• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkColorPriv_DEFINED
9 #define SkColorPriv_DEFINED
10 
11 // turn this own for extra debug checking when blending onto 565
12 #ifdef SK_DEBUG
13     #define CHECK_FOR_565_OVERFLOW
14 #endif
15 
16 #include "SkColor.h"
17 #include "SkMath.h"
18 
19 //////////////////////////////////////////////////////////////////////////////
20 
21 #define SkASSERT_IS_BYTE(x)     SkASSERT(0 == ((x) & ~0xFF))
22 
23 /*
24  *  Skia's 32bit backend only supports 1 sizzle order at a time (compile-time).
25  *  This is specified by 4 defines SK_A32_SHIFT, SK_R32_SHIFT, ... for G and B.
26  *
27  *  For easier compatibility with Skia's GPU backend, we further restrict these
28  *  to either (in memory-byte-order) RGBA or BGRA. Note that this "order" does
29  *  not directly correspond to the same shift-order, since we have to take endianess
30  *  into account.
31  *
32  *  Here we enforce this constraint.
33  */
34 
35 #ifdef SK_CPU_BENDIAN
36     #define SK_RGBA_R32_SHIFT   24
37     #define SK_RGBA_G32_SHIFT   16
38     #define SK_RGBA_B32_SHIFT   8
39     #define SK_RGBA_A32_SHIFT   0
40 
41     #define SK_BGRA_B32_SHIFT   24
42     #define SK_BGRA_G32_SHIFT   16
43     #define SK_BGRA_R32_SHIFT   8
44     #define SK_BGRA_A32_SHIFT   0
45 #else
46     #define SK_RGBA_R32_SHIFT   0
47     #define SK_RGBA_G32_SHIFT   8
48     #define SK_RGBA_B32_SHIFT   16
49     #define SK_RGBA_A32_SHIFT   24
50 
51     #define SK_BGRA_B32_SHIFT   0
52     #define SK_BGRA_G32_SHIFT   8
53     #define SK_BGRA_R32_SHIFT   16
54     #define SK_BGRA_A32_SHIFT   24
55 #endif
56 
57 #if defined(SK_PMCOLOR_IS_RGBA) && defined(SK_PMCOLOR_IS_BGRA)
58     #error "can't define PMCOLOR to be RGBA and BGRA"
59 #endif
60 
61 #define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA  \
62     (SK_A32_SHIFT == SK_RGBA_A32_SHIFT &&    \
63      SK_R32_SHIFT == SK_RGBA_R32_SHIFT &&    \
64      SK_G32_SHIFT == SK_RGBA_G32_SHIFT &&    \
65      SK_B32_SHIFT == SK_RGBA_B32_SHIFT)
66 
67 #define LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA  \
68     (SK_A32_SHIFT == SK_BGRA_A32_SHIFT &&    \
69      SK_R32_SHIFT == SK_BGRA_R32_SHIFT &&    \
70      SK_G32_SHIFT == SK_BGRA_G32_SHIFT &&    \
71      SK_B32_SHIFT == SK_BGRA_B32_SHIFT)
72 
73 
74 #if defined(SK_PMCOLOR_IS_RGBA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
75     #error "SK_PMCOLOR_IS_RGBA does not match SK_*32_SHIFT values"
76 #endif
77 
78 #if defined(SK_PMCOLOR_IS_BGRA) && !LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
79     #error "SK_PMCOLOR_IS_BGRA does not match SK_*32_SHIFT values"
80 #endif
81 
82 #if !defined(SK_PMCOLOR_IS_RGBA) && !defined(SK_PMCOLOR_IS_BGRA)
83     // deduce which to define from the _SHIFT defines
84 
85     #if LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
86         #define SK_PMCOLOR_IS_RGBA
87     #elif LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
88         #define SK_PMCOLOR_IS_BGRA
89     #else
90         #error "need 32bit packing to be either RGBA or BGRA"
91     #endif
92 #endif
93 
94 // hide these now that we're done
95 #undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_RGBA
96 #undef LOCAL_PMCOLOR_SHIFTS_EQUIVALENT_TO_BGRA
97 
98 //////////////////////////////////////////////////////////////////////////////
99 
100 // Reverse the bytes coorsponding to RED and BLUE in a packed pixels. Note the
101 // pair of them are in the same 2 slots in both RGBA and BGRA, thus there is
102 // no need to pass in the colortype to this function.
SkSwizzle_RB(uint32_t c)103 static inline uint32_t SkSwizzle_RB(uint32_t c) {
104     static const uint32_t kRBMask = (0xFF << SK_R32_SHIFT) | (0xFF << SK_B32_SHIFT);
105 
106     unsigned c0 = (c >> SK_R32_SHIFT) & 0xFF;
107     unsigned c1 = (c >> SK_B32_SHIFT) & 0xFF;
108     return (c & ~kRBMask) | (c0 << SK_B32_SHIFT) | (c1 << SK_R32_SHIFT);
109 }
110 
SkPackARGB_as_RGBA(U8CPU a,U8CPU r,U8CPU g,U8CPU b)111 static inline uint32_t SkPackARGB_as_RGBA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
112     SkASSERT_IS_BYTE(a);
113     SkASSERT_IS_BYTE(r);
114     SkASSERT_IS_BYTE(g);
115     SkASSERT_IS_BYTE(b);
116     return (a << SK_RGBA_A32_SHIFT) | (r << SK_RGBA_R32_SHIFT) |
117            (g << SK_RGBA_G32_SHIFT) | (b << SK_RGBA_B32_SHIFT);
118 }
119 
SkPackARGB_as_BGRA(U8CPU a,U8CPU r,U8CPU g,U8CPU b)120 static inline uint32_t SkPackARGB_as_BGRA(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
121     SkASSERT_IS_BYTE(a);
122     SkASSERT_IS_BYTE(r);
123     SkASSERT_IS_BYTE(g);
124     SkASSERT_IS_BYTE(b);
125     return (a << SK_BGRA_A32_SHIFT) | (r << SK_BGRA_R32_SHIFT) |
126            (g << SK_BGRA_G32_SHIFT) | (b << SK_BGRA_B32_SHIFT);
127 }
128 
SkSwizzle_RGBA_to_PMColor(uint32_t c)129 static inline SkPMColor SkSwizzle_RGBA_to_PMColor(uint32_t c) {
130 #ifdef SK_PMCOLOR_IS_RGBA
131     return c;
132 #else
133     return SkSwizzle_RB(c);
134 #endif
135 }
136 
SkSwizzle_BGRA_to_PMColor(uint32_t c)137 static inline SkPMColor SkSwizzle_BGRA_to_PMColor(uint32_t c) {
138 #ifdef SK_PMCOLOR_IS_BGRA
139     return c;
140 #else
141     return SkSwizzle_RB(c);
142 #endif
143 }
144 
145 //////////////////////////////////////////////////////////////////////////////
146 
147 ///@{
148 /** See ITU-R Recommendation BT.709 at http://www.itu.int/rec/R-REC-BT.709/ .*/
149 #define SK_ITU_BT709_LUM_COEFF_R (0.2126f)
150 #define SK_ITU_BT709_LUM_COEFF_G (0.7152f)
151 #define SK_ITU_BT709_LUM_COEFF_B (0.0722f)
152 ///@}
153 
154 ///@{
155 /** A float value which specifies this channel's contribution to luminance. */
