1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_type_propagation.h"
18
19 #include "class_linker-inl.h"
20 #include "mirror/class-inl.h"
21 #include "mirror/dex_cache.h"
22 #include "scoped_thread_state_change.h"
23
24 namespace art {
25
Run()26 void ReferenceTypePropagation::Run() {
27 // To properly propagate type info we need to visit in the dominator-based order.
28 // Reverse post order guarantees a node's dominators are visited first.
29 // We take advantage of this order in `VisitBasicBlock`.
30 for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
31 VisitBasicBlock(it.Current());
32 }
33 ProcessWorklist();
34 }
35
VisitBasicBlock(HBasicBlock * block)36 void ReferenceTypePropagation::VisitBasicBlock(HBasicBlock* block) {
37 // TODO: handle other instructions that give type info
38 // (NewArray/Call/Field accesses/array accesses)
39
40 // Initialize exact types first for faster convergence.
41 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
42 HInstruction* instr = it.Current();
43 if (instr->IsNewInstance()) {
44 VisitNewInstance(instr->AsNewInstance());
45 } else if (instr->IsLoadClass()) {
46 VisitLoadClass(instr->AsLoadClass());
47 }
48 }
49
50 // Handle Phis.
51 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
52 VisitPhi(it.Current()->AsPhi());
53 }
54
55 // Add extra nodes to bound types.
56 BoundTypeForIfNotNull(block);
57 BoundTypeForIfInstanceOf(block);
58 }
59
BoundTypeForIfNotNull(HBasicBlock * block)60 void ReferenceTypePropagation::BoundTypeForIfNotNull(HBasicBlock* block) {
61 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
62 if (ifInstruction == nullptr) {
63 return;
64 }
65 HInstruction* ifInput = ifInstruction->InputAt(0);
66 if (!ifInput->IsNotEqual() && !ifInput->IsEqual()) {
67 return;
68 }
69 HInstruction* input0 = ifInput->InputAt(0);
70 HInstruction* input1 = ifInput->InputAt(1);
71 HInstruction* obj = nullptr;
72
73 if (input1->IsNullConstant()) {
74 obj = input0;
75 } else if (input0->IsNullConstant()) {
76 obj = input1;
77 } else {
78 return;
79 }
80
81 if (!obj->CanBeNull() || obj->IsNullConstant()) {
82 // Null check is dead code and will be removed by DCE.
83 return;
84 }
85 DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
86
87 // We only need to bound the type if we have uses in the relevant block.
88 // So start with null and create the HBoundType lazily, only if it's needed.
89 HBoundType* bound_type = nullptr;
90 HBasicBlock* notNullBlock = ifInput->IsNotEqual()
91 ? ifInstruction->IfTrueSuccessor()
92 : ifInstruction->IfFalseSuccessor();
93
94 for (HUseIterator<HInstruction*> it(obj->GetUses()); !it.Done(); it.Advance()) {
95 HInstruction* user = it.Current()->GetUser();
96 if (notNullBlock->Dominates(user->GetBlock())) {
97 if (bound_type == nullptr) {
98 bound_type = new (graph_->GetArena()) HBoundType(obj, ReferenceTypeInfo::CreateTop(false));
99 notNullBlock->InsertInstructionBefore(bound_type, notNullBlock->GetFirstInstruction());
100 }
101 user->ReplaceInput(bound_type, it.Current()->GetIndex());
102 }
103 }
104 }
105
106 // Detects if `block` is the True block for the pattern
107 // `if (x instanceof ClassX) { }`
108 // If that's the case insert an HBoundType instruction to bound the type of `x`
109 // to `ClassX` in the scope of the dominated blocks.
BoundTypeForIfInstanceOf(HBasicBlock * block)110 void ReferenceTypePropagation::BoundTypeForIfInstanceOf(HBasicBlock* block) {
111 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
112 if (ifInstruction == nullptr) {
113 return;
114 }
115 HInstruction* ifInput = ifInstruction->InputAt(0);
116 HInstruction* instanceOf = nullptr;
117 HBasicBlock* instanceOfTrueBlock = nullptr;
118
119 // The instruction simplifier has transformed:
120 // - `if (a instanceof A)` into an HIf with an HInstanceOf input
121 // - `if (!(a instanceof A)` into an HIf with an HBooleanNot input (which in turn
122 // has an HInstanceOf input)
123 // So we should not see the usual HEqual here.
124 if (ifInput->IsInstanceOf()) {
125 instanceOf = ifInput;
126 instanceOfTrueBlock = ifInstruction->IfTrueSuccessor();
127 } else if (ifInput->IsBooleanNot() && ifInput->InputAt(0)->IsInstanceOf()) {
128 instanceOf = ifInput->InputAt(0);
129 instanceOfTrueBlock = ifInstruction->IfFalseSuccessor();
130 } else {
131 return;
132 }
133
134 // We only need to bound the type if we have uses in the relevant block.
