 JSArray::SetContent(Handle<JSArray>::cast(result), instances);
13366 return *result;
13367 }
13368
13369
13370 // Find the effective prototype object as returned by __proto__.
13371 // args[0]: the object to find the prototype for.
RUNTIME_FUNCTION(Runtime_DebugGetPrototype)13372 RUNTIME_FUNCTION(Runtime_DebugGetPrototype) {
13373 HandleScope shs(isolate);
13374 DCHECK(args.length() == 1);
13375 CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
13376 return *GetPrototypeSkipHiddenPrototypes(isolate, obj);
13377 }
13378
13379
13380 // Patches script source (should be called upon BeforeCompile event).
RUNTIME_FUNCTION(Runtime_DebugSetScriptSource)13381 RUNTIME_FUNCTION(Runtime_DebugSetScriptSource) {
13382 HandleScope scope(isolate);
13383 DCHECK(args.length() == 2);
13384
13385 CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0);
13386 CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
13387
13388 RUNTIME_ASSERT(script_wrapper->value()->IsScript());
13389 Handle<Script> script(Script::cast(script_wrapper->value()));
13390
13391 int compilation_state = script->compilation_state();
13392 RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL);
13393 script->set_source(*source);
13394
13395 return isolate->heap()->undefined_value();
13396 }
13397
13398
RUNTIME_FUNCTION(Runtime_SystemBreak)13399 RUNTIME_FUNCTION(Runtime_SystemBreak) {
13400 SealHandleScope shs(isolate);
13401 DCHECK(args.length() == 0);
13402 base::OS::DebugBreak();
13403 return isolate->heap()->undefined_value();
13404 }
13405
13406
RUNTIME_FUNCTION(Runtime_DebugDisassembleFunction)13407 RUNTIME_FUNCTION(Runtime_DebugDisassembleFunction) {
13408 HandleScope scope(isolate);
13409 #ifdef DEBUG
13410 DCHECK(args.length() == 1);
13411 // Get the function and make sure it is compiled.
13412 CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
13413 if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
13414 return isolate->heap()->exception();
13415 }
13416 OFStream os(stdout);
13417 func->code()->Print(os);
13418 os << endl;
13419 #endif // DEBUG
13420 return isolate->heap()->undefined_value();
13421 }
13422
13423
RUNTIME_FUNCTION(Runtime_DebugDisassembleConstructor)13424 RUNTIME_FUNCTION(Runtime_DebugDisassembleConstructor) {
13425 HandleScope scope(isolate);
13426 #ifdef DEBUG
13427 DCHECK(args.length() == 1);
13428 // Get the function and make sure it is compiled.
13429 CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
13430 if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
13431 return isolate->heap()->exception();
13432 }
13433 OFStream os(stdout);
13434 func->shared()->construct_stub()->Print(os);
13435 os << endl;
13436 #endif // DEBUG
13437 return isolate->heap()->undefined_value();
13438 }
13439
13440
RUNTIME_FUNCTION(Runtime_FunctionGetInferredName)13441 RUNTIME_FUNCTION(Runtime_FunctionGetInferredName) {
13442 SealHandleScope shs(isolate);
13443 DCHECK(args.length() == 1);
13444
13445 CONVERT_ARG_CHECKED(JSFunction, f, 0);
13446 return f->shared()->inferred_name();
13447 }
13448
13449
FindSharedFunctionInfosForScript(HeapIterator * iterator,Script * script,FixedArray * buffer)13450 static int FindSharedFunctionInfosForScript(HeapIterator* iterator,
13451 Script* script,
13452 FixedArray* buffer) {
13453 DisallowHeapAllocation no_allocation;
13454 int counter = 0;
13455 int buffer_size = buffer->length();
13456 for (HeapObject* obj = iterator->next();
13457 obj != NULL;
13458 obj = iterator->next()) {
13459 DCHECK(obj != NULL);
13460 if (!obj->IsSharedFunctionInfo()) {
13461 continue;
13462 }
13463 SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
13464 if (shared->script() != script) {
13465 continue;
13466 }
13467 if (counter < buffer_size) {
13468 buffer->set(counter, shared);
13469 }
13470 counter++;
13471 }
13472 return counter;
13473 }
13474
13475
13476 // For a script finds all SharedFunctionInfo's in the heap that points
13477 // to this script. Returns JSArray of SharedFunctionInfo wrapped
13478 // in OpaqueReferences.
RUNTIME_FUNCTION(Runtime_LiveEditFindSharedFunctionInfosForScript)13479 RUNTIME_FUNCTION(Runtime_LiveEditFindSharedFunctionInfosForScript) {
13480 HandleScope scope(isolate);
13481 CHECK(isolate->debug()->live_edit_enabled());
13482 DCHECK(args.length() == 1);
13483 CONVERT_ARG_CHECKED(JSValue, script_value, 0);
13484
13485 RUNTIME_ASSERT(script_value->value()->IsScript());
13486 Handle<Script> script = Handle<Script>(Script::cast(script_value->value()));
13487
13488 const int kBufferSize = 32;
13489
13490 Handle<FixedArray> array;
13491 array = isolate->factory()->NewFixedArray(kBufferSize);
13492 int number;
13493 Heap* heap = isolate->heap();
13494 {
13495 HeapIterator heap_iterator(heap);
13496 Script* scr = *script;
13497 FixedArray* arr = *array;
13498 number = FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
13499 }
13500 if (number > kBufferSize) {
13501 array = isolate->factory()->NewFixedArray(number);
13502 HeapIterator heap_iterator(heap);
13503 Script* scr = *script;
13504 FixedArray* arr = *array;
13505 FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
13506 }
13507
13508 Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array);
13509 result->set_length(Smi::FromInt(number));
13510
13511 LiveEdit::WrapSharedFunctionInfos(result);
13512
13513 return *result;
13514 }
13515
13516
13517 // For a script calculates compilation information about all its functions.
13518 // The script source is explicitly specified by the second argument.
13519 // The source of the actual script is not used, however it is important that
13520 // all generated code keeps references to this particular instance of script.
13521 // Returns a JSArray of compilation infos. The array is ordered so that
13522 // each function with all its descendant is always stored in a continues range
13523 // with the function itself going first. The root function is a script function.
RUNTIME_FUNCTION(Runtime_LiveEditGatherCompileInfo)13524 RUNTIME_FUNCTION(Runtime_LiveEditGatherCompileInfo) {
13525 HandleScope scope(isolate);
13526 CHECK(isolate->debug()->live_edit_enabled());
13527 DCHECK(args.length() == 2);
13528 CONVERT_ARG_CHECKED(JSValue, script, 0);
13529 CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
13530
13531 RUNTIME_ASSERT(script->value()->IsScript());
13532 Handle<Script> script_handle = Handle<Script>(Script::cast(script->value()));
13533
13534 Handle<JSArray> result;
13535 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13536 isolate, result, LiveEdit::GatherCompileInfo(script_handle, source));
13537 return *result;
13538 }
13539
13540
13541 // Changes the source of the script to a new_source.
13542 // If old_script_name is provided (i.e. is a String), also creates a copy of
13543 // the script with its original source and sends notification to debugger.
RUNTIME_FUNCTION(Runtime_LiveEditReplaceScript)13544 RUNTIME_FUNCTION(Runtime_LiveEditReplaceScript) {
13545 HandleScope scope(isolate);
13546 CHECK(isolate->debug()->live_edit_enabled());
13547 DCHECK(args.length() == 3);
13548 CONVERT_ARG_CHECKED(JSValue, original_script_value, 0);
13549 CONVERT_ARG_HANDLE_CHECKED(String, new_source, 1);
13550 CONVERT_ARG_HANDLE_CHECKED(Object, old_script_name, 2);
13551
13552 RUNTIME_ASSERT(original_script_value->value()->IsScript());
13553 Handle<Script> original_script(Script::cast(original_script_value->value()));
13554
13555 Handle<Object> old_script = LiveEdit::ChangeScriptSource(
13556 original_script, new_source, old_script_name);
13557
13558 if (old_script->IsScript()) {
13559 Handle<Script> script_handle = Handle<Script>::cast(old_script);
13560 return *Script::GetWrapper(script_handle);
13561 } else {
13562 return isolate->heap()->null_value();
13563 }
13564 }
13565
13566
RUNTIME_FUNCTION(Runtime_LiveEditFunctionSourceUpdated)13567 RUNTIME_FUNCTION(Runtime_LiveEditFunctionSourceUpdated) {
13568 HandleScope scope(isolate);
13569 CHECK(isolate->debug()->live_edit_enabled());
13570 DCHECK(args.length() == 1);
13571 CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 0);
13572 RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
13573
13574 LiveEdit::FunctionSourceUpdated(shared_info);
13575 return isolate->heap()->undefined_value();
13576 }
13577
13578
13579 // Replaces code of SharedFunctionInfo with a new one.
RUNTIME_FUNCTION(Runtime_LiveEditReplaceFunctionCode)13580 RUNTIME_FUNCTION(Runtime_LiveEditReplaceFunctionCode) {
13581 HandleScope scope(isolate);
13582 CHECK(isolate->debug()->live_edit_enabled());
13583 DCHECK(args.length() == 2);
13584 CONVERT_ARG_HANDLE_CHECKED(JSArray, new_compile_info, 0);
13585 CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 1);
13586 RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
13587
13588 LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info);
13589 return isolate->heap()->undefined_value();
13590 }
13591
13592
13593 // Connects SharedFunctionInfo to another script.
RUNTIME_FUNCTION(Runtime_LiveEditFunctionSetScript)13594 RUNTIME_FUNCTION(Runtime_LiveEditFunctionSetScript) {
13595 HandleScope scope(isolate);
13596 CHECK(isolate->debug()->live_edit_enabled());
13597 DCHECK(args.length() == 2);
13598 CONVERT_ARG_HANDLE_CHECKED(Object, function_object, 0);
13599 CONVERT_ARG_HANDLE_CHECKED(Object, script_object, 1);
13600
13601 if (function_object->IsJSValue()) {
13602 Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object);
13603 if (script_object->IsJSValue()) {
13604 RUNTIME_ASSERT(JSValue::cast(*script_object)->value()->IsScript());
13605 Script* script = Script::cast(JSValue::cast(*script_object)->value());
13606 script_object = Handle<Object>(script, isolate);
13607 }
13608 RUNTIME_ASSERT(function_wrapper->value()->IsSharedFunctionInfo());
13609 LiveEdit::SetFunctionScript(function_wrapper, script_object);
13610 } else {
13611 // Just ignore this. We may not have a SharedFunctionInfo for some functions
13612 // and we check it in this function.
13613 }
13614
13615 return isolate->heap()->undefined_value();
13616 }
13617
13618
13619 // In a code of a parent function replaces original function as embedded object
13620 // with a substitution one.
RUNTIME_FUNCTION(Runtime_LiveEditReplaceRefToNestedFunction)13621 RUNTIME_FUNCTION(Runtime_LiveEditReplaceRefToNestedFunction) {
13622 HandleScope scope(isolate);
13623 CHECK(isolate->debug()->live_edit_enabled());
13624 DCHECK(args.length() == 3);
13625
13626 CONVERT_ARG_HANDLE_CHECKED(JSValue, parent_wrapper, 0);
13627 CONVERT_ARG_HANDLE_CHECKED(JSValue, orig_wrapper, 1);
13628 CONVERT_ARG_HANDLE_CHECKED(JSValue, subst_wrapper, 2);
13629 RUNTIME_ASSERT(parent_wrapper->value()->IsSharedFunctionInfo());
13630 RUNTIME_ASSERT(orig_wrapper->value()->IsSharedFunctionInfo());
13631 RUNTIME_ASSERT(subst_wrapper->value()->IsSharedFunctionInfo());
13632
13633 LiveEdit::ReplaceRefToNestedFunction(
13634 parent_wrapper, orig_wrapper, subst_wrapper);
13635 return isolate->heap()->undefined_value();
13636 }
13637
13638
13639 // Updates positions of a shared function info (first parameter) according
13640 // to script source change. Text change is described in second parameter as
13641 // array of groups of 3 numbers:
13642 // (change_begin, change_end, change_end_new_position).
13643 // Each group describes a change in text; groups are sorted by change_begin.
RUNTIME_FUNCTION(Runtime_LiveEditPatchFunctionPositions)13644 RUNTIME_FUNCTION(Runtime_LiveEditPatchFunctionPositions) {
13645 HandleScope scope(isolate);
13646 CHECK(isolate->debug()->live_edit_enabled());
13647 DCHECK(args.length() == 2);
13648 CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
13649 CONVERT_ARG_HANDLE_CHECKED(JSArray, position_change_array, 1);
13650 RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_array))
13651
13652 LiveEdit::PatchFunctionPositions(shared_array, position_change_array);
13653 return isolate->heap()->undefined_value();
13654 }
13655
13656
13657 // For array of SharedFunctionInfo's (each wrapped in JSValue)
13658 // checks that none of them have activations on stacks (of any thread).
13659 // Returns array of the same length with corresponding results of
13660 // LiveEdit::FunctionPatchabilityStatus type.
