• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // Platform-specific code for Win32.
6 
7 // Secure API functions are not available using MinGW with msvcrt.dll
8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
9 // disable definition of secure API functions in standard headers that
10 // would conflict with our own implementation.
11 #ifdef __MINGW32__
12 #include <_mingw.h>
13 #ifdef MINGW_HAS_SECURE_API
14 #undef MINGW_HAS_SECURE_API
15 #endif  // MINGW_HAS_SECURE_API
16 #endif  // __MINGW32__
17 
18 #ifdef _MSC_VER
19 #include <limits>
20 #endif
21 
22 #include "src/base/win32-headers.h"
23 
24 #include "src/base/bits.h"
25 #include "src/base/lazy-instance.h"
26 #include "src/base/macros.h"
27 #include "src/base/platform/platform.h"
28 #include "src/base/platform/time.h"
29 #include "src/base/utils/random-number-generator.h"
30 
31 #ifdef _MSC_VER
32 
33 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
34 // defined in strings.h.
strncasecmp(const char * s1,const char * s2,int n)35 int strncasecmp(const char* s1, const char* s2, int n) {
36   return _strnicmp(s1, s2, n);
37 }
38 
39 #endif  // _MSC_VER
40 
41 
42 // Extra functions for MinGW. Most of these are the _s functions which are in
43 // the Microsoft Visual Studio C++ CRT.
44 #ifdef __MINGW32__
45 
46 
47 #ifndef __MINGW64_VERSION_MAJOR
48 
49 #define _TRUNCATE 0
50 #define STRUNCATE 80
51 
MemoryBarrier()52 inline void MemoryBarrier() {
53   int barrier = 0;
54   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
55 }
56 
57 #endif  // __MINGW64_VERSION_MAJOR
58 
59 
localtime_s(tm * out_tm,const time_t * time)60 int localtime_s(tm* out_tm, const time_t* time) {
61   tm* posix_local_time_struct = localtime(time);
62   if (posix_local_time_struct == NULL) return 1;
63   *out_tm = *posix_local_time_struct;
64   return 0;
65 }
66 
67 
fopen_s(FILE ** pFile,const char * filename,const char * mode)68 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
69   *pFile = fopen(filename, mode);
70   return *pFile != NULL ? 0 : 1;
71 }
72 
_vsnprintf_s(char * buffer,size_t sizeOfBuffer,size_t count,const char * format,va_list argptr)73 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
74                  const char* format, va_list argptr) {
75   DCHECK(count == _TRUNCATE);
76   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
77 }
78 
79 
strncpy_s(char * dest,size_t dest_size,const char * source,size_t count)80 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
81   CHECK(source != NULL);
82   CHECK(dest != NULL);
83   CHECK_GT(dest_size, 0);
84 
85   if (count == _TRUNCATE) {
86     while (dest_size > 0 && *source != 0) {
87       *(dest++) = *(source++);
88       --dest_size;
89     }
90     if (dest_size == 0) {
91       *(dest - 1) = 0;
92       return STRUNCATE;
93     }
94   } else {
95     while (dest_size > 0 && count > 0 && *source != 0) {
96       *(dest++) = *(source++);
97       --dest_size;
98       --count;
99     }
100   }
101   CHECK_GT(dest_size, 0);
102   *dest = 0;
103   return 0;
104 }
105 
106 #endif  // __MINGW32__
107 
108 namespace v8 {
109 namespace base {
110 
111 namespace {
112 
113 bool g_hard_abort = false;
114 
115 }  // namespace
116 
117 class TimezoneCache {
118  public:
TimezoneCache()119   TimezoneCache() : initialized_(false) { }
120 
Clear()121   void Clear() {
122     initialized_ = false;
123   }
124 
125   // Initialize timezone information. The timezone information is obtained from
126   // windows. If we cannot get the timezone information we fall back to CET.
InitializeIfNeeded()127   void InitializeIfNeeded() {
128     // Just return if timezone information has already been initialized.
129     if (initialized_) return;
130 
131     // Initialize POSIX time zone data.
132     _tzset();
133     // Obtain timezone information from operating system.
134     memset(&tzinfo_, 0, sizeof(tzinfo_));
135     if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
136       // If we cannot get timezone information we fall back to CET.
137       tzinfo_.Bias = -60;
138       tzinfo_.StandardDate.wMonth = 10;
139       tzinfo_.StandardDate.wDay = 5;
140       tzinfo_.StandardDate.wHour = 3;
141       tzinfo_.StandardBias = 0;
142       tzinfo_.DaylightDate.wMonth = 3;
143       tzinfo_.DaylightDate.wDay = 5;
144       tzinfo_.DaylightDate.wHour = 2;
145       tzinfo_.DaylightBias = -60;
146     }
147 
148     // Make standard and DST timezone names.
149     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
150                         std_tz_name_, kTzNameSize, NULL, NULL);
151     std_tz_name_[kTzNameSize - 1] = '\0';
152     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
153                         dst_tz_name_, kTzNameSize, NULL, NULL);
154     dst_tz_name_[kTzNameSize - 1] = '\0';
155 
156     // If OS returned empty string or resource id (like "@tzres.dll,-211")
157     // simply guess the name from the UTC bias of the timezone.
158     // To properly resolve the resource identifier requires a library load,
159     // which is not possible in a sandbox.
160     if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
161       OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
162                    "%s Standard Time",
163                    GuessTimezoneNameFromBias(tzinfo_.Bias));
164     }
165     if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
166       OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
167                    "%s Daylight Time",
168                    GuessTimezoneNameFromBias(tzinfo_.Bias));
169     }
170     // Timezone information initialized.
171     initialized_ = true;
172   }
173 
174   // Guess the name of the timezone from the bias.
175   // The guess is very biased towards the northern hemisphere.
