• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=-- lsan_common.cc ------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "lsan_common.h"
16 
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_flag_parser.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_procmaps.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_report_decorator.h"
26 
27 #if CAN_SANITIZE_LEAKS
28 namespace __lsan {
29 
30 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
31 // also to protect the global list of root regions.
32 BlockingMutex global_mutex(LINKER_INITIALIZED);
33 
34 THREADLOCAL int disable_counter;
DisabledInThisThread()35 bool DisabledInThisThread() { return disable_counter > 0; }
36 
37 Flags lsan_flags;
38 
SetDefaults()39 void Flags::SetDefaults() {
40 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
41 #include "lsan_flags.inc"
42 #undef LSAN_FLAG
43 }
44 
RegisterLsanFlags(FlagParser * parser,Flags * f)45 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
46 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
47   RegisterFlag(parser, #Name, Description, &f->Name);
48 #include "lsan_flags.inc"
49 #undef LSAN_FLAG
50 }
51 
52 #define LOG_POINTERS(...)                           \
53   do {                                              \
54     if (flags()->log_pointers) Report(__VA_ARGS__); \
55   } while (0);
56 
57 #define LOG_THREADS(...)                           \
58   do {                                             \
59     if (flags()->log_threads) Report(__VA_ARGS__); \
60   } while (0);
61 
62 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
63 static SuppressionContext *suppression_ctx = nullptr;
64 static const char kSuppressionLeak[] = "leak";
65 static const char *kSuppressionTypes[] = { kSuppressionLeak };
66 
InitializeSuppressions()67 void InitializeSuppressions() {
68   CHECK_EQ(nullptr, suppression_ctx);
69   suppression_ctx = new (suppression_placeholder) // NOLINT
70       SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
71   suppression_ctx->ParseFromFile(flags()->suppressions);
72   if (&__lsan_default_suppressions)
73     suppression_ctx->Parse(__lsan_default_suppressions());
74 }
75 
GetSuppressionContext()76 static SuppressionContext *GetSuppressionContext() {
77   CHECK(suppression_ctx);
78   return suppression_ctx;
79 }
80 
81 struct RootRegion {
82   const void *begin;
83   uptr size;
84 };
85 
86 InternalMmapVector<RootRegion> *root_regions;
87 
InitializeRootRegions()88 void InitializeRootRegions() {
89   CHECK(!root_regions);
90   ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
91   root_regions = new(placeholder) InternalMmapVector<RootRegion>(1);
92 }
93 
InitCommonLsan()94 void InitCommonLsan() {
95   InitializeRootRegions();
96   if (common_flags()->detect_leaks) {
97     // Initialization which can fail or print warnings should only be done if
98     // LSan is actually enabled.
99     InitializeSuppressions();
100     InitializePlatformSpecificModules();
101   }
102 }
103 
104 class Decorator: public __sanitizer::SanitizerCommonDecorator {
105  public:
Decorator()106   Decorator() : SanitizerCommonDecorator() { }
Error()107   const char *Error() { return Red(); }
Leak()108   const char *Leak() { return Blue(); }
End()109   const char *End() { return Default(); }
110 };
111 
CanBeAHeapPointer(uptr p)112 static inline bool CanBeAHeapPointer(uptr p) {
113   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
114   // bound on heap addresses.
115   const uptr kMinAddress = 4 * 4096;
116   if (p < kMinAddress) return false;
117 #if defined(__x86_64__)
118   // Accept only canonical form user-space addresses.
119   return ((p >> 47) == 0);
120 #elif defined(__mips64)
121   return ((p >> 40) == 0);
122 #else
123   return true;
124 #endif
125 }
126 
127 // Scans the memory range, looking for byte patterns that point into allocator
128 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
129 // There are two usage modes for this function: finding reachable or ignored
130 // chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks
131 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
132 // so |frontier| = 0.