RUNTIME_FUNCTION(Runtime_LiveEditCheckAndDropActivations)13661 RUNTIME_FUNCTION(Runtime_LiveEditCheckAndDropActivations) {
13662 HandleScope scope(isolate);
13663 CHECK(isolate->debug()->live_edit_enabled());
13664 DCHECK(args.length() == 2);
13665 CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
13666 CONVERT_BOOLEAN_ARG_CHECKED(do_drop, 1);
13667 RUNTIME_ASSERT(shared_array->length()->IsSmi());
13668 RUNTIME_ASSERT(shared_array->HasFastElements())
13669 int array_length = Smi::cast(shared_array->length())->value();
13670 for (int i = 0; i < array_length; i++) {
13671 Handle<Object> element =
13672 Object::GetElement(isolate, shared_array, i).ToHandleChecked();
13673 RUNTIME_ASSERT(
13674 element->IsJSValue() &&
13675 Handle<JSValue>::cast(element)->value()->IsSharedFunctionInfo());
13676 }
13677
13678 return *LiveEdit::CheckAndDropActivations(shared_array, do_drop);
13679 }
13680
13681
13682 // Compares 2 strings line-by-line, then token-wise and returns diff in form
13683 // of JSArray of triplets (pos1, pos1_end, pos2_end) describing list
13684 // of diff chunks.
RUNTIME_FUNCTION(Runtime_LiveEditCompareStrings)13685 RUNTIME_FUNCTION(Runtime_LiveEditCompareStrings) {
13686 HandleScope scope(isolate);
13687 CHECK(isolate->debug()->live_edit_enabled());
13688 DCHECK(args.length() == 2);
13689 CONVERT_ARG_HANDLE_CHECKED(String, s1, 0);
13690 CONVERT_ARG_HANDLE_CHECKED(String, s2, 1);
13691
13692 return *LiveEdit::CompareStrings(s1, s2);
13693 }
13694
13695
13696 // Restarts a call frame and completely drops all frames above.
13697 // Returns true if successful. Otherwise returns undefined or an error message.
RUNTIME_FUNCTION(Runtime_LiveEditRestartFrame)13698 RUNTIME_FUNCTION(Runtime_LiveEditRestartFrame) {
13699 HandleScope scope(isolate);
13700 CHECK(isolate->debug()->live_edit_enabled());
13701 DCHECK(args.length() == 2);
13702 CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
13703 RUNTIME_ASSERT(CheckExecutionState(isolate, break_id));
13704
13705 CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
13706 Heap* heap = isolate->heap();
13707
13708 // Find the relevant frame with the requested index.
13709 StackFrame::Id id = isolate->debug()->break_frame_id();
13710 if (id == StackFrame::NO_ID) {
13711 // If there are no JavaScript stack frames return undefined.
13712 return heap->undefined_value();
13713 }
13714
13715 JavaScriptFrameIterator it(isolate, id);
13716 int inlined_jsframe_index = FindIndexedNonNativeFrame(&it, index);
13717 if (inlined_jsframe_index == -1) return heap->undefined_value();
13718 // We don't really care what the inlined frame index is, since we are
13719 // throwing away the entire frame anyways.
13720 const char* error_message = LiveEdit::RestartFrame(it.frame());
13721 if (error_message) {
13722 return *(isolate->factory()->InternalizeUtf8String(error_message));
13723 }
13724 return heap->true_value();
13725 }
13726
13727
13728 // A testing entry. Returns statement position which is the closest to
13729 // source_position.
RUNTIME_FUNCTION(Runtime_GetFunctionCodePositionFromSource)13730 RUNTIME_FUNCTION(Runtime_GetFunctionCodePositionFromSource) {
13731 HandleScope scope(isolate);
13732 CHECK(isolate->debug()->live_edit_enabled());
13733 DCHECK(args.length() == 2);
13734 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
13735 CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
13736
13737 Handle<Code> code(function->code(), isolate);
13738
13739 if (code->kind() != Code::FUNCTION &&
13740 code->kind() != Code::OPTIMIZED_FUNCTION) {
13741 return isolate->heap()->undefined_value();
13742 }
13743
13744 RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION));
13745 int closest_pc = 0;
13746 int distance = kMaxInt;
13747 while (!it.done()) {
13748 int statement_position = static_cast<int>(it.rinfo()->data());
13749 // Check if this break point is closer that what was previously found.
13750 if (source_position <= statement_position &&
13751 statement_position - source_position < distance) {
13752 closest_pc =
13753 static_cast<int>(it.rinfo()->pc() - code->instruction_start());
13754 distance = statement_position - source_position;
13755 // Check whether we can't get any closer.
13756 if (distance == 0) break;
13757 }
13758 it.next();
13759 }
13760
13761 return Smi::FromInt(closest_pc);
13762 }
13763
13764
13765 // Calls specified function with or without entering the debugger.
13766 // This is used in unit tests to run code as if debugger is entered or simply
13767 // to have a stack with C++ frame in the middle.
RUNTIME_FUNCTION(Runtime_ExecuteInDebugContext)13768 RUNTIME_FUNCTION(Runtime_ExecuteInDebugContext) {
13769 HandleScope scope(isolate);
13770 DCHECK(args.length() == 2);
13771 CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
13772 CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1);
13773
13774 MaybeHandle<Object> maybe_result;
13775 if (without_debugger) {
13776 maybe_result = Execution::Call(isolate,
13777 function,
13778 handle(function->global_proxy()),
13779 0,
13780 NULL);
13781 } else {
13782 DebugScope debug_scope(isolate->debug());
13783 maybe_result = Execution::Call(isolate,
13784 function,
13785 handle(function->global_proxy()),
13786 0,
13787 NULL);
13788 }
13789 Handle<Object> result;
13790 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, maybe_result);
13791 return *result;
13792 }
13793
13794
13795 // Sets a v8 flag.
RUNTIME_FUNCTION(Runtime_SetFlags)13796 RUNTIME_FUNCTION(Runtime_SetFlags) {
13797 SealHandleScope shs(isolate);
13798 DCHECK(args.length() == 1);
13799 CONVERT_ARG_CHECKED(String, arg, 0);
13800 SmartArrayPointer<char> flags =
13801 arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
13802 FlagList::SetFlagsFromString(flags.get(), StrLength(flags.get()));
13803 return isolate->heap()->undefined_value();
13804 }
13805
13806
13807 // Performs a GC.
13808 // Presently, it only does a full GC.
RUNTIME_FUNCTION(Runtime_CollectGarbage)13809 RUNTIME_FUNCTION(Runtime_CollectGarbage) {
13810 SealHandleScope shs(isolate);
13811 DCHECK(args.length() == 1);
13812 isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "%CollectGarbage");
13813 return isolate->heap()->undefined_value();
13814 }
13815
13816
13817 // Gets the current heap usage.
RUNTIME_FUNCTION(Runtime_GetHeapUsage)13818 RUNTIME_FUNCTION(Runtime_GetHeapUsage) {
13819 SealHandleScope shs(isolate);
13820 DCHECK(args.length() == 0);
13821 int usage = static_cast<int>(isolate->heap()->SizeOfObjects());
13822 if (!Smi::IsValid(usage)) {
13823 return *isolate->factory()->NewNumberFromInt(usage);
13824 }
13825 return Smi::FromInt(usage);
13826 }
13827
13828
13829 #ifdef V8_I18N_SUPPORT
RUNTIME_FUNCTION(Runtime_CanonicalizeLanguageTag)13830 RUNTIME_FUNCTION(Runtime_CanonicalizeLanguageTag) {
13831 HandleScope scope(isolate);
13832 Factory* factory = isolate->factory();
13833
13834 DCHECK(args.length() == 1);
13835 CONVERT_ARG_HANDLE_CHECKED(String, locale_id_str, 0);
13836
13837 v8::String::Utf8Value locale_id(v8::Utils::ToLocal(locale_id_str));
13838
13839 // Return value which denotes invalid language tag.
13840 const char* const kInvalidTag = "invalid-tag";
13841
13842 UErrorCode error = U_ZERO_ERROR;
13843 char icu_result[ULOC_FULLNAME_CAPACITY];
13844 int icu_length = 0;
13845
13846 uloc_forLanguageTag(*locale_id, icu_result, ULOC_FULLNAME_CAPACITY,
13847 &icu_length, &error);
13848 if (U_FAILURE(error) || icu_length == 0) {
13849 return *factory->NewStringFromAsciiChecked(kInvalidTag);
13850 }
13851
13852 char result[ULOC_FULLNAME_CAPACITY];
13853
13854 // Force strict BCP47 rules.
13855 uloc_toLanguageTag(icu_result, result, ULOC_FULLNAME_CAPACITY, TRUE, &error);
13856
13857 if (U_FAILURE(error)) {
13858 return *factory->NewStringFromAsciiChecked(kInvalidTag);
13859 }
13860
13861 return *factory->NewStringFromAsciiChecked(result);
13862 }
13863
13864
RUNTIME_FUNCTION(Runtime_AvailableLocalesOf)13865 RUNTIME_FUNCTION(Runtime_AvailableLocalesOf) {
13866 HandleScope scope(isolate);
13867 Factory* factory = isolate->factory();
13868
13869 DCHECK(args.length() == 1);
13870 CONVERT_ARG_HANDLE_CHECKED(String, service, 0);
13871
13872 const icu::Locale* available_locales = NULL;
13873 int32_t count = 0;
13874
13875 if (service->IsUtf8EqualTo(CStrVector("collator"))) {
13876 available_locales = icu::Collator::getAvailableLocales(count);
13877 } else if (service->IsUtf8EqualTo(CStrVector("numberformat"))) {
13878 available_locales = icu::NumberFormat::getAvailableLocales(count);
13879 } else if (service->IsUtf8EqualTo(CStrVector("dateformat"))) {
13880 available_locales = icu::DateFormat::getAvailableLocales(count);
13881 } else if (service->IsUtf8EqualTo(CStrVector("breakiterator"))) {
13882 available_locales = icu::BreakIterator::getAvailableLocales(count);
13883 }
13884
13885 UErrorCode error = U_ZERO_ERROR;
13886 char result[ULOC_FULLNAME_CAPACITY];
13887 Handle<JSObject> locales =
13888 factory->NewJSObject(isolate->object_function());
13889
13890 for (int32_t i = 0; i < count; ++i) {
13891 const char* icu_name = available_locales[i].getName();
13892
13893 error = U_ZERO_ERROR;
13894 // No need to force strict BCP47 rules.
13895 uloc_toLanguageTag(icu_name, result, ULOC_FULLNAME_CAPACITY, FALSE, &error);
13896 if (U_FAILURE(error)) {
13897 // This shouldn't happen, but lets not break the user.
13898 continue;
13899 }
13900
13901 RETURN_FAILURE_ON_EXCEPTION(isolate,
13902 JSObject::SetOwnPropertyIgnoreAttributes(
13903 locales,
13904 factory->NewStringFromAsciiChecked(result),
13905 factory->NewNumber(i),
13906 NONE));
13907 }
13908
13909 return *locales;
13910 }
13911
13912
RUNTIME_FUNCTION(Runtime_GetDefaultICULocale)13913 RUNTIME_FUNCTION(Runtime_GetDefaultICULocale) {
13914 HandleScope scope(isolate);
13915 Factory* factory = isolate->factory();
13916
13917 DCHECK(args.length() == 0);
13918
13919 icu::Locale default_locale;
13920
13921 // Set the locale
13922 char result[ULOC_FULLNAME_CAPACITY];
13923 UErrorCode status = U_ZERO_ERROR;
13924 uloc_toLanguageTag(
13925 default_locale.getName(), result, ULOC_FULLNAME_CAPACITY, FALSE, &status);
13926 if (U_SUCCESS(status)) {
13927 return *factory->NewStringFromAsciiChecked(result);
13928 }
13929
13930 return *factory->NewStringFromStaticChars("und");
13931 }
13932
13933
RUNTIME_FUNCTION(Runtime_GetLanguageTagVariants)13934 RUNTIME_FUNCTION(Runtime_GetLanguageTagVariants) {
13935 HandleScope scope(isolate);
13936 Factory* factory = isolate->factory();
13937
13938 DCHECK(args.length() == 1);
13939
13940 CONVERT_ARG_HANDLE_CHECKED(JSArray, input, 0);
13941
13942 uint32_t length = static_cast<uint32_t>(input->length()->Number());
13943 // Set some limit to prevent fuzz tests from going OOM.
13944 // Can be bumped when callers' requirements change.
13945 RUNTIME_ASSERT(length < 100);
13946 Handle<FixedArray> output = factory->NewFixedArray(length);
13947 Handle<Name> maximized = factory->NewStringFromStaticChars("maximized");
13948 Handle<Name> base = factory->NewStringFromStaticChars("base");
13949 for (unsigned int i = 0; i < length; ++i) {
13950 Handle<Object> locale_id;
13951 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
13952 isolate, locale_id, Object::GetElement(isolate, input, i));
13953 if (!locale_id->IsString()) {
13954 return isolate->Throw(*factory->illegal_argument_string());
13955 }
13956
13957 v8::String::Utf8Value utf8_locale_id(
13958 v8::Utils::ToLocal(Handle<String>::cast(locale_id)));
13959
13960 UErrorCode error = U_ZERO_ERROR;
13961
13962 // Convert from BCP47 to ICU format.
13963 // de-DE-u-co-phonebk -> de_DE@collation=phonebook
13964 char icu_locale[ULOC_FULLNAME_CAPACITY];
13965 int icu_locale_length = 0;
13966 uloc_forLanguageTag(*utf8_locale_id, icu_locale, ULOC_FULLNAME_CAPACITY,
13967 &icu_locale_length, &error);
13968 if (U_FAILURE(error) || icu_locale_length == 0) {
13969 return isolate->Throw(*factory->illegal_argument_string());
13970 }
13971
13972 // Maximize the locale.