GuessTimezoneNameFromBias(int bias)176   const char* GuessTimezoneNameFromBias(int bias) {
177     static const int kHour = 60;
178     switch (-bias) {
179       case -9*kHour: return "Alaska";
180       case -8*kHour: return "Pacific";
181       case -7*kHour: return "Mountain";
182       case -6*kHour: return "Central";
183       case -5*kHour: return "Eastern";
184       case -4*kHour: return "Atlantic";
185       case  0*kHour: return "GMT";
186       case +1*kHour: return "Central Europe";
187       case +2*kHour: return "Eastern Europe";
188       case +3*kHour: return "Russia";
189       case +5*kHour + 30: return "India";
190       case +8*kHour: return "China";
191       case +9*kHour: return "Japan";
192       case +12*kHour: return "New Zealand";
193       default: return "Local";
194     }
195   }
196 
197 
198  private:
199   static const int kTzNameSize = 128;
200   bool initialized_;
201   char std_tz_name_[kTzNameSize];
202   char dst_tz_name_[kTzNameSize];
203   TIME_ZONE_INFORMATION tzinfo_;
204   friend class Win32Time;
205 };
206 
207 
208 // ----------------------------------------------------------------------------
209 // The Time class represents time on win32. A timestamp is represented as
210 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
211 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
212 // January 1, 1970.
213 
214 class Win32Time {
215  public:
216   // Constructors.
217   Win32Time();
218   explicit Win32Time(double jstime);
219   Win32Time(int year, int mon, int day, int hour, int min, int sec);
220 
221   // Convert timestamp to JavaScript representation.
222   double ToJSTime();
223 
224   // Set timestamp to current time.
225   void SetToCurrentTime();
226 
227   // Returns the local timezone offset in milliseconds east of UTC. This is
228   // the number of milliseconds you must add to UTC to get local time, i.e.
229   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
230   // routine also takes into account whether daylight saving is effect
231   // at the time.
232   int64_t LocalOffset(TimezoneCache* cache);
233 
234   // Returns the daylight savings time offset for the time in milliseconds.
235   int64_t DaylightSavingsOffset(TimezoneCache* cache);
236 
237   // Returns a string identifying the current timezone for the
238   // timestamp taking into account daylight saving.
239   char* LocalTimezone(TimezoneCache* cache);
240 
241  private:
242   // Constants for time conversion.
243   static const int64_t kTimeEpoc = 116444736000000000LL;
244   static const int64_t kTimeScaler = 10000;
245   static const int64_t kMsPerMinute = 60000;
246 
247   // Constants for timezone information.
248   static const bool kShortTzNames = false;
249 
250   // Return whether or not daylight savings time is in effect at this time.
251   bool InDST(TimezoneCache* cache);
252 
253   // Accessor for FILETIME representation.
ft()254   FILETIME& ft() { return time_.ft_; }
255 
256   // Accessor for integer representation.
t()257   int64_t& t() { return time_.t_; }
258 
259   // Although win32 uses 64-bit integers for representing timestamps,
260   // these are packed into a FILETIME structure. The FILETIME structure
261   // is just a struct representing a 64-bit integer. The TimeStamp union
262   // allows access to both a FILETIME and an integer representation of
263   // the timestamp.
264   union TimeStamp {
265     FILETIME ft_;
266     int64_t t_;
267   };
268 
269   TimeStamp time_;
270 };
271 
272 
273 // Initialize timestamp to start of epoc.
Win32Time()274 Win32Time::Win32Time() {
275   t() = 0;
276 }
277 
278 
279 // Initialize timestamp from a JavaScript timestamp.
Win32Time(double jstime)280 Win32Time::Win32Time(double jstime) {
281   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
282 }
283 
284 
285 // Initialize timestamp from date/time components.
Win32Time(int year,int mon,int day,int hour,int min,int sec)286 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
287   SYSTEMTIME st;
288   st.wYear = year;
289   st.wMonth = mon;
290   st.wDay = day;
291   st.wHour = hour;
292   st.wMinute = min;
293   st.wSecond = sec;
294   st.wMilliseconds = 0;
295   SystemTimeToFileTime(&st, &ft());
296 }
297 
298 
299 // Convert timestamp to JavaScript timestamp.
ToJSTime()300 double Win32Time::ToJSTime() {
301   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
302 }
303 
304 
305 // Set timestamp to current time.
SetToCurrentTime()306 void Win32Time::SetToCurrentTime() {
307   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
308   // Because we're fast, we like fast timers which have at least a
309   // 1ms resolution.
310   //
311   // timeGetTime() provides 1ms granularity when combined with
312   // timeBeginPeriod().  If the host application for v8 wants fast
313   // timers, it can use timeBeginPeriod to increase the resolution.
314   //
315   // Using timeGetTime() has a drawback because it is a 32bit value
316   // and hence rolls-over every ~49days.
317   //
318   // To use the clock, we use GetSystemTimeAsFileTime as our base;
319   // and then use timeGetTime to extrapolate current time from the
320   // start time.  To deal with rollovers, we resync the clock
321   // any time when more than kMaxClockElapsedTime has passed or
322   // whenever timeGetTime creates a rollover.
323 
324   static bool initialized = false;
325   static TimeStamp init_time;
326   static DWORD init_ticks;
327   static const int64_t kHundredNanosecondsPerSecond = 10000000;
328   static const int64_t kMaxClockElapsedTime =
329       60*kHundredNanosecondsPerSecond;  // 1 minute
330 
331   // If we are uninitialized, we need to resync the clock.
332   bool needs_resync = !initialized;
333 
334   // Get the current time.
335   TimeStamp time_now;
336   GetSystemTimeAsFileTime(&time_now.ft_);
337   DWORD ticks_now = timeGetTime();
338 
339   // Check if we need to resync due to clock rollover.
