• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Macroblock analysis
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include <stdlib.h>
15 #include <string.h>
16 #include <assert.h>
17 
18 #include "./vp8enci.h"
19 #include "./cost.h"
20 #include "../utils/utils.h"
21 
22 #define MAX_ITERS_K_MEANS  6
23 
24 //------------------------------------------------------------------------------
25 // Smooth the segment map by replacing isolated block by the majority of its
26 // neighbours.
27 
SmoothSegmentMap(VP8Encoder * const enc)28 static void SmoothSegmentMap(VP8Encoder* const enc) {
29   int n, x, y;
30   const int w = enc->mb_w_;
31   const int h = enc->mb_h_;
32   const int majority_cnt_3_x_3_grid = 5;
33   uint8_t* const tmp = (uint8_t*)WebPSafeMalloc(w * h, sizeof(*tmp));
34   assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
35 
36   if (tmp == NULL) return;
37   for (y = 1; y < h - 1; ++y) {
38     for (x = 1; x < w - 1; ++x) {
39       int cnt[NUM_MB_SEGMENTS] = { 0 };
40       const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
41       int majority_seg = mb->segment_;
42       // Check the 8 neighbouring segment values.
43       cnt[mb[-w - 1].segment_]++;  // top-left
44       cnt[mb[-w + 0].segment_]++;  // top
45       cnt[mb[-w + 1].segment_]++;  // top-right
46       cnt[mb[   - 1].segment_]++;  // left
47       cnt[mb[   + 1].segment_]++;  // right
48       cnt[mb[ w - 1].segment_]++;  // bottom-left
49       cnt[mb[ w + 0].segment_]++;  // bottom
50       cnt[mb[ w + 1].segment_]++;  // bottom-right
51       for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
52         if (cnt[n] >= majority_cnt_3_x_3_grid) {
53           majority_seg = n;
54           break;
55         }
56       }
57       tmp[x + y * w] = majority_seg;
58     }
59   }
60   for (y = 1; y < h - 1; ++y) {
61     for (x = 1; x < w - 1; ++x) {
62       VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
63       mb->segment_ = tmp[x + y * w];
64     }
65   }
66   WebPSafeFree(tmp);
67 }
68 
69 //------------------------------------------------------------------------------
70 // set segment susceptibility alpha_ / beta_
71 
clip(int v,int m,int M)72 static WEBP_INLINE int clip(int v, int m, int M) {
73   return (v < m) ? m : (v > M) ? M : v;
74 }
75 
SetSegmentAlphas(VP8Encoder * const enc,const int centers[NUM_MB_SEGMENTS],int mid)76 static void SetSegmentAlphas(VP8Encoder* const enc,
77                              const int centers[NUM_MB_SEGMENTS],
78                              int mid) {
79   const int nb = enc->segment_hdr_.num_segments_;
80   int min = centers[0], max = centers[0];
81   int n;
82 
83   if (nb > 1) {
84     for (n = 0; n < nb; ++n) {
85       if (min > centers[n]) min = centers[n];
86       if (max < centers[n]) max = centers[n];
87     }
88   }
89   if (max == min) max = min + 1;
90   assert(mid <= max && mid >= min);
91   for (n = 0; n < nb; ++n) {
92     const int alpha = 255 * (centers[n] - mid) / (max - min);
93     const int beta = 255 * (centers[n] - min) / (max - min);
94     enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
95     enc->dqm_[n].beta_ = clip(beta, 0, 255);
96   }
97 }
98 
99 //------------------------------------------------------------------------------
100 // Compute susceptibility based on DCT-coeff histograms:
101 // the higher, the "easier" the macroblock is to compress.
102 
103 #define MAX_ALPHA 255                // 8b of precision for susceptibilities.
104 #define ALPHA_SCALE (2 * MAX_ALPHA)  // scaling factor for alpha.
105 #define DEFAULT_ALPHA (-1)
106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
107 
FinalAlphaValue(int alpha)108 static int FinalAlphaValue(int alpha) {
109   alpha = MAX_ALPHA - alpha;
110   return clip(alpha, 0, MAX_ALPHA);
111 }
112 
GetAlpha(const VP8Histogram * const histo)113 static int GetAlpha(const VP8Histogram* const histo) {
114   int max_value = 0, last_non_zero = 1;
115   int k;
116   int alpha;
117   for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
118     const int value = histo->distribution[k];
119     if (value > 0) {
120       if (value > max_value) max_value = value;
121       last_non_zero = k;
122     }
123   }
124   // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
125   // values which happen to be mostly noise. This leaves the maximum precision
126   // for handling the useful small values which contribute most.
