1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_HEAP_HEAP_INL_H_
6 #define V8_HEAP_HEAP_INL_H_
7
8 #include <cmath>
9
10 #include "src/base/platform/platform.h"
11 #include "src/cpu-profiler.h"
12 #include "src/heap/heap.h"
13 #include "src/heap/store-buffer.h"
14 #include "src/heap/store-buffer-inl.h"
15 #include "src/heap-profiler.h"
16 #include "src/isolate.h"
17 #include "src/list-inl.h"
18 #include "src/msan.h"
19 #include "src/objects.h"
20
21 namespace v8 {
22 namespace internal {
23
insert(HeapObject * target,int size)24 void PromotionQueue::insert(HeapObject* target, int size) {
25 if (emergency_stack_ != NULL) {
26 emergency_stack_->Add(Entry(target, size));
27 return;
28 }
29
30 if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(rear_))) {
31 NewSpacePage* rear_page =
32 NewSpacePage::FromAddress(reinterpret_cast<Address>(rear_));
33 DCHECK(!rear_page->prev_page()->is_anchor());
34 rear_ = reinterpret_cast<intptr_t*>(rear_page->prev_page()->area_end());
35 }
36
37 if ((rear_ - 2) < limit_) {
38 RelocateQueueHead();
39 emergency_stack_->Add(Entry(target, size));
40 return;
41 }
42
43 *(--rear_) = reinterpret_cast<intptr_t>(target);
44 *(--rear_) = size;
45 // Assert no overflow into live objects.
46 #ifdef DEBUG
47 SemiSpace::AssertValidRange(target->GetIsolate()->heap()->new_space()->top(),
48 reinterpret_cast<Address>(rear_));
49 #endif
50 }
51
52
53 template <>
IsOneByte(Vector<const char> str,int chars)54 bool inline Heap::IsOneByte(Vector<const char> str, int chars) {
55 // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported?
56 return chars == str.length();
57 }
58
59
60 template <>
IsOneByte(String * str,int chars)61 bool inline Heap::IsOneByte(String* str, int chars) {
62 return str->IsOneByteRepresentation();
63 }
64
65
AllocateInternalizedStringFromUtf8(Vector<const char> str,int chars,uint32_t hash_field)66 AllocationResult Heap::AllocateInternalizedStringFromUtf8(
67 Vector<const char> str, int chars, uint32_t hash_field) {
68 if (IsOneByte(str, chars)) {
69 return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str),
70 hash_field);
71 }
72 return AllocateInternalizedStringImpl<false>(str, chars, hash_field);
73 }
74
75
76 template <typename T>
AllocateInternalizedStringImpl(T t,int chars,uint32_t hash_field)77 AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars,
78 uint32_t hash_field) {
79 if (IsOneByte(t, chars)) {
80 return AllocateInternalizedStringImpl<true>(t, chars, hash_field);
81 }
82 return AllocateInternalizedStringImpl<false>(t, chars, hash_field);
83 }
84
85
AllocateOneByteInternalizedString(Vector<const uint8_t> str,uint32_t hash_field)86 AllocationResult Heap::AllocateOneByteInternalizedString(
87 Vector<const uint8_t> str, uint32_t hash_field) {
88 CHECK_GE(String::kMaxLength, str.length());
89 // Compute map and object size.
90 Map* map = one_byte_internalized_string_map();
91 int size = SeqOneByteString::SizeFor(str.length());
92 AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
93
94 // Allocate string.
95 HeapObject* result;
96 {
97 AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
98 if (!allocation.To(&result)) return allocation;
99 }
100
101 // String maps are all immortal immovable objects.
102 result->set_map_no_write_barrier(map);
103 // Set length and hash fields of the allocated string.
104 String* answer = String::cast(result);
105 answer->set_length(str.length());
106 answer->set_hash_field(hash_field);
107
108 DCHECK_EQ(size, answer->Size());
109
110 // Fill in the characters.
111 MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(),
112 str.length());
113
114 return answer;
115 }
116
117
AllocateTwoByteInternalizedString(Vector<const uc16> str,uint32_t hash_field)118 AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str,
119 uint32_t hash_field) {
120 CHECK_GE(String::kMaxLength, str.length());
121 // Compute map and object size.