340   needs_resync |= ticks_now < init_ticks;
341 
342   // Check if we need to resync due to elapsed time.
343   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
344 
345   // Check if we need to resync due to backwards time change.
346   needs_resync |= time_now.t_ < init_time.t_;
347 
348   // Resync the clock if necessary.
349   if (needs_resync) {
350     GetSystemTimeAsFileTime(&init_time.ft_);
351     init_ticks = ticks_now = timeGetTime();
352     initialized = true;
353   }
354 
355   // Finally, compute the actual time.  Why is this so hard.
356   DWORD elapsed = ticks_now - init_ticks;
357   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
358 }
359 
360 
361 // Return the local timezone offset in milliseconds east of UTC. This
362 // takes into account whether daylight saving is in effect at the time.
363 // Only times in the 32-bit Unix range may be passed to this function.
364 // Also, adding the time-zone offset to the input must not overflow.
365 // The function EquivalentTime() in date.js guarantees this.
LocalOffset(TimezoneCache * cache)366 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
367   cache->InitializeIfNeeded();
368 
369   Win32Time rounded_to_second(*this);
370   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
371       1000 * kTimeScaler;
372   // Convert to local time using POSIX localtime function.
373   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
374   // very slow.  Other browsers use localtime().
375 
376   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
377   // POSIX seconds past 1/1/1970 0:00:00.
378   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
379   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
380     return 0;
381   }
382   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
383   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
384 
385   // Convert to local time, as struct with fields for day, hour, year, etc.
386   tm posix_local_time_struct;
387   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
388 
389   if (posix_local_time_struct.tm_isdst > 0) {
390     return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
391   } else if (posix_local_time_struct.tm_isdst == 0) {
392     return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
393   } else {
394     return cache->tzinfo_.Bias * -kMsPerMinute;
395   }
396 }
397 
398 
399 // Return whether or not daylight savings time is in effect at this time.
InDST(TimezoneCache * cache)400 bool Win32Time::InDST(TimezoneCache* cache) {
401   cache->InitializeIfNeeded();
402 
403   // Determine if DST is in effect at the specified time.
404   bool in_dst = false;
405   if (cache->tzinfo_.StandardDate.wMonth != 0 ||
406       cache->tzinfo_.DaylightDate.wMonth != 0) {
407     // Get the local timezone offset for the timestamp in milliseconds.
408     int64_t offset = LocalOffset(cache);
409 
410     // Compute the offset for DST. The bias parameters in the timezone info
411     // are specified in minutes. These must be converted to milliseconds.
412     int64_t dstofs =
413         -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
414 
415     // If the local time offset equals the timezone bias plus the daylight
416     // bias then DST is in effect.
417     in_dst = offset == dstofs;
418   }
419 
420   return in_dst;
421 }
422 
423 
424 // Return the daylight savings time offset for this time.
DaylightSavingsOffset(TimezoneCache * cache)425 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
426   return InDST(cache) ? 60 * kMsPerMinute : 0;
427 }
428 
429 
430 // Returns a string identifying the current timezone for the
431 // timestamp taking into account daylight saving.
LocalTimezone(TimezoneCache * cache)432 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
433   // Return the standard or DST time zone name based on whether daylight
434   // saving is in effect at the given time.
435   return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
436 }
437 
438 
439 // Returns the accumulated user time for thread.
GetUserTime(uint32_t * secs,uint32_t * usecs)440 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
441   FILETIME dummy;
442   uint64_t usertime;
443 
444   // Get the amount of time that the thread has executed in user mode.
445   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
446                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
447 
448   // Adjust the resolution to micro-seconds.
449   usertime /= 10;
450 
451   // Convert to seconds and microseconds
452   *secs = static_cast<uint32_t>(usertime / 1000000);
453   *usecs = static_cast<uint32_t>(usertime % 1000000);
454   return 0;
455 }
456 
457 
458 // Returns current time as the number of milliseconds since
459 // 00:00:00 UTC, January 1, 1970.
TimeCurrentMillis()460 double OS::TimeCurrentMillis() {
461   return Time::Now().ToJsTime();
462 }
463 
464 
CreateTimezoneCache()465 TimezoneCache* OS::CreateTimezoneCache() {
466   return new TimezoneCache();
467 }
468 
469 
DisposeTimezoneCache(TimezoneCache * cache)470 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
471   delete cache;
472 }
473 
474 
ClearTimezoneCache(TimezoneCache * cache)475 void OS::ClearTimezoneCache(TimezoneCache* cache) {
476   cache->Clear();
477 }
478 
479 
480 // Returns a string identifying the current timezone taking into
481 // account daylight saving.
LocalTimezone(double time,TimezoneCache * cache)482 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
483   return Win32Time(time).LocalTimezone(cache);
484 }
485 
486 
487 // Returns the local time offset in milliseconds east of UTC without
488 // taking daylight savings time into account.
LocalTimeOffset(TimezoneCache * cache)489 double OS::LocalTimeOffset(TimezoneCache* cache) {
490   // Use current time, rounded to the millisecond.
491   Win32Time t(TimeCurrentMillis());
492   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
493   return static_cast<double>(t.LocalOffset(cache) -
494                              t.DaylightSavingsOffset(cache));
495 }
496 
497 
498 // Returns the daylight savings offset in milliseconds for the given
499 // time.
DaylightSavingsOffset(double time,TimezoneCache * cache)500 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
501   int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
502   return static_cast<double>(offset);
503 }
504 
505 
GetLastError()506 int OS::GetLastError() {
507   return ::GetLastError();
508 }
509 
510 
GetCurrentProcessId()511 int OS::GetCurrentProcessId() {
512   return static_cast<int>(::GetCurrentProcessId());
513 }
514 
515 
GetCurrentThreadId()516 int OS::GetCurrentThreadId() {
517   return static_cast<int>(::GetCurrentThreadId());
518 }
519 
520 
521 // ----------------------------------------------------------------------------
522 // Win32 console output.
