• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 
15 #include <stdlib.h>
16 
17 #include "./alphai.h"
18 #include "./vp8li.h"
19 #include "../dsp/dsp.h"
20 #include "../dsp/lossless.h"
21 #include "../dsp/yuv.h"
22 #include "../utils/huffman.h"
23 #include "../utils/utils.h"
24 
25 #define NUM_ARGB_CACHE_ROWS          16
26 
27 static const int kCodeLengthLiterals = 16;
28 static const int kCodeLengthRepeatCode = 16;
29 static const int kCodeLengthExtraBits[3] = { 2, 3, 7 };
30 static const int kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
31 
32 // -----------------------------------------------------------------------------
33 //  Five Huffman codes are used at each meta code:
34 //  1. green + length prefix codes + color cache codes,
35 //  2. alpha,
36 //  3. red,
37 //  4. blue, and,
38 //  5. distance prefix codes.
39 typedef enum {
40   GREEN = 0,
41   RED   = 1,
42   BLUE  = 2,
43   ALPHA = 3,
44   DIST  = 4
45 } HuffIndex;
46 
47 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
48   NUM_LITERAL_CODES + NUM_LENGTH_CODES,
49   NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
50   NUM_DISTANCE_CODES
51 };
52 
53 
54 #define NUM_CODE_LENGTH_CODES       19
55 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
56   17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
57 };
58 
59 #define CODE_TO_PLANE_CODES        120
60 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
61   0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
62   0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
63   0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
64   0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
65   0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
66   0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
67   0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
68   0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
69   0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
70   0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
71   0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
72   0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
73 };
74 
75 static int DecodeImageStream(int xsize, int ysize,
76                              int is_level0,
77                              VP8LDecoder* const dec,
78                              uint32_t** const decoded_data);
79 
80 //------------------------------------------------------------------------------
81 
VP8LCheckSignature(const uint8_t * const data,size_t size)82 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
83   return (size >= VP8L_FRAME_HEADER_SIZE &&
84           data[0] == VP8L_MAGIC_BYTE &&
85           (data[4] >> 5) == 0);  // version
86 }
87 
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)88 static int ReadImageInfo(VP8LBitReader* const br,
89                          int* const width, int* const height,
90                          int* const has_alpha) {
91   if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
92   *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
93   *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
94   *has_alpha = VP8LReadBits(br, 1);
95   if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
96   return 1;
97 }
98 
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)99 int VP8LGetInfo(const uint8_t* data, size_t data_size,
100                 int* const width, int* const height, int* const has_alpha) {
101   if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
102     return 0;         // not enough data
103   } else if (!VP8LCheckSignature(data, data_size)) {
104     return 0;         // bad signature
105   } else {
106     int w, h, a;
107     VP8LBitReader br;
108     VP8LInitBitReader(&br, data, data_size);
109     if (!ReadImageInfo(&br, &w, &h, &a)) {
110       return 0;
111     }
112     if (width != NULL) *width = w;
113     if (height != NULL) *height = h;
114     if (has_alpha != NULL) *has_alpha = a;
115     return 1;
116   }
117 }
118 
119 //------------------------------------------------------------------------------
120 
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)121 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
122                                        VP8LBitReader* const br) {
123   int extra_bits, offset;
124   if (distance_symbol < 4) {
125     return distance_symbol + 1;
126   }
127   extra_bits = (distance_symbol - 2) >> 1;
128   offset = (2 + (distance_symbol & 1)) << extra_bits;
129   return offset + VP8LReadBits(br, extra_bits) + 1;
130 }
131 
GetCopyLength(int length_symbol,VP8LBitReader * const br)132 static WEBP_INLINE int GetCopyLength(int length_symbol,
133                                      VP8LBitReader* const br) {
134   // Length and distance prefixes are encoded the same way.