122 Map* map = internalized_string_map();
123 int size = SeqTwoByteString::SizeFor(str.length());
124 AllocationSpace space = SelectSpace(size, OLD_DATA_SPACE, TENURED);
125
126 // Allocate string.
127 HeapObject* result;
128 {
129 AllocationResult allocation = AllocateRaw(size, space, OLD_DATA_SPACE);
130 if (!allocation.To(&result)) return allocation;
131 }
132
133 result->set_map(map);
134 // Set length and hash fields of the allocated string.
135 String* answer = String::cast(result);
136 answer->set_length(str.length());
137 answer->set_hash_field(hash_field);
138
139 DCHECK_EQ(size, answer->Size());
140
141 // Fill in the characters.
142 MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(),
143 str.length() * kUC16Size);
144
145 return answer;
146 }
147
CopyFixedArray(FixedArray * src)148 AllocationResult Heap::CopyFixedArray(FixedArray* src) {
149 if (src->length() == 0) return src;
150 return CopyFixedArrayWithMap(src, src->map());
151 }
152
153
CopyFixedDoubleArray(FixedDoubleArray * src)154 AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
155 if (src->length() == 0) return src;
156 return CopyFixedDoubleArrayWithMap(src, src->map());
157 }
158
159
CopyConstantPoolArray(ConstantPoolArray * src)160 AllocationResult Heap::CopyConstantPoolArray(ConstantPoolArray* src) {
161 if (src->length() == 0) return src;
162 return CopyConstantPoolArrayWithMap(src, src->map());
163 }
164
165
AllocateRaw(int size_in_bytes,AllocationSpace space,AllocationSpace retry_space)166 AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space,
167 AllocationSpace retry_space) {
168 DCHECK(AllowHandleAllocation::IsAllowed());
169 DCHECK(AllowHeapAllocation::IsAllowed());
170 DCHECK(gc_state_ == NOT_IN_GC);
171 #ifdef DEBUG
172 if (FLAG_gc_interval >= 0 && AllowAllocationFailure::IsAllowed(isolate_) &&
173 Heap::allocation_timeout_-- <= 0) {
174 return AllocationResult::Retry(space);
175 }
176 isolate_->counters()->objs_since_last_full()->Increment();
177 isolate_->counters()->objs_since_last_young()->Increment();
178 #endif
179
180 HeapObject* object;
181 AllocationResult allocation;
182 if (NEW_SPACE == space) {
183 allocation = new_space_.AllocateRaw(size_in_bytes);
184 if (always_allocate() && allocation.IsRetry() && retry_space != NEW_SPACE) {
185 space = retry_space;
186 } else {
187 if (allocation.To(&object)) {
188 OnAllocationEvent(object, size_in_bytes);
189 }
190 return allocation;
191 }
192 }
193
194 if (OLD_POINTER_SPACE == space) {
195 allocation = old_pointer_space_->AllocateRaw(size_in_bytes);
196 } else if (OLD_DATA_SPACE == space) {
197 allocation = old_data_space_->AllocateRaw(size_in_bytes);
198 } else if (CODE_SPACE == space) {
199 if (size_in_bytes <= code_space()->AreaSize()) {
200 allocation = code_space_->AllocateRaw(size_in_bytes);
201 } else {
202 // Large code objects are allocated in large object space.