523 //
524 // If a Win32 application is linked as a console application it has a normal
525 // standard output and standard error. In this case normal printf works fine
526 // for output. However, if the application is linked as a GUI application,
527 // the process doesn't have a console, and therefore (debugging) output is lost.
528 // This is the case if we are embedded in a windows program (like a browser).
529 // In order to be able to get debug output in this case the the debugging
530 // facility using OutputDebugString. This output goes to the active debugger
531 // for the process (if any). Else the output can be monitored using DBMON.EXE.
532 
533 enum OutputMode {
534   UNKNOWN,  // Output method has not yet been determined.
535   CONSOLE,  // Output is written to stdout.
536   ODS       // Output is written to debug facility.
537 };
538 
539 static OutputMode output_mode = UNKNOWN;  // Current output mode.
540 
541 
542 // Determine if the process has a console for output.
HasConsole()543 static bool HasConsole() {
544   // Only check the first time. Eventual race conditions are not a problem,
545   // because all threads will eventually determine the same mode.
546   if (output_mode == UNKNOWN) {
547     // We cannot just check that the standard output is attached to a console
548     // because this would fail if output is redirected to a file. Therefore we
549     // say that a process does not have an output console if either the
550     // standard output handle is invalid or its file type is unknown.
551     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
552         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
553       output_mode = CONSOLE;
554     else
555       output_mode = ODS;
556   }
557   return output_mode == CONSOLE;
558 }
559 
560 
VPrintHelper(FILE * stream,const char * format,va_list args)561 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
562   if ((stream == stdout || stream == stderr) && !HasConsole()) {
563     // It is important to use safe print here in order to avoid
564     // overflowing the buffer. We might truncate the output, but this
565     // does not crash.
566     char buffer[4096];
567     OS::VSNPrintF(buffer, sizeof(buffer), format, args);
568     OutputDebugStringA(buffer);
569   } else {
570     vfprintf(stream, format, args);
571   }
572 }
573 
574 
FOpen(const char * path,const char * mode)575 FILE* OS::FOpen(const char* path, const char* mode) {
576   FILE* result;
577   if (fopen_s(&result, path, mode) == 0) {
578     return result;
579   } else {
580     return NULL;
581   }
582 }
583 
584 
Remove(const char * path)585 bool OS::Remove(const char* path) {
586   return (DeleteFileA(path) != 0);
587 }
588 
589 
OpenTemporaryFile()590 FILE* OS::OpenTemporaryFile() {
591   // tmpfile_s tries to use the root dir, don't use it.
592   char tempPathBuffer[MAX_PATH];
593   DWORD path_result = 0;
594   path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
595   if (path_result > MAX_PATH || path_result == 0) return NULL;
596   UINT name_result = 0;
597   char tempNameBuffer[MAX_PATH];
598   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
599   if (name_result == 0) return NULL;
600   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
601   if (result != NULL) {
602     Remove(tempNameBuffer);  // Delete on close.
603   }
604   return result;
605 }
606 
607 
608 // Open log file in binary mode to avoid /n -> /r/n conversion.
609 const char* const OS::LogFileOpenMode = "wb";
610 
611 
612 // Print (debug) message to console.
Print(const char * format,...)613 void OS::Print(const char* format, ...) {
614   va_list args;
615   va_start(args, format);
616   VPrint(format, args);
617   va_end(args);
618 }
619 
620 
VPrint(const char * format,va_list args)621 void OS::VPrint(const char* format, va_list args) {
622   VPrintHelper(stdout, format, args);
623 }
624 
625 
FPrint(FILE * out,const char * format,...)626 void OS::FPrint(FILE* out, const char* format, ...) {
627   va_list args;
628   va_start(args, format);
629   VFPrint(out, format, args);
630   va_end(args);
631 }
632 
633 
VFPrint(FILE * out,const char * format,va_list args)634 void OS::VFPrint(FILE* out, const char* format, va_list args) {
635   VPrintHelper(out, format, args);
636 }
637 
638 
639 // Print error message to console.
PrintError(const char * format,...)640 void OS::PrintError(const char* format, ...) {
641   va_list args;
642   va_start(args, format);
643   VPrintError(format, args);
644   va_end(args);
645 }
646 
647 
VPrintError(const char * format,va_list args)648 void OS::VPrintError(const char* format, va_list args) {
649   VPrintHelper(stderr, format, args);
650 }
651 
652 
SNPrintF(char * str,int length,const char * format,...)653 int OS::SNPrintF(char* str, int length, const char* format, ...) {
654   va_list args;
655   va_start(args, format);
656   int result = VSNPrintF(str, length, format, args);
657   va_end(args);
658   return result;
659 }
660 
661 
VSNPrintF(char * str,int length,const char * format,va_list args)662 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
663   int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
664   // Make sure to zero-terminate the string if the output was
665   // truncated or if there was an error.
666   if (n < 0 || n >= length) {
667     if (length > 0)
668       str[length - 1] = '\0';
669     return -1;
670   } else {
671     return n;
672   }
673 }
674 
675 
StrChr(char * str,int c)676 char* OS::StrChr(char* str, int c) {
677   return const_cast<char*>(strchr(str, c));
678 }
679 
680 
StrNCpy(char * dest,int length,const char * src,size_t n)681 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
682   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
683   size_t buffer_size = static_cast<size_t>(length);
684   if (n + 1 > buffer_size)  // count for trailing '\0'
685     n = _TRUNCATE;
686   int result = strncpy_s(dest, length, src, n);
687   USE(result);
688   DCHECK(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
689 }
690 
691 
692 #undef _TRUNCATE
693 #undef STRUNCATE
694 
695 
696 // Get the system's page size used by VirtualAlloc() or the next power
697 // of two. The reason for always returning a power of two is that the
698 // rounding up in OS::Allocate expects that.