156 #define SK_LUM_COEFF_R SK_ITU_BT709_LUM_COEFF_R
157 #define SK_LUM_COEFF_G SK_ITU_BT709_LUM_COEFF_G
158 #define SK_LUM_COEFF_B SK_ITU_BT709_LUM_COEFF_B
159 ///@}
160 
161 /** Computes the luminance from the given r, g, and b in accordance with
162     SK_LUM_COEFF_X. For correct results, r, g, and b should be in linear space.
163 */
SkComputeLuminance(U8CPU r,U8CPU g,U8CPU b)164 static inline U8CPU SkComputeLuminance(U8CPU r, U8CPU g, U8CPU b) {
165     //The following is
166     //r * SK_LUM_COEFF_R + g * SK_LUM_COEFF_G + b * SK_LUM_COEFF_B
167     //with SK_LUM_COEFF_X in 1.8 fixed point (rounding adjusted to sum to 256).
168     return (r * 54 + g * 183 + b * 19) >> 8;
169 }
170 
171 /** Turn 0..255 into 0..256 by adding 1 at the half-way point. Used to turn a
172     byte into a scale value, so that we can say scale * value >> 8 instead of
173     alpha * value / 255.
174 
175     In debugging, asserts that alpha is 0..255
176 */
SkAlpha255To256(U8CPU alpha)177 static inline unsigned SkAlpha255To256(U8CPU alpha) {
178     SkASSERT(SkToU8(alpha) == alpha);
179     // this one assues that blending on top of an opaque dst keeps it that way
180     // even though it is less accurate than a+(a>>7) for non-opaque dsts
181     return alpha + 1;
182 }
183 
184 /**
185  *  Turn a 0..255 value into a 0..256 value, rounding up if the value is >= 0x80.
186  *  This is slightly more accurate than SkAlpha255To256.
187  */
Sk255To256(U8CPU value)188 static inline unsigned Sk255To256(U8CPU value) {
189     SkASSERT(SkToU8(value) == value);
190     return value + (value >> 7);
191 }
192 
193 /** Multiplify value by 0..256, and shift the result down 8
194     (i.e. return (value * alpha256) >> 8)
195  */
196 #define SkAlphaMul(value, alpha256)     (SkMulS16(value, alpha256) >> 8)
197 
198 //  The caller may want negative values, so keep all params signed (int)
199 //  so we don't accidentally slip into unsigned math and lose the sign
200 //  extension when we shift (in SkAlphaMul)
SkAlphaBlend(int src,int dst,int scale256)201 static inline int SkAlphaBlend(int src, int dst, int scale256) {
202     SkASSERT((unsigned)scale256 <= 256);
203     return dst + SkAlphaMul(src - dst, scale256);
204 }
205 
206 /**
207  *  Returns (src * alpha + dst * (255 - alpha)) / 255
208  *
209  *  This is more accurate than SkAlphaBlend, but slightly slower
210  */
SkAlphaBlend255(S16CPU src,S16CPU dst,U8CPU alpha)211 static inline int SkAlphaBlend255(S16CPU src, S16CPU dst, U8CPU alpha) {
212     SkASSERT((int16_t)src == src);
213     SkASSERT((int16_t)dst == dst);
214     SkASSERT((uint8_t)alpha == alpha);
215 
216     int prod = SkMulS16(src - dst, alpha) + 128;
217     prod = (prod + (prod >> 8)) >> 8;
218     return dst + prod;
219 }
220 
221 #define SK_R16_BITS     5
222 #define SK_G16_BITS     6
223 #define SK_B16_BITS     5
224 
225 #define SK_R16_SHIFT    (SK_B16_BITS + SK_G16_BITS)
226 #define SK_G16_SHIFT    (SK_B16_BITS)
227 #define SK_B16_SHIFT    0
228 
229 #define SK_R16_MASK     ((1 << SK_R16_BITS) - 1)
230 #define SK_G16_MASK     ((1 << SK_G16_BITS) - 1)
231 #define SK_B16_MASK     ((1 << SK_B16_BITS) - 1)
232 
233 #define SkGetPackedR16(color)   (((unsigned)(color) >> SK_R16_SHIFT) & SK_R16_MASK)
234 #define SkGetPackedG16(color)   (((unsigned)(color) >> SK_G16_SHIFT) & SK_G16_MASK)
235 #define SkGetPackedB16(color)   (((unsigned)(color) >> SK_B16_SHIFT) & SK_B16_MASK)
236 
237 #define SkR16Assert(r)  SkASSERT((unsigned)(r) <= SK_R16_MASK)
238 #define SkG16Assert(g)  SkASSERT((unsigned)(g) <= SK_G16_MASK)
239 #define SkB16Assert(b)  SkASSERT((unsigned)(b) <= SK_B16_MASK)
240 
SkPackRGB16(unsigned r,unsigned g,unsigned b)241 static inline uint16_t SkPackRGB16(unsigned r, unsigned g, unsigned b) {
242     SkASSERT(r <= SK_R16_MASK);
243     SkASSERT(g <= SK_G16_MASK);
244     SkASSERT(b <= SK_B16_MASK);
245 
246     return SkToU16((r << SK_R16_SHIFT) | (g << SK_G16_SHIFT) | (b << SK_B16_SHIFT));
247 }
248 
249 #define SK_R16_MASK_IN_PLACE        (SK_R16_MASK << SK_R16_SHIFT)
250 #define SK_G16_MASK_IN_PLACE        (SK_G16_MASK << SK_G16_SHIFT)
251 #define SK_B16_MASK_IN_PLACE        (SK_B16_MASK << SK_B16_SHIFT)
252 
253 /** Expand the 16bit color into a 32bit value that can be scaled all at once
254     by a value up to 32. Used in conjunction with SkCompact_rgb_16.
255 */
SkExpand_rgb_16(U16CPU c)256 static inline uint32_t SkExpand_rgb_16(U16CPU c) {
257     SkASSERT(c == (uint16_t)c);
258 
259     return ((c & SK_G16_MASK_IN_PLACE) << 16) | (c & ~SK_G16_MASK_IN_PLACE);
260 }
261 
262 /** Compress an expanded value (from SkExpand_rgb_16) back down to a 16bit
263     color value. The computation yields only 16bits of valid data, but we claim
264     to return 32bits, so that the compiler won't generate extra instructions to
265     "clean" the top 16bits. However, the top 16 can contain garbage, so it is
266     up to the caller to safely ignore them.
267 */
SkCompact_rgb_16(uint32_t c)268 static inline U16CPU SkCompact_rgb_16(uint32_t c) {
269     return ((c >> 16) & SK_G16_MASK_IN_PLACE) | (c & ~SK_G16_MASK_IN_PLACE);
270 }
271 
272 /** Scale the 16bit color value by the 0..256 scale parameter.