135   return GetCopyDistance(length_symbol, br);
136 }
137 
PlaneCodeToDistance(int xsize,int plane_code)138 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
139   if (plane_code > CODE_TO_PLANE_CODES) {
140     return plane_code - CODE_TO_PLANE_CODES;
141   } else {
142     const int dist_code = kCodeToPlane[plane_code - 1];
143     const int yoffset = dist_code >> 4;
144     const int xoffset = 8 - (dist_code & 0xf);
145     const int dist = yoffset * xsize + xoffset;
146     return (dist >= 1) ? dist : 1;  // dist<1 can happen if xsize is very small
147   }
148 }
149 
150 //------------------------------------------------------------------------------
151 // Decodes the next Huffman code from bit-stream.
152 // FillBitWindow(br) needs to be called at minimum every second call
153 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanTree * tree,VP8LBitReader * const br)154 static WEBP_INLINE int ReadSymbol(const HuffmanTree* tree,
155                                   VP8LBitReader* const br) {
156   const HuffmanTreeNode* node = tree->root_;
157   uint32_t bits = VP8LPrefetchBits(br);
158   int bitpos = br->bit_pos_;
159   // Check if we find the bit combination from the Huffman lookup table.
160   const int lut_ix = bits & (HUFF_LUT - 1);
161   const int lut_bits = tree->lut_bits_[lut_ix];
162   if (lut_bits <= HUFF_LUT_BITS) {
163     VP8LSetBitPos(br, bitpos + lut_bits);
164     return tree->lut_symbol_[lut_ix];
165   }
166   node += tree->lut_jump_[lut_ix];
167   bitpos += HUFF_LUT_BITS;
168   bits >>= HUFF_LUT_BITS;
169 
170   // Decode the value from a binary tree.
171   assert(node != NULL);
172   do {
173     node = HuffmanTreeNextNode(node, bits & 1);
174     bits >>= 1;
175     ++bitpos;
176   } while (HuffmanTreeNodeIsNotLeaf(node));
177   VP8LSetBitPos(br, bitpos);
178   return node->symbol_;
179 }
180 
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)181 static int ReadHuffmanCodeLengths(
182     VP8LDecoder* const dec, const int* const code_length_code_lengths,
183     int num_symbols, int* const code_lengths) {
184   int ok = 0;
185   VP8LBitReader* const br = &dec->br_;
186   int symbol;
187   int max_symbol;
188   int prev_code_len = DEFAULT_CODE_LENGTH;
189   HuffmanTree tree;
190   int huff_codes[NUM_CODE_LENGTH_CODES] = { 0 };
191 
192   if (!VP8LHuffmanTreeBuildImplicit(&tree, code_length_code_lengths,
193                                     huff_codes, NUM_CODE_LENGTH_CODES)) {
194     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
195     return 0;
196   }
197 
198   if (VP8LReadBits(br, 1)) {    // use length
199     const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
200     max_symbol = 2 + VP8LReadBits(br, length_nbits);
201     if (max_symbol > num_symbols) {
202       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
203       goto End;
204     }
205   } else {
206     max_symbol = num_symbols;
207   }
208 
209   symbol = 0;
210   while (symbol < num_symbols) {
211     int code_len;
212     if (max_symbol-- == 0) break;
213     VP8LFillBitWindow(br);
214     code_len = ReadSymbol(&tree, br);
215     if (code_len < kCodeLengthLiterals) {
216       code_lengths[symbol++] = code_len;
217       if (code_len != 0) prev_code_len = code_len;
218     } else {
219       const int use_prev = (code_len == kCodeLengthRepeatCode);
220       const int slot = code_len - kCodeLengthLiterals;
221       const int extra_bits = kCodeLengthExtraBits[slot];
222       const int repeat_offset = kCodeLengthRepeatOffsets[slot];
223       int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
224       if (symbol + repeat > num_symbols) {
225         dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
226         goto End;
227       } else {
228         const int length = use_prev ? prev_code_len : 0;
229         while (repeat-- > 0) code_lengths[symbol++] = length;
230       }
231     }
232   }
233   ok = 1;
234 
235  End:
236   VP8LHuffmanTreeFree(&tree);
237   if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
238   return ok;
239 }
240 
241 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
242 // tree.