GetPageSize()699 static size_t GetPageSize() {
700   static size_t page_size = 0;
701   if (page_size == 0) {
702     SYSTEM_INFO info;
703     GetSystemInfo(&info);
704     page_size = base::bits::RoundUpToPowerOfTwo32(info.dwPageSize);
705   }
706   return page_size;
707 }
708 
709 
710 // The allocation alignment is the guaranteed alignment for
711 // VirtualAlloc'ed blocks of memory.
AllocateAlignment()712 size_t OS::AllocateAlignment() {
713   static size_t allocate_alignment = 0;
714   if (allocate_alignment == 0) {
715     SYSTEM_INFO info;
716     GetSystemInfo(&info);
717     allocate_alignment = info.dwAllocationGranularity;
718   }
719   return allocate_alignment;
720 }
721 
722 
723 static LazyInstance<RandomNumberGenerator>::type
724     platform_random_number_generator = LAZY_INSTANCE_INITIALIZER;
725 
726 
Initialize(int64_t random_seed,bool hard_abort,const char * const gc_fake_mmap)727 void OS::Initialize(int64_t random_seed, bool hard_abort,
728                     const char* const gc_fake_mmap) {
729   if (random_seed) {
730     platform_random_number_generator.Pointer()->SetSeed(random_seed);
731   }
732   g_hard_abort = hard_abort;
733 }
734 
735 
GetRandomMmapAddr()736 void* OS::GetRandomMmapAddr() {
737   // The address range used to randomize RWX allocations in OS::Allocate
738   // Try not to map pages into the default range that windows loads DLLs
739   // Use a multiple of 64k to prevent committing unused memory.
740   // Note: This does not guarantee RWX regions will be within the
741   // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
742 #ifdef V8_HOST_ARCH_64_BIT
743   static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
744   static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
745 #else
746   static const intptr_t kAllocationRandomAddressMin = 0x04000000;
747   static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
748 #endif
749   uintptr_t address =
750       (platform_random_number_generator.Pointer()->NextInt() << kPageSizeBits) |
751       kAllocationRandomAddressMin;
752   address &= kAllocationRandomAddressMax;
753   return reinterpret_cast<void *>(address);
754 }
755 
756 
RandomizedVirtualAlloc(size_t size,int action,int protection)757 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
758   LPVOID base = NULL;
759 
760   if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
761     // For exectutable pages try and randomize the allocation address
762     for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
763       base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
764     }
765   }
766 
767   // After three attempts give up and let the OS find an address to use.
768   if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
769 
770   return base;
771 }
772 
773 
Allocate(const size_t requested,size_t * allocated,bool is_executable)774 void* OS::Allocate(const size_t requested,
775                    size_t* allocated,
776                    bool is_executable) {
777   // VirtualAlloc rounds allocated size to page size automatically.
778   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
779 
780   // Windows XP SP2 allows Data Excution Prevention (DEP).
781   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
782 
783   LPVOID mbase = RandomizedVirtualAlloc(msize,
784                                         MEM_COMMIT | MEM_RESERVE,
785                                         prot);
786 
787   if (mbase == NULL) return NULL;
788 
789   DCHECK((reinterpret_cast<uintptr_t>(mbase) % OS::AllocateAlignment()) == 0);
790 
791   *allocated = msize;
792   return mbase;
793 }
794 
795 
Free(void * address,const size_t size)796 void OS::Free(void* address, const size_t size) {
797   // TODO(1240712): VirtualFree has a return value which is ignored here.
798   VirtualFree(address, 0, MEM_RELEASE);
799   USE(size);
800 }
801 
802 
CommitPageSize()803 intptr_t OS::CommitPageSize() {
804   return 4096;
805 }
806 
807 
ProtectCode(void * address,const size_t size)808 void OS::ProtectCode(void* address, const size_t size) {
809   DWORD old_protect;
810   VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
811 }
812 
813 
Guard(void * address,const size_t size)814 void OS::Guard(void* address, const size_t size) {
815   DWORD oldprotect;
816   VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
817 }
818 
819 
Sleep(int milliseconds)820 void OS::Sleep(int milliseconds) {
821   ::Sleep(milliseconds);
822 }
823 
824 
Abort()825 void OS::Abort() {
826   if (g_hard_abort) {
827     V8_IMMEDIATE_CRASH();
828   }
829   // Make the MSVCRT do a silent abort.
830   raise(SIGABRT);
831 }
832 
833 
DebugBreak()834 void OS::DebugBreak() {
835 #ifdef _MSC_VER
836   // To avoid Visual Studio runtime support the following code can be used
837   // instead
838   // __asm { int 3 }
839   __debugbreak();
840 #else
841   ::DebugBreak();
842 #endif
843 }
844 
845 
846 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
847  public:
Win32MemoryMappedFile(HANDLE file,HANDLE file_mapping,void * memory,int size)848   Win32MemoryMappedFile(HANDLE file,
849                         HANDLE file_mapping,
850                         void* memory,
851                         int size)
852       : file_(file),
853         file_mapping_(file_mapping),
854         memory_(memory),
855         size_(size) { }
856   virtual ~Win32MemoryMappedFile();
memory()857   virtual void* memory() { return memory_; }
size()858   virtual int size() { return size_; }
859  private:
860   HANDLE file_;
861   HANDLE file_mapping_;
862   void* memory_;
863   int size_;
864 };
865 
866 
open(const char * name)867 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
868   // Open a physical file
869   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
870       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
871   if (file == INVALID_HANDLE_VALUE) return NULL;
872 
873   int size = static_cast<int>(GetFileSize(file, NULL));
874 
875   // Create a file mapping for the physical file
876   HANDLE file_mapping = CreateFileMapping(file, NULL,
877       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
878   if (file_mapping == NULL) return NULL;
879 
880   // Map a view of the file into memory
881   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
882   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
883 }
884 
885 
create(const char * name,int size,void * initial)886 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
887     void* initial) {
888   // Open a physical file
889   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
890       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
891   if (file == NULL) return NULL;
892   // Create a file mapping for the physical file
893   HANDLE file_mapping = CreateFileMapping(file, NULL,
894       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
895   if (file_mapping == NULL) return NULL;
896   // Map a view of the file into memory
897   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
898   if (memory) memmove(memory, initial, size);
899   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
900 }
901 
902 
~Win32MemoryMappedFile()903 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
904   if (memory_ != NULL)
905     UnmapViewOfFile(memory_);
906   CloseHandle(file_mapping_);
907   CloseHandle(file_);
908 }
909 
910 
911 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
912 // dynamically. This is to avoid being depending on dbghelp.dll and
913 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
914 // kernel32.dll at some point so loading functions defines in TlHelp32.h
915 // dynamically might not be necessary any more - for some versions of Windows?).