273     The computation yields only 16bits of valid data, but we claim
274     to return 32bits, so that the compiler won't generate extra instructions to
275     "clean" the top 16bits.
276 */
SkAlphaMulRGB16(U16CPU c,unsigned scale)277 static inline U16CPU SkAlphaMulRGB16(U16CPU c, unsigned scale) {
278     return SkCompact_rgb_16(SkExpand_rgb_16(c) * (scale >> 3) >> 5);
279 }
280 
281 // this helper explicitly returns a clean 16bit value (but slower)
282 #define SkAlphaMulRGB16_ToU16(c, s)  (uint16_t)SkAlphaMulRGB16(c, s)
283 
284 /** Blend pre-expanded RGB32 with 16bit color value by the 0..32 scale parameter.
285     The computation yields only 16bits of valid data, but we claim to return
286     32bits, so that the compiler won't generate extra instructions to "clean"
287     the top 16bits.
288 */
SkBlend32_RGB16(uint32_t src_expand,uint16_t dst,unsigned scale)289 static inline U16CPU SkBlend32_RGB16(uint32_t src_expand, uint16_t dst, unsigned scale) {
290     uint32_t dst_expand = SkExpand_rgb_16(dst) * scale;
291     return SkCompact_rgb_16((src_expand + dst_expand) >> 5);
292 }
293 
294 /** Blend src and dst 16bit colors by the 0..256 scale parameter.
295     The computation yields only 16bits of valid data, but we claim
296     to return 32bits, so that the compiler won't generate extra instructions to
297     "clean" the top 16bits.
298 */
SkBlendRGB16(U16CPU src,U16CPU dst,int srcScale)299 static inline U16CPU SkBlendRGB16(U16CPU src, U16CPU dst, int srcScale) {
300     SkASSERT((unsigned)srcScale <= 256);
301 
302     srcScale >>= 3;
303 
304     uint32_t src32 = SkExpand_rgb_16(src);
305     uint32_t dst32 = SkExpand_rgb_16(dst);
306     return SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5));
307 }
308 
SkBlendRGB16(const uint16_t src[],uint16_t dst[],int srcScale,int count)309 static inline void SkBlendRGB16(const uint16_t src[], uint16_t dst[],
310                                 int srcScale, int count) {
311     SkASSERT(count > 0);
312     SkASSERT((unsigned)srcScale <= 256);
313 
314     srcScale >>= 3;
315 
316     do {
317         uint32_t src32 = SkExpand_rgb_16(*src++);
318         uint32_t dst32 = SkExpand_rgb_16(*dst);
319         *dst++ = static_cast<uint16_t>(
320             SkCompact_rgb_16(dst32 + ((src32 - dst32) * srcScale >> 5)));
321     } while (--count > 0);
322 }
323 
324 #ifdef SK_DEBUG
SkRGB16Add(U16CPU a,U16CPU b)325     static inline U16CPU SkRGB16Add(U16CPU a, U16CPU b) {
326         SkASSERT(SkGetPackedR16(a) + SkGetPackedR16(b) <= SK_R16_MASK);
327         SkASSERT(SkGetPackedG16(a) + SkGetPackedG16(b) <= SK_G16_MASK);
328         SkASSERT(SkGetPackedB16(a) + SkGetPackedB16(b) <= SK_B16_MASK);
329 
330         return a + b;
331     }
332 #else
333     #define SkRGB16Add(a, b)  ((a) + (b))
334 #endif
335 
336 ///////////////////////////////////////////////////////////////////////////////
337 
338 #define SK_A32_BITS     8
339 #define SK_R32_BITS     8
340 #define SK_G32_BITS     8
341 #define SK_B32_BITS     8
342 
343 #define SK_A32_MASK     ((1 << SK_A32_BITS) - 1)
344 #define SK_R32_MASK     ((1 << SK_R32_BITS) - 1)
345 #define SK_G32_MASK     ((1 << SK_G32_BITS) - 1)
346 #define SK_B32_MASK     ((1 << SK_B32_BITS) - 1)
347 
348 #define SkGetPackedA32(packed)      ((uint32_t)((packed) << (24 - SK_A32_SHIFT)) >> 24)
349 #define SkGetPackedR32(packed)      ((uint32_t)((packed) << (24 - SK_R32_SHIFT)) >> 24)
350 #define SkGetPackedG32(packed)      ((uint32_t)((packed) << (24 - SK_G32_SHIFT)) >> 24)
351 #define SkGetPackedB32(packed)      ((uint32_t)((packed) << (24 - SK_B32_SHIFT)) >> 24)
352 
353 #define SkA32Assert(a)  SkASSERT((unsigned)(a) <= SK_A32_MASK)
354 #define SkR32Assert(r)  SkASSERT((unsigned)(r) <= SK_R32_MASK)
355 #define SkG32Assert(g)  SkASSERT((unsigned)(g) <= SK_G32_MASK)
356 #define SkB32Assert(b)  SkASSERT((unsigned)(b) <= SK_B32_MASK)
357 
358 #ifdef SK_DEBUG
359     #define SkPMColorAssert(color_value)                                    \
360         do {                                                                \
361             SkPMColor pm_color_value = (color_value);                       \
362             uint32_t alpha_color_value = SkGetPackedA32(pm_color_value);    \
363             SkA32Assert(alpha_color_value);                                 \
364             SkASSERT(SkGetPackedR32(pm_color_value) <= alpha_color_value);  \
365             SkASSERT(SkGetPackedG32(pm_color_value) <= alpha_color_value);  \
366             SkASSERT(SkGetPackedB32(pm_color_value) <= alpha_color_value);  \
367         } while (false)
368 #else
369     #define SkPMColorAssert(c)
370 #endif
371 
372 /**
373  *  Pack the components into a SkPMColor, checking (in the debug version) that
374  *  the components are 0..255, and are already premultiplied (i.e. alpha >= color)
375  */
SkPackARGB32(U8CPU a,U8CPU r,U8CPU g,U8CPU b)376 static inline SkPMColor SkPackARGB32(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
377     SkA32Assert(a);
378     SkASSERT(r <= a);
379     SkASSERT(g <= a);
380     SkASSERT(b <= a);
381 
382     return (a << SK_A32_SHIFT) | (r << SK_R32_SHIFT) |
383            (g << SK_G32_SHIFT) | (b << SK_B32_SHIFT);
384 }
385 
SkPackPMColor_as_RGBA(SkPMColor c)386 static inline uint32_t SkPackPMColor_as_RGBA(SkPMColor c) {
387     return SkPackARGB_as_RGBA(SkGetPackedA32(c), SkGetPackedR32(c),
388                               SkGetPackedG32(c), SkGetPackedB32(c));
389 }
390 
SkPackPMColor_as_BGRA(SkPMColor c)391 static inline uint32_t SkPackPMColor_as_BGRA(SkPMColor c) {
392     return SkPackARGB_as_BGRA(SkGetPackedA32(c), SkGetPackedR32(c),
393                               SkGetPackedG32(c), SkGetPackedB32(c));
394 }
395 
396 /**
397  * Abstract 4-byte interpolation, implemented on top of SkPMColor
398  * utility functions. Third parameter controls blending of the first two:
399  *   (src, dst, 0) returns dst