13973 // de_DE@collation=phonebook -> de_Latn_DE@collation=phonebook
13974 char icu_max_locale[ULOC_FULLNAME_CAPACITY];
13975 uloc_addLikelySubtags(
13976 icu_locale, icu_max_locale, ULOC_FULLNAME_CAPACITY, &error);
13977
13978 // Remove extensions from maximized locale.
13979 // de_Latn_DE@collation=phonebook -> de_Latn_DE
13980 char icu_base_max_locale[ULOC_FULLNAME_CAPACITY];
13981 uloc_getBaseName(
13982 icu_max_locale, icu_base_max_locale, ULOC_FULLNAME_CAPACITY, &error);
13983
13984 // Get original name without extensions.
13985 // de_DE@collation=phonebook -> de_DE
13986 char icu_base_locale[ULOC_FULLNAME_CAPACITY];
13987 uloc_getBaseName(
13988 icu_locale, icu_base_locale, ULOC_FULLNAME_CAPACITY, &error);
13989
13990 // Convert from ICU locale format to BCP47 format.
13991 // de_Latn_DE -> de-Latn-DE
13992 char base_max_locale[ULOC_FULLNAME_CAPACITY];
13993 uloc_toLanguageTag(icu_base_max_locale, base_max_locale,
13994 ULOC_FULLNAME_CAPACITY, FALSE, &error);
13995
13996 // de_DE -> de-DE
13997 char base_locale[ULOC_FULLNAME_CAPACITY];
13998 uloc_toLanguageTag(
13999 icu_base_locale, base_locale, ULOC_FULLNAME_CAPACITY, FALSE, &error);
14000
14001 if (U_FAILURE(error)) {
14002 return isolate->Throw(*factory->illegal_argument_string());
14003 }
14004
14005 Handle<JSObject> result = factory->NewJSObject(isolate->object_function());
14006 Handle<String> value = factory->NewStringFromAsciiChecked(base_max_locale);
14007 JSObject::AddProperty(result, maximized, value, NONE);
14008 value = factory->NewStringFromAsciiChecked(base_locale);
14009 JSObject::AddProperty(result, base, value, NONE);
14010 output->set(i, *result);
14011 }
14012
14013 Handle<JSArray> result = factory->NewJSArrayWithElements(output);
14014 result->set_length(Smi::FromInt(length));
14015 return *result;
14016 }
14017
14018
RUNTIME_FUNCTION(Runtime_IsInitializedIntlObject)14019 RUNTIME_FUNCTION(Runtime_IsInitializedIntlObject) {
14020 HandleScope scope(isolate);
14021
14022 DCHECK(args.length() == 1);
14023
14024 CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
14025
14026 if (!input->IsJSObject()) return isolate->heap()->false_value();
14027 Handle<JSObject> obj = Handle<JSObject>::cast(input);
14028
14029 Handle<String> marker = isolate->factory()->intl_initialized_marker_string();
14030 Handle<Object> tag(obj->GetHiddenProperty(marker), isolate);
14031 return isolate->heap()->ToBoolean(!tag->IsTheHole());
14032 }
14033
14034
RUNTIME_FUNCTION(Runtime_IsInitializedIntlObjectOfType)14035 RUNTIME_FUNCTION(Runtime_IsInitializedIntlObjectOfType) {
14036 HandleScope scope(isolate);
14037
14038 DCHECK(args.length() == 2);
14039
14040 CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
14041 CONVERT_ARG_HANDLE_CHECKED(String, expected_type, 1);
14042
14043 if (!input->IsJSObject()) return isolate->heap()->false_value();
14044 Handle<JSObject> obj = Handle<JSObject>::cast(input);
14045
14046 Handle<String> marker = isolate->factory()->intl_initialized_marker_string();
14047 Handle<Object> tag(obj->GetHiddenProperty(marker), isolate);
14048 return isolate->heap()->ToBoolean(
14049 tag->IsString() && String::cast(*tag)->Equals(*expected_type));
14050 }
14051
14052
RUNTIME_FUNCTION(Runtime_MarkAsInitializedIntlObjectOfType)14053 RUNTIME_FUNCTION(Runtime_MarkAsInitializedIntlObjectOfType) {
14054 HandleScope scope(isolate);
14055
14056 DCHECK(args.length() == 3);
14057
14058 CONVERT_ARG_HANDLE_CHECKED(JSObject, input, 0);
14059 CONVERT_ARG_HANDLE_CHECKED(String, type, 1);
14060 CONVERT_ARG_HANDLE_CHECKED(JSObject, impl, 2);
14061
14062 Handle<String> marker = isolate->factory()->intl_initialized_marker_string();
14063 JSObject::SetHiddenProperty(input, marker, type);
14064
14065 marker = isolate->factory()->intl_impl_object_string();
14066 JSObject::SetHiddenProperty(input, marker, impl);
14067
14068 return isolate->heap()->undefined_value();
14069 }
14070
14071
RUNTIME_FUNCTION(Runtime_GetImplFromInitializedIntlObject)14072 RUNTIME_FUNCTION(Runtime_GetImplFromInitializedIntlObject) {
14073 HandleScope scope(isolate);
14074
14075 DCHECK(args.length() == 1);
14076
14077 CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
14078
14079 if (!input->IsJSObject()) {
14080 Vector< Handle<Object> > arguments = HandleVector(&input, 1);
14081 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
14082 NewTypeError("not_intl_object", arguments));
14083 }
14084
14085 Handle<JSObject> obj = Handle<JSObject>::cast(input);
14086
14087 Handle<String> marker = isolate->factory()->intl_impl_object_string();
14088 Handle<Object> impl(obj->GetHiddenProperty(marker), isolate);
14089 if (impl->IsTheHole()) {
14090 Vector< Handle<Object> > arguments = HandleVector(&obj, 1);
14091 THROW_NEW_ERROR_RETURN_FAILURE(isolate,
14092 NewTypeError("not_intl_object", arguments));
14093 }
14094 return *impl;
14095 }
14096
14097
RUNTIME_FUNCTION(Runtime_CreateDateTimeFormat)14098 RUNTIME_FUNCTION(Runtime_CreateDateTimeFormat) {
14099 HandleScope scope(isolate);
14100
14101 DCHECK(args.length() == 3);
14102
14103 CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14104 CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14105 CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14106
14107 Handle<ObjectTemplateInfo> date_format_template =
14108 I18N::GetTemplate(isolate);
14109
14110 // Create an empty object wrapper.
14111 Handle<JSObject> local_object;
14112 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14113 isolate, local_object,
14114 Execution::InstantiateObject(date_format_template));
14115
14116 // Set date time formatter as internal field of the resulting JS object.
14117 icu::SimpleDateFormat* date_format = DateFormat::InitializeDateTimeFormat(
14118 isolate, locale, options, resolved);
14119
14120 if (!date_format) return isolate->ThrowIllegalOperation();
14121
14122 local_object->SetInternalField(0, reinterpret_cast<Smi*>(date_format));
14123
14124 Factory* factory = isolate->factory();
14125 Handle<String> key = factory->NewStringFromStaticChars("dateFormat");
14126 Handle<String> value = factory->NewStringFromStaticChars("valid");
14127 JSObject::AddProperty(local_object, key, value, NONE);
14128
14129 // Make object handle weak so we can delete the data format once GC kicks in.
14130 Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14131 GlobalHandles::MakeWeak(wrapper.location(),
14132 reinterpret_cast<void*>(wrapper.location()),
14133 DateFormat::DeleteDateFormat);
14134 return *local_object;
14135 }
14136
14137
RUNTIME_FUNCTION(Runtime_InternalDateFormat)14138 RUNTIME_FUNCTION(Runtime_InternalDateFormat) {
14139 HandleScope scope(isolate);
14140
14141 DCHECK(args.length() == 2);
14142
14143 CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0);
14144 CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 1);
14145
14146 Handle<Object> value;
14147 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14148 isolate, value, Execution::ToNumber(isolate, date));
14149
14150 icu::SimpleDateFormat* date_format =
14151 DateFormat::UnpackDateFormat(isolate, date_format_holder);
14152 if (!date_format) return isolate->ThrowIllegalOperation();
14153
14154 icu::UnicodeString result;
14155 date_format->format(value->Number(), result);
14156
14157 Handle<String> result_str;
14158 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14159 isolate, result_str,
14160 isolate->factory()->NewStringFromTwoByte(
14161 Vector<const uint16_t>(
14162 reinterpret_cast<const uint16_t*>(result.getBuffer()),
14163 result.length())));
14164 return *result_str;
14165 }
14166
14167
RUNTIME_FUNCTION(Runtime_InternalDateParse)14168 RUNTIME_FUNCTION(Runtime_InternalDateParse) {
14169 HandleScope scope(isolate);
14170
14171 DCHECK(args.length() == 2);
14172
14173 CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0);
14174 CONVERT_ARG_HANDLE_CHECKED(String, date_string, 1);
14175
14176 v8::String::Utf8Value utf8_date(v8::Utils::ToLocal(date_string));
14177 icu::UnicodeString u_date(icu::UnicodeString::fromUTF8(*utf8_date));
14178 icu::SimpleDateFormat* date_format =
14179 DateFormat::UnpackDateFormat(isolate, date_format_holder);
14180 if (!date_format) return isolate->ThrowIllegalOperation();
14181
14182 UErrorCode status = U_ZERO_ERROR;
14183 UDate date = date_format->parse(u_date, status);
14184 if (U_FAILURE(status)) return isolate->heap()->undefined_value();
14185
14186 Handle<Object> result;
14187 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14188 isolate, result,
14189 Execution::NewDate(isolate, static_cast<double>(date)));
14190 DCHECK(result->IsJSDate());
14191 return *result;
14192 }
14193
14194
RUNTIME_FUNCTION(Runtime_CreateNumberFormat)14195 RUNTIME_FUNCTION(Runtime_CreateNumberFormat) {
14196 HandleScope scope(isolate);
14197
14198 DCHECK(args.length() == 3);
14199
14200 CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14201 CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14202 CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14203
14204 Handle<ObjectTemplateInfo> number_format_template =
14205 I18N::GetTemplate(isolate);
14206
14207 // Create an empty object wrapper.
14208 Handle<JSObject> local_object;
14209 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14210 isolate, local_object,
14211 Execution::InstantiateObject(number_format_template));
14212
14213 // Set number formatter as internal field of the resulting JS object.
14214 icu::DecimalFormat* number_format = NumberFormat::InitializeNumberFormat(
14215 isolate, locale, options, resolved);
14216
14217 if (!number_format) return isolate->ThrowIllegalOperation();
14218
14219 local_object->SetInternalField(0, reinterpret_cast<Smi*>(number_format));
14220
14221 Factory* factory = isolate->factory();
14222 Handle<String> key = factory->NewStringFromStaticChars("numberFormat");
14223 Handle<String> value = factory->NewStringFromStaticChars("valid");
14224 JSObject::AddProperty(local_object, key, value, NONE);
14225
14226 Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14227 GlobalHandles::MakeWeak(wrapper.location(),
14228 reinterpret_cast<void*>(wrapper.location()),
14229 NumberFormat::DeleteNumberFormat);
14230 return *local_object;
14231 }
14232
14233
RUNTIME_FUNCTION(Runtime_InternalNumberFormat)14234 RUNTIME_FUNCTION(Runtime_InternalNumberFormat) {
14235 HandleScope scope(isolate);
14236
14237 DCHECK(args.length() == 2);
14238
14239 CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0);
14240 CONVERT_ARG_HANDLE_CHECKED(Object, number, 1);
14241
14242 Handle<Object> value;
14243 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14244 isolate, value, Execution::ToNumber(isolate, number));
14245
14246 icu::DecimalFormat* number_format =
14247 NumberFormat::UnpackNumberFormat(isolate, number_format_holder);
14248 if (!number_format) return isolate->ThrowIllegalOperation();
14249
14250 icu::UnicodeString result;
14251 number_format->format(value->Number(), result);
14252
14253 Handle<String> result_str;
14254 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14255 isolate, result_str,
14256 isolate->factory()->NewStringFromTwoByte(
14257 Vector<const uint16_t>(
14258 reinterpret_cast<const uint16_t*>(result.getBuffer()),
14259 result.length())));
14260 return *result_str;
14261 }
14262
14263
RUNTIME_FUNCTION(Runtime_InternalNumberParse)14264 RUNTIME_FUNCTION(Runtime_InternalNumberParse) {
14265 HandleScope scope(isolate);
14266
14267 DCHECK(args.length() == 2);
14268
14269 CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0);
14270 CONVERT_ARG_HANDLE_CHECKED(String, number_string, 1);
14271
14272 v8::String::Utf8Value utf8_number(v8::Utils::ToLocal(number_string));
14273 icu::UnicodeString u_number(icu::UnicodeString::fromUTF8(*utf8_number));
14274 icu::DecimalFormat* number_format =
14275 NumberFormat::UnpackNumberFormat(isolate, number_format_holder);
14276 if (!number_format) return isolate->ThrowIllegalOperation();
14277
14278 UErrorCode status = U_ZERO_ERROR;
14279 icu::Formattable result;
14280 // ICU 4.6 doesn't support parseCurrency call. We need to wait for ICU49
14281 // to be part of Chrome.