916 
917 // Function pointers to functions dynamically loaded from dbghelp.dll.
918 #define DBGHELP_FUNCTION_LIST(V)  \
919   V(SymInitialize)                \
920   V(SymGetOptions)                \
921   V(SymSetOptions)                \
922   V(SymGetSearchPath)             \
923   V(SymLoadModule64)              \
924   V(StackWalk64)                  \
925   V(SymGetSymFromAddr64)          \
926   V(SymGetLineFromAddr64)         \
927   V(SymFunctionTableAccess64)     \
928   V(SymGetModuleBase64)
929 
930 // Function pointers to functions dynamically loaded from dbghelp.dll.
931 #define TLHELP32_FUNCTION_LIST(V)  \
932   V(CreateToolhelp32Snapshot)      \
933   V(Module32FirstW)                \
934   V(Module32NextW)
935 
936 // Define the decoration to use for the type and variable name used for
937 // dynamically loaded DLL function..
938 #define DLL_FUNC_TYPE(name) _##name##_
939 #define DLL_FUNC_VAR(name) _##name
940 
941 // Define the type for each dynamically loaded DLL function. The function
942 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
943 // from the Windows include files are redefined here to have the function
944 // definitions to be as close to the ones in the original .h files as possible.
945 #ifndef IN
946 #define IN
947 #endif
948 #ifndef VOID
949 #define VOID void
950 #endif
951 
952 // DbgHelp isn't supported on MinGW yet
953 #ifndef __MINGW32__
954 // DbgHelp.h functions.
955 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
956                                                        IN PSTR UserSearchPath,
957                                                        IN BOOL fInvadeProcess);
958 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
959 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
960 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
961     IN HANDLE hProcess,
962     OUT PSTR SearchPath,
963     IN DWORD SearchPathLength);
964 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
965     IN HANDLE hProcess,
966     IN HANDLE hFile,
967     IN PSTR ImageName,
968     IN PSTR ModuleName,
969     IN DWORD64 BaseOfDll,
970     IN DWORD SizeOfDll);
971 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
972     DWORD MachineType,
973     HANDLE hProcess,
974     HANDLE hThread,
975     LPSTACKFRAME64 StackFrame,
976     PVOID ContextRecord,
977     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
978     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
979     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
980     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
981 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
982     IN HANDLE hProcess,
983     IN DWORD64 qwAddr,
984     OUT PDWORD64 pdwDisplacement,
985     OUT PIMAGEHLP_SYMBOL64 Symbol);
986 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
987     IN HANDLE hProcess,
988     IN DWORD64 qwAddr,
989     OUT PDWORD pdwDisplacement,
990     OUT PIMAGEHLP_LINE64 Line64);
991 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
992 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
993     HANDLE hProcess,
994     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
995 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
996     HANDLE hProcess,
997     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
998 
999 // TlHelp32.h functions.
1000 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
1001     DWORD dwFlags,
1002     DWORD th32ProcessID);
1003 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
1004                                                         LPMODULEENTRY32W lpme);
1005 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
1006                                                        LPMODULEENTRY32W lpme);
1007 
1008 #undef IN
1009 #undef VOID
1010 
1011 // Declare a variable for each dynamically loaded DLL function.
1012 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
1013 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)1014 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
1015 #undef DEF_DLL_FUNCTION
1016 
1017 // Load the functions. This function has a lot of "ugly" macros in order to
1018 // keep down code duplication.
1019 
1020 static bool LoadDbgHelpAndTlHelp32() {
1021   static bool dbghelp_loaded = false;
1022 
1023   if (dbghelp_loaded) return true;
1024 
1025   HMODULE module;
1026 
1027   // Load functions from the dbghelp.dll module.
1028   module = LoadLibrary(TEXT("dbghelp.dll"));
1029   if (module == NULL) {
1030     return false;
1031   }
1032 
1033 #define LOAD_DLL_FUNC(name)                                                 \
1034   DLL_FUNC_VAR(name) =                                                      \
1035       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1036 
1037 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
1038 
1039 #undef LOAD_DLL_FUNC
1040 
1041   // Load functions from the kernel32.dll module (the TlHelp32.h function used
1042   // to be in tlhelp32.dll but are now moved to kernel32.dll).
1043   module = LoadLibrary(TEXT("kernel32.dll"));
1044   if (module == NULL) {
1045     return false;
1046   }
1047 
1048 #define LOAD_DLL_FUNC(name)                                                 \
1049   DLL_FUNC_VAR(name) =                                                      \
1050       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
1051 
1052 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
1053 
1054 #undef LOAD_DLL_FUNC
1055 
1056   // Check that all functions where loaded.