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,int * const code_lengths,int * const huff_codes,HuffmanTree * const tree)243 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
244                            int* const code_lengths, int* const huff_codes,
245                            HuffmanTree* const tree) {
246   int ok = 0;
247   VP8LBitReader* const br = &dec->br_;
248   const int simple_code = VP8LReadBits(br, 1);
249 
250   if (simple_code) {  // Read symbols, codes & code lengths directly.
251     int symbols[2];
252     int codes[2];
253     const int num_symbols = VP8LReadBits(br, 1) + 1;
254     const int first_symbol_len_code = VP8LReadBits(br, 1);
255     // The first code is either 1 bit or 8 bit code.
256     symbols[0] = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
257     codes[0] = 0;
258     code_lengths[0] = num_symbols - 1;
259     // The second code (if present), is always 8 bit long.
260     if (num_symbols == 2) {
261       symbols[1] = VP8LReadBits(br, 8);
262       codes[1] = 1;
263       code_lengths[1] = num_symbols - 1;
264     }
265     ok = VP8LHuffmanTreeBuildExplicit(tree, code_lengths, codes, symbols,
266                                       alphabet_size, num_symbols);
267   } else {  // Decode Huffman-coded code lengths.
268     int i;
269     int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
270     const int num_codes = VP8LReadBits(br, 4) + 4;
271     if (num_codes > NUM_CODE_LENGTH_CODES) {
272       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
273       return 0;
274     }
275 
276     memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
277 
278     for (i = 0; i < num_codes; ++i) {
279       code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
280     }
281     ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
282                                 code_lengths);
283     ok = ok && VP8LHuffmanTreeBuildImplicit(tree, code_lengths, huff_codes,
284                                             alphabet_size);
285   }
286   ok = ok && !br->error_;
287   if (!ok) {
288     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
289     return 0;
290   }
291   return 1;
292 }
293 
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)294 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
295                             int color_cache_bits, int allow_recursion) {
296   int i, j;
297   VP8LBitReader* const br = &dec->br_;
298   VP8LMetadata* const hdr = &dec->hdr_;
299   uint32_t* huffman_image = NULL;
300   HTreeGroup* htree_groups = NULL;
301   int num_htree_groups = 1;
302   int max_alphabet_size = 0;
303   int* code_lengths = NULL;
304   int* huff_codes = NULL;
305 
306   if (allow_recursion && VP8LReadBits(br, 1)) {
307     // use meta Huffman codes.
308     const int huffman_precision = VP8LReadBits(br, 3) + 2;
309     const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
310     const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
311     const int huffman_pixs = huffman_xsize * huffman_ysize;
312     if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
313                            &huffman_image)) {
314       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
315       goto Error;
316     }
317     hdr->huffman_subsample_bits_ = huffman_precision;
318     for (i = 0; i < huffman_pixs; ++i) {
319       // The huffman data is stored in red and green bytes.
320       const int group = (huffman_image[i] >> 8) & 0xffff;
321       huffman_image[i] = group;
322       if (group >= num_htree_groups) {
323         num_htree_groups = group + 1;
324       }
325     }
326   }
327 
328   if (br->error_) goto Error;
329 
330   // Find maximum alphabet size for the htree group.
331   for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
332     int alphabet_size = kAlphabetSize[j];
333     if (j == 0 && color_cache_bits > 0) {
334       alphabet_size += 1 << color_cache_bits;
335     }
336     if (max_alphabet_size < alphabet_size) {
337       max_alphabet_size = alphabet_size;
338     }
339   }
340 
341   htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
342   code_lengths =
343       (int*)WebPSafeCalloc((uint64_t)max_alphabet_size, sizeof(*code_lengths));
344   huff_codes =
345       (int*)WebPSafeMalloc((uint64_t)max_alphabet_size, sizeof(*huff_codes));
346 
347   if (htree_groups == NULL || code_lengths == NULL || huff_codes == NULL) {
348     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
349     goto Error;
350   }
351 
352   for (i = 0; i < num_htree_groups; ++i) {
353     HuffmanTree* const htrees = htree_groups[i].htrees_;
354     for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
355       int alphabet_size = kAlphabetSize[j];
356       HuffmanTree* const htree = htrees + j;
357       if (j == 0 && color_cache_bits > 0) {
358         alphabet_size += 1 << color_cache_bits;
359       }
360       if (!ReadHuffmanCode(alphabet_size, dec, code_lengths, huff_codes,
361                            htree)) {
362         goto Error;
363       }
364     }
365   }
366   WebPSafeFree(huff_codes);
367   WebPSafeFree(code_lengths);
368 
369   // All OK. Finalize pointers and return.