135 // So start with null and create the HBoundType lazily, only if it's needed.
136 HBoundType* bound_type = nullptr;
137
138 HInstruction* obj = instanceOf->InputAt(0);
139 if (obj->GetReferenceTypeInfo().IsExact() && !obj->IsPhi()) {
140 // This method is being called while doing a fixed-point calculation
141 // over phis. Non-phis instruction whose type is already known do
142 // not need to be bound to another type.
143 // Not that this also prevents replacing `HLoadClass` with a `HBoundType`.
144 // `HCheckCast` and `HInstanceOf` expect a `HLoadClass` as a second
145 // input.
146 return;
147 }
148 DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
149 for (HUseIterator<HInstruction*> it(obj->GetUses()); !it.Done(); it.Advance()) {
150 HInstruction* user = it.Current()->GetUser();
151 if (instanceOfTrueBlock->Dominates(user->GetBlock())) {
152 if (bound_type == nullptr) {
153 HLoadClass* load_class = instanceOf->InputAt(1)->AsLoadClass();
154
155 ReferenceTypeInfo obj_rti = obj->GetReferenceTypeInfo();
156 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
157 bound_type = new (graph_->GetArena()) HBoundType(obj, class_rti);
158
159 // Narrow the type as much as possible.
160 {
161 ScopedObjectAccess soa(Thread::Current());
162 if (!load_class->IsResolved() || class_rti.IsSupertypeOf(obj_rti)) {
163 bound_type->SetReferenceTypeInfo(obj_rti);
164 } else {
165 bound_type->SetReferenceTypeInfo(
166 ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact */ false));
167 }
168 }
169
170 instanceOfTrueBlock->InsertInstructionBefore(
171 bound_type, instanceOfTrueBlock->GetFirstInstruction());
172 }
173 user->ReplaceInput(bound_type, it.Current()->GetIndex());
174 }
175 }
176 }
177
VisitNewInstance(HNewInstance * instr)178 void ReferenceTypePropagation::VisitNewInstance(HNewInstance* instr) {
179 ScopedObjectAccess soa(Thread::Current());
180 mirror::DexCache* dex_cache = dex_compilation_unit_.GetClassLinker()->FindDexCache(dex_file_);
181 // Get type from dex cache assuming it was populated by the verifier.
182 mirror::Class* resolved_class = dex_cache->GetResolvedType(instr->GetTypeIndex());
183 if (resolved_class != nullptr) {
184 MutableHandle<mirror::Class> handle = handles_->NewHandle(resolved_class);
185 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(handle, true));
186 }
187 }
188
VisitLoadClass(HLoadClass * instr)189 void ReferenceTypePropagation::VisitLoadClass(HLoadClass* instr) {
190 ScopedObjectAccess soa(Thread::Current());
191 mirror::DexCache* dex_cache = dex_compilation_unit_.GetClassLinker()->FindDexCache(dex_file_);
192 // Get type from dex cache assuming it was populated by the verifier.
193 mirror::Class* resolved_class = dex_cache->GetResolvedType(instr->GetTypeIndex());
194 if (resolved_class != nullptr) {
195 Handle<mirror::Class> handle = handles_->NewHandle(resolved_class);
196 instr->SetLoadedClassRTI(ReferenceTypeInfo::Create(handle, /* is_exact */ true));
197 }
198 Handle<mirror::Class> class_handle = handles_->NewHandle(mirror::Class::GetJavaLangClass());
199 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(class_handle, /* is_exact */ true));
200 }
201
VisitPhi(HPhi * phi)202 void ReferenceTypePropagation::VisitPhi(HPhi* phi) {
203 if (phi->GetType() != Primitive::kPrimNot) {
204 return;
205 }
206
207 if (phi->GetBlock()->IsLoopHeader()) {
208 // Set the initial type for the phi. Use the non back edge input for reaching
209 // a fixed point faster.
210 AddToWorklist(phi);
211 phi->SetCanBeNull(phi->InputAt(0)->CanBeNull());
212 phi->SetReferenceTypeInfo(phi->InputAt(0)->GetReferenceTypeInfo());
213 } else {
214 // Eagerly compute the type of the phi, for quicker convergence. Note
215 // that we don't need to add users to the worklist because we are
216 // doing a reverse post-order visit, therefore either the phi users are
217 // non-loop phi and will be visited later in the visit, or are loop-phis,
218 // and they are already in the work list.