1057   bool result =
1058 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
1059 
1060 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
1061 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
1062 
1063 #undef DLL_FUNC_LOADED
1064   true;
1065 
1066   dbghelp_loaded = result;
1067   return result;
1068   // NOTE: The modules are never unloaded and will stay around until the
1069   // application is closed.
1070 }
1071 
1072 #undef DBGHELP_FUNCTION_LIST
1073 #undef TLHELP32_FUNCTION_LIST
1074 #undef DLL_FUNC_VAR
1075 #undef DLL_FUNC_TYPE
1076 
1077 
1078 // Load the symbols for generating stack traces.
LoadSymbols(HANDLE process_handle)1079 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
1080     HANDLE process_handle) {
1081   static std::vector<OS::SharedLibraryAddress> result;
1082 
1083   static bool symbols_loaded = false;
1084 
1085   if (symbols_loaded) return result;
1086 
1087   BOOL ok;
1088 
1089   // Initialize the symbol engine.
1090   ok = _SymInitialize(process_handle,  // hProcess
1091                       NULL,            // UserSearchPath
1092                       false);          // fInvadeProcess
1093   if (!ok) return result;
1094 
1095   DWORD options = _SymGetOptions();
1096   options |= SYMOPT_LOAD_LINES;
1097   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
1098   options = _SymSetOptions(options);
1099 
1100   char buf[OS::kStackWalkMaxNameLen] = {0};
1101   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
1102   if (!ok) {
1103     int err = GetLastError();
1104     OS::Print("%d\n", err);
1105     return result;
1106   }
1107 
1108   HANDLE snapshot = _CreateToolhelp32Snapshot(
1109       TH32CS_SNAPMODULE,       // dwFlags
1110       GetCurrentProcessId());  // th32ProcessId
1111   if (snapshot == INVALID_HANDLE_VALUE) return result;
1112   MODULEENTRY32W module_entry;
1113   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
1114   BOOL cont = _Module32FirstW(snapshot, &module_entry);
1115   while (cont) {
1116     DWORD64 base;
1117     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
1118     // both unicode and ASCII strings even though the parameter is PSTR.
1119     base = _SymLoadModule64(
1120         process_handle,                                       // hProcess
1121         0,                                                    // hFile
1122         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
1123         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
1124         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
1125         module_entry.modBaseSize);                            // SizeOfDll
1126     if (base == 0) {
1127       int err = GetLastError();
1128       if (err != ERROR_MOD_NOT_FOUND &&
1129           err != ERROR_INVALID_HANDLE) {
1130         result.clear();
1131         return result;
1132       }
1133     }
1134     int lib_name_length = WideCharToMultiByte(
1135         CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
1136     std::string lib_name(lib_name_length, 0);
1137     WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
1138                         lib_name_length, NULL, NULL);
1139     result.push_back(OS::SharedLibraryAddress(
1140         lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
1141         reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
1142                                        module_entry.modBaseSize)));
1143     cont = _Module32NextW(snapshot, &module_entry);
1144   }
1145   CloseHandle(snapshot);
1146 
1147   symbols_loaded = true;
1148   return result;
1149 }
1150 
1151 
GetSharedLibraryAddresses()1152 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1153   // SharedLibraryEvents are logged when loading symbol information.
1154   // Only the shared libraries loaded at the time of the call to
1155   // GetSharedLibraryAddresses are logged.  DLLs loaded after
1156   // initialization are not accounted for.
1157   if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
1158   HANDLE process_handle = GetCurrentProcess();
1159   return LoadSymbols(process_handle);
1160 }
1161 
1162 
SignalCodeMovingGC()1163 void OS::SignalCodeMovingGC() {
1164 }
1165 
1166 
1167 #else  // __MINGW32__
GetSharedLibraryAddresses()1168 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
1169   return std::vector<OS::SharedLibraryAddress>();
1170 }
1171 
1172 
SignalCodeMovingGC()1173 void OS::SignalCodeMovingGC() { }
1174 #endif  // __MINGW32__
1175 
1176 
nan_value()1177 double OS::nan_value() {
1178 #ifdef _MSC_VER
1179   return std::numeric_limits<double>::quiet_NaN();
1180 #else  // _MSC_VER
1181   return NAN;
1182 #endif  // _MSC_VER
1183 }
1184 
1185 
ActivationFrameAlignment()1186 int OS::ActivationFrameAlignment() {
1187 #ifdef _WIN64
1188   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
1189 #elif defined(__MINGW32__)
1190   // With gcc 4.4 the tree vectorization optimizer can generate code
1191   // that requires 16 byte alignment such as movdqa on x86.
1192   return 16;
1193 #else
1194   return 8;  // Floating-point math runs faster with 8-byte alignment.
1195 #endif
1196 }
1197 
1198 
VirtualMemory()1199 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
1200 
1201 
VirtualMemory(size_t size)1202 VirtualMemory::VirtualMemory(size_t size)
1203     : address_(ReserveRegion(size)), size_(size) { }
1204 
1205 
VirtualMemory(size_t size,size_t alignment)1206 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
1207     : address_(NULL), size_(0) {
1208   DCHECK((alignment % OS::AllocateAlignment()) == 0);
1209   size_t request_size = RoundUp(size + alignment,
1210                                 static_cast<intptr_t>(OS::AllocateAlignment()));
1211   void* address = ReserveRegion(request_size);
1212   if (address == NULL) return;
1213   uint8_t* base = RoundUp(static_cast<uint8_t*>(address), alignment);
1214   // Try reducing the size by freeing and then reallocating a specific area.
1215   bool result = ReleaseRegion(address, request_size);
1216   USE(result);
1217   DCHECK(result);
1218   address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
1219   if (address != NULL) {
1220     request_size = size;
1221     DCHECK(base == static_cast<uint8_t*>(address));
1222   } else {
1223     // Resizing failed, just go with a bigger area.