14282 // TODO(cira): Include currency parsing code using parseCurrency call.
14283 // We need to check if the formatter parses all currencies or only the
14284 // one it was constructed with (it will impact the API - how to return ISO
14285 // code and the value).
14286 number_format->parse(u_number, result, status);
14287 if (U_FAILURE(status)) return isolate->heap()->undefined_value();
14288
14289 switch (result.getType()) {
14290 case icu::Formattable::kDouble:
14291 return *isolate->factory()->NewNumber(result.getDouble());
14292 case icu::Formattable::kLong:
14293 return *isolate->factory()->NewNumberFromInt(result.getLong());
14294 case icu::Formattable::kInt64:
14295 return *isolate->factory()->NewNumber(
14296 static_cast<double>(result.getInt64()));
14297 default:
14298 return isolate->heap()->undefined_value();
14299 }
14300 }
14301
14302
RUNTIME_FUNCTION(Runtime_CreateCollator)14303 RUNTIME_FUNCTION(Runtime_CreateCollator) {
14304 HandleScope scope(isolate);
14305
14306 DCHECK(args.length() == 3);
14307
14308 CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14309 CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14310 CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14311
14312 Handle<ObjectTemplateInfo> collator_template = I18N::GetTemplate(isolate);
14313
14314 // Create an empty object wrapper.
14315 Handle<JSObject> local_object;
14316 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14317 isolate, local_object, Execution::InstantiateObject(collator_template));
14318
14319 // Set collator as internal field of the resulting JS object.
14320 icu::Collator* collator = Collator::InitializeCollator(
14321 isolate, locale, options, resolved);
14322
14323 if (!collator) return isolate->ThrowIllegalOperation();
14324
14325 local_object->SetInternalField(0, reinterpret_cast<Smi*>(collator));
14326
14327 Factory* factory = isolate->factory();
14328 Handle<String> key = factory->NewStringFromStaticChars("collator");
14329 Handle<String> value = factory->NewStringFromStaticChars("valid");
14330 JSObject::AddProperty(local_object, key, value, NONE);
14331
14332 Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14333 GlobalHandles::MakeWeak(wrapper.location(),
14334 reinterpret_cast<void*>(wrapper.location()),
14335 Collator::DeleteCollator);
14336 return *local_object;
14337 }
14338
14339
RUNTIME_FUNCTION(Runtime_InternalCompare)14340 RUNTIME_FUNCTION(Runtime_InternalCompare) {
14341 HandleScope scope(isolate);
14342
14343 DCHECK(args.length() == 3);
14344
14345 CONVERT_ARG_HANDLE_CHECKED(JSObject, collator_holder, 0);
14346 CONVERT_ARG_HANDLE_CHECKED(String, string1, 1);
14347 CONVERT_ARG_HANDLE_CHECKED(String, string2, 2);
14348
14349 icu::Collator* collator = Collator::UnpackCollator(isolate, collator_holder);
14350 if (!collator) return isolate->ThrowIllegalOperation();
14351
14352 v8::String::Value string_value1(v8::Utils::ToLocal(string1));
14353 v8::String::Value string_value2(v8::Utils::ToLocal(string2));
14354 const UChar* u_string1 = reinterpret_cast<const UChar*>(*string_value1);
14355 const UChar* u_string2 = reinterpret_cast<const UChar*>(*string_value2);
14356 UErrorCode status = U_ZERO_ERROR;
14357 UCollationResult result = collator->compare(u_string1,
14358 string_value1.length(),
14359 u_string2,
14360 string_value2.length(),
14361 status);
14362 if (U_FAILURE(status)) return isolate->ThrowIllegalOperation();
14363
14364 return *isolate->factory()->NewNumberFromInt(result);
14365 }
14366
14367
RUNTIME_FUNCTION(Runtime_StringNormalize)14368 RUNTIME_FUNCTION(Runtime_StringNormalize) {
14369 HandleScope scope(isolate);
14370 static const UNormalizationMode normalizationForms[] =
14371 { UNORM_NFC, UNORM_NFD, UNORM_NFKC, UNORM_NFKD };
14372
14373 DCHECK(args.length() == 2);
14374
14375 CONVERT_ARG_HANDLE_CHECKED(String, stringValue, 0);
14376 CONVERT_NUMBER_CHECKED(int, form_id, Int32, args[1]);
14377 RUNTIME_ASSERT(form_id >= 0 &&
14378 static_cast<size_t>(form_id) < arraysize(normalizationForms));
14379
14380 v8::String::Value string_value(v8::Utils::ToLocal(stringValue));
14381 const UChar* u_value = reinterpret_cast<const UChar*>(*string_value);
14382
14383 // TODO(mnita): check Normalizer2 (not available in ICU 46)
14384 UErrorCode status = U_ZERO_ERROR;
14385 icu::UnicodeString result;
14386 icu::Normalizer::normalize(u_value, normalizationForms[form_id], 0,
14387 result, status);
14388 if (U_FAILURE(status)) {
14389 return isolate->heap()->undefined_value();
14390 }
14391
14392 Handle<String> result_str;
14393 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14394 isolate, result_str,
14395 isolate->factory()->NewStringFromTwoByte(
14396 Vector<const uint16_t>(
14397 reinterpret_cast<const uint16_t*>(result.getBuffer()),
14398 result.length())));
14399 return *result_str;
14400 }
14401
14402
RUNTIME_FUNCTION(Runtime_CreateBreakIterator)14403 RUNTIME_FUNCTION(Runtime_CreateBreakIterator) {
14404 HandleScope scope(isolate);
14405
14406 DCHECK(args.length() == 3);
14407
14408 CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
14409 CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
14410 CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
14411
14412 Handle<ObjectTemplateInfo> break_iterator_template =
14413 I18N::GetTemplate2(isolate);
14414
14415 // Create an empty object wrapper.
14416 Handle<JSObject> local_object;
14417 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14418 isolate, local_object,
14419 Execution::InstantiateObject(break_iterator_template));
14420
14421 // Set break iterator as internal field of the resulting JS object.
14422 icu::BreakIterator* break_iterator = BreakIterator::InitializeBreakIterator(
14423 isolate, locale, options, resolved);
14424
14425 if (!break_iterator) return isolate->ThrowIllegalOperation();
14426
14427 local_object->SetInternalField(0, reinterpret_cast<Smi*>(break_iterator));
14428 // Make sure that the pointer to adopted text is NULL.
14429 local_object->SetInternalField(1, reinterpret_cast<Smi*>(NULL));
14430
14431 Factory* factory = isolate->factory();
14432 Handle<String> key = factory->NewStringFromStaticChars("breakIterator");
14433 Handle<String> value = factory->NewStringFromStaticChars("valid");
14434 JSObject::AddProperty(local_object, key, value, NONE);
14435
14436 // Make object handle weak so we can delete the break iterator once GC kicks
14437 // in.
14438 Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
14439 GlobalHandles::MakeWeak(wrapper.location(),
14440 reinterpret_cast<void*>(wrapper.location()),
14441 BreakIterator::DeleteBreakIterator);
14442 return *local_object;
14443 }
14444
14445
RUNTIME_FUNCTION(Runtime_BreakIteratorAdoptText)14446 RUNTIME_FUNCTION(Runtime_BreakIteratorAdoptText) {
14447 HandleScope scope(isolate);
14448
14449 DCHECK(args.length() == 2);
14450
14451 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14452 CONVERT_ARG_HANDLE_CHECKED(String, text, 1);
14453
14454 icu::BreakIterator* break_iterator =
14455 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14456 if (!break_iterator) return isolate->ThrowIllegalOperation();
14457
14458 icu::UnicodeString* u_text = reinterpret_cast<icu::UnicodeString*>(
14459 break_iterator_holder->GetInternalField(1));
14460 delete u_text;
14461
14462 v8::String::Value text_value(v8::Utils::ToLocal(text));
14463 u_text = new icu::UnicodeString(
14464 reinterpret_cast<const UChar*>(*text_value), text_value.length());
14465 break_iterator_holder->SetInternalField(1, reinterpret_cast<Smi*>(u_text));
14466
14467 break_iterator->setText(*u_text);
14468
14469 return isolate->heap()->undefined_value();
14470 }
14471
14472
RUNTIME_FUNCTION(Runtime_BreakIteratorFirst)14473 RUNTIME_FUNCTION(Runtime_BreakIteratorFirst) {
14474 HandleScope scope(isolate);
14475
14476 DCHECK(args.length() == 1);
14477
14478 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14479
14480 icu::BreakIterator* break_iterator =
14481 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14482 if (!break_iterator) return isolate->ThrowIllegalOperation();
14483
14484 return *isolate->factory()->NewNumberFromInt(break_iterator->first());
14485 }
14486
14487
RUNTIME_FUNCTION(Runtime_BreakIteratorNext)14488 RUNTIME_FUNCTION(Runtime_BreakIteratorNext) {
14489 HandleScope scope(isolate);
14490
14491 DCHECK(args.length() == 1);
14492
14493 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14494
14495 icu::BreakIterator* break_iterator =
14496 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14497 if (!break_iterator) return isolate->ThrowIllegalOperation();
14498
14499 return *isolate->factory()->NewNumberFromInt(break_iterator->next());
14500 }
14501
14502
RUNTIME_FUNCTION(Runtime_BreakIteratorCurrent)14503 RUNTIME_FUNCTION(Runtime_BreakIteratorCurrent) {
14504 HandleScope scope(isolate);
14505
14506 DCHECK(args.length() == 1);
14507
14508 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14509
14510 icu::BreakIterator* break_iterator =
14511 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14512 if (!break_iterator) return isolate->ThrowIllegalOperation();
14513
14514 return *isolate->factory()->NewNumberFromInt(break_iterator->current());
14515 }
14516
14517
RUNTIME_FUNCTION(Runtime_BreakIteratorBreakType)14518 RUNTIME_FUNCTION(Runtime_BreakIteratorBreakType) {
14519 HandleScope scope(isolate);
14520
14521 DCHECK(args.length() == 1);
14522
14523 CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
14524
14525 icu::BreakIterator* break_iterator =
14526 BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
14527 if (!break_iterator) return isolate->ThrowIllegalOperation();
14528
14529 // TODO(cira): Remove cast once ICU fixes base BreakIterator class.
14530 icu::RuleBasedBreakIterator* rule_based_iterator =
14531 static_cast<icu::RuleBasedBreakIterator*>(break_iterator);
14532 int32_t status = rule_based_iterator->getRuleStatus();
14533 // Keep return values in sync with JavaScript BreakType enum.
14534 if (status >= UBRK_WORD_NONE && status < UBRK_WORD_NONE_LIMIT) {
14535 return *isolate->factory()->NewStringFromStaticChars("none");
14536 } else if (status >= UBRK_WORD_NUMBER && status < UBRK_WORD_NUMBER_LIMIT) {
14537 return *isolate->factory()->number_string();
14538 } else if (status >= UBRK_WORD_LETTER && status < UBRK_WORD_LETTER_LIMIT) {
14539 return *isolate->factory()->NewStringFromStaticChars("letter");
14540 } else if (status >= UBRK_WORD_KANA && status < UBRK_WORD_KANA_LIMIT) {
14541 return *isolate->factory()->NewStringFromStaticChars("kana");
14542 } else if (status >= UBRK_WORD_IDEO && status < UBRK_WORD_IDEO_LIMIT) {
14543 return *isolate->factory()->NewStringFromStaticChars("ideo");
14544 } else {
14545 return *isolate->factory()->NewStringFromStaticChars("unknown");
14546 }
14547 }
14548 #endif // V8_I18N_SUPPORT
14549
14550
14551 // Finds the script object from the script data. NOTE: This operation uses
14552 // heap traversal to find the function generated for the source position
14553 // for the requested break point. For lazily compiled functions several heap
14554 // traversals might be required rendering this operation as a rather slow
14555 // operation. However for setting break points which is normally done through
14556 // some kind of user interaction the performance is not crucial.
Runtime_GetScriptFromScriptName(Handle<String> script_name)14557 static Handle<Object> Runtime_GetScriptFromScriptName(
14558 Handle<String> script_name) {
14559 // Scan the heap for Script objects to find the script with the requested
14560 // script data.
14561 Handle<Script> script;
14562 Factory* factory = script_name->GetIsolate()->factory();
14563 Heap* heap = script_name->GetHeap();
14564 HeapIterator iterator(heap);
14565 HeapObject* obj = NULL;
14566 while (script.is_null() && ((obj = iterator.next()) != NULL)) {
14567 // If a script is found check if it has the script data requested.
14568 if (obj->IsScript()) {
14569 if (Script::cast(obj)->name()->IsString()) {
14570 if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
14571 script = Handle<Script>(Script::cast(obj));
14572 }
14573 }
14574 }
14575 }
14576
14577 // If no script with the requested script data is found return undefined.
14578 if (script.is_null()) return factory->undefined_value();
14579
14580 // Return the script found.
14581 return Script::GetWrapper(script);
14582 }
14583
14584
14585 // Get the script object from script data. NOTE: Regarding performance
14586 // see the NOTE for GetScriptFromScriptData.