370   hdr->huffman_image_ = huffman_image;
371   hdr->num_htree_groups_ = num_htree_groups;
372   hdr->htree_groups_ = htree_groups;
373   return 1;
374 
375  Error:
376   WebPSafeFree(huff_codes);
377   WebPSafeFree(code_lengths);
378   WebPSafeFree(huffman_image);
379   VP8LHtreeGroupsFree(htree_groups, num_htree_groups);
380   return 0;
381 }
382 
383 //------------------------------------------------------------------------------
384 // Scaling.
385 
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)386 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
387   const int num_channels = 4;
388   const int in_width = io->mb_w;
389   const int out_width = io->scaled_width;
390   const int in_height = io->mb_h;
391   const int out_height = io->scaled_height;
392   const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
393   int32_t* work;        // Rescaler work area.
394   const uint64_t scaled_data_size = num_channels * (uint64_t)out_width;
395   uint32_t* scaled_data;  // Temporary storage for scaled BGRA data.
396   const uint64_t memory_size = sizeof(*dec->rescaler) +
397                                work_size * sizeof(*work) +
398                                scaled_data_size * sizeof(*scaled_data);
399   uint8_t* memory = (uint8_t*)WebPSafeCalloc(memory_size, sizeof(*memory));
400   if (memory == NULL) {
401     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
402     return 0;
403   }
404   assert(dec->rescaler_memory == NULL);
405   dec->rescaler_memory = memory;
406 
407   dec->rescaler = (WebPRescaler*)memory;
408   memory += sizeof(*dec->rescaler);
409   work = (int32_t*)memory;
410   memory += work_size * sizeof(*work);
411   scaled_data = (uint32_t*)memory;
412 
413   WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
414                    out_width, out_height, 0, num_channels,
415                    in_width, out_width, in_height, out_height, work);
416   return 1;
417 }
418 
419 //------------------------------------------------------------------------------
420 // Export to ARGB
421 
422 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)423 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
424                   int rgba_stride, uint8_t* const rgba) {
425   uint32_t* const src = (uint32_t*)rescaler->dst;
426   const int dst_width = rescaler->dst_width;
427   int num_lines_out = 0;
428   while (WebPRescalerHasPendingOutput(rescaler)) {
429     uint8_t* const dst = rgba + num_lines_out * rgba_stride;
430     WebPRescalerExportRow(rescaler, 0);
431     WebPMultARGBRow(src, dst_width, 1);
432     VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
433     ++num_lines_out;
434   }
435   return num_lines_out;
436 }
437 
438 // Emit scaled rows.
EmitRescaledRowsRGBA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h,uint8_t * const out,int out_stride)439 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
440                                 uint8_t* in, int in_stride, int mb_h,
441                                 uint8_t* const out, int out_stride) {
442   const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
443   int num_lines_in = 0;
444   int num_lines_out = 0;
445   while (num_lines_in < mb_h) {
446     uint8_t* const row_in = in + num_lines_in * in_stride;
447     uint8_t* const row_out = out + num_lines_out * out_stride;
448     const int lines_left = mb_h - num_lines_in;
449     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
450     assert(needed_lines > 0 && needed_lines <= lines_left);
451     WebPMultARGBRows(row_in, in_stride,
452                      dec->rescaler->src_width, needed_lines, 0);
453     WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
454     num_lines_in += needed_lines;
455     num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
456   }
457   return num_lines_out;
458 }
459 
460 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint8_t * row_in,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)461 static int EmitRows(WEBP_CSP_MODE colorspace,
462                     const uint8_t* row_in, int in_stride,
463                     int mb_w, int mb_h,
464                     uint8_t* const out, int out_stride) {
465   int lines = mb_h;
466   uint8_t* row_out = out;
467   while (lines-- > 0) {
468     VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
469     row_in += in_stride;
470     row_out += out_stride;
471   }
472   return mb_h;  // Num rows out == num rows in.