219 UpdateNullability(phi);
220 UpdateReferenceTypeInfo(phi);
221 }
222 }
223
MergeTypes(const ReferenceTypeInfo & a,const ReferenceTypeInfo & b)224 ReferenceTypeInfo ReferenceTypePropagation::MergeTypes(const ReferenceTypeInfo& a,
225 const ReferenceTypeInfo& b) {
226 bool is_exact = a.IsExact() && b.IsExact();
227 bool is_top = a.IsTop() || b.IsTop();
228 Handle<mirror::Class> type_handle;
229
230 if (!is_top) {
231 if (a.GetTypeHandle().Get() == b.GetTypeHandle().Get()) {
232 type_handle = a.GetTypeHandle();
233 } else if (a.IsSupertypeOf(b)) {
234 type_handle = a.GetTypeHandle();
235 is_exact = false;
236 } else if (b.IsSupertypeOf(a)) {
237 type_handle = b.GetTypeHandle();
238 is_exact = false;
239 } else {
240 // TODO: Find a common super class.
241 is_top = true;
242 is_exact = false;
243 }
244 }
245
246 return is_top
247 ? ReferenceTypeInfo::CreateTop(is_exact)
248 : ReferenceTypeInfo::Create(type_handle, is_exact);
249 }
250
UpdateReferenceTypeInfo(HInstruction * instr)251 bool ReferenceTypePropagation::UpdateReferenceTypeInfo(HInstruction* instr) {
252 ScopedObjectAccess soa(Thread::Current());
253
254 ReferenceTypeInfo previous_rti = instr->GetReferenceTypeInfo();
255 if (instr->IsBoundType()) {
256 UpdateBoundType(instr->AsBoundType());
257 } else if (instr->IsPhi()) {
258 UpdatePhi(instr->AsPhi());
259 } else {
260 LOG(FATAL) << "Invalid instruction (should not get here)";
261 }
262
263 return !previous_rti.IsEqual(instr->GetReferenceTypeInfo());
264 }
265
UpdateBoundType(HBoundType * instr)266 void ReferenceTypePropagation::UpdateBoundType(HBoundType* instr) {
267 ReferenceTypeInfo new_rti = instr->InputAt(0)->GetReferenceTypeInfo();
268 // Be sure that we don't go over the bounded type.
269 ReferenceTypeInfo bound_rti = instr->GetBoundType();
270 if (!bound_rti.IsSupertypeOf(new_rti)) {
271 new_rti = bound_rti;
272 }
273 instr->SetReferenceTypeInfo(new_rti);
274 }
275
UpdatePhi(HPhi * instr)276 void ReferenceTypePropagation::UpdatePhi(HPhi* instr) {
277 ReferenceTypeInfo new_rti = instr->InputAt(0)->GetReferenceTypeInfo();
278 if (new_rti.IsTop() && !new_rti.IsExact()) {
279 // Early return if we are Top and inexact.
280 instr->SetReferenceTypeInfo(new_rti);
281 return;
282 }
283 for (size_t i = 1; i < instr->InputCount(); i++) {
284 new_rti = MergeTypes(new_rti, instr->InputAt(i)->GetReferenceTypeInfo());
285 if (new_rti.IsTop()) {
286 if (!new_rti.IsExact()) {
287 break;
288 } else {
289 continue;
290 }
291 }
292 }
293 instr->SetReferenceTypeInfo(new_rti);
294 }
295
296 // Re-computes and updates the nullability of the instruction. Returns whether or
297 // not the nullability was changed.
UpdateNullability(HInstruction * instr)298 bool ReferenceTypePropagation::UpdateNullability(HInstruction* instr) {
299 DCHECK(instr->IsPhi() || instr->IsBoundType());
300
301 if (!instr->IsPhi()) {
302 return false;
303 }
304
305 HPhi* phi = instr->AsPhi();
306 bool existing_can_be_null = phi->CanBeNull();
307 bool new_can_be_null = false;
308 for (size_t i = 0; i < phi->InputCount(); i++) {
309 new_can_be_null |= phi->InputAt(i)->CanBeNull();
310 }
311 phi->SetCanBeNull(new_can_be_null);
312
313 return existing_can_be_null != new_can_be_null;
314 }
315
ProcessWorklist()316 void ReferenceTypePropagation::ProcessWorklist() {
317 while (!worklist_.IsEmpty()) {
318 HInstruction* instruction = worklist_.Pop();
319 bool updated_nullability = UpdateNullability(instruction);
320 bool updated_reference_type = UpdateReferenceTypeInfo(instruction);
321 if (updated_nullability || updated_reference_type) {
322 AddDependentInstructionsToWorklist(instruction);
323 }
324 }
325 }
326
AddToWorklist(HInstruction * instruction)327 void ReferenceTypePropagation::AddToWorklist(HInstruction* instruction) {
328 DCHECK_EQ(instruction->GetType(), Primitive::kPrimNot) << instruction->GetType();
329 worklist_.Add(instruction);
330 }
331
AddDependentInstructionsToWorklist(HInstruction * instruction)332 void ReferenceTypePropagation::AddDependentInstructionsToWorklist(HInstruction* instruction) {
333 for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) {
334 HInstruction* user = it.Current()->GetUser();
335 if (user->IsPhi() || user->IsBoundType()) {
336 AddToWorklist(user);
337 }
338 }
339 }
340 } // namespace art
341