400  *   (src, dst, 0xFF) returns src
401  *   srcWeight is [0..256], unlike SkFourByteInterp which takes [0..255]
402  */
SkFourByteInterp256(SkPMColor src,SkPMColor dst,unsigned scale)403 static inline SkPMColor SkFourByteInterp256(SkPMColor src, SkPMColor dst,
404                                          unsigned scale) {
405     unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
406     unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
407     unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
408     unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);
409 
410     return SkPackARGB32(a, r, g, b);
411 }
412 
413 /**
414  * Abstract 4-byte interpolation, implemented on top of SkPMColor
415  * utility functions. Third parameter controls blending of the first two:
416  *   (src, dst, 0) returns dst
417  *   (src, dst, 0xFF) returns src
418  */
SkFourByteInterp(SkPMColor src,SkPMColor dst,U8CPU srcWeight)419 static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst,
420                                          U8CPU srcWeight) {
421     unsigned scale = SkAlpha255To256(srcWeight);
422     return SkFourByteInterp256(src, dst, scale);
423 }
424 
425 /**
426  * 0xAARRGGBB -> 0x00AA00GG, 0x00RR00BB
427  */
SkSplay(uint32_t color,uint32_t * ag,uint32_t * rb)428 static inline void SkSplay(uint32_t color, uint32_t* ag, uint32_t* rb) {
429     const uint32_t mask = 0x00FF00FF;
430     *ag = (color >> 8) & mask;
431     *rb = color & mask;
432 }
433 
434 /**
435  * 0xAARRGGBB -> 0x00AA00GG00RR00BB
436  * (note, ARGB -> AGRB)
437  */
SkSplay(uint32_t color)438 static inline uint64_t SkSplay(uint32_t color) {
439     const uint32_t mask = 0x00FF00FF;
440     uint64_t agrb = (color >> 8) & mask;  // 0x0000000000AA00GG
441     agrb <<= 32;                          // 0x00AA00GG00000000
442     agrb |= color & mask;                 // 0x00AA00GG00RR00BB
443     return agrb;
444 }
445 
446 /**
447  * 0xAAxxGGxx, 0xRRxxBBxx-> 0xAARRGGBB
448  */
SkUnsplay(uint32_t ag,uint32_t rb)449 static inline uint32_t SkUnsplay(uint32_t ag, uint32_t rb) {
450     const uint32_t mask = 0xFF00FF00;
451     return (ag & mask) | ((rb & mask) >> 8);
452 }
453 
454 /**
455  * 0xAAxxGGxxRRxxBBxx -> 0xAARRGGBB
456  * (note, AGRB -> ARGB)
457  */
SkUnsplay(uint64_t agrb)458 static inline uint32_t SkUnsplay(uint64_t agrb) {
459     const uint32_t mask = 0xFF00FF00;
460     return SkPMColor(
461         ((agrb & mask) >> 8) |   // 0x00RR00BB
462         ((agrb >> 32) & mask));  // 0xAARRGGBB
463 }
464 
SkFastFourByteInterp256_32(SkPMColor src,SkPMColor dst,unsigned scale)465 static inline SkPMColor SkFastFourByteInterp256_32(SkPMColor src, SkPMColor dst, unsigned scale) {
466     SkASSERT(scale <= 256);
467 
468     // Two 8-bit blends per two 32-bit registers, with space to make sure the math doesn't collide.
469     uint32_t src_ag, src_rb, dst_ag, dst_rb;
470     SkSplay(src, &src_ag, &src_rb);
471     SkSplay(dst, &dst_ag, &dst_rb);
472 
473     const uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag;
474     const uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb;
475 
476     return SkUnsplay(ret_ag, ret_rb);
477 }
478 
SkFastFourByteInterp256_64(SkPMColor src,SkPMColor dst,unsigned scale)479 static inline SkPMColor SkFastFourByteInterp256_64(SkPMColor src, SkPMColor dst, unsigned scale) {
480     SkASSERT(scale <= 256);
481     // Four 8-bit blends in one 64-bit register, with space to make sure the math doesn't collide.
482     return SkUnsplay(SkSplay(src) * scale + (256-scale) * SkSplay(dst));
483 }
484 
485 // TODO(mtklein): Replace slow versions with fast versions, using scale + (scale>>7) everywhere.
486 
487 /**
488  * Same as SkFourByteInterp256, but faster.
489  */
SkFastFourByteInterp256(SkPMColor src,SkPMColor dst,unsigned scale)490 static inline SkPMColor SkFastFourByteInterp256(SkPMColor src, SkPMColor dst, unsigned scale) {
491     // On a 64-bit machine, _64 is about 10% faster than _32, but ~40% slower on a 32-bit machine.
492     if (sizeof(void*) == 4) {
493         return SkFastFourByteInterp256_32(src, dst, scale);
494     } else {
495         return SkFastFourByteInterp256_64(src, dst, scale);
496     }
497 }
498 
499 /**
500  * Nearly the same as SkFourByteInterp, but faster and a touch more accurate, due to better
501  * srcWeight scaling to [0, 256].
502  */
SkFastFourByteInterp(SkPMColor src,SkPMColor dst,U8CPU srcWeight)503 static inline SkPMColor SkFastFourByteInterp(SkPMColor src,
504                                              SkPMColor dst,
505                                              U8CPU srcWeight) {
506     SkASSERT(srcWeight <= 255);
507     // scale = srcWeight + (srcWeight >> 7) is more accurate than
508     // scale = srcWeight + 1, but 7% slower
509     return SkFastFourByteInterp256(src, dst, srcWeight + (srcWeight >> 7));
510 }
511 
512 /**
513  *  Same as SkPackARGB32, but this version guarantees to not check that the
514  *  values are premultiplied in the debug version.
515  */
SkPackARGB32NoCheck(U8CPU a,U8CPU r,U8CPU g,U8CPU b)516 static inline SkPMColor SkPackARGB32NoCheck(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
517     return (a << SK_A32_SHIFT) | (r << SK_R32_SHIFT) |
518            (g << SK_G32_SHIFT) | (b << SK_B32_SHIFT);
519 }
520 
521 static inline
SkPremultiplyARGBInline(U8CPU a,U8CPU r,U8CPU g,U8CPU b)522 SkPMColor SkPremultiplyARGBInline(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
523     SkA32Assert(a);
524     SkR32Assert(r);
525     SkG32Assert(g);
526     SkB32Assert(b);
527 
528     if (a != 255) {
529         r = SkMulDiv255Round(r, a);
530         g = SkMulDiv255Round(g, a);
531         b = SkMulDiv255Round(b, a);
532     }
533     return SkPackARGB32(a, r, g, b);
534 }
535 
536 // When Android is compiled optimizing for size, SkAlphaMulQ doesn't get
537 // inlined; forcing inlining significantly improves performance.