473 }
474 
475 //------------------------------------------------------------------------------
476 // Export to YUVA
477 
478 // TODO(skal): should be in yuv.c
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)479 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
480                           const WebPDecBuffer* const output) {
481   const WebPYUVABuffer* const buf = &output->u.YUVA;
482   // first, the luma plane
483   {
484     int i;
485     uint8_t* const y = buf->y + y_pos * buf->y_stride;
486     for (i = 0; i < width; ++i) {
487       const uint32_t p = src[i];
488       y[i] = VP8RGBToY((p >> 16) & 0xff, (p >> 8) & 0xff, (p >> 0) & 0xff,
489                        YUV_HALF);
490     }
491   }
492 
493   // then U/V planes
494   {
495     uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
496     uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
497     const int uv_width = width >> 1;
498     int i;
499     for (i = 0; i < uv_width; ++i) {
500       const uint32_t v0 = src[2 * i + 0];
501       const uint32_t v1 = src[2 * i + 1];
502       // VP8RGBToU/V expects four accumulated pixels. Hence we need to
503       // scale r/g/b value by a factor 2. We just shift v0/v1 one bit less.
504       const int r = ((v0 >> 15) & 0x1fe) + ((v1 >> 15) & 0x1fe);
505       const int g = ((v0 >>  7) & 0x1fe) + ((v1 >>  7) & 0x1fe);
506       const int b = ((v0 <<  1) & 0x1fe) + ((v1 <<  1) & 0x1fe);
507       if (!(y_pos & 1)) {  // even lines: store values
508         u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2);
509         v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2);
510       } else {             // odd lines: average with previous values
511         const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2);
512         const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2);
513         // Approximated average-of-four. But it's an acceptable diff.
514         u[i] = (u[i] + tmp_u + 1) >> 1;
515         v[i] = (v[i] + tmp_v + 1) >> 1;
516       }
517     }
518     if (width & 1) {       // last pixel
519       const uint32_t v0 = src[2 * i + 0];
520       const int r = (v0 >> 14) & 0x3fc;
521       const int g = (v0 >>  6) & 0x3fc;
522       const int b = (v0 <<  2) & 0x3fc;
523       if (!(y_pos & 1)) {  // even lines
524         u[i] = VP8RGBToU(r, g, b, YUV_HALF << 2);
525         v[i] = VP8RGBToV(r, g, b, YUV_HALF << 2);
526       } else {             // odd lines (note: we could just skip this)
527         const int tmp_u = VP8RGBToU(r, g, b, YUV_HALF << 2);
528         const int tmp_v = VP8RGBToV(r, g, b, YUV_HALF << 2);
529         u[i] = (u[i] + tmp_u + 1) >> 1;
530         v[i] = (v[i] + tmp_v + 1) >> 1;
531       }
532     }
533   }
534   // Lastly, store alpha if needed.