127   alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
128   return alpha;
129 }
130 
MergeHistograms(const VP8Histogram * const in,VP8Histogram * const out)131 static void MergeHistograms(const VP8Histogram* const in,
132                             VP8Histogram* const out) {
133   int i;
134   for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
135     out->distribution[i] += in->distribution[i];
136   }
137 }
138 
139 //------------------------------------------------------------------------------
140 // Simplified k-Means, to assign Nb segments based on alpha-histogram
141 
AssignSegments(VP8Encoder * const enc,const int alphas[MAX_ALPHA+1])142 static void AssignSegments(VP8Encoder* const enc,
143                            const int alphas[MAX_ALPHA + 1]) {
144   // 'num_segments_' is previously validated and <= NUM_MB_SEGMENTS, but an
145   // explicit check is needed to avoid spurious warning about 'n + 1' exceeding
146   // array bounds of 'centers' with some compilers (noticed with gcc-4.9).
147   const int nb = (enc->segment_hdr_.num_segments_ < NUM_MB_SEGMENTS) ?
148                  enc->segment_hdr_.num_segments_ : NUM_MB_SEGMENTS;
149   int centers[NUM_MB_SEGMENTS];
150   int weighted_average = 0;
151   int map[MAX_ALPHA + 1];
152   int a, n, k;
153   int min_a = 0, max_a = MAX_ALPHA, range_a;
154   // 'int' type is ok for histo, and won't overflow
155   int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
156 
157   assert(nb >= 1);
158   assert(nb <= NUM_MB_SEGMENTS);
159 
160   // bracket the input
161   for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
162   min_a = n;
163   for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
164   max_a = n;
165   range_a = max_a - min_a;
166 
167   // Spread initial centers evenly
168   for (k = 0, n = 1; k < nb; ++k, n += 2) {
169     assert(n < 2 * nb);
170     centers[k] = min_a + (n * range_a) / (2 * nb);
171   }
172 
173   for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
174     int total_weight;
175     int displaced;
176     // Reset stats
177     for (n = 0; n < nb; ++n) {
178       accum[n] = 0;
179       dist_accum[n] = 0;
180     }
181     // Assign nearest center for each 'a'
182     n = 0;    // track the nearest center for current 'a'
183     for (a = min_a; a <= max_a; ++a) {
184       if (alphas[a]) {
185         while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
186           n++;
187         }
188         map[a] = n;
189         // accumulate contribution into best centroid
190         dist_accum[n] += a * alphas[a];
191         accum[n] += alphas[a];
192       }
193     }
194     // All point are classified. Move the centroids to the
195     // center of their respective cloud.
196     displaced = 0;
197     weighted_average = 0;
198     total_weight = 0;
199     for (n = 0; n < nb; ++n) {
200       if (accum[n]) {
201         const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
202         displaced += abs(centers[n] - new_center);
203         centers[n] = new_center;
204         weighted_average += new_center * accum[n];
205         total_weight += accum[n];
206       }
207     }
208     weighted_average = (weighted_average + total_weight / 2) / total_weight;
209     if (displaced < 5) break;   // no need to keep on looping...
210   }
211 
212   // Map each original value to the closest centroid
213   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
214     VP8MBInfo* const mb = &enc->mb_info_[n];
215     const int alpha = mb->alpha_;
216     mb->segment_ = map[alpha];
217     mb->alpha_ = centers[map[alpha]];  // for the record.
218   }
219 
220   if (nb > 1) {
221     const int smooth = (enc->config_->preprocessing & 1);
222     if (smooth) SmoothSegmentMap(enc);
223   }
224 
225   SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
226 }
227 
228 //------------------------------------------------------------------------------
229 // Macroblock analysis: collect histogram for each mode, deduce the maximal
230 // susceptibility and set best modes for this macroblock.
231 // Segment assignment is done later.
232 
233 // Number of modes to inspect for alpha_ evaluation. We don't need to test all
234 // the possible modes during the analysis phase: we risk falling into a local
235 // optimum, or be subject to boundary effect
236 #define MAX_INTRA16_MODE 2
237 #define MAX_INTRA4_MODE  2
238 #define MAX_UV_MODE      2
239 
MBAnalyzeBestIntra16Mode(VP8EncIterator * const it)240 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
241   const int max_mode = MAX_INTRA16_MODE;
242   int mode;
243   int best_alpha = DEFAULT_ALPHA;
244   int best_mode = 0;
245 
246   VP8MakeLuma16Preds(it);
247   for (mode = 0; mode < max_mode; ++mode) {
248     VP8Histogram histo = { { 0 } };
249     int alpha;
250 
251     VP8CollectHistogram(it->yuv_in_ + Y_OFF,
252                         it->yuv_p_ + VP8I16ModeOffsets[mode],
253                         0, 16, &histo);
254     alpha = GetAlpha(&histo);
255     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
256       best_alpha = alpha;
257       best_mode = mode;
258     }
259   }
260   VP8SetIntra16Mode(it, best_mode);
261   return best_alpha;
262 }
263 
MBAnalyzeBestIntra4Mode(VP8EncIterator * const it,int best_alpha)264 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
265                                    int best_alpha) {
266   uint8_t modes[16];
267   const int max_mode = MAX_INTRA4_MODE;
268   int i4_alpha;
269   VP8Histogram total_histo = { { 0 } };
270   int cur_histo = 0;
271 
272   VP8IteratorStartI4(it);
273   do {
274     int mode;
275     int best_mode_alpha = DEFAULT_ALPHA;
276     VP8Histogram histos[2];
277     const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
278 
279     VP8MakeIntra4Preds(it);
280     for (mode = 0; mode < max_mode; ++mode) {
281       int alpha;
282 
283       memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
284       VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
285                           0, 1, &histos[cur_histo]);
286       alpha = GetAlpha(&histos[cur_histo]);
287       if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
288         best_mode_alpha = alpha;
289         modes[it->i4_] = mode;
290         cur_histo ^= 1;   // keep track of best histo so far.