203 allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE);
204 }
205 } else if (LO_SPACE == space) {
206 allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
207 } else if (CELL_SPACE == space) {
208 allocation = cell_space_->AllocateRaw(size_in_bytes);
209 } else if (PROPERTY_CELL_SPACE == space) {
210 allocation = property_cell_space_->AllocateRaw(size_in_bytes);
211 } else {
212 DCHECK(MAP_SPACE == space);
213 allocation = map_space_->AllocateRaw(size_in_bytes);
214 }
215 if (allocation.To(&object)) {
216 OnAllocationEvent(object, size_in_bytes);
217 } else {
218 old_gen_exhausted_ = true;
219 }
220 return allocation;
221 }
222
223
OnAllocationEvent(HeapObject * object,int size_in_bytes)224 void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) {
225 HeapProfiler* profiler = isolate_->heap_profiler();
226 if (profiler->is_tracking_allocations()) {
227 profiler->AllocationEvent(object->address(), size_in_bytes);
228 }
229
230 if (FLAG_verify_predictable) {
231 ++allocations_count_;
232
233 UpdateAllocationsHash(object);
234 UpdateAllocationsHash(size_in_bytes);
235
236 if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
237 (--dump_allocations_hash_countdown_ == 0)) {
238 dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
239 PrintAlloctionsHash();
240 }
241 }
242 }
243
244
OnMoveEvent(HeapObject * target,HeapObject * source,int size_in_bytes)245 void Heap::OnMoveEvent(HeapObject* target, HeapObject* source,
246 int size_in_bytes) {
247 HeapProfiler* heap_profiler = isolate_->heap_profiler();
248 if (heap_profiler->is_tracking_object_moves()) {
249 heap_profiler->ObjectMoveEvent(source->address(), target->address(),
250 size_in_bytes);
251 }
252
253 if (isolate_->logger()->is_logging_code_events() ||
254 isolate_->cpu_profiler()->is_profiling()) {
255 if (target->IsSharedFunctionInfo()) {
256 PROFILE(isolate_, SharedFunctionInfoMoveEvent(source->address(),
257 target->address()));
258 }
259 }
260
261 if (FLAG_verify_predictable) {
262 ++allocations_count_;
263
264 UpdateAllocationsHash(source);
265 UpdateAllocationsHash(target);
266 UpdateAllocationsHash(size_in_bytes);
267
268 if ((FLAG_dump_allocations_digest_at_alloc > 0) &&
269 (--dump_allocations_hash_countdown_ == 0)) {
270 dump_allocations_hash_countdown_ = FLAG_dump_allocations_digest_at_alloc;
271 PrintAlloctionsHash();
272 }
273 }
274 }
275
276
UpdateAllocationsHash(HeapObject * object)277 void Heap::UpdateAllocationsHash(HeapObject* object) {
278 Address object_address = object->address();
279 MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address);
280 AllocationSpace allocation_space = memory_chunk->owner()->identity();
281
282 STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32);
283 uint32_t value =
284 static_cast<uint32_t>(object_address - memory_chunk->address()) |
285 (static_cast<uint32_t>(allocation_space) << kPageSizeBits);
286
287 UpdateAllocationsHash(value);
288 }
289
290
UpdateAllocationsHash(uint32_t value)291 void Heap::UpdateAllocationsHash(uint32_t value) {
292 uint16_t c1 = static_cast<uint16_t>(value);
293 uint16_t c2 = static_cast<uint16_t>(value >> 16);
294 raw_allocations_hash_ =
295 StringHasher::AddCharacterCore(raw_allocations_hash_, c1);
296 raw_allocations_hash_ =
297 StringHasher::AddCharacterCore(raw_allocations_hash_, c2);
298 }
299
300
PrintAlloctionsHash()301 void Heap::PrintAlloctionsHash() {
302 uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_);
303 PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count_, hash);
304 }
305
306
FinalizeExternalString(String * string)307 void Heap::FinalizeExternalString(String* string) {
308 DCHECK(string->IsExternalString());
309 v8::String::ExternalStringResourceBase** resource_addr =
310 reinterpret_cast<v8::String::ExternalStringResourceBase**>(
311 reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset -
312 kHeapObjectTag);
313
314 // Dispose of the C++ object if it has not already been disposed.
315 if (*resource_addr != NULL) {
316 (*resource_addr)->Dispose();
317 *resource_addr = NULL;
318 }
319 }
320
321
InNewSpace(Object * object)322 bool Heap::InNewSpace(Object* object) {
323 bool result = new_space_.Contains(object);