535   if (buf->a != NULL) {
536     int i;
537     uint8_t* const a = buf->a + y_pos * buf->a_stride;
538     for (i = 0; i < width; ++i) a[i] = (src[i] >> 24);
539   }
540 }
541 
ExportYUVA(const VP8LDecoder * const dec,int y_pos)542 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
543   WebPRescaler* const rescaler = dec->rescaler;
544   uint32_t* const src = (uint32_t*)rescaler->dst;
545   const int dst_width = rescaler->dst_width;
546   int num_lines_out = 0;
547   while (WebPRescalerHasPendingOutput(rescaler)) {
548     WebPRescalerExportRow(rescaler, 0);
549     WebPMultARGBRow(src, dst_width, 1);
550     ConvertToYUVA(src, dst_width, y_pos, dec->output_);
551     ++y_pos;
552     ++num_lines_out;
553   }
554   return num_lines_out;
555 }
556 
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h)557 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
558                                 uint8_t* in, int in_stride, int mb_h) {
559   int num_lines_in = 0;
560   int y_pos = dec->last_out_row_;
561   while (num_lines_in < mb_h) {
562     const int lines_left = mb_h - num_lines_in;
563     const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
564     WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
565     WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
566     num_lines_in += needed_lines;
567     in += needed_lines * in_stride;
568     y_pos += ExportYUVA(dec, y_pos);
569   }
570   return y_pos;
571 }
572 
EmitRowsYUVA(const VP8LDecoder * const dec,const uint8_t * in,int in_stride,int mb_w,int num_rows)573 static int EmitRowsYUVA(const VP8LDecoder* const dec,
574                         const uint8_t* in, int in_stride,
575                         int mb_w, int num_rows) {
576   int y_pos = dec->last_out_row_;
577   while (num_rows-- > 0) {
578     ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
579     in += in_stride;
580     ++y_pos;
581   }
582   return y_pos;
583 }
584 
585 //------------------------------------------------------------------------------
586 // Cropping.
587 
588 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
589 // crop options. Also updates the input data pointer, so that it points to the
590 // start of the cropped window. Note that pixels are in ARGB format even if
591 // 'in_data' is uint8_t*.
592 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,uint8_t ** const in_data,int pixel_stride)593 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
594                          uint8_t** const in_data, int pixel_stride) {
595   assert(y_start < y_end);
596   assert(io->crop_left < io->crop_right);
597   if (y_end > io->crop_bottom) {
598     y_end = io->crop_bottom;  // make sure we don't overflow on last row.
599   }
600   if (y_start < io->crop_top) {
601     const int delta = io->crop_top - y_start;
602     y_start = io->crop_top;
603     *in_data += delta * pixel_stride;
604   }
605   if (y_start >= y_end) return 0;  // Crop window is empty.
606 
607   *in_data += io->crop_left * sizeof(uint32_t);
608 
609   io->mb_y = y_start - io->crop_top;
610   io->mb_w = io->crop_right - io->crop_left;
611   io->mb_h = y_end - y_start;
612   return 1;  // Non-empty crop window.
613 }
614 
615 //------------------------------------------------------------------------------
616 
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)617 static WEBP_INLINE int GetMetaIndex(
618     const uint32_t* const image, int xsize, int bits, int x, int y) {
619   if (bits == 0) return 0;
620   return image[xsize * (y >> bits) + (x >> bits)];
621 }
622 
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)623 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
624                                                    int x, int y) {
625   const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
626                                       hdr->huffman_subsample_bits_, x, y);
627   assert(meta_index < hdr->num_htree_groups_);
628   return hdr->htree_groups_ + meta_index;
629 }
630 
631 //------------------------------------------------------------------------------
632 // Main loop, with custom row-processing function
633 
634 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
635 
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)636 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
637                                    const uint32_t* const rows) {
638   int n = dec->next_transform_;
639   const int cache_pixs = dec->width_ * num_rows;
640   const int start_row = dec->last_row_;
641   const int end_row = start_row + num_rows;
642   const uint32_t* rows_in = rows;
643   uint32_t* const rows_out = dec->argb_cache_;
644 
645   // Inverse transforms.
646   // TODO: most transforms only need to operate on the cropped region only.
647   memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
648   while (n-- > 0) {
649     VP8LTransform* const transform = &dec->transforms_[n];
650     VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
651     rows_in = rows_out;
652   }
653 }
654 
655 // Special method for paletted alpha data.