ScanRangeForPointers(uptr begin,uptr end,Frontier * frontier,const char * region_type,ChunkTag tag)133 void ScanRangeForPointers(uptr begin, uptr end,
134                           Frontier *frontier,
135                           const char *region_type, ChunkTag tag) {
136   const uptr alignment = flags()->pointer_alignment();
137   LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
138   uptr pp = begin;
139   if (pp % alignment)
140     pp = pp + alignment - pp % alignment;
141   for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
142     void *p = *reinterpret_cast<void **>(pp);
143     if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
144     uptr chunk = PointsIntoChunk(p);
145     if (!chunk) continue;
146     // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
147     if (chunk == begin) continue;
148     LsanMetadata m(chunk);
149     // Reachable beats ignored beats leaked.
150     if (m.tag() == kReachable) continue;
151     if (m.tag() == kIgnored && tag != kReachable) continue;
152 
153     // Do this check relatively late so we can log only the interesting cases.
154     if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
155       LOG_POINTERS(
156           "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
157           "%zu.\n",
158           pp, p, chunk, chunk + m.requested_size(), m.requested_size());
159       continue;
160     }
161 
162     m.set_tag(tag);
163     LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
164                  chunk, chunk + m.requested_size(), m.requested_size());
165     if (frontier)
166       frontier->push_back(chunk);
167   }
168 }
169 
ForEachExtraStackRangeCb(uptr begin,uptr end,void * arg)170 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
171   Frontier *frontier = reinterpret_cast<Frontier *>(arg);
172   ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
173 }
174 
175 // Scans thread data (stacks and TLS) for heap pointers.
ProcessThreads(SuspendedThreadsList const & suspended_threads,Frontier * frontier)176 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
177                            Frontier *frontier) {
178   InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
179   uptr registers_begin = reinterpret_cast<uptr>(registers.data());
180   uptr registers_end = registers_begin + registers.size();
181   for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
182     uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
183     LOG_THREADS("Processing thread %d.\n", os_id);
184     uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
185     bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
186                                               &tls_begin, &tls_end,
187                                               &cache_begin, &cache_end);
188     if (!thread_found) {
189       // If a thread can't be found in the thread registry, it's probably in the
190       // process of destruction. Log this event and move on.
191       LOG_THREADS("Thread %d not found in registry.\n", os_id);
192       continue;
193     }
194     uptr sp;
195     bool have_registers =
196         (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
197     if (!have_registers) {
198       Report("Unable to get registers from thread %d.\n");
199       // If unable to get SP, consider the entire stack to be reachable.
200       sp = stack_begin;
201     }
202 
203     if (flags()->use_registers && have_registers)
204       ScanRangeForPointers(registers_begin, registers_end, frontier,
205                            "REGISTERS", kReachable);
206 
207     if (flags()->use_stacks) {
208       LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
209       if (sp < stack_begin || sp >= stack_end) {
210         // SP is outside the recorded stack range (e.g. the thread is running a
211         // signal handler on alternate stack). Again, consider the entire stack
212         // range to be reachable.
213         LOG_THREADS("WARNING: stack pointer not in stack range.\n");
214       } else {
215         // Shrink the stack range to ignore out-of-scope values.
216         stack_begin = sp;
217       }
218       ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
219                            kReachable);
220       ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
221     }
222 
223     if (flags()->use_tls) {
224       LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
225       if (cache_begin == cache_end) {
226         ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
227       } else {
228         // Because LSan should not be loaded with dlopen(), we can assume
229         // that allocator cache will be part of static TLS image.
230         CHECK_LE(tls_begin, cache_begin);
231         CHECK_GE(tls_end, cache_end);
232         if (tls_begin < cache_begin)
233           ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
234                                kReachable);
235         if (tls_end > cache_end)
236           ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
237       }
238     }
239   }
240 }
241 
ProcessRootRegion(Frontier * frontier,uptr root_begin,uptr root_end)242 static void ProcessRootRegion(Frontier *frontier, uptr root_begin,
243                               uptr root_end) {
244   MemoryMappingLayout proc_maps(/*cache_enabled*/true);
245   uptr begin, end, prot;
246   while (proc_maps.Next(&begin, &end,
247                         /*offset*/ 0, /*filename*/ 0, /*filename_size*/ 0,
248                         &prot)) {
249     uptr intersection_begin = Max(root_begin, begin);
250     uptr intersection_end = Min(end, root_end);
251     if (intersection_begin >= intersection_end) continue;
252     bool is_readable = prot & MemoryMappingLayout::kProtectionRead;
253     LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
254                  root_begin, root_end, begin, end,
255                  is_readable ? "readable" : "unreadable");
256     if (is_readable)
257       ScanRangeForPointers(intersection_begin, intersection_end, frontier,
258                            "ROOT", kReachable);
259   }
260 }
261 
262 // Scans root regions for heap pointers.