324 DCHECK(!result || // Either not in new space
325 gc_state_ != NOT_IN_GC || // ... or in the middle of GC
326 InToSpace(object)); // ... or in to-space (where we allocate).
327 return result;
328 }
329
330
InNewSpace(Address address)331 bool Heap::InNewSpace(Address address) { return new_space_.Contains(address); }
332
333
InFromSpace(Object * object)334 bool Heap::InFromSpace(Object* object) {
335 return new_space_.FromSpaceContains(object);
336 }
337
338
InToSpace(Object * object)339 bool Heap::InToSpace(Object* object) {
340 return new_space_.ToSpaceContains(object);
341 }
342
343
InOldPointerSpace(Address address)344 bool Heap::InOldPointerSpace(Address address) {
345 return old_pointer_space_->Contains(address);
346 }
347
348
InOldPointerSpace(Object * object)349 bool Heap::InOldPointerSpace(Object* object) {
350 return InOldPointerSpace(reinterpret_cast<Address>(object));
351 }
352
353
InOldDataSpace(Address address)354 bool Heap::InOldDataSpace(Address address) {
355 return old_data_space_->Contains(address);
356 }
357
358
InOldDataSpace(Object * object)359 bool Heap::InOldDataSpace(Object* object) {
360 return InOldDataSpace(reinterpret_cast<Address>(object));
361 }
362
363
OldGenerationAllocationLimitReached()364 bool Heap::OldGenerationAllocationLimitReached() {
365 if (!incremental_marking()->IsStopped()) return false;
366 return OldGenerationSpaceAvailable() < 0;
367 }
368
369
ShouldBePromoted(Address old_address,int object_size)370 bool Heap::ShouldBePromoted(Address old_address, int object_size) {
371 NewSpacePage* page = NewSpacePage::FromAddress(old_address);
372 Address age_mark = new_space_.age_mark();
373 return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
374 (!page->ContainsLimit(age_mark) || old_address < age_mark);
375 }
376
377
RecordWrite(Address address,int offset)378 void Heap::RecordWrite(Address address, int offset) {
379 if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
380 }
381
382
RecordWrites(Address address,int start,int len)383 void Heap::RecordWrites(Address address, int start, int len) {
384 if (!InNewSpace(address)) {
385 for (int i = 0; i < len; i++) {
386 store_buffer_.Mark(address + start + i * kPointerSize);
387 }
388 }
389 }
390
391
TargetSpace(HeapObject * object)392 OldSpace* Heap::TargetSpace(HeapObject* object) {
393 InstanceType type = object->map()->instance_type();
394 AllocationSpace space = TargetSpaceId(type);
395 return (space == OLD_POINTER_SPACE) ? old_pointer_space_ : old_data_space_;
396 }
397
398
TargetSpaceId(InstanceType type)399 AllocationSpace Heap::TargetSpaceId(InstanceType type) {
400 // Heap numbers and sequential strings are promoted to old data space, all
401 // other object types are promoted to old pointer space. We do not use
402 // object->IsHeapNumber() and object->IsSeqString() because we already
403 // know that object has the heap object tag.
404
405 // These objects are never allocated in new space.
406 DCHECK(type != MAP_TYPE);
407 DCHECK(type != CODE_TYPE);
408 DCHECK(type != ODDBALL_TYPE);
409 DCHECK(type != CELL_TYPE);
410 DCHECK(type != PROPERTY_CELL_TYPE);
411
412 if (type <= LAST_NAME_TYPE) {
413 if (type == SYMBOL_TYPE) return OLD_POINTER_SPACE;
414 DCHECK(type < FIRST_NONSTRING_TYPE);
415 // There are four string representations: sequential strings, external
416 // strings, cons strings, and sliced strings.
417 // Only the latter two contain non-map-word pointers to heap objects.
418 return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
419 ? OLD_POINTER_SPACE
420 : OLD_DATA_SPACE;
421 } else {
422 return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
423 }
424 }
425
426
AllowedToBeMigrated(HeapObject * obj,AllocationSpace dst)427 bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) {
428 // Object migration is governed by the following rules:
429 //
430 // 1) Objects in new-space can be migrated to one of the old spaces
431 // that matches their target space or they stay in new-space.
432 // 2) Objects in old-space stay in the same space when migrating.
433 // 3) Fillers (two or more words) can migrate due to left-trimming of
434 // fixed arrays in new-space, old-data-space and old-pointer-space.
435 // 4) Fillers (one word) can never migrate, they are skipped by
436 // incremental marking explicitly to prevent invalid pattern.
437 // 5) Short external strings can end up in old pointer space when a cons
438 // string in old pointer space is made external (String::MakeExternal).
439 //
440 // Since this function is used for debugging only, we do not place
441 // asserts here, but check everything explicitly.