14587 // args[0]: script data for the script to find the source for
RUNTIME_FUNCTION(Runtime_GetScript)14588 RUNTIME_FUNCTION(Runtime_GetScript) {
14589 HandleScope scope(isolate);
14590
14591 DCHECK(args.length() == 1);
14592
14593 CONVERT_ARG_CHECKED(String, script_name, 0);
14594
14595 // Find the requested script.
14596 Handle<Object> result =
14597 Runtime_GetScriptFromScriptName(Handle<String>(script_name));
14598 return *result;
14599 }
14600
14601
14602 // Collect the raw data for a stack trace. Returns an array of 4
14603 // element segments each containing a receiver, function, code and
14604 // native code offset.
RUNTIME_FUNCTION(Runtime_CollectStackTrace)14605 RUNTIME_FUNCTION(Runtime_CollectStackTrace) {
14606 HandleScope scope(isolate);
14607 DCHECK(args.length() == 2);
14608 CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0);
14609 CONVERT_ARG_HANDLE_CHECKED(Object, caller, 1);
14610
14611 if (!isolate->bootstrapper()->IsActive()) {
14612 // Optionally capture a more detailed stack trace for the message.
14613 isolate->CaptureAndSetDetailedStackTrace(error_object);
14614 // Capture a simple stack trace for the stack property.
14615 isolate->CaptureAndSetSimpleStackTrace(error_object, caller);
14616 }
14617 return isolate->heap()->undefined_value();
14618 }
14619
14620
14621 // Returns V8 version as a string.
RUNTIME_FUNCTION(Runtime_GetV8Version)14622 RUNTIME_FUNCTION(Runtime_GetV8Version) {
14623 HandleScope scope(isolate);
14624 DCHECK(args.length() == 0);
14625
14626 const char* version_string = v8::V8::GetVersion();
14627
14628 return *isolate->factory()->NewStringFromAsciiChecked(version_string);
14629 }
14630
14631
14632 // Returns function of generator activation.
RUNTIME_FUNCTION(Runtime_GeneratorGetFunction)14633 RUNTIME_FUNCTION(Runtime_GeneratorGetFunction) {
14634 HandleScope scope(isolate);
14635 DCHECK(args.length() == 1);
14636 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14637
14638 return generator->function();
14639 }
14640
14641
14642 // Returns context of generator activation.
RUNTIME_FUNCTION(Runtime_GeneratorGetContext)14643 RUNTIME_FUNCTION(Runtime_GeneratorGetContext) {
14644 HandleScope scope(isolate);
14645 DCHECK(args.length() == 1);
14646 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14647
14648 return generator->context();
14649 }
14650
14651
14652 // Returns receiver of generator activation.
RUNTIME_FUNCTION(Runtime_GeneratorGetReceiver)14653 RUNTIME_FUNCTION(Runtime_GeneratorGetReceiver) {
14654 HandleScope scope(isolate);
14655 DCHECK(args.length() == 1);
14656 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14657
14658 return generator->receiver();
14659 }
14660
14661
14662 // Returns generator continuation as a PC offset, or the magic -1 or 0 values.
RUNTIME_FUNCTION(Runtime_GeneratorGetContinuation)14663 RUNTIME_FUNCTION(Runtime_GeneratorGetContinuation) {
14664 HandleScope scope(isolate);
14665 DCHECK(args.length() == 1);
14666 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14667
14668 return Smi::FromInt(generator->continuation());
14669 }
14670
14671
RUNTIME_FUNCTION(Runtime_GeneratorGetSourcePosition)14672 RUNTIME_FUNCTION(Runtime_GeneratorGetSourcePosition) {
14673 HandleScope scope(isolate);
14674 DCHECK(args.length() == 1);
14675 CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
14676
14677 if (generator->is_suspended()) {
14678 Handle<Code> code(generator->function()->code(), isolate);
14679 int offset = generator->continuation();
14680
14681 RUNTIME_ASSERT(0 <= offset && offset < code->Size());
14682 Address pc = code->address() + offset;
14683
14684 return Smi::FromInt(code->SourcePosition(pc));
14685 }
14686
14687 return isolate->heap()->undefined_value();
14688 }
14689
14690
RUNTIME_FUNCTION(Runtime_Abort)14691 RUNTIME_FUNCTION(Runtime_Abort) {
14692 SealHandleScope shs(isolate);
14693 DCHECK(args.length() == 1);
14694 CONVERT_SMI_ARG_CHECKED(message_id, 0);
14695 const char* message = GetBailoutReason(
14696 static_cast<BailoutReason>(message_id));
14697 base::OS::PrintError("abort: %s\n", message);
14698 isolate->PrintStack(stderr);
14699 base::OS::Abort();
14700 UNREACHABLE();
14701 return NULL;
14702 }
14703
14704
RUNTIME_FUNCTION(Runtime_AbortJS)14705 RUNTIME_FUNCTION(Runtime_AbortJS) {
14706 HandleScope scope(isolate);
14707 DCHECK(args.length() == 1);
14708 CONVERT_ARG_HANDLE_CHECKED(String, message, 0);
14709 base::OS::PrintError("abort: %s\n", message->ToCString().get());
14710 isolate->PrintStack(stderr);
14711 base::OS::Abort();
14712 UNREACHABLE();
14713 return NULL;
14714 }
14715
14716
RUNTIME_FUNCTION(Runtime_FlattenString)14717 RUNTIME_FUNCTION(Runtime_FlattenString) {
14718 HandleScope scope(isolate);
14719 DCHECK(args.length() == 1);
14720 CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
14721 return *String::Flatten(str);
14722 }
14723
14724
RUNTIME_FUNCTION(Runtime_NotifyContextDisposed)14725 RUNTIME_FUNCTION(Runtime_NotifyContextDisposed) {
14726 HandleScope scope(isolate);
14727 DCHECK(args.length() == 0);
14728 isolate->heap()->NotifyContextDisposed();
14729 return isolate->heap()->undefined_value();
14730 }
14731
14732
RUNTIME_FUNCTION(Runtime_LoadMutableDouble)14733 RUNTIME_FUNCTION(Runtime_LoadMutableDouble) {
14734 HandleScope scope(isolate);
14735 DCHECK(args.length() == 2);
14736 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
14737 CONVERT_ARG_HANDLE_CHECKED(Smi, index, 1);
14738 RUNTIME_ASSERT((index->value() & 1) == 1);
14739 FieldIndex field_index =
14740 FieldIndex::ForLoadByFieldIndex(object->map(), index->value());
14741 if (field_index.is_inobject()) {
14742 RUNTIME_ASSERT(field_index.property_index() <
14743 object->map()->inobject_properties());
14744 } else {
14745 RUNTIME_ASSERT(field_index.outobject_array_index() <
14746 object->properties()->length());
14747 }
14748 Handle<Object> raw_value(object->RawFastPropertyAt(field_index), isolate);
14749 RUNTIME_ASSERT(raw_value->IsMutableHeapNumber());
14750 return *Object::WrapForRead(isolate, raw_value, Representation::Double());
14751 }
14752
14753
RUNTIME_FUNCTION(Runtime_TryMigrateInstance)14754 RUNTIME_FUNCTION(Runtime_TryMigrateInstance) {
14755 HandleScope scope(isolate);
14756 DCHECK(args.length() == 1);
14757 CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
14758 if (!object->IsJSObject()) return Smi::FromInt(0);
14759 Handle<JSObject> js_object = Handle<JSObject>::cast(object);
14760 if (!js_object->map()->is_deprecated()) return Smi::FromInt(0);
14761 // This call must not cause lazy deopts, because it's called from deferred
14762 // code where we can't handle lazy deopts for lack of a suitable bailout
14763 // ID. So we just try migration and signal failure if necessary,
14764 // which will also trigger a deopt.
14765 if (!JSObject::TryMigrateInstance(js_object)) return Smi::FromInt(0);
14766 return *object;
14767 }
14768
14769
RUNTIME_FUNCTION(Runtime_GetFromCache)14770 RUNTIME_FUNCTION(Runtime_GetFromCache) {
14771 SealHandleScope shs(isolate);
14772 // This is only called from codegen, so checks might be more lax.
14773 CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0);
14774 CONVERT_ARG_CHECKED(Object, key, 1);
14775
14776 {
14777 DisallowHeapAllocation no_alloc;
14778
14779 int finger_index = cache->finger_index();
14780 Object* o = cache->get(finger_index);
14781 if (o == key) {
14782 // The fastest case: hit the same place again.
14783 return cache->get(finger_index + 1);
14784 }
14785
14786 for (int i = finger_index - 2;
14787 i >= JSFunctionResultCache::kEntriesIndex;
14788 i -= 2) {
14789 o = cache->get(i);
14790 if (o == key) {
14791 cache->set_finger_index(i);
14792 return cache->get(i + 1);
14793 }
14794 }
14795
14796 int size = cache->size();
14797 DCHECK(size <= cache->length());
14798
14799 for (int i = size - 2; i > finger_index; i -= 2) {
14800 o = cache->get(i);
14801 if (o == key) {
14802 cache->set_finger_index(i);
14803 return cache->get(i + 1);
14804 }
14805 }
14806 }
14807
14808 // There is no value in the cache. Invoke the function and cache result.
14809 HandleScope scope(isolate);
14810
14811 Handle<JSFunctionResultCache> cache_handle(cache);
14812 Handle<Object> key_handle(key, isolate);
14813 Handle<Object> value;
14814 {
14815 Handle<JSFunction> factory(JSFunction::cast(
14816 cache_handle->get(JSFunctionResultCache::kFactoryIndex)));
14817 // TODO(antonm): consider passing a receiver when constructing a cache.
14818 Handle<JSObject> receiver(isolate->global_proxy());
14819 // This handle is nor shared, nor used later, so it's safe.
14820 Handle<Object> argv[] = { key_handle };
14821 ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
14822 isolate, value,
14823 Execution::Call(isolate, factory, receiver, arraysize(argv), argv));
14824 }
14825
14826 #ifdef VERIFY_HEAP
14827 if (FLAG_verify_heap) {
14828 cache_handle->JSFunctionResultCacheVerify();
14829 }
14830 #endif
14831
14832 // Function invocation may have cleared the cache. Reread all the data.
14833 int finger_index = cache_handle->finger_index();
14834 int size = cache_handle->size();
14835
14836 // If we have spare room, put new data into it, otherwise evict post finger
14837 // entry which is likely to be the least recently used.
14838 int index = -1;
14839 if (size < cache_handle->length()) {
14840 cache_handle->set_size(size + JSFunctionResultCache::kEntrySize);
14841 index = size;
14842 } else {
14843 index = finger_index + JSFunctionResultCache::kEntrySize;
14844 if (index == cache_handle->length()) {
14845 index = JSFunctionResultCache::kEntriesIndex;
14846 }
14847 }
14848
14849 DCHECK(index % 2 == 0);
14850 DCHECK(index >= JSFunctionResultCache::kEntriesIndex);
14851 DCHECK(index < cache_handle->length());
14852
14853 cache_handle->set(index, *key_handle);
14854 cache_handle->set(index + 1, *value);
14855 cache_handle->set_finger_index(index);
14856
14857 #ifdef VERIFY_HEAP
14858 if (FLAG_verify_heap) {
14859 cache_handle->JSFunctionResultCacheVerify();
14860 }
14861 #endif
14862
14863 return *value;
14864 }
14865
14866
RUNTIME_FUNCTION(Runtime_MessageGetStartPosition)14867 RUNTIME_FUNCTION(Runtime_MessageGetStartPosition) {
14868 SealHandleScope shs(isolate);
14869 DCHECK(args.length() == 1);
14870 CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
14871 return Smi::FromInt(message->start_position());
14872 }
14873
14874
RUNTIME_FUNCTION(Runtime_MessageGetScript)14875 RUNTIME_FUNCTION(Runtime_MessageGetScript) {
14876 SealHandleScope shs(isolate);
14877 DCHECK(args.length() == 1);
14878 CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
14879 return message->script();
14880 }
14881
14882
14883 #ifdef DEBUG
14884 // ListNatives is ONLY used by the fuzz-natives.js in debug mode
14885 // Exclude the code in release mode.