ProcessRootRegions(Frontier * frontier)263 static void ProcessRootRegions(Frontier *frontier) {
264   if (!flags()->use_root_regions) return;
265   CHECK(root_regions);
266   for (uptr i = 0; i < root_regions->size(); i++) {
267     RootRegion region = (*root_regions)[i];
268     uptr begin_addr = reinterpret_cast<uptr>(region.begin);
269     ProcessRootRegion(frontier, begin_addr, begin_addr + region.size);
270   }
271 }
272 
FloodFillTag(Frontier * frontier,ChunkTag tag)273 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
274   while (frontier->size()) {
275     uptr next_chunk = frontier->back();
276     frontier->pop_back();
277     LsanMetadata m(next_chunk);
278     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
279                          "HEAP", tag);
280   }
281 }
282 
283 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
284 // which are reachable from it as indirectly leaked.
MarkIndirectlyLeakedCb(uptr chunk,void * arg)285 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
286   chunk = GetUserBegin(chunk);
287   LsanMetadata m(chunk);
288   if (m.allocated() && m.tag() != kReachable) {
289     ScanRangeForPointers(chunk, chunk + m.requested_size(),
290                          /* frontier */ 0, "HEAP", kIndirectlyLeaked);
291   }
292 }
293 
294 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
295 // frontier.
CollectIgnoredCb(uptr chunk,void * arg)296 static void CollectIgnoredCb(uptr chunk, void *arg) {
297   CHECK(arg);
298   chunk = GetUserBegin(chunk);
299   LsanMetadata m(chunk);
300   if (m.allocated() && m.tag() == kIgnored)
301     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
302 }
303 
304 // Sets the appropriate tag on each chunk.
ClassifyAllChunks(SuspendedThreadsList const & suspended_threads)305 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
306   // Holds the flood fill frontier.
307   Frontier frontier(1);
308 
309   ProcessGlobalRegions(&frontier);
310   ProcessThreads(suspended_threads, &frontier);
311   ProcessRootRegions(&frontier);
312   FloodFillTag(&frontier, kReachable);
313   // The check here is relatively expensive, so we do this in a separate flood
314   // fill. That way we can skip the check for chunks that are reachable
315   // otherwise.
316   LOG_POINTERS("Processing platform-specific allocations.\n");
317   ProcessPlatformSpecificAllocations(&frontier);
318   FloodFillTag(&frontier, kReachable);
319 
320   LOG_POINTERS("Scanning ignored chunks.\n");
321   CHECK_EQ(0, frontier.size());
322   ForEachChunk(CollectIgnoredCb, &frontier);
323   FloodFillTag(&frontier, kIgnored);
324 
325   // Iterate over leaked chunks and mark those that are reachable from other
326   // leaked chunks.
327   LOG_POINTERS("Scanning leaked chunks.\n");
328   ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */);
329 }
330 
PrintStackTraceById(u32 stack_trace_id)331 static void PrintStackTraceById(u32 stack_trace_id) {
332   CHECK(stack_trace_id);
333   StackDepotGet(stack_trace_id).Print();
334 }
335 
336 // ForEachChunk callback. Aggregates information about unreachable chunks into
337 // a LeakReport.