442 if (obj->map() == one_pointer_filler_map()) return false;
443 InstanceType type = obj->map()->instance_type();
444 MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address());
445 AllocationSpace src = chunk->owner()->identity();
446 switch (src) {
447 case NEW_SPACE:
448 return dst == src || dst == TargetSpaceId(type);
449 case OLD_POINTER_SPACE:
450 return dst == src && (dst == TargetSpaceId(type) || obj->IsFiller() ||
451 obj->IsExternalString());
452 case OLD_DATA_SPACE:
453 return dst == src && dst == TargetSpaceId(type);
454 case CODE_SPACE:
455 return dst == src && type == CODE_TYPE;
456 case MAP_SPACE:
457 case CELL_SPACE:
458 case PROPERTY_CELL_SPACE:
459 case LO_SPACE:
460 return false;
461 case INVALID_SPACE:
462 break;
463 }
464 UNREACHABLE();
465 return false;
466 }
467
468
CopyBlock(Address dst,Address src,int byte_size)469 void Heap::CopyBlock(Address dst, Address src, int byte_size) {
470 CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src),
471 static_cast<size_t>(byte_size / kPointerSize));
472 }
473
474
MoveBlock(Address dst,Address src,int byte_size)475 void Heap::MoveBlock(Address dst, Address src, int byte_size) {
476 DCHECK(IsAligned(byte_size, kPointerSize));
477
478 int size_in_words = byte_size / kPointerSize;
479
480 if ((dst < src) || (dst >= (src + byte_size))) {
481 Object** src_slot = reinterpret_cast<Object**>(src);
482 Object** dst_slot = reinterpret_cast<Object**>(dst);
483 Object** end_slot = src_slot + size_in_words;
484
485 while (src_slot != end_slot) {
486 *dst_slot++ = *src_slot++;
487 }
488 } else {
489 MemMove(dst, src, static_cast<size_t>(byte_size));
490 }
491 }
492
493
ScavengePointer(HeapObject ** p)494 void Heap::ScavengePointer(HeapObject** p) { ScavengeObject(p, *p); }
495
496
FindAllocationMemento(HeapObject * object)497 AllocationMemento* Heap::FindAllocationMemento(HeapObject* object) {
498 // Check if there is potentially a memento behind the object. If
499 // the last word of the memento is on another page we return
500 // immediately.
501 Address object_address = object->address();
502 Address memento_address = object_address + object->Size();
503 Address last_memento_word_address = memento_address + kPointerSize;
504 if (!NewSpacePage::OnSamePage(object_address, last_memento_word_address)) {
505 return NULL;
506 }
507
508 HeapObject* candidate = HeapObject::FromAddress(memento_address);
509 Map* candidate_map = candidate->map();
510 // This fast check may peek at an uninitialized word. However, the slow check
511 // below (memento_address == top) ensures that this is safe. Mark the word as
512 // initialized to silence MemorySanitizer warnings.
513 MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map));
514 if (candidate_map != allocation_memento_map()) return NULL;
515
516 // Either the object is the last object in the new space, or there is another
517 // object of at least word size (the header map word) following it, so
518 // suffices to compare ptr and top here. Note that technically we do not have
519 // to compare with the current top pointer of the from space page during GC,
520 // since we always install filler objects above the top pointer of a from
521 // space page when performing a garbage collection. However, always performing
522 // the test makes it possible to have a single, unified version of
523 // FindAllocationMemento that is used both by the GC and the mutator.
524 Address top = NewSpaceTop();
525 DCHECK(memento_address == top ||
526 memento_address + HeapObject::kHeaderSize <= top ||
527 !NewSpacePage::OnSamePage(memento_address, top));
528 if (memento_address == top) return NULL;
529
530 AllocationMemento* memento = AllocationMemento::cast(candidate);
531 if (!memento->IsValid()) return NULL;
532 return memento;
533 }
534
535
UpdateAllocationSiteFeedback(HeapObject * object,ScratchpadSlotMode mode)536 void Heap::UpdateAllocationSiteFeedback(HeapObject* object,
537 ScratchpadSlotMode mode) {
538 Heap* heap = object->GetHeap();
539 DCHECK(heap->InFromSpace(object));
540
541 if (!FLAG_allocation_site_pretenuring ||
542 !AllocationSite::CanTrack(object->map()->instance_type()))
543 return;
544
545 AllocationMemento* memento = heap->FindAllocationMemento(object);
546 if (memento == NULL) return;
547
548 if (memento->GetAllocationSite()->IncrementMementoFoundCount()) {
549 heap->AddAllocationSiteToScratchpad(memento->GetAllocationSite(), mode);
550 }
551 }
552
553
ScavengeObject(HeapObject ** p,HeapObject * object)554 void Heap::ScavengeObject(HeapObject** p, HeapObject* object) {
555 DCHECK(object->GetIsolate()->heap()->InFromSpace(object));
556
557 // We use the first word (where the map pointer usually is) of a heap
558 // object to record the forwarding pointer. A forwarding pointer can
559 // point to an old space, the code space, or the to space of the new
560 // generation.