SkAlphaMulQ(uint32_t c,unsigned scale)538 static SK_ALWAYS_INLINE uint32_t SkAlphaMulQ(uint32_t c, unsigned scale) {
539     uint32_t mask = 0xFF00FF;
540 
541     uint32_t rb = ((c & mask) * scale) >> 8;
542     uint32_t ag = ((c >> 8) & mask) * scale;
543     return (rb & mask) | (ag & ~mask);
544 }
545 
SkPMSrcOver(SkPMColor src,SkPMColor dst)546 static inline SkPMColor SkPMSrcOver(SkPMColor src, SkPMColor dst) {
547     return src + SkAlphaMulQ(dst, SkAlpha255To256(255 - SkGetPackedA32(src)));
548 }
549 
SkBlendARGB32(SkPMColor src,SkPMColor dst,U8CPU aa)550 static inline SkPMColor SkBlendARGB32(SkPMColor src, SkPMColor dst, U8CPU aa) {
551     SkASSERT((unsigned)aa <= 255);
552 
553     unsigned src_scale = SkAlpha255To256(aa);
554     unsigned dst_scale = SkAlpha255To256(255 - SkAlphaMul(SkGetPackedA32(src), src_scale));
555 
556     return SkAlphaMulQ(src, src_scale) + SkAlphaMulQ(dst, dst_scale);
557 }
558 
559 ////////////////////////////////////////////////////////////////////////////////////////////
560 // Convert a 32bit pixel to a 16bit pixel (no dither)
561 
562 #define SkR32ToR16_MACRO(r)   ((unsigned)(r) >> (SK_R32_BITS - SK_R16_BITS))
563 #define SkG32ToG16_MACRO(g)   ((unsigned)(g) >> (SK_G32_BITS - SK_G16_BITS))
564 #define SkB32ToB16_MACRO(b)   ((unsigned)(b) >> (SK_B32_BITS - SK_B16_BITS))
565 
566 #ifdef SK_DEBUG
SkR32ToR16(unsigned r)567     static inline unsigned SkR32ToR16(unsigned r) {
568         SkR32Assert(r);
569         return SkR32ToR16_MACRO(r);
570     }
SkG32ToG16(unsigned g)571     static inline unsigned SkG32ToG16(unsigned g) {
572         SkG32Assert(g);
573         return SkG32ToG16_MACRO(g);
574     }
SkB32ToB16(unsigned b)575     static inline unsigned SkB32ToB16(unsigned b) {
576         SkB32Assert(b);
577         return SkB32ToB16_MACRO(b);
578     }
579 #else
580     #define SkR32ToR16(r)   SkR32ToR16_MACRO(r)
581     #define SkG32ToG16(g)   SkG32ToG16_MACRO(g)
582     #define SkB32ToB16(b)   SkB32ToB16_MACRO(b)
583 #endif
584 
585 #define SkPacked32ToR16(c)  (((unsigned)(c) >> (SK_R32_SHIFT + SK_R32_BITS - SK_R16_BITS)) & SK_R16_MASK)
586 #define SkPacked32ToG16(c)  (((unsigned)(c) >> (SK_G32_SHIFT + SK_G32_BITS - SK_G16_BITS)) & SK_G16_MASK)
587 #define SkPacked32ToB16(c)  (((unsigned)(c) >> (SK_B32_SHIFT + SK_B32_BITS - SK_B16_BITS)) & SK_B16_MASK)
588 
SkPixel32ToPixel16(SkPMColor c)589 static inline U16CPU SkPixel32ToPixel16(SkPMColor c) {
590     unsigned r = ((c >> (SK_R32_SHIFT + (8 - SK_R16_BITS))) & SK_R16_MASK) << SK_R16_SHIFT;
591     unsigned g = ((c >> (SK_G32_SHIFT + (8 - SK_G16_BITS))) & SK_G16_MASK) << SK_G16_SHIFT;
592     unsigned b = ((c >> (SK_B32_SHIFT + (8 - SK_B16_BITS))) & SK_B16_MASK) << SK_B16_SHIFT;
593     return r | g | b;
594 }
595 
SkPack888ToRGB16(U8CPU r,U8CPU g,U8CPU b)596 static inline U16CPU SkPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
597     return  (SkR32ToR16(r) << SK_R16_SHIFT) |
598             (SkG32ToG16(g) << SK_G16_SHIFT) |
599             (SkB32ToB16(b) << SK_B16_SHIFT);
600 }
601 
602 #define SkPixel32ToPixel16_ToU16(src)   SkToU16(SkPixel32ToPixel16(src))
603 
604 /////////////////////////////////////////////////////////////////////////////////////////
605 // Fast dither from 32->16
606 
607 #define SkShouldDitherXY(x, y)  (((x) ^ (y)) & 1)
608 
SkDitherPack888ToRGB16(U8CPU r,U8CPU g,U8CPU b)609 static inline uint16_t SkDitherPack888ToRGB16(U8CPU r, U8CPU g, U8CPU b) {
610     r = ((r << 1) - ((r >> (8 - SK_R16_BITS) << (8 - SK_R16_BITS)) | (r >> SK_R16_BITS))) >> (8 - SK_R16_BITS);
611     g = ((g << 1) - ((g >> (8 - SK_G16_BITS) << (8 - SK_G16_BITS)) | (g >> SK_G16_BITS))) >> (8 - SK_G16_BITS);
612     b = ((b << 1) - ((b >> (8 - SK_B16_BITS) << (8 - SK_B16_BITS)) | (b >> SK_B16_BITS))) >> (8 - SK_B16_BITS);
613 
614     return SkPackRGB16(r, g, b);
615 }
616 
SkDitherPixel32ToPixel16(SkPMColor c)617 static inline uint16_t SkDitherPixel32ToPixel16(SkPMColor c) {
618     return SkDitherPack888ToRGB16(SkGetPackedR32(c), SkGetPackedG32(c), SkGetPackedB32(c));
619 }
620 
621 /*  Return c in expanded_rgb_16 format, but also scaled up by 32 (5 bits)
622     It is now suitable for combining with a scaled expanded_rgb_16 color
623     as in SkSrcOver32To16().
624     We must do this 565 high-bit replication, in order for the subsequent add
625     to saturate properly (and not overflow). If we take the 8 bits as is, it is
626     possible to overflow.
627 */
SkPMColorToExpanded16x5(SkPMColor c)628 static inline uint32_t SkPMColorToExpanded16x5(SkPMColor c) {
629     unsigned sr = SkPacked32ToR16(c);
630     unsigned sg = SkPacked32ToG16(c);
631     unsigned sb = SkPacked32ToB16(c);
632 
633     sr = (sr << 5) | sr;
634     sg = (sg << 5) | (sg >> 1);
635     sb = (sb << 5) | sb;
636     return (sr << 11) | (sg << 21) | (sb << 0);
637 }
638 
639 /*  SrcOver the 32bit src color with the 16bit dst, returning a 16bit value
640     (with dirt in the high 16bits, so caller beware).