CollectLeaksCb(uptr chunk,void * arg)338 static void CollectLeaksCb(uptr chunk, void *arg) {
339   CHECK(arg);
340   LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
341   chunk = GetUserBegin(chunk);
342   LsanMetadata m(chunk);
343   if (!m.allocated()) return;
344   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
345     u32 resolution = flags()->resolution;
346     u32 stack_trace_id = 0;
347     if (resolution > 0) {
348       StackTrace stack = StackDepotGet(m.stack_trace_id());
349       stack.size = Min(stack.size, resolution);
350       stack_trace_id = StackDepotPut(stack);
351     } else {
352       stack_trace_id = m.stack_trace_id();
353     }
354     leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
355                                 m.tag());
356   }
357 }
358 
PrintMatchedSuppressions()359 static void PrintMatchedSuppressions() {
360   InternalMmapVector<Suppression *> matched(1);
361   GetSuppressionContext()->GetMatched(&matched);
362   if (!matched.size())
363     return;
364   const char *line = "-----------------------------------------------------";
365   Printf("%s\n", line);
366   Printf("Suppressions used:\n");
367   Printf("  count      bytes template\n");
368   for (uptr i = 0; i < matched.size(); i++)
369     Printf("%7zu %10zu %s\n", static_cast<uptr>(matched[i]->hit_count),
370            matched[i]->weight, matched[i]->templ);
371   Printf("%s\n\n", line);
372 }
373 
374 struct DoLeakCheckParam {
375   bool success;
376   LeakReport leak_report;
377 };
378 
DoLeakCheckCallback(const SuspendedThreadsList & suspended_threads,void * arg)379 static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
380                                 void *arg) {
381   DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg);
382   CHECK(param);
383   CHECK(!param->success);
384   ClassifyAllChunks(suspended_threads);
385   ForEachChunk(CollectLeaksCb, &param->leak_report);
386   param->success = true;
387 }
388 
DoLeakCheck()389 void DoLeakCheck() {
390   EnsureMainThreadIDIsCorrect();
391   BlockingMutexLock l(&global_mutex);
392   static bool already_done;
393   if (already_done) return;
394   already_done = true;
395   if (&__lsan_is_turned_off && __lsan_is_turned_off())
396       return;
397 
398   DoLeakCheckParam param;
399   param.success = false;
400   LockThreadRegistry();
401   LockAllocator();
402   DoStopTheWorld(DoLeakCheckCallback, &param);
403   UnlockAllocator();
404   UnlockThreadRegistry();
405 
406   if (!param.success) {
407     Report("LeakSanitizer has encountered a fatal error.\n");
408     Die();
409   }
410   param.leak_report.ApplySuppressions();
411   uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
412   if (unsuppressed_count > 0) {
413     Decorator d;
414     Printf("\n"
415            "================================================================="
416            "\n");
417     Printf("%s", d.Error());
418     Report("ERROR: LeakSanitizer: detected memory leaks\n");
419     Printf("%s", d.End());
420     param.leak_report.ReportTopLeaks(flags()->max_leaks);
421   }
422   if (common_flags()->print_suppressions)
423     PrintMatchedSuppressions();
424   if (unsuppressed_count > 0) {
425     param.leak_report.PrintSummary();
426     if (flags()->exitcode) {
427       if (common_flags()->coverage)
428         __sanitizer_cov_dump();
429       internal__exit(flags()->exitcode);
430     }
431   }
432 }
433 
GetSuppressionForAddr(uptr addr)434 static Suppression *GetSuppressionForAddr(uptr addr) {
435   Suppression *s = nullptr;
436 
437   // Suppress by module name.
438   SuppressionContext *suppressions = GetSuppressionContext();
439   if (const char *module_name =
440           Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
441     if (suppressions->Match(module_name, kSuppressionLeak, &s))
442       return s;
443 
444   // Suppress by file or function name.
445   SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
446   for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
447     if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
448         suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
449       break;
450     }
451   }
452   frames->ClearAll();
453   return s;
454 }
455 
GetSuppressionForStack(u32 stack_trace_id)456 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
457   StackTrace stack = StackDepotGet(stack_trace_id);
458   for (uptr i = 0; i < stack.size; i++) {
459     Suppression *s = GetSuppressionForAddr(
460         StackTrace::GetPreviousInstructionPc(stack.trace[i]));
461     if (s) return s;
462   }
463   return 0;
464 }
465 
466 ///// LeakReport implementation. /////
467 
468 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
469 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
470 // in real-world applications.