561 MapWord first_word = object->map_word();
562
563 // If the first word is a forwarding address, the object has already been
564 // copied.
565 if (first_word.IsForwardingAddress()) {
566 HeapObject* dest = first_word.ToForwardingAddress();
567 DCHECK(object->GetIsolate()->heap()->InFromSpace(*p));
568 *p = dest;
569 return;
570 }
571
572 UpdateAllocationSiteFeedback(object, IGNORE_SCRATCHPAD_SLOT);
573
574 // AllocationMementos are unrooted and shouldn't survive a scavenge
575 DCHECK(object->map() != object->GetHeap()->allocation_memento_map());
576 // Call the slow part of scavenge object.
577 return ScavengeObjectSlow(p, object);
578 }
579
580
CollectGarbage(AllocationSpace space,const char * gc_reason,const v8::GCCallbackFlags callbackFlags)581 bool Heap::CollectGarbage(AllocationSpace space, const char* gc_reason,
582 const v8::GCCallbackFlags callbackFlags) {
583 const char* collector_reason = NULL;
584 GarbageCollector collector = SelectGarbageCollector(space, &collector_reason);
585 return CollectGarbage(collector, gc_reason, collector_reason, callbackFlags);
586 }
587
588
isolate()589 Isolate* Heap::isolate() {
590 return reinterpret_cast<Isolate*>(
591 reinterpret_cast<intptr_t>(this) -
592 reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(4)->heap()) + 4);
593 }
594
595
596 // Calls the FUNCTION_CALL function and retries it up to three times
597 // to guarantee that any allocations performed during the call will
598 // succeed if there's enough memory.
599
600 // Warning: Do not use the identifiers __object__, __maybe_object__ or
601 // __scope__ in a call to this macro.
602
603 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
604 if (__allocation__.To(&__object__)) { \
605 DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
606 RETURN_VALUE; \
607 }
608
609 #define CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY) \
610 do { \
611 AllocationResult __allocation__ = FUNCTION_CALL; \
612 Object* __object__ = NULL; \
613 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
614 (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(), \
615 "allocation failure"); \
616 __allocation__ = FUNCTION_CALL; \
617 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
618 (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment(); \
619 (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc"); \
620 { \
621 AlwaysAllocateScope __scope__(ISOLATE); \
622 __allocation__ = FUNCTION_CALL; \
623 } \
624 RETURN_OBJECT_UNLESS_RETRY(ISOLATE, RETURN_VALUE) \
625 /* TODO(1181417): Fix this. */ \
626 v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
627 RETURN_EMPTY; \
628 } while (false)
629
630 #define CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, RETURN_VALUE, \
631 RETURN_EMPTY) \
632 CALL_AND_RETRY(ISOLATE, FUNCTION_CALL, RETURN_VALUE, RETURN_EMPTY)
633
634 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE) \
635 CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, \
636 return Handle<TYPE>(TYPE::cast(__object__), ISOLATE), \
637 return Handle<TYPE>())
638
639
640 #define CALL_HEAP_FUNCTION_VOID(ISOLATE, FUNCTION_CALL) \
641 CALL_AND_RETRY_OR_DIE(ISOLATE, FUNCTION_CALL, return, return)
642
643
AddString(String * string)644 void ExternalStringTable::AddString(String* string) {
645 DCHECK(string->IsExternalString());
646 if (heap_->InNewSpace(string)) {
647 new_space_strings_.Add(string);
648 } else {
649 old_space_strings_.Add(string);
650 }
651 }
652
653
Iterate(ObjectVisitor * v)654 void ExternalStringTable::Iterate(ObjectVisitor* v) {
655 if (!new_space_strings_.is_empty()) {
656 Object** start = &new_space_strings_[0];
657 v->VisitPointers(start, start + new_space_strings_.length());
658 }
659 if (!old_space_strings_.is_empty()) {
660 Object** start = &old_space_strings_[0];
661 v->VisitPointers(start, start + old_space_strings_.length());
662 }
663 }
664
665
666 // Verify() is inline to avoid ifdef-s around its calls in release
667 // mode.