1224     address = ReserveRegion(request_size);
1225     if (address == NULL) return;
1226   }
1227   address_ = address;
1228   size_ = request_size;
1229 }
1230 
1231 
~VirtualMemory()1232 VirtualMemory::~VirtualMemory() {
1233   if (IsReserved()) {
1234     bool result = ReleaseRegion(address(), size());
1235     DCHECK(result);
1236     USE(result);
1237   }
1238 }
1239 
1240 
IsReserved()1241 bool VirtualMemory::IsReserved() {
1242   return address_ != NULL;
1243 }
1244 
1245 
Reset()1246 void VirtualMemory::Reset() {
1247   address_ = NULL;
1248   size_ = 0;
1249 }
1250 
1251 
Commit(void * address,size_t size,bool is_executable)1252 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
1253   return CommitRegion(address, size, is_executable);
1254 }
1255 
1256 
Uncommit(void * address,size_t size)1257 bool VirtualMemory::Uncommit(void* address, size_t size) {
1258   DCHECK(IsReserved());
1259   return UncommitRegion(address, size);
1260 }
1261 
1262 
Guard(void * address)1263 bool VirtualMemory::Guard(void* address) {
1264   if (NULL == VirtualAlloc(address,
1265                            OS::CommitPageSize(),
1266                            MEM_COMMIT,
1267                            PAGE_NOACCESS)) {
1268     return false;
1269   }
1270   return true;
1271 }
1272 
1273 
ReserveRegion(size_t size)1274 void* VirtualMemory::ReserveRegion(size_t size) {
1275   return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
1276 }
1277 
1278 
CommitRegion(void * base,size_t size,bool is_executable)1279 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
1280   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
1281   if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
1282     return false;
1283   }
1284   return true;
1285 }
1286 
1287 
UncommitRegion(void * base,size_t size)1288 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
1289   return VirtualFree(base, size, MEM_DECOMMIT) != 0;
1290 }
1291 
1292 
ReleaseRegion(void * base,size_t size)1293 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
1294   return VirtualFree(base, 0, MEM_RELEASE) != 0;
1295 }
1296 
1297 
HasLazyCommits()1298 bool VirtualMemory::HasLazyCommits() {
1299   // TODO(alph): implement for the platform.
1300   return false;
1301 }
1302 
1303 
1304 // ----------------------------------------------------------------------------
1305 // Win32 thread support.
1306 
1307 // Definition of invalid thread handle and id.
1308 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
1309 
1310 // Entry point for threads. The supplied argument is a pointer to the thread
1311 // object. The entry function dispatches to the run method in the thread
1312 // object. It is important that this function has __stdcall calling
1313 // convention.
ThreadEntry(void * arg)1314 static unsigned int __stdcall ThreadEntry(void* arg) {
1315   Thread* thread = reinterpret_cast<Thread*>(arg);
1316   thread->NotifyStartedAndRun();
1317   return 0;
1318 }
1319 
1320 
1321 class Thread::PlatformData {
1322  public:
PlatformData(HANDLE thread)1323   explicit PlatformData(HANDLE thread) : thread_(thread) {}
1324   HANDLE thread_;
1325   unsigned thread_id_;
1326 };
1327 
1328 
1329 // Initialize a Win32 thread object. The thread has an invalid thread
1330 // handle until it is started.
1331 
Thread(const Options & options)1332 Thread::Thread(const Options& options)
1333     : stack_size_(options.stack_size()),
1334       start_semaphore_(NULL) {
1335   data_ = new PlatformData(kNoThread);
1336   set_name(options.name());
1337 }
1338 
1339 
set_name(const char * name)1340 void Thread::set_name(const char* name) {
1341   OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
1342   name_[sizeof(name_) - 1] = '\0';
1343 }
1344 
1345 
1346 // Close our own handle for the thread.
~Thread()1347 Thread::~Thread() {
1348   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
1349   delete data_;
1350 }
1351 
1352 
1353 // Create a new thread. It is important to use _beginthreadex() instead of
1354 // the Win32 function CreateThread(), because the CreateThread() does not
1355 // initialize thread specific structures in the C runtime library.
Start()1356 void Thread::Start() {
1357   data_->thread_ = reinterpret_cast<HANDLE>(
1358       _beginthreadex(NULL,
1359                      static_cast<unsigned>(stack_size_),
1360                      ThreadEntry,
1361                      this,
1362                      0,
1363                      &data_->thread_id_));
1364 }
1365 
1366 
1367 // Wait for thread to terminate.
Join()1368 void Thread::Join() {
1369   if (data_->thread_id_ != GetCurrentThreadId()) {
1370     WaitForSingleObject(data_->thread_, INFINITE);
1371   }
1372 }
1373 
1374 
CreateThreadLocalKey()1375 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
1376   DWORD result = TlsAlloc();
1377   DCHECK(result != TLS_OUT_OF_INDEXES);
1378   return static_cast<LocalStorageKey>(result);
1379 }
1380 
1381 
DeleteThreadLocalKey(LocalStorageKey key)1382 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
1383   BOOL result = TlsFree(static_cast<DWORD>(key));
1384   USE(result);
1385   DCHECK(result);
1386 }
1387 
1388 
GetThreadLocal(LocalStorageKey key)1389 void* Thread::GetThreadLocal(LocalStorageKey key) {
1390   return TlsGetValue(static_cast<DWORD>(key));
1391 }
1392 
1393 
SetThreadLocal(LocalStorageKey key,void * value)1394 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
1395   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
1396   USE(result);
1397   DCHECK(result);
1398 }
1399 
1400 
1401 
YieldCPU()1402 void Thread::YieldCPU() {
1403   Sleep(0);
1404 }
1405 
1406 } }  // namespace v8::base
1407