471 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
472 // use a hash table.
473 const uptr kMaxLeaksConsidered = 5000;
474 
AddLeakedChunk(uptr chunk,u32 stack_trace_id,uptr leaked_size,ChunkTag tag)475 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
476                                 uptr leaked_size, ChunkTag tag) {
477   CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
478   bool is_directly_leaked = (tag == kDirectlyLeaked);
479   uptr i;
480   for (i = 0; i < leaks_.size(); i++) {
481     if (leaks_[i].stack_trace_id == stack_trace_id &&
482         leaks_[i].is_directly_leaked == is_directly_leaked) {
483       leaks_[i].hit_count++;
484       leaks_[i].total_size += leaked_size;
485       break;
486     }
487   }
488   if (i == leaks_.size()) {
489     if (leaks_.size() == kMaxLeaksConsidered) return;
490     Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
491                   is_directly_leaked, /* is_suppressed */ false };
492     leaks_.push_back(leak);
493   }
494   if (flags()->report_objects) {
495     LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
496     leaked_objects_.push_back(obj);
497   }
498 }
499 
LeakComparator(const Leak & leak1,const Leak & leak2)500 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
501   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
502     return leak1.total_size > leak2.total_size;
503   else
504     return leak1.is_directly_leaked;
505 }
506 
ReportTopLeaks(uptr num_leaks_to_report)507 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
508   CHECK(leaks_.size() <= kMaxLeaksConsidered);
509   Printf("\n");
510   if (leaks_.size() == kMaxLeaksConsidered)
511     Printf("Too many leaks! Only the first %zu leaks encountered will be "
512            "reported.\n",
513            kMaxLeaksConsidered);
514 
515   uptr unsuppressed_count = UnsuppressedLeakCount();
516   if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
517     Printf("The %zu top leak(s):\n", num_leaks_to_report);
518   InternalSort(&leaks_, leaks_.size(), LeakComparator);
519   uptr leaks_reported = 0;
520   for (uptr i = 0; i < leaks_.size(); i++) {
521     if (leaks_[i].is_suppressed) continue;
522     PrintReportForLeak(i);
523     leaks_reported++;
524     if (leaks_reported == num_leaks_to_report) break;
525   }
526   if (leaks_reported < unsuppressed_count) {
527     uptr remaining = unsuppressed_count - leaks_reported;
528     Printf("Omitting %zu more leak(s).\n", remaining);
529   }
530 }
531 
PrintReportForLeak(uptr index)532 void LeakReport::PrintReportForLeak(uptr index) {
533   Decorator d;
534   Printf("%s", d.Leak());
535   Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
536          leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
537          leaks_[index].total_size, leaks_[index].hit_count);
538   Printf("%s", d.End());
539 
540   PrintStackTraceById(leaks_[index].stack_trace_id);
541 
542   if (flags()->report_objects) {
543     Printf("Objects leaked above:\n");
544     PrintLeakedObjectsForLeak(index);
545     Printf("\n");
546   }
547 }
548 
PrintLeakedObjectsForLeak(uptr index)549 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
550   u32 leak_id = leaks_[index].id;
551   for (uptr j = 0; j < leaked_objects_.size(); j++) {
552     if (leaked_objects_[j].leak_id == leak_id)
553       Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
554              leaked_objects_[j].size);
555   }
556 }
557 
PrintSummary()558 void LeakReport::PrintSummary() {
559   CHECK(leaks_.size() <= kMaxLeaksConsidered);
560   uptr bytes = 0, allocations = 0;
561   for (uptr i = 0; i < leaks_.size(); i++) {
562       if (leaks_[i].is_suppressed) continue;
563       bytes += leaks_[i].total_size;
564       allocations += leaks_[i].hit_count;
565   }
566   InternalScopedString summary(kMaxSummaryLength);
567   summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
568                  allocations);
569   ReportErrorSummary(summary.data());
570 }
571 
ApplySuppressions()572 void LeakReport::ApplySuppressions() {
573   for (uptr i = 0; i < leaks_.size(); i++) {
574     Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
575     if (s) {
576       s->weight += leaks_[i].total_size;
577       s->hit_count += leaks_[i].hit_count;
578       leaks_[i].is_suppressed = true;
579     }
580   }
581 }
582 
UnsuppressedLeakCount()583 uptr LeakReport::UnsuppressedLeakCount() {
584   uptr result = 0;
585   for (uptr i = 0; i < leaks_.size(); i++)
586     if (!leaks_[i].is_suppressed) result++;
587   return result;
588 }
589 
590 }  // namespace __lsan
591 #endif  // CAN_SANITIZE_LEAKS
592 
593 using namespace __lsan;  // NOLINT
594 
595 extern "C" {
596 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_ignore_object(const void * p)597 void __lsan_ignore_object(const void *p) {
598 #if CAN_SANITIZE_LEAKS
599   if (!common_flags()->detect_leaks)
600     return;
601   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
602   // locked.