291       }
292     }
293     // accumulate best histogram
294     MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
295     // Note: we reuse the original samples for predictors
296   } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
297 
298   i4_alpha = GetAlpha(&total_histo);
299   if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
300     VP8SetIntra4Mode(it, modes);
301     best_alpha = i4_alpha;
302   }
303   return best_alpha;
304 }
305 
MBAnalyzeBestUVMode(VP8EncIterator * const it)306 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
307   int best_alpha = DEFAULT_ALPHA;
308   int best_mode = 0;
309   const int max_mode = MAX_UV_MODE;
310   int mode;
311 
312   VP8MakeChroma8Preds(it);
313   for (mode = 0; mode < max_mode; ++mode) {
314     VP8Histogram histo = { { 0 } };
315     int alpha;
316     VP8CollectHistogram(it->yuv_in_ + U_OFF,
317                         it->yuv_p_ + VP8UVModeOffsets[mode],
318                         16, 16 + 4 + 4, &histo);
319     alpha = GetAlpha(&histo);
320     if (IS_BETTER_ALPHA(alpha, best_alpha)) {
321       best_alpha = alpha;
322       best_mode = mode;
323     }
324   }
325   VP8SetIntraUVMode(it, best_mode);
326   return best_alpha;
327 }
328 
MBAnalyze(VP8EncIterator * const it,int alphas[MAX_ALPHA+1],int * const alpha,int * const uv_alpha)329 static void MBAnalyze(VP8EncIterator* const it,
330                       int alphas[MAX_ALPHA + 1],
331                       int* const alpha, int* const uv_alpha) {
332   const VP8Encoder* const enc = it->enc_;
333   int best_alpha, best_uv_alpha;
334 
335   VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
336   VP8SetSkip(it, 0);         // not skipped
337   VP8SetSegment(it, 0);      // default segment, spec-wise.
338 
339   best_alpha = MBAnalyzeBestIntra16Mode(it);
340   if (enc->method_ >= 5) {
341     // We go and make a fast decision for intra4/intra16.
342     // It's usually not a good and definitive pick, but helps seeding the stats
343     // about level bit-cost.
344     // TODO(skal): improve criterion.
345     best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
346   }
347   best_uv_alpha = MBAnalyzeBestUVMode(it);
348 
349   // Final susceptibility mix
350   best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
351   best_alpha = FinalAlphaValue(best_alpha);
352   alphas[best_alpha]++;
353   it->mb_->alpha_ = best_alpha;   // for later remapping.
354 
355   // Accumulate for later complexity analysis.
356   *alpha += best_alpha;   // mixed susceptibility (not just luma)
357   *uv_alpha += best_uv_alpha;
358 }
359 
DefaultMBInfo(VP8MBInfo * const mb)360 static void DefaultMBInfo(VP8MBInfo* const mb) {
361   mb->type_ = 1;     // I16x16
362   mb->uv_mode_ = 0;
363   mb->skip_ = 0;     // not skipped
364   mb->segment_ = 0;  // default segment
365   mb->alpha_ = 0;
366 }
367 
368 //------------------------------------------------------------------------------
369 // Main analysis loop:
370 // Collect all susceptibilities for each macroblock and record their
371 // distribution in alphas[]. Segments is assigned a-posteriori, based on
372 // this histogram.
373 // We also pick an intra16 prediction mode, which shouldn't be considered
374 // final except for fast-encode settings. We can also pick some intra4 modes
375 // and decide intra4/intra16, but that's usually almost always a bad choice at
376 // this stage.
377 
ResetAllMBInfo(VP8Encoder * const enc)378 static void ResetAllMBInfo(VP8Encoder* const enc) {
379   int n;
380   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
381     DefaultMBInfo(&enc->mb_info_[n]);
382   }
383   // Default susceptibilities.