RUNTIME_FUNCTION(Runtime_ListNatives)14886 RUNTIME_FUNCTION(Runtime_ListNatives) {
14887 HandleScope scope(isolate);
14888 DCHECK(args.length() == 0);
14889 #define COUNT_ENTRY(Name, argc, ressize) + 1
14890 int entry_count = 0
14891 RUNTIME_FUNCTION_LIST(COUNT_ENTRY)
14892 INLINE_FUNCTION_LIST(COUNT_ENTRY)
14893 INLINE_OPTIMIZED_FUNCTION_LIST(COUNT_ENTRY);
14894 #undef COUNT_ENTRY
14895 Factory* factory = isolate->factory();
14896 Handle<FixedArray> elements = factory->NewFixedArray(entry_count);
14897 int index = 0;
14898 bool inline_runtime_functions = false;
14899 #define ADD_ENTRY(Name, argc, ressize) \
14900 { \
14901 HandleScope inner(isolate); \
14902 Handle<String> name; \
14903 /* Inline runtime functions have an underscore in front of the name. */ \
14904 if (inline_runtime_functions) { \
14905 name = factory->NewStringFromStaticChars("_" #Name); \
14906 } else { \
14907 name = factory->NewStringFromStaticChars(#Name); \
14908 } \
14909 Handle<FixedArray> pair_elements = factory->NewFixedArray(2); \
14910 pair_elements->set(0, *name); \
14911 pair_elements->set(1, Smi::FromInt(argc)); \
14912 Handle<JSArray> pair = factory->NewJSArrayWithElements(pair_elements); \
14913 elements->set(index++, *pair); \
14914 }
14915 inline_runtime_functions = false;
14916 RUNTIME_FUNCTION_LIST(ADD_ENTRY)
14917 INLINE_OPTIMIZED_FUNCTION_LIST(ADD_ENTRY)
14918 inline_runtime_functions = true;
14919 INLINE_FUNCTION_LIST(ADD_ENTRY)
14920 #undef ADD_ENTRY
14921 DCHECK_EQ(index, entry_count);
14922 Handle<JSArray> result = factory->NewJSArrayWithElements(elements);
14923 return *result;
14924 }
14925 #endif
14926
14927
RUNTIME_FUNCTION(Runtime_IS_VAR)14928 RUNTIME_FUNCTION(Runtime_IS_VAR) {
14929 UNREACHABLE(); // implemented as macro in the parser
14930 return NULL;
14931 }
14932
14933
14934 #define ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(Name) \
14935 RUNTIME_FUNCTION(Runtime_Has##Name) { \
14936 CONVERT_ARG_CHECKED(JSObject, obj, 0); \
14937 return isolate->heap()->ToBoolean(obj->Has##Name()); \
14938 }
14939
14940 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiElements)
ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastObjectElements)14941 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastObjectElements)
14942 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiOrObjectElements)
14943 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastDoubleElements)
14944 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastHoleyElements)
14945 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(DictionaryElements)
14946 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(SloppyArgumentsElements)
14947 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalArrayElements)
14948 // Properties test sitting with elements tests - not fooling anyone.
14949 ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastProperties)
14950
14951 #undef ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION
14952
14953
14954 #define TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, size) \
14955 RUNTIME_FUNCTION(Runtime_HasExternal##Type##Elements) { \
14956 CONVERT_ARG_CHECKED(JSObject, obj, 0); \
14957 return isolate->heap()->ToBoolean(obj->HasExternal##Type##Elements()); \
14958 }
14959
14960 TYPED_ARRAYS(TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
14961
14962 #undef TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
14963
14964
14965 #define FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, s) \
14966 RUNTIME_FUNCTION(Runtime_HasFixed##Type##Elements) { \
14967 CONVERT_ARG_CHECKED(JSObject, obj, 0); \
14968 return isolate->heap()->ToBoolean(obj->HasFixed##Type##Elements()); \
14969 }
14970
14971 TYPED_ARRAYS(FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
14972
14973 #undef FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
14974
14975
14976 RUNTIME_FUNCTION(Runtime_HaveSameMap) {
14977 SealHandleScope shs(isolate);
14978 DCHECK(args.length() == 2);
14979 CONVERT_ARG_CHECKED(JSObject, obj1, 0);
14980 CONVERT_ARG_CHECKED(JSObject, obj2, 1);
14981 return isolate->heap()->ToBoolean(obj1->map() == obj2->map());
14982 }
14983
14984
RUNTIME_FUNCTION(Runtime_IsJSGlobalProxy)14985 RUNTIME_FUNCTION(Runtime_IsJSGlobalProxy) {
14986 SealHandleScope shs(isolate);
14987 DCHECK(args.length() == 1);
14988 CONVERT_ARG_CHECKED(Object, obj, 0);
14989 return isolate->heap()->ToBoolean(obj->IsJSGlobalProxy());
14990 }
14991
14992
RUNTIME_FUNCTION(Runtime_IsObserved)14993 RUNTIME_FUNCTION(Runtime_IsObserved) {
14994 SealHandleScope shs(isolate);
14995 DCHECK(args.length() == 1);
14996
14997 if (!args[0]->IsJSReceiver()) return isolate->heap()->false_value();
14998 CONVERT_ARG_CHECKED(JSReceiver, obj, 0);
14999 DCHECK(!obj->IsJSGlobalProxy() || !obj->map()->is_observed());
15000 return isolate->heap()->ToBoolean(obj->map()->is_observed());
15001 }
15002
15003
RUNTIME_FUNCTION(Runtime_SetIsObserved)15004 RUNTIME_FUNCTION(Runtime_SetIsObserved) {
15005 HandleScope scope(isolate);
15006 DCHECK(args.length() == 1);
15007 CONVERT_ARG_HANDLE_CHECKED(JSReceiver, obj, 0);
15008 RUNTIME_ASSERT(!obj->IsJSGlobalProxy());
15009 if (obj->IsJSProxy()) return isolate->heap()->undefined_value();
15010 RUNTIME_ASSERT(!obj->map()->is_observed());
15011
15012 DCHECK(obj->IsJSObject());
15013 JSObject::SetObserved(Handle<JSObject>::cast(obj));
15014 return isolate->heap()->undefined_value();
15015 }
15016
15017
RUNTIME_FUNCTION(Runtime_EnqueueMicrotask)15018 RUNTIME_FUNCTION(Runtime_EnqueueMicrotask) {
15019 HandleScope scope(isolate);
15020 DCHECK(args.length() == 1);
15021 CONVERT_ARG_HANDLE_CHECKED(JSFunction, microtask, 0);
15022 isolate->EnqueueMicrotask(microtask);
15023 return isolate->heap()->undefined_value();
15024 }
15025
15026
RUNTIME_FUNCTION(Runtime_RunMicrotasks)15027 RUNTIME_FUNCTION(Runtime_RunMicrotasks) {
15028 HandleScope scope(isolate);
15029 DCHECK(args.length() == 0);
15030 isolate->RunMicrotasks();
15031 return isolate->heap()->undefined_value();
15032 }
15033
15034
RUNTIME_FUNCTION(Runtime_GetObservationState)15035 RUNTIME_FUNCTION(Runtime_GetObservationState) {
15036 SealHandleScope shs(isolate);
15037 DCHECK(args.length() == 0);
15038 return isolate->heap()->observation_state();
15039 }
15040
15041
RUNTIME_FUNCTION(Runtime_ObservationWeakMapCreate)15042 RUNTIME_FUNCTION(Runtime_ObservationWeakMapCreate) {
15043 HandleScope scope(isolate);
15044 DCHECK(args.length() == 0);
15045 // TODO(adamk): Currently this runtime function is only called three times per
15046 // isolate. If it's called more often, the map should be moved into the
15047 // strong root list.
15048 Handle<Map> map =
15049 isolate->factory()->NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
15050 Handle<JSWeakMap> weakmap =
15051 Handle<JSWeakMap>::cast(isolate->factory()->NewJSObjectFromMap(map));
15052 return *WeakCollectionInitialize(isolate, weakmap);
15053 }
15054
15055
ContextsHaveSameOrigin(Handle<Context> context1,Handle<Context> context2)15056 static bool ContextsHaveSameOrigin(Handle<Context> context1,
15057 Handle<Context> context2) {
15058 return context1->security_token() == context2->security_token();
15059 }
15060
15061
RUNTIME_FUNCTION(Runtime_ObserverObjectAndRecordHaveSameOrigin)15062 RUNTIME_FUNCTION(Runtime_ObserverObjectAndRecordHaveSameOrigin) {
15063 HandleScope scope(isolate);
15064 DCHECK(args.length() == 3);
15065 CONVERT_ARG_HANDLE_CHECKED(JSFunction, observer, 0);
15066 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 1);
15067 CONVERT_ARG_HANDLE_CHECKED(JSObject, record, 2);
15068
15069 Handle<Context> observer_context(observer->context()->native_context());
15070 Handle<Context> object_context(object->GetCreationContext());
15071 Handle<Context> record_context(record->GetCreationContext());
15072
15073 return isolate->heap()->ToBoolean(
15074 ContextsHaveSameOrigin(object_context, observer_context) &&
15075 ContextsHaveSameOrigin(object_context, record_context));
15076 }
15077
15078
RUNTIME_FUNCTION(Runtime_ObjectWasCreatedInCurrentOrigin)15079 RUNTIME_FUNCTION(Runtime_ObjectWasCreatedInCurrentOrigin) {
15080 HandleScope scope(isolate);
15081 DCHECK(args.length() == 1);
15082 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
15083
15084 Handle<Context> creation_context(object->GetCreationContext(), isolate);
15085 return isolate->heap()->ToBoolean(
15086 ContextsHaveSameOrigin(creation_context, isolate->native_context()));
15087 }
15088
15089
RUNTIME_FUNCTION(Runtime_GetObjectContextObjectObserve)15090 RUNTIME_FUNCTION(Runtime_GetObjectContextObjectObserve) {
15091 HandleScope scope(isolate);
15092 DCHECK(args.length() == 1);
15093 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
15094
15095 Handle<Context> context(object->GetCreationContext(), isolate);
15096 return context->native_object_observe();
15097 }
15098
15099
RUNTIME_FUNCTION(Runtime_GetObjectContextObjectGetNotifier)15100 RUNTIME_FUNCTION(Runtime_GetObjectContextObjectGetNotifier) {
15101 HandleScope scope(isolate);
15102 DCHECK(args.length() == 1);
15103 CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
15104
15105 Handle<Context> context(object->GetCreationContext(), isolate);
15106 return context->native_object_get_notifier();
15107 }
15108
15109
RUNTIME_FUNCTION(Runtime_GetObjectContextNotifierPerformChange)15110 RUNTIME_FUNCTION(Runtime_GetObjectContextNotifierPerformChange) {
15111 HandleScope scope(isolate);
15112 DCHECK(args.length() == 1);
15113 CONVERT_ARG_HANDLE_CHECKED(JSObject, object_info, 0);
15114
15115 Handle<Context> context(object_info->GetCreationContext(), isolate);
15116 return context->native_object_notifier_perform_change();
15117 }
15118
15119
ArrayConstructorCommon(Isolate * isolate,Handle<JSFunction> constructor,Handle<AllocationSite> site,Arguments * caller_args)15120 static Object* ArrayConstructorCommon(Isolate* isolate,
15121 Handle<JSFunction> constructor,
15122 Handle<AllocationSite> site,
15123 Arguments* caller_args) {
15124 Factory* factory = isolate->factory();
15125
15126 bool holey = false;
15127 bool can_use_type_feedback = true;
15128 if (caller_args->length() == 1) {
15129 Handle<Object> argument_one = caller_args->at<Object>(0);
15130 if (argument_one->IsSmi()) {
15131 int value = Handle<Smi>::cast(argument_one)->value();
15132 if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) {
15133 // the array is a dictionary in this case.
15134 can_use_type_feedback = false;
15135 } else if (value != 0) {
15136 holey = true;
15137 }
15138 } else {
15139 // Non-smi length argument produces a dictionary
15140 can_use_type_feedback = false;
15141 }
15142 }
15143
15144 Handle<JSArray> array;
15145 if (!site.is_null() && can_use_type_feedback) {
15146 ElementsKind to_kind = site->GetElementsKind();
15147 if (holey && !IsFastHoleyElementsKind(to_kind)) {
15148 to_kind = GetHoleyElementsKind(to_kind);
15149 // Update the allocation site info to reflect the advice alteration.
15150 site->SetElementsKind(to_kind);
15151 }
15152
15153 // We should allocate with an initial map that reflects the allocation site
15154 // advice. Therefore we use AllocateJSObjectFromMap instead of passing
15155 // the constructor.
15156 Handle<Map> initial_map(constructor->initial_map(), isolate);
15157 if (to_kind != initial_map->elements_kind()) {
15158 initial_map = Map::AsElementsKind(initial_map, to_kind);
15159 }
15160
15161 // If we don't care to track arrays of to_kind ElementsKind, then
15162 // don't emit a memento for them.
15163 Handle<AllocationSite> allocation_site;
15164 if (AllocationSite::GetMode(to_kind) == TRACK_ALLOCATION_SITE) {
15165 allocation_site = site;
15166 }
15167
15168 array = Handle<JSArray>::cast(factory->NewJSObjectFromMap(
15169 initial_map, NOT_TENURED, true, allocation_site));
15170 } else {
15171 array = Handle<JSArray>::cast(factory->NewJSObject(constructor));
15172
15173 // We might need to transition to holey
15174 ElementsKind kind = constructor->initial_map()->elements_kind();
15175 if (holey && !IsFastHoleyElementsKind(kind)) {
15176 kind = GetHoleyElementsKind(kind);
15177 JSObject::TransitionElementsKind(array, kind);
15178 }
15179 }
15180
15181 factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS);
15182
15183 ElementsKind old_kind = array->GetElementsKind();
15184 RETURN_FAILURE_ON_EXCEPTION(
15185 isolate, ArrayConstructInitializeElements(array, caller_args));
15186 if (!site.is_null() &&
15187 (old_kind != array->GetElementsKind() ||
15188 !can_use_type_feedback)) {
15189 // The arguments passed in caused a transition. This kind of complexity
15190 // can't be dealt with in the inlined hydrogen array constructor case.
15191 // We must mark the allocationsite as un-inlinable.
15192 site->SetDoNotInlineCall();
15193 }
15194 return *array;
15195 }
15196
15197
RUNTIME_FUNCTION(Runtime_ArrayConstructor)15198 RUNTIME_FUNCTION(Runtime_ArrayConstructor) {
15199 HandleScope scope(isolate);
15200 // If we get 2 arguments then they are the stub parameters (constructor, type
15201 // info). If we get 4, then the first one is a pointer to the arguments
15202 // passed by the caller, and the last one is the length of the arguments
15203 // passed to the caller (redundant, but useful to check on the deoptimizer
15204 // with an assert).