ApplyInverseTransformsAlpha(VP8LDecoder * const dec,int num_rows,const uint8_t * const rows)656 static void ApplyInverseTransformsAlpha(VP8LDecoder* const dec, int num_rows,
657                                         const uint8_t* const rows) {
658   const int start_row = dec->last_row_;
659   const int end_row = start_row + num_rows;
660   const uint8_t* rows_in = rows;
661   uint8_t* rows_out = (uint8_t*)dec->io_->opaque + dec->io_->width * start_row;
662   VP8LTransform* const transform = &dec->transforms_[0];
663   assert(dec->next_transform_ == 1);
664   assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
665   VP8LColorIndexInverseTransformAlpha(transform, start_row, end_row, rows_in,
666                                       rows_out);
667 }
668 
669 // Processes (transforms, scales & color-converts) the rows decoded after the
670 // last call.
ProcessRows(VP8LDecoder * const dec,int row)671 static void ProcessRows(VP8LDecoder* const dec, int row) {
672   const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
673   const int num_rows = row - dec->last_row_;
674 
675   if (num_rows <= 0) return;  // Nothing to be done.
676   ApplyInverseTransforms(dec, num_rows, rows);
677 
678   // Emit output.
679   {
680     VP8Io* const io = dec->io_;
681     uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
682     const int in_stride = io->width * sizeof(uint32_t);  // in unit of RGBA
683     if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
684       // Nothing to output (this time).
685     } else {
686       const WebPDecBuffer* const output = dec->output_;
687       if (output->colorspace < MODE_YUV) {  // convert to RGBA
688         const WebPRGBABuffer* const buf = &output->u.RGBA;
689         uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
690         const int num_rows_out = io->use_scaling ?
691             EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
692                                  rgba, buf->stride) :
693             EmitRows(output->colorspace, rows_data, in_stride,
694                      io->mb_w, io->mb_h, rgba, buf->stride);
695         // Update 'last_out_row_'.
696         dec->last_out_row_ += num_rows_out;
697       } else {                              // convert to YUVA
698         dec->last_out_row_ = io->use_scaling ?
699             EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
700             EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
701       }
702       assert(dec->last_out_row_ <= output->height);
703     }
704   }
705 
706   // Update 'last_row_'.
707   dec->last_row_ = row;
708   assert(dec->last_row_ <= dec->height_);
709 }
710 
711 // Row-processing for the special case when alpha data contains only one
712 // transform (color indexing), and trivial non-green literals.
Is8bOptimizable(const VP8LMetadata * const hdr)713 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
714   int i;
715   if (hdr->color_cache_size_ > 0) return 0;
716   // When the Huffman tree contains only one symbol, we can skip the
717   // call to ReadSymbol() for red/blue/alpha channels.
718   for (i = 0; i < hdr->num_htree_groups_; ++i) {
719     const HuffmanTree* const htrees = hdr->htree_groups_[i].htrees_;
720     if (htrees[RED].num_nodes_ > 1) return 0;
721     if (htrees[BLUE].num_nodes_ > 1) return 0;
722     if (htrees[ALPHA].num_nodes_ > 1) return 0;
723   }
724   return 1;
725 }
726 
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int row)727 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int row) {
728   const int num_rows = row - dec->last_row_;
729   const uint8_t* const in =
730       (uint8_t*)dec->pixels_ + dec->width_ * dec->last_row_;
731   if (num_rows > 0) {
732     ApplyInverseTransformsAlpha(dec, num_rows, in);
733   }
734   dec->last_row_ = dec->last_out_row_ = row;
735 }
736 
DecodeAlphaData(VP8LDecoder * const dec,uint8_t * const data,int width,int height,int last_row)737 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
738                            int width, int height, int last_row) {
739   int ok = 1;
740   int row = dec->last_pixel_ / width;
741   int col = dec->last_pixel_ % width;
742   VP8LBitReader* const br = &dec->br_;
743   VP8LMetadata* const hdr = &dec->hdr_;
744   const HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row);
745   int pos = dec->last_pixel_;         // current position
746   const int end = width * height;     // End of data
747   const int last = width * last_row;  // Last pixel to decode
748   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
749   const int mask = hdr->huffman_mask_;
750   assert(htree_group != NULL);
751   assert(pos < end);
752   assert(last_row <= height);
753   assert(Is8bOptimizable(hdr));
754 
755   while (!br->eos_ && pos < last) {
756     int