384   enc->dqm_[0].alpha_ = 0;
385   enc->dqm_[0].beta_ = 0;
386   // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
387   enc->alpha_ = 0;
388   enc->uv_alpha_ = 0;
389   WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
390 }
391 
392 // struct used to collect job result
393 typedef struct {
394   WebPWorker worker;
395   int alphas[MAX_ALPHA + 1];
396   int alpha, uv_alpha;
397   VP8EncIterator it;
398   int delta_progress;
399 } SegmentJob;
400 
401 // main work call
DoSegmentsJob(SegmentJob * const job,VP8EncIterator * const it)402 static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
403   int ok = 1;
404   if (!VP8IteratorIsDone(it)) {
405     uint8_t tmp[32 + ALIGN_CST];
406     uint8_t* const scratch = (uint8_t*)DO_ALIGN(tmp);
407     do {
408       // Let's pretend we have perfect lossless reconstruction.
409       VP8IteratorImport(it, scratch);
410       MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
411       ok = VP8IteratorProgress(it, job->delta_progress);
412     } while (ok && VP8IteratorNext(it));
413   }
414   return ok;
415 }
416 
MergeJobs(const SegmentJob * const src,SegmentJob * const dst)417 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
418   int i;
419   for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
420   dst->alpha += src->alpha;
421   dst->uv_alpha += src->uv_alpha;
422 }
423 
424 // initialize the job struct with some TODOs
InitSegmentJob(VP8Encoder * const enc,SegmentJob * const job,int start_row,int end_row)425 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
426                            int start_row, int end_row) {
427   WebPGetWorkerInterface()->Init(&job->worker);
428   job->worker.data1 = job;
429   job->worker.data2 = &job->it;
430   job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
431   VP8IteratorInit(enc, &job->it);
432   VP8IteratorSetRow(&job->it, start_row);
433   VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
434   memset(job->alphas, 0, sizeof(job->alphas));
435   job->alpha = 0;
436   job->uv_alpha = 0;
437   // only one of both jobs can record the progress, since we don't
438   // expect the user's hook to be multi-thread safe
439   job->delta_progress = (start_row == 0) ? 20 : 0;
440 }
441 
442 // main entry point
VP8EncAnalyze(VP8Encoder * const enc)443 int VP8EncAnalyze(VP8Encoder* const enc) {
444   int ok = 1;
445   const int do_segments =
446       enc->config_->emulate_jpeg_size ||   // We need the complexity evaluation.
447       (enc->segment_hdr_.num_segments_ > 1) ||
448       (enc->method_ == 0);  // for method 0, we need preds_[] to be filled.
449   if (do_segments) {
450     const int last_row = enc->mb_h_;
451     // We give a little more than a half work to the main thread.
452     const int split_row = (9 * last_row + 15) >> 4;
453     const int total_mb = last_row * enc->mb_w_;
454 #ifdef WEBP_USE_THREAD
455     const int kMinSplitRow = 2;  // minimal rows needed for mt to be worth it
456     const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
457 #else
458     const int do_mt = 0;
459 #endif
460     const WebPWorkerInterface* const worker_interface =
461         WebPGetWorkerInterface();
462     SegmentJob main_job;
463     if (do_mt) {
464       SegmentJob side_job;
465       // Note the use of '&' instead of '&&' because we must call the functions
466       // no matter what.
467       InitSegmentJob(enc, &main_job, 0, split_row);
468       InitSegmentJob(enc, &side_job, split_row, last_row);
469       // we don't need to call Reset() on main_job.worker, since we're calling
470       // WebPWorkerExecute() on it
471       ok &= worker_interface->Reset(&side_job.worker);
472       // launch the two jobs in parallel
473       if (ok) {
474         worker_interface->Launch(&side_job.worker);
475         worker_interface->Execute(&main_job.worker);
476         ok &= worker_interface->Sync(&side_job.worker);
477         ok &= worker_interface->Sync(&main_job.worker);
478       }
479       worker_interface->End(&side_job.worker);
480       if (ok) MergeJobs(&side_job, &main_job);  // merge results together
481     } else {
482       // Even for single-thread case, we use the generic Worker tools.
483       InitSegmentJob(enc, &main_job, 0, last_row);
484       worker_interface->Execute(&main_job.worker);
485       ok &= worker_interface->Sync(&main_job.worker);
486     }
487     worker_interface->End(&main_job.worker);
488     if (ok) {
489       enc->alpha_ = main_job.alpha / total_mb;
490       enc->uv_alpha_ = main_job.uv_alpha / total_mb;
491       AssignSegments(enc, main_job.alphas);
492     }
493   } else {   // Use only one default segment.
494     ResetAllMBInfo(enc);
495   }
496   return ok;
497 }
498 
499