15205 Arguments empty_args(0, NULL);
15206 bool no_caller_args = args.length() == 2;
15207 DCHECK(no_caller_args || args.length() == 4);
15208 int parameters_start = no_caller_args ? 0 : 1;
15209 Arguments* caller_args = no_caller_args
15210 ? &empty_args
15211 : reinterpret_cast<Arguments*>(args[0]);
15212 CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
15213 CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1);
15214 #ifdef DEBUG
15215 if (!no_caller_args) {
15216 CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 2);
15217 DCHECK(arg_count == caller_args->length());
15218 }
15219 #endif
15220
15221 Handle<AllocationSite> site;
15222 if (!type_info.is_null() &&
15223 *type_info != isolate->heap()->undefined_value()) {
15224 site = Handle<AllocationSite>::cast(type_info);
15225 DCHECK(!site->SitePointsToLiteral());
15226 }
15227
15228 return ArrayConstructorCommon(isolate,
15229 constructor,
15230 site,
15231 caller_args);
15232 }
15233
15234
RUNTIME_FUNCTION(Runtime_InternalArrayConstructor)15235 RUNTIME_FUNCTION(Runtime_InternalArrayConstructor) {
15236 HandleScope scope(isolate);
15237 Arguments empty_args(0, NULL);
15238 bool no_caller_args = args.length() == 1;
15239 DCHECK(no_caller_args || args.length() == 3);
15240 int parameters_start = no_caller_args ? 0 : 1;
15241 Arguments* caller_args = no_caller_args
15242 ? &empty_args
15243 : reinterpret_cast<Arguments*>(args[0]);
15244 CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
15245 #ifdef DEBUG
15246 if (!no_caller_args) {
15247 CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 1);
15248 DCHECK(arg_count == caller_args->length());
15249 }
15250 #endif
15251 return ArrayConstructorCommon(isolate,
15252 constructor,
15253 Handle<AllocationSite>::null(),
15254 caller_args);
15255 }
15256
15257
RUNTIME_FUNCTION(Runtime_NormalizeElements)15258 RUNTIME_FUNCTION(Runtime_NormalizeElements) {
15259 HandleScope scope(isolate);
15260 DCHECK(args.length() == 1);
15261 CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
15262 RUNTIME_ASSERT(!array->HasExternalArrayElements() &&
15263 !array->HasFixedTypedArrayElements());
15264 JSObject::NormalizeElements(array);
15265 return *array;
15266 }
15267
15268
RUNTIME_FUNCTION(Runtime_MaxSmi)15269 RUNTIME_FUNCTION(Runtime_MaxSmi) {
15270 SealHandleScope shs(isolate);
15271 DCHECK(args.length() == 0);
15272 return Smi::FromInt(Smi::kMaxValue);
15273 }
15274
15275
15276 // TODO(dcarney): remove this function when TurboFan supports it.
15277 // Takes the object to be iterated over and the result of GetPropertyNamesFast
15278 // Returns pair (cache_array, cache_type).
RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInInit)15279 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInInit) {
15280 SealHandleScope scope(isolate);
15281 DCHECK(args.length() == 2);
15282 // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
15283 // Not worth creating a macro atm as this function should be removed.
15284 if (!args[0]->IsJSReceiver() || !args[1]->IsObject()) {
15285 Object* error = isolate->ThrowIllegalOperation();
15286 return MakePair(error, isolate->heap()->undefined_value());
15287 }
15288 Handle<JSReceiver> object = args.at<JSReceiver>(0);
15289 Handle<Object> cache_type = args.at<Object>(1);
15290 if (cache_type->IsMap()) {
15291 // Enum cache case.
15292 if (Map::EnumLengthBits::decode(Map::cast(*cache_type)->bit_field3()) ==
15293 0) {
15294 // 0 length enum.
15295 // Can't handle this case in the graph builder,
15296 // so transform it into the empty fixed array case.
15297 return MakePair(isolate->heap()->empty_fixed_array(), Smi::FromInt(1));
15298 }
15299 return MakePair(object->map()->instance_descriptors()->GetEnumCache(),
15300 *cache_type);
15301 } else {
15302 // FixedArray case.
15303 Smi* new_cache_type = Smi::FromInt(object->IsJSProxy() ? 0 : 1);
15304 return MakePair(*Handle<FixedArray>::cast(cache_type), new_cache_type);
15305 }
15306 }
15307
15308
15309 // TODO(dcarney): remove this function when TurboFan supports it.
RUNTIME_FUNCTION(Runtime_ForInCacheArrayLength)15310 RUNTIME_FUNCTION(Runtime_ForInCacheArrayLength) {
15311 SealHandleScope shs(isolate);
15312 DCHECK(args.length() == 2);
15313 CONVERT_ARG_HANDLE_CHECKED(Object, cache_type, 0);
15314 CONVERT_ARG_HANDLE_CHECKED(FixedArray, array, 1);
15315 int length = 0;
15316 if (cache_type->IsMap()) {
15317 length = Map::cast(*cache_type)->EnumLength();
15318 } else {
15319 DCHECK(cache_type->IsSmi());
15320 length = array->length();
15321 }
15322 return Smi::FromInt(length);
15323 }
15324
15325
15326 // TODO(dcarney): remove this function when TurboFan supports it.
15327 // Takes (the object to be iterated over,
15328 // cache_array from ForInInit,
15329 // cache_type from ForInInit,
15330 // the current index)
15331 // Returns pair (array[index], needs_filtering).
RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInNext)15332 RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInNext) {
15333 SealHandleScope scope(isolate);
15334 DCHECK(args.length() == 4);
15335 int32_t index;
15336 // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
15337 // Not worth creating a macro atm as this function should be removed.
15338 if (!args[0]->IsJSReceiver() || !args[1]->IsFixedArray() ||
15339 !args[2]->IsObject() || !args[3]->ToInt32(&index)) {
15340 Object* error = isolate->ThrowIllegalOperation();
15341 return MakePair(error, isolate->heap()->undefined_value());
15342 }
15343 Handle<JSReceiver> object = args.at<JSReceiver>(0);
15344 Handle<FixedArray> array = args.at<FixedArray>(1);
15345 Handle<Object> cache_type = args.at<Object>(2);
15346 // Figure out first if a slow check is needed for this object.
15347 bool slow_check_needed = false;
15348 if (cache_type->IsMap()) {
15349 if (object->map() != Map::cast(*cache_type)) {
15350 // Object transitioned. Need slow check.
15351 slow_check_needed = true;
15352 }
15353 } else {
15354 // No slow check needed for proxies.
15355 slow_check_needed = Smi::cast(*cache_type)->value() == 1;
15356 }
15357 return MakePair(array->get(index),
15358 isolate->heap()->ToBoolean(slow_check_needed));
15359 }
15360
15361
15362 // ----------------------------------------------------------------------------
15363 // Reference implementation for inlined runtime functions. Only used when the
15364 // compiler does not support a certain intrinsic. Don't optimize these, but
15365 // implement the intrinsic in the respective compiler instead.
15366
15367 // TODO(mstarzinger): These are place-holder stubs for TurboFan and will
15368 // eventually all have a C++ implementation and this macro will be gone.
15369 #define U(name) \
15370 RUNTIME_FUNCTION(RuntimeReference_##name) { \
15371 UNIMPLEMENTED(); \
15372 return NULL; \
15373 }
15374
15375 U(IsStringWrapperSafeForDefaultValueOf)
U(DebugBreakInOptimizedCode)15376 U(DebugBreakInOptimizedCode)
15377
15378 #undef U
15379
15380
15381 RUNTIME_FUNCTION(RuntimeReference_IsSmi) {
15382 SealHandleScope shs(isolate);
15383 DCHECK(args.length() == 1);
15384 CONVERT_ARG_CHECKED(Object, obj, 0);
15385 return isolate->heap()->ToBoolean(obj->IsSmi());
15386 }
15387
15388
RUNTIME_FUNCTION(RuntimeReference_IsNonNegativeSmi)15389 RUNTIME_FUNCTION(RuntimeReference_IsNonNegativeSmi) {
15390 SealHandleScope shs(isolate);
15391 DCHECK(args.length() == 1);
15392 CONVERT_ARG_CHECKED(Object, obj, 0);
15393 return isolate->heap()->ToBoolean(obj->IsSmi() &&
15394 Smi::cast(obj)->value() >= 0);
15395 }
15396
15397
RUNTIME_FUNCTION(RuntimeReference_IsArray)15398 RUNTIME_FUNCTION(RuntimeReference_IsArray) {
15399 SealHandleScope shs(isolate);
15400 DCHECK(args.length() == 1);
15401 CONVERT_ARG_CHECKED(Object, obj, 0);
15402 return isolate->heap()->ToBoolean(obj->IsJSArray());
15403 }
15404
15405
RUNTIME_FUNCTION(RuntimeReference_IsRegExp)15406 RUNTIME_FUNCTION(RuntimeReference_IsRegExp) {
15407 SealHandleScope shs(isolate);
15408 DCHECK(args.length() == 1);
15409 CONVERT_ARG_CHECKED(Object, obj, 0);
15410 return isolate->heap()->ToBoolean(obj->IsJSRegExp());
15411 }
15412
15413
RUNTIME_FUNCTION(RuntimeReference_IsConstructCall)15414 RUNTIME_FUNCTION(RuntimeReference_IsConstructCall) {
15415 SealHandleScope shs(isolate);
15416 DCHECK(args.length() == 0);
15417 JavaScriptFrameIterator it(isolate);
15418 JavaScriptFrame* frame = it.frame();
15419 return isolate->heap()->ToBoolean(frame->IsConstructor());
15420 }
15421
15422
RUNTIME_FUNCTION(RuntimeReference_CallFunction)15423 RUNTIME_FUNCTION(RuntimeReference_CallFunction) {
15424 SealHandleScope shs(isolate);
15425 return __RT_impl_Runtime_Call(args, isolate);
15426 }
15427
15428
RUNTIME_FUNCTION(RuntimeReference_ArgumentsLength)15429 RUNTIME_FUNCTION(RuntimeReference_ArgumentsLength) {
15430 SealHandleScope shs(isolate);
15431 DCHECK(args.length() == 0);
15432 JavaScriptFrameIterator it(isolate);
15433 JavaScriptFrame* frame = it.frame();
15434 return Smi::FromInt(frame->GetArgumentsLength());
15435 }
15436
15437
RUNTIME_FUNCTION(RuntimeReference_Arguments)15438 RUNTIME_FUNCTION(RuntimeReference_Arguments) {
15439 SealHandleScope shs(isolate);
15440 return __RT_impl_Runtime_GetArgumentsProperty(args, isolate);
15441 }
15442
15443
RUNTIME_FUNCTION(RuntimeReference_ValueOf)15444 RUNTIME_FUNCTION(RuntimeReference_ValueOf) {
15445 SealHandleScope shs(isolate);
15446 DCHECK(args.length() == 1);
15447 CONVERT_ARG_CHECKED(Object, obj, 0);
15448 if (!obj->IsJSValue()) return obj;
15449 return JSValue::cast(obj)->value();
15450 }
15451
15452
RUNTIME_FUNCTION(RuntimeReference_SetValueOf)15453 RUNTIME_FUNCTION(RuntimeReference_SetValueOf) {
15454 SealHandleScope shs(isolate);
15455 DCHECK(args.length() == 2);
15456 CONVERT_ARG_CHECKED(Object, obj, 0);
15457 CONVERT_ARG_CHECKED(Object, value, 1);
15458 if (!obj->IsJSValue()) return value;
15459 JSValue::cast(obj)->set_value(value);
15460 return value;
15461 }
15462
15463
RUNTIME_FUNCTION(RuntimeReference_DateField)15464 RUNTIME_FUNCTION(RuntimeReference_DateField) {
15465 SealHandleScope shs(isolate);
15466 DCHECK(args.length() == 2);
15467 CONVERT_ARG_CHECKED(Object, obj, 0);
15468 CONVERT_SMI_ARG_CHECKED(index, 1);
15469 if (!obj->IsJSDate()) {
15470 HandleScope scope(isolate);
15471 THROW_NEW_ERROR_RETURN_FAILURE(
15472 isolate,
15473 NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
15474 }
15475 JSDate* date = JSDate::cast(obj);
15476 if (index == 0) return date->value();
15477 return JSDate::GetField(date, Smi::FromInt(index));
15478 }
15479
15480
RUNTIME_FUNCTION(RuntimeReference_StringCharFromCode)15481 RUNTIME_FUNCTION(RuntimeReference_StringCharFromCode) {
15482 SealHandleScope shs(isolate);
15483 return __RT_impl_Runtime_CharFromCode(args, isolate);
15484 }
15485
15486
RUNTIME_FUNCTION(RuntimeReference_StringCharAt)15487 RUNTIME_FUNCTION(RuntimeReference_StringCharAt) {