641 */
SkSrcOver32To16(SkPMColor src,uint16_t dst)642 static inline U16CPU SkSrcOver32To16(SkPMColor src, uint16_t dst) {
643     unsigned sr = SkGetPackedR32(src);
644     unsigned sg = SkGetPackedG32(src);
645     unsigned sb = SkGetPackedB32(src);
646 
647     unsigned dr = SkGetPackedR16(dst);
648     unsigned dg = SkGetPackedG16(dst);
649     unsigned db = SkGetPackedB16(dst);
650 
651     unsigned isa = 255 - SkGetPackedA32(src);
652 
653     dr = (sr + SkMul16ShiftRound(dr, isa, SK_R16_BITS)) >> (8 - SK_R16_BITS);
654     dg = (sg + SkMul16ShiftRound(dg, isa, SK_G16_BITS)) >> (8 - SK_G16_BITS);
655     db = (sb + SkMul16ShiftRound(db, isa, SK_B16_BITS)) >> (8 - SK_B16_BITS);
656 
657     return SkPackRGB16(dr, dg, db);
658 }
659 
660 ////////////////////////////////////////////////////////////////////////////////////////////
661 // Convert a 16bit pixel to a 32bit pixel
662 
SkR16ToR32(unsigned r)663 static inline unsigned SkR16ToR32(unsigned r) {
664     return (r << (8 - SK_R16_BITS)) | (r >> (2 * SK_R16_BITS - 8));
665 }
666 
SkG16ToG32(unsigned g)667 static inline unsigned SkG16ToG32(unsigned g) {
668     return (g << (8 - SK_G16_BITS)) | (g >> (2 * SK_G16_BITS - 8));
669 }
670 
SkB16ToB32(unsigned b)671 static inline unsigned SkB16ToB32(unsigned b) {
672     return (b << (8 - SK_B16_BITS)) | (b >> (2 * SK_B16_BITS - 8));
673 }
674 
675 #define SkPacked16ToR32(c)      SkR16ToR32(SkGetPackedR16(c))
676 #define SkPacked16ToG32(c)      SkG16ToG32(SkGetPackedG16(c))
677 #define SkPacked16ToB32(c)      SkB16ToB32(SkGetPackedB16(c))
678 
SkPixel16ToPixel32(U16CPU src)679 static inline SkPMColor SkPixel16ToPixel32(U16CPU src) {
680     SkASSERT(src == SkToU16(src));
681 
682     unsigned    r = SkPacked16ToR32(src);
683     unsigned    g = SkPacked16ToG32(src);
684     unsigned    b = SkPacked16ToB32(src);
685 
686     SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
687     SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
688     SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
689 
690     return SkPackARGB32(0xFF, r, g, b);
691 }
692 
693 // similar to SkPixel16ToPixel32, but returns SkColor instead of SkPMColor
SkPixel16ToColor(U16CPU src)694 static inline SkColor SkPixel16ToColor(U16CPU src) {
695     SkASSERT(src == SkToU16(src));
696 
697     unsigned    r = SkPacked16ToR32(src);
698     unsigned    g = SkPacked16ToG32(src);
699     unsigned    b = SkPacked16ToB32(src);
700 
701     SkASSERT((r >> (8 - SK_R16_BITS)) == SkGetPackedR16(src));
702     SkASSERT((g >> (8 - SK_G16_BITS)) == SkGetPackedG16(src));
703     SkASSERT((b >> (8 - SK_B16_BITS)) == SkGetPackedB16(src));
704 
705     return SkColorSetRGB(r, g, b);
706 }
707 
708 ///////////////////////////////////////////////////////////////////////////////
709 
710 typedef uint16_t SkPMColor16;
711 
712 // Put in OpenGL order (r g b a)
713 #define SK_A4444_SHIFT    0
714 #define SK_R4444_SHIFT    12
715 #define SK_G4444_SHIFT    8
716 #define SK_B4444_SHIFT    4
717 
718 #define SkA32To4444(a)  ((unsigned)(a) >> 4)
719 #define SkR32To4444(r)  ((unsigned)(r) >> 4)
720 #define SkG32To4444(g)  ((unsigned)(g) >> 4)
721 #define SkB32To4444(b)  ((unsigned)(b) >> 4)
722 
SkReplicateNibble(unsigned nib)723 static inline U8CPU SkReplicateNibble(unsigned nib) {
724     SkASSERT(nib <= 0xF);
725     return (nib << 4) | nib;
726 }
727 
728 #define SkA4444ToA32(a)     SkReplicateNibble(a)
729 #define SkR4444ToR32(r)     SkReplicateNibble(r)
730 #define SkG4444ToG32(g)     SkReplicateNibble(g)
731 #define SkB4444ToB32(b)     SkReplicateNibble(b)
732 
733 #define SkGetPackedA4444(c)     (((unsigned)(c) >> SK_A4444_SHIFT) & 0xF)
734 #define SkGetPackedR4444(c)     (((unsigned)(c) >> SK_R4444_SHIFT) & 0xF)
735 #define SkGetPackedG4444(c)     (((unsigned)(c) >> SK_G4444_SHIFT) & 0xF)
736 #define SkGetPackedB4444(c)     (((unsigned)(c) >> SK_B4444_SHIFT) & 0xF)
737 
738 #define SkPacked4444ToA32(c)    SkReplicateNibble(SkGetPackedA4444(c))
739 #define SkPacked4444ToR32(c)    SkReplicateNibble(SkGetPackedR4444(c))
740 #define SkPacked4444ToG32(c)    SkReplicateNibble(SkGetPackedG4444(c))
741 #define SkPacked4444ToB32(c)    SkReplicateNibble(SkGetPackedB4444(c))
742 
743 #ifdef SK_DEBUG
SkPMColor16Assert(U16CPU c)744 static inline void SkPMColor16Assert(U16CPU c) {
745     unsigned a = SkGetPackedA4444(c);
746     unsigned r = SkGetPackedR4444(c);
747     unsigned g = SkGetPackedG4444(c);
748     unsigned b = SkGetPackedB4444(c);
749 
750     SkASSERT(a <= 0xF);
751     SkASSERT(r <= a);
752     SkASSERT(g <= a);
753     SkASSERT(b <= a);
754 }
755 #else
756 #define SkPMColor16Assert(c)
757 #endif
758 
SkAlpha15To16(unsigned a)759 static inline unsigned SkAlpha15To16(unsigned a) {
760     SkASSERT(a <= 0xF);
761     return a + (a >> 3);
762 }
763 
764 #ifdef SK_DEBUG
SkAlphaMul4(int value,int scale)765     static inline int SkAlphaMul4(int value, int scale) {
766         SkASSERT((unsigned)scale <= 0x10);
767         return value * scale >> 4;
768     }
769 #else
770     #define SkAlphaMul4(value, scale)   ((value) * (scale) >> 4)
771 #endif
772 
SkR4444ToR565(unsigned r)773 static inline unsigned SkR4444ToR565(unsigned r) {
774     SkASSERT(r <= 0xF);
775     return (r << (SK_R16_BITS - 4)) | (r >> (8 - SK_R16_BITS));
776 }
777 
SkG4444ToG565(unsigned g)778 static inline unsigned SkG4444ToG565(unsigned g) {
779     SkASSERT(g <= 0xF);
780     return (g << (SK_G16_BITS - 4)) | (g >> (8 - SK_G16_BITS));
781 }
782 
SkB4444ToB565(unsigned b)783 static inline unsigned SkB4444ToB565(unsigned b) {
784     SkASSERT(b <= 0xF);
785     return (b << (SK_B16_BITS - 4)) | (b >> (8 - SK_B16_BITS));
786 }
787 
SkPackARGB4444(unsigned a,unsigned r,unsigned g,unsigned b)788 static inline SkPMColor16 SkPackARGB4444(unsigned a, unsigned r,
789                                          unsigned g, unsigned b) {
790     SkASSERT(a <= 0xF);
791     SkASSERT(r <= a);
792     SkASSERT(g <= a);
793     SkASSERT(b <= a);
794 
795     return (SkPMColor16)((a << SK_A4444_SHIFT) | (r << SK_R4444_SHIFT) |
796                          (g << SK_G4444_SHIFT) | (b << SK_B4444_SHIFT));
797 }
798 
SkAlphaMulQ4(SkPMColor16 c,int scale)799 static inline SkPMColor16 SkAlphaMulQ4(SkPMColor16 c, int scale) {
800     SkASSERT(scale <= 16);
801 
802     const unsigned mask = 0xF0F;    //gMask_0F0F;
803 
804 #if 0
805     unsigned rb = ((c & mask) * scale) >> 4;
806     unsigned ag = ((c >> 4) & mask) * scale;
807     return (rb & mask) | (ag & ~mask);
808 #else
809     unsigned expanded_c = (c & mask) | ((c & (mask << 4)) << 12);
810     unsigned scaled_c = (expanded_c * scale) >> 4;
811     return (scaled_c & mask) | ((scaled_c >> 12) & (mask << 4));
812 #endif
813 }
814 
815 /** Expand the SkPMColor16 color into a 32bit value that can be scaled all at
816     once by a value up to 16.