Verify()668 void ExternalStringTable::Verify() {
669 #ifdef DEBUG
670 for (int i = 0; i < new_space_strings_.length(); ++i) {
671 Object* obj = Object::cast(new_space_strings_[i]);
672 DCHECK(heap_->InNewSpace(obj));
673 DCHECK(obj != heap_->the_hole_value());
674 }
675 for (int i = 0; i < old_space_strings_.length(); ++i) {
676 Object* obj = Object::cast(old_space_strings_[i]);
677 DCHECK(!heap_->InNewSpace(obj));
678 DCHECK(obj != heap_->the_hole_value());
679 }
680 #endif
681 }
682
683
AddOldString(String * string)684 void ExternalStringTable::AddOldString(String* string) {
685 DCHECK(string->IsExternalString());
686 DCHECK(!heap_->InNewSpace(string));
687 old_space_strings_.Add(string);
688 }
689
690
ShrinkNewStrings(int position)691 void ExternalStringTable::ShrinkNewStrings(int position) {
692 new_space_strings_.Rewind(position);
693 #ifdef VERIFY_HEAP
694 if (FLAG_verify_heap) {
695 Verify();
696 }
697 #endif
698 }
699
700
ClearInstanceofCache()701 void Heap::ClearInstanceofCache() {
702 set_instanceof_cache_function(the_hole_value());
703 }
704
705
ToBoolean(bool condition)706 Object* Heap::ToBoolean(bool condition) {
707 return condition ? true_value() : false_value();
708 }
709
710
CompletelyClearInstanceofCache()711 void Heap::CompletelyClearInstanceofCache() {
712 set_instanceof_cache_map(the_hole_value());
713 set_instanceof_cache_function(the_hole_value());
714 }
715
716
AlwaysAllocateScope(Isolate * isolate)717 AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate)
718 : heap_(isolate->heap()), daf_(isolate) {
719 // We shouldn't hit any nested scopes, because that requires
720 // non-handle code to call handle code. The code still works but
721 // performance will degrade, so we want to catch this situation
722 // in debug mode.
723 DCHECK(heap_->always_allocate_scope_depth_ == 0);
724 heap_->always_allocate_scope_depth_++;
725 }
726
727
~AlwaysAllocateScope()728 AlwaysAllocateScope::~AlwaysAllocateScope() {
729 heap_->always_allocate_scope_depth_--;
730 DCHECK(heap_->always_allocate_scope_depth_ == 0);
731 }
732
733
734 #ifdef VERIFY_HEAP
NoWeakObjectVerificationScope()735 NoWeakObjectVerificationScope::NoWeakObjectVerificationScope() {
736 Isolate* isolate = Isolate::Current();
737 isolate->heap()->no_weak_object_verification_scope_depth_++;
738 }
739
740
~NoWeakObjectVerificationScope()741 NoWeakObjectVerificationScope::~NoWeakObjectVerificationScope() {
742 Isolate* isolate = Isolate::Current();
743 isolate->heap()->no_weak_object_verification_scope_depth_--;
744 }
745 #endif
746
747
GCCallbacksScope(Heap * heap)748 GCCallbacksScope::GCCallbacksScope(Heap* heap) : heap_(heap) {
749 heap_->gc_callbacks_depth_++;
750 }
751
752
~GCCallbacksScope()753 GCCallbacksScope::~GCCallbacksScope() { heap_->gc_callbacks_depth_--; }
754
755
CheckReenter()756 bool GCCallbacksScope::CheckReenter() {
757 return heap_->gc_callbacks_depth_ == 1;
758 }
759
760
VisitPointers(Object ** start,Object ** end)761 void VerifyPointersVisitor::VisitPointers(Object** start, Object** end) {
762 for (Object** current = start; current < end; current++) {
763 if ((*current)->IsHeapObject()) {
764 HeapObject* object = HeapObject::cast(*current);
765 CHECK(object->GetIsolate()->heap()->Contains(object));
766 CHECK(object->map()->IsMap());
767 }
768 }
769 }
770
771
VisitPointers(Object ** start,Object ** end)772 void VerifySmisVisitor::VisitPointers(Object** start, Object** end) {
773 for (Object** current = start; current < end; current++) {
774 CHECK((*current)->IsSmi());
775 }
776 }
777 }
778 } // namespace v8::internal
779
780 #endif // V8_HEAP_HEAP_INL_H_
781