15488 SealHandleScope shs(isolate);
15489 DCHECK(args.length() == 2);
15490 if (!args[0]->IsString()) return Smi::FromInt(0);
15491 if (!args[1]->IsNumber()) return Smi::FromInt(0);
15492 if (std::isinf(args.number_at(1))) return isolate->heap()->empty_string();
15493 Object* code = __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
15494 if (code->IsNaN()) return isolate->heap()->empty_string();
15495 return __RT_impl_Runtime_CharFromCode(Arguments(1, &code), isolate);
15496 }
15497
15498
RUNTIME_FUNCTION(RuntimeReference_OneByteSeqStringSetChar)15499 RUNTIME_FUNCTION(RuntimeReference_OneByteSeqStringSetChar) {
15500 SealHandleScope shs(isolate);
15501 DCHECK(args.length() == 3);
15502 CONVERT_INT32_ARG_CHECKED(index, 0);
15503 CONVERT_INT32_ARG_CHECKED(value, 1);
15504 CONVERT_ARG_CHECKED(SeqOneByteString, string, 2);
15505 string->SeqOneByteStringSet(index, value);
15506 return string;
15507 }
15508
15509
RUNTIME_FUNCTION(RuntimeReference_TwoByteSeqStringSetChar)15510 RUNTIME_FUNCTION(RuntimeReference_TwoByteSeqStringSetChar) {
15511 SealHandleScope shs(isolate);
15512 DCHECK(args.length() == 3);
15513 CONVERT_INT32_ARG_CHECKED(index, 0);
15514 CONVERT_INT32_ARG_CHECKED(value, 1);
15515 CONVERT_ARG_CHECKED(SeqTwoByteString, string, 2);
15516 string->SeqTwoByteStringSet(index, value);
15517 return string;
15518 }
15519
15520
RUNTIME_FUNCTION(RuntimeReference_ObjectEquals)15521 RUNTIME_FUNCTION(RuntimeReference_ObjectEquals) {
15522 SealHandleScope shs(isolate);
15523 DCHECK(args.length() == 2);
15524 CONVERT_ARG_CHECKED(Object, obj1, 0);
15525 CONVERT_ARG_CHECKED(Object, obj2, 1);
15526 return isolate->heap()->ToBoolean(obj1 == obj2);
15527 }
15528
15529
RUNTIME_FUNCTION(RuntimeReference_IsObject)15530 RUNTIME_FUNCTION(RuntimeReference_IsObject) {
15531 SealHandleScope shs(isolate);
15532 DCHECK(args.length() == 1);
15533 CONVERT_ARG_CHECKED(Object, obj, 0);
15534 if (!obj->IsHeapObject()) return isolate->heap()->false_value();
15535 if (obj->IsNull()) return isolate->heap()->true_value();
15536 if (obj->IsUndetectableObject()) return isolate->heap()->false_value();
15537 Map* map = HeapObject::cast(obj)->map();
15538 bool is_non_callable_spec_object =
15539 map->instance_type() >= FIRST_NONCALLABLE_SPEC_OBJECT_TYPE &&
15540 map->instance_type() <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE;
15541 return isolate->heap()->ToBoolean(is_non_callable_spec_object);
15542 }
15543
15544
RUNTIME_FUNCTION(RuntimeReference_IsFunction)15545 RUNTIME_FUNCTION(RuntimeReference_IsFunction) {
15546 SealHandleScope shs(isolate);
15547 DCHECK(args.length() == 1);
15548 CONVERT_ARG_CHECKED(Object, obj, 0);
15549 return isolate->heap()->ToBoolean(obj->IsJSFunction());
15550 }
15551
15552
RUNTIME_FUNCTION(RuntimeReference_IsUndetectableObject)15553 RUNTIME_FUNCTION(RuntimeReference_IsUndetectableObject) {
15554 SealHandleScope shs(isolate);
15555 DCHECK(args.length() == 1);
15556 CONVERT_ARG_CHECKED(Object, obj, 0);
15557 return isolate->heap()->ToBoolean(obj->IsUndetectableObject());
15558 }
15559
15560
RUNTIME_FUNCTION(RuntimeReference_IsSpecObject)15561 RUNTIME_FUNCTION(RuntimeReference_IsSpecObject) {
15562 SealHandleScope shs(isolate);
15563 DCHECK(args.length() == 1);
15564 CONVERT_ARG_CHECKED(Object, obj, 0);
15565 return isolate->heap()->ToBoolean(obj->IsSpecObject());
15566 }
15567
15568
RUNTIME_FUNCTION(RuntimeReference_MathPow)15569 RUNTIME_FUNCTION(RuntimeReference_MathPow) {
15570 SealHandleScope shs(isolate);
15571 return __RT_impl_Runtime_MathPowSlow(args, isolate);
15572 }
15573
15574
RUNTIME_FUNCTION(RuntimeReference_IsMinusZero)15575 RUNTIME_FUNCTION(RuntimeReference_IsMinusZero) {
15576 SealHandleScope shs(isolate);
15577 DCHECK(args.length() == 1);
15578 CONVERT_ARG_CHECKED(Object, obj, 0);
15579 if (!obj->IsHeapNumber()) return isolate->heap()->false_value();
15580 HeapNumber* number = HeapNumber::cast(obj);
15581 return isolate->heap()->ToBoolean(IsMinusZero(number->value()));
15582 }
15583
15584
RUNTIME_FUNCTION(RuntimeReference_HasCachedArrayIndex)15585 RUNTIME_FUNCTION(RuntimeReference_HasCachedArrayIndex) {
15586 SealHandleScope shs(isolate);
15587 DCHECK(args.length() == 1);
15588 return isolate->heap()->false_value();
15589 }
15590
15591
RUNTIME_FUNCTION(RuntimeReference_GetCachedArrayIndex)15592 RUNTIME_FUNCTION(RuntimeReference_GetCachedArrayIndex) {
15593 SealHandleScope shs(isolate);
15594 DCHECK(args.length() == 1);
15595 return isolate->heap()->undefined_value();
15596 }
15597
15598
RUNTIME_FUNCTION(RuntimeReference_FastOneByteArrayJoin)15599 RUNTIME_FUNCTION(RuntimeReference_FastOneByteArrayJoin) {
15600 SealHandleScope shs(isolate);
15601 DCHECK(args.length() == 2);
15602 return isolate->heap()->undefined_value();
15603 }
15604
15605
RUNTIME_FUNCTION(RuntimeReference_GeneratorNext)15606 RUNTIME_FUNCTION(RuntimeReference_GeneratorNext) {
15607 UNREACHABLE(); // Optimization disabled in SetUpGenerators().
15608 return NULL;
15609 }
15610
15611
RUNTIME_FUNCTION(RuntimeReference_GeneratorThrow)15612 RUNTIME_FUNCTION(RuntimeReference_GeneratorThrow) {
15613 UNREACHABLE(); // Optimization disabled in SetUpGenerators().
15614 return NULL;
15615 }
15616
15617
RUNTIME_FUNCTION(RuntimeReference_ClassOf)15618 RUNTIME_FUNCTION(RuntimeReference_ClassOf) {
15619 SealHandleScope shs(isolate);
15620 DCHECK(args.length() == 1);
15621 CONVERT_ARG_CHECKED(Object, obj, 0);
15622 if (!obj->IsJSReceiver()) return isolate->heap()->null_value();
15623 return JSReceiver::cast(obj)->class_name();
15624 }
15625
15626
RUNTIME_FUNCTION(RuntimeReference_StringCharCodeAt)15627 RUNTIME_FUNCTION(RuntimeReference_StringCharCodeAt) {
15628 SealHandleScope shs(isolate);
15629 DCHECK(args.length() == 2);
15630 if (!args[0]->IsString()) return isolate->heap()->undefined_value();
15631 if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
15632 if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
15633 return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
15634 }
15635
15636
RUNTIME_FUNCTION(RuntimeReference_StringAdd)15637 RUNTIME_FUNCTION(RuntimeReference_StringAdd) {
15638 SealHandleScope shs(isolate);
15639 return __RT_impl_Runtime_StringAdd(args, isolate);
15640 }
15641
15642
RUNTIME_FUNCTION(RuntimeReference_SubString)15643 RUNTIME_FUNCTION(RuntimeReference_SubString) {
15644 SealHandleScope shs(isolate);
15645 return __RT_impl_Runtime_SubString(args, isolate);
15646 }
15647
15648
RUNTIME_FUNCTION(RuntimeReference_StringCompare)15649 RUNTIME_FUNCTION(RuntimeReference_StringCompare) {
15650 SealHandleScope shs(isolate);
15651 return __RT_impl_Runtime_StringCompare(args, isolate);
15652 }
15653
15654
RUNTIME_FUNCTION(RuntimeReference_RegExpExec)15655 RUNTIME_FUNCTION(RuntimeReference_RegExpExec) {
15656 SealHandleScope shs(isolate);
15657 return __RT_impl_Runtime_RegExpExecRT(args, isolate);
15658 }
15659
15660
RUNTIME_FUNCTION(RuntimeReference_RegExpConstructResult)15661 RUNTIME_FUNCTION(RuntimeReference_RegExpConstructResult) {
15662 SealHandleScope shs(isolate);
15663 return __RT_impl_Runtime_RegExpConstructResult(args, isolate);
15664 }
15665
15666
RUNTIME_FUNCTION(RuntimeReference_GetFromCache)15667 RUNTIME_FUNCTION(RuntimeReference_GetFromCache) {
15668 HandleScope scope(isolate);
15669 DCHECK(args.length() == 2);
15670 CONVERT_SMI_ARG_CHECKED(id, 0);
15671 args[0] = isolate->native_context()->jsfunction_result_caches()->get(id);
15672 return __RT_impl_Runtime_GetFromCache(args, isolate);
15673 }
15674
15675
RUNTIME_FUNCTION(RuntimeReference_NumberToString)15676 RUNTIME_FUNCTION(RuntimeReference_NumberToString) {
15677 SealHandleScope shs(isolate);
15678 return __RT_impl_Runtime_NumberToStringRT(args, isolate);
15679 }
15680
15681
RUNTIME_FUNCTION(RuntimeReference_DebugIsActive)15682 RUNTIME_FUNCTION(RuntimeReference_DebugIsActive) {
15683 SealHandleScope shs(isolate);
15684 return Smi::FromInt(isolate->debug()->is_active());
15685 }
15686
15687
15688 // ----------------------------------------------------------------------------
15689 // Implementation of Runtime
15690
15691 #define F(name, number_of_args, result_size) \
15692 { \
15693 Runtime::k##name, Runtime::RUNTIME, #name, FUNCTION_ADDR(Runtime_##name), \
15694 number_of_args, result_size \
15695 } \
15696 ,
15697
15698
15699 #define I(name, number_of_args, result_size) \
15700 { \
15701 Runtime::kInline##name, Runtime::INLINE, "_" #name, \
15702 FUNCTION_ADDR(RuntimeReference_##name), number_of_args, result_size \
15703 } \
15704 ,
15705
15706
15707 #define IO(name, number_of_args, result_size) \
15708 { \
15709 Runtime::kInlineOptimized##name, Runtime::INLINE_OPTIMIZED, "_" #name, \
15710 FUNCTION_ADDR(Runtime_##name), number_of_args, result_size \
15711 } \
15712 ,
15713
15714
15715 static const Runtime::Function kIntrinsicFunctions[] = {
15716 RUNTIME_FUNCTION_LIST(F)
15717 INLINE_OPTIMIZED_FUNCTION_LIST(F)
15718 INLINE_FUNCTION_LIST(I)
15719 INLINE_OPTIMIZED_FUNCTION_LIST(IO)
15720 };
15721
15722 #undef IO
15723 #undef I
15724 #undef F
15725
15726
InitializeIntrinsicFunctionNames(Isolate * isolate,Handle<NameDictionary> dict)15727 void Runtime::InitializeIntrinsicFunctionNames(Isolate* isolate,
15728 Handle<NameDictionary> dict) {
15729 DCHECK(dict->NumberOfElements() == 0);
15730 HandleScope scope(isolate);
15731 for (int i = 0; i < kNumFunctions; ++i) {
15732 const char* name = kIntrinsicFunctions[i].name;
15733 if (name == NULL) continue;
15734 Handle<NameDictionary> new_dict = NameDictionary::Add(
15735 dict,
15736 isolate->factory()->InternalizeUtf8String(name),
15737 Handle<Smi>(Smi::FromInt(i), isolate),
15738 PropertyDetails(NONE, NORMAL, Representation::None()));
15739 // The dictionary does not need to grow.
15740 CHECK(new_dict.is_identical_to(dict));
15741 }
15742 }
15743
15744
FunctionForName(Handle<String> name)15745 const Runtime::Function* Runtime::FunctionForName(Handle<String> name) {
15746 Heap* heap = name->GetHeap();
15747 int entry = heap->intrinsic_function_names()->FindEntry(name);
15748 if (entry != kNotFound) {
15749 Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry);
15750 int function_index = Smi::cast(smi_index)->value();
15751 return &(kIntrinsicFunctions[function_index]);
15752 }
15753 return NULL;
15754 }
15755
15756
FunctionForEntry(Address entry)15757 const Runtime::Function* Runtime::FunctionForEntry(Address entry) {
15758 for (size_t i = 0; i < arraysize(kIntrinsicFunctions); ++i) {
15759 if (entry == kIntrinsicFunctions[i].entry) {
15760 return &(kIntrinsicFunctions[i]);
15761 }
15762 }
15763 return NULL;
15764 }
15765
15766
FunctionForId(Runtime::FunctionId id)15767 const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) {
15768 return &(kIntrinsicFunctions[static_cast<int>(id)]);
15769 }
15770
15771 } } // namespace v8::internal
15772