817 */
SkExpand_4444(U16CPU c)818 static inline uint32_t SkExpand_4444(U16CPU c) {
819     SkASSERT(c == (uint16_t)c);
820 
821     const unsigned mask = 0xF0F;    //gMask_0F0F;
822     return (c & mask) | ((c & ~mask) << 12);
823 }
824 
SkSrcOver4444To16(SkPMColor16 s,uint16_t d)825 static inline uint16_t SkSrcOver4444To16(SkPMColor16 s, uint16_t d) {
826     unsigned sa = SkGetPackedA4444(s);
827     unsigned sr = SkR4444ToR565(SkGetPackedR4444(s));
828     unsigned sg = SkG4444ToG565(SkGetPackedG4444(s));
829     unsigned sb = SkB4444ToB565(SkGetPackedB4444(s));
830 
831     // To avoid overflow, we have to clear the low bit of the synthetic sg
832     // if the src alpha is <= 7.
833     // to see why, try blending 0x4444 on top of 565-white and watch green
834     // overflow (sum == 64)
835     sg &= ~(~(sa >> 3) & 1);
836 
837     unsigned scale = SkAlpha15To16(15 - sa);
838     unsigned dr = SkAlphaMul4(SkGetPackedR16(d), scale);
839     unsigned dg = SkAlphaMul4(SkGetPackedG16(d), scale);
840     unsigned db = SkAlphaMul4(SkGetPackedB16(d), scale);
841 
842 #if 0
843     if (sg + dg > 63) {
844         SkDebugf("---- SkSrcOver4444To16 src=%x dst=%x scale=%d, sg=%d dg=%d\n", s, d, scale, sg, dg);
845     }
846 #endif
847     return SkPackRGB16(sr + dr, sg + dg, sb + db);
848 }
849 
SkBlend4444To16(SkPMColor16 src,uint16_t dst,int scale16)850 static inline uint16_t SkBlend4444To16(SkPMColor16 src, uint16_t dst, int scale16) {
851     SkASSERT((unsigned)scale16 <= 16);
852 
853     return SkSrcOver4444To16(SkAlphaMulQ4(src, scale16), dst);
854 }
855 
SkPixel4444ToPixel32(U16CPU c)856 static inline SkPMColor SkPixel4444ToPixel32(U16CPU c) {
857     uint32_t d = (SkGetPackedA4444(c) << SK_A32_SHIFT) |
858                  (SkGetPackedR4444(c) << SK_R32_SHIFT) |
859                  (SkGetPackedG4444(c) << SK_G32_SHIFT) |
860                  (SkGetPackedB4444(c) << SK_B32_SHIFT);
861     return d | (d << 4);
862 }
863 
SkPixel32ToPixel4444(SkPMColor c)864 static inline SkPMColor16 SkPixel32ToPixel4444(SkPMColor c) {
865     return  (((c >> (SK_A32_SHIFT + 4)) & 0xF) << SK_A4444_SHIFT) |
866     (((c >> (SK_R32_SHIFT + 4)) & 0xF) << SK_R4444_SHIFT) |
867     (((c >> (SK_G32_SHIFT + 4)) & 0xF) << SK_G4444_SHIFT) |
868     (((c >> (SK_B32_SHIFT + 4)) & 0xF) << SK_B4444_SHIFT);
869 }
870 
871 // cheap 2x2 dither
SkDitherARGB32To4444(U8CPU a,U8CPU r,U8CPU g,U8CPU b)872 static inline SkPMColor16 SkDitherARGB32To4444(U8CPU a, U8CPU r,
873                                                U8CPU g, U8CPU b) {
874     // to ensure that we stay a legal premultiplied color, we take the max()
875     // of the truncated and dithered alpha values. If we didn't, cases like
876     // SkDitherARGB32To4444(0x31, 0x2E, ...) would generate SkPackARGB4444(2, 3, ...)
877     // which is not legal premultiplied, since a < color
878     unsigned dithered_a = ((a << 1) - ((a >> 4 << 4) | (a >> 4))) >> 4;
879     a = SkMax32(a >> 4, dithered_a);
880     // these we just dither in place
881     r = ((r << 1) - ((r >> 4 << 4) | (r >> 4))) >> 4;
882     g = ((g << 1) - ((g >> 4 << 4) | (g >> 4))) >> 4;
883     b = ((b << 1) - ((b >> 4 << 4) | (b >> 4))) >> 4;
884 
885     return SkPackARGB4444(a, r, g, b);
886 }
887 
SkDitherPixel32To4444(SkPMColor c)888 static inline SkPMColor16 SkDitherPixel32To4444(SkPMColor c) {
889     return SkDitherARGB32To4444(SkGetPackedA32(c), SkGetPackedR32(c),
890                                 SkGetPackedG32(c), SkGetPackedB32(c));
891 }
892 
893 /*  Assumes 16bit is in standard RGBA order.