603   BlockingMutexLock l(&global_mutex);
604   IgnoreObjectResult res = IgnoreObjectLocked(p);
605   if (res == kIgnoreObjectInvalid)
606     VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
607   if (res == kIgnoreObjectAlreadyIgnored)
608     VReport(1, "__lsan_ignore_object(): "
609            "heap object at %p is already being ignored\n", p);
610   if (res == kIgnoreObjectSuccess)
611     VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
612 #endif  // CAN_SANITIZE_LEAKS
613 }
614 
615 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_register_root_region(const void * begin,uptr size)616 void __lsan_register_root_region(const void *begin, uptr size) {
617 #if CAN_SANITIZE_LEAKS
618   BlockingMutexLock l(&global_mutex);
619   CHECK(root_regions);
620   RootRegion region = {begin, size};
621   root_regions->push_back(region);
622   VReport(1, "Registered root region at %p of size %llu\n", begin, size);
623 #endif  // CAN_SANITIZE_LEAKS
624 }
625 
626 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_unregister_root_region(const void * begin,uptr size)627 void __lsan_unregister_root_region(const void *begin, uptr size) {
628 #if CAN_SANITIZE_LEAKS
629   BlockingMutexLock l(&global_mutex);
630   CHECK(root_regions);
631   bool removed = false;
632   for (uptr i = 0; i < root_regions->size(); i++) {
633     RootRegion region = (*root_regions)[i];
634     if (region.begin == begin && region.size == size) {
635       removed = true;
636       uptr last_index = root_regions->size() - 1;
637       (*root_regions)[i] = (*root_regions)[last_index];
638       root_regions->pop_back();
639       VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
640       break;
641     }
642   }
643   if (!removed) {
644     Report(
645         "__lsan_unregister_root_region(): region at %p of size %llu has not "
646         "been registered.\n",
647         begin, size);
648     Die();
649   }
650 #endif  // CAN_SANITIZE_LEAKS
651 }
652 
653 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_disable()654 void __lsan_disable() {
655 #if CAN_SANITIZE_LEAKS
656   __lsan::disable_counter++;
657 #endif
658 }
659 
660 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_enable()661 void __lsan_enable() {
662 #if CAN_SANITIZE_LEAKS
663   if (!__lsan::disable_counter && common_flags()->detect_leaks) {
664     Report("Unmatched call to __lsan_enable().\n");
665     Die();
666   }
667   __lsan::disable_counter--;
668 #endif
669 }
670 
671 SANITIZER_INTERFACE_ATTRIBUTE
__lsan_do_leak_check()672 void __lsan_do_leak_check() {
673 #if CAN_SANITIZE_LEAKS
674   if (common_flags()->detect_leaks)
675     __lsan::DoLeakCheck();
676 #endif  // CAN_SANITIZE_LEAKS
677 }
678 
679 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
680 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
__lsan_is_turned_off()681 int __lsan_is_turned_off() {
682   return 0;
683 }
684 #endif
685 }  // extern "C"
686