894     Transforms a normal ARGB_8888 into the same byte order as
895     expanded ARGB_4444, but keeps each component 8bits
896 */
SkExpand_8888(SkPMColor c)897 static inline uint32_t SkExpand_8888(SkPMColor c) {
898     return  (((c >> SK_R32_SHIFT) & 0xFF) << 24) |
899             (((c >> SK_G32_SHIFT) & 0xFF) <<  8) |
900             (((c >> SK_B32_SHIFT) & 0xFF) << 16) |
901             (((c >> SK_A32_SHIFT) & 0xFF) <<  0);
902 }
903 
904 /*  Undo the operation of SkExpand_8888, turning the argument back into
905     a SkPMColor.
906 */
SkCompact_8888(uint32_t c)907 static inline SkPMColor SkCompact_8888(uint32_t c) {
908     return  (((c >> 24) & 0xFF) << SK_R32_SHIFT) |
909             (((c >>  8) & 0xFF) << SK_G32_SHIFT) |
910             (((c >> 16) & 0xFF) << SK_B32_SHIFT) |
911             (((c >>  0) & 0xFF) << SK_A32_SHIFT);
912 }
913 
914 /*  Like SkExpand_8888, this transforms a pmcolor into the expanded 4444 format,
915     but this routine just keeps the high 4bits of each component in the low
916     4bits of the result (just like a newly expanded PMColor16).
917 */
SkExpand32_4444(SkPMColor c)918 static inline uint32_t SkExpand32_4444(SkPMColor c) {
919     return  (((c >> (SK_R32_SHIFT + 4)) & 0xF) << 24) |
920             (((c >> (SK_G32_SHIFT + 4)) & 0xF) <<  8) |
921             (((c >> (SK_B32_SHIFT + 4)) & 0xF) << 16) |
922             (((c >> (SK_A32_SHIFT + 4)) & 0xF) <<  0);
923 }
924 
925 // takes two values and alternamtes them as part of a memset16
926 // used for cheap 2x2 dithering when the colors are opaque
927 void sk_dither_memset16(uint16_t dst[], uint16_t value, uint16_t other, int n);
928 
929 ///////////////////////////////////////////////////////////////////////////////
930 
SkUpscale31To32(int value)931 static inline int SkUpscale31To32(int value) {
932     SkASSERT((unsigned)value <= 31);
933     return value + (value >> 4);
934 }
935 
SkBlend32(int src,int dst,int scale)936 static inline int SkBlend32(int src, int dst, int scale) {
937     SkASSERT((unsigned)src <= 0xFF);
938     SkASSERT((unsigned)dst <= 0xFF);
939     SkASSERT((unsigned)scale <= 32);
940     return dst + ((src - dst) * scale >> 5);
941 }
942 
SkBlendLCD16(int srcA,int srcR,int srcG,int srcB,SkPMColor dst,uint16_t mask)943 static inline SkPMColor SkBlendLCD16(int srcA, int srcR, int srcG, int srcB,
944                                      SkPMColor dst, uint16_t mask) {
945     if (mask == 0) {
946         return dst;
947     }
948 
949     /*  We want all of these in 5bits, hence the shifts in case one of them
950      *  (green) is 6bits.
951      */
952     int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
953     int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
954     int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
955 
956     // Now upscale them to 0..32, so we can use blend32
957     maskR = SkUpscale31To32(maskR);
958     maskG = SkUpscale31To32(maskG);
959     maskB = SkUpscale31To32(maskB);
960 
961     // srcA has been upscaled to 256 before passed into this function
962     maskR = maskR * srcA >> 8;
963     maskG = maskG * srcA >> 8;
964     maskB = maskB * srcA >> 8;
965 
966     int dstR = SkGetPackedR32(dst);
967     int dstG = SkGetPackedG32(dst);
968     int dstB = SkGetPackedB32(dst);
969 
970     // LCD blitting is only supported if the dst is known/required
971     // to be opaque
972     return SkPackARGB32(0xFF,
973                         SkBlend32(srcR, dstR, maskR),
974                         SkBlend32(srcG, dstG, maskG),
975                         SkBlend32(srcB, dstB, maskB));
976 }
977 
SkBlendLCD16Opaque(int srcR,int srcG,int srcB,SkPMColor dst,uint16_t mask,SkPMColor opaqueDst)978 static inline SkPMColor SkBlendLCD16Opaque(int srcR, int srcG, int srcB,
979                                            SkPMColor dst, uint16_t mask,
980                                            SkPMColor opaqueDst) {
981     if (mask == 0) {
982         return dst;
983     }
984 
985     if (0xFFFF == mask) {
986         return opaqueDst;
987     }
988 
989     /*  We want all of these in 5bits, hence the shifts in case one of them
990      *  (green) is 6bits.
991      */
992     int maskR = SkGetPackedR16(mask) >> (SK_R16_BITS - 5);
993     int maskG = SkGetPackedG16(mask) >> (SK_G16_BITS - 5);
994     int maskB = SkGetPackedB16(mask) >> (SK_B16_BITS - 5);
995 
996     // Now upscale them to 0..32, so we can use blend32
997     maskR = SkUpscale31To32(maskR);
998     maskG = SkUpscale31To32(maskG);
999     maskB = SkUpscale31To32(maskB);
1000 
1001     int dstR = SkGetPackedR32(dst);
1002     int dstG = SkGetPackedG32(dst);
1003     int dstB = SkGetPackedB32(dst);
1004 
1005     // LCD blitting is only supported if the dst is known/required
1006     // to be opaque
1007     return SkPackARGB32(0xFF,
1008                         SkBlend32(srcR, dstR, maskR),
1009                         SkBlend32(srcG, dstG, maskG),
1010                         SkBlend32(srcB, dstB, maskB));
1011 }
1012 
SkBlitLCD16Row(SkPMColor dst[],const uint16_t mask[],SkColor src,int width,SkPMColor)1013 static inline void SkBlitLCD16Row(SkPMColor dst[], const uint16_t mask[],
1014                                   SkColor src, int width, SkPMColor) {
1015     int srcA = SkColorGetA(src);
1016     int srcR = SkColorGetR(src);
1017     int srcG = SkColorGetG(src);
1018     int srcB = SkColorGetB(src);
1019 
1020     srcA = SkAlpha255To256(srcA);
1021 
1022     for (int i = 0; i < width; i++) {
1023         dst[i] = SkBlendLCD16(srcA, srcR, srcG, srcB, dst[i], mask[i]);
1024     }
1025 }
1026 
SkBlitLCD16OpaqueRow(SkPMColor dst[],const uint16_t mask[],SkColor src,int width,SkPMColor opaqueDst)1027 static inline void SkBlitLCD16OpaqueRow(SkPMColor dst[], const uint16_t mask[],
1028                                         SkColor src, int width,
1029                                         SkPMColor opaqueDst) {
1030     int srcR = SkColorGetR(src);
1031     int srcG = SkColorGetG(src);
1032     int srcB = SkColorGetB(src);
1033 
1034     for (int i = 0; i < width; i++) {
1035         dst[i] = SkBlendLCD16Opaque(srcR, srcG, srcB, dst[i], mask[i],
1036                                     opaqueDst);
1037     }
1038 }
1039 
1040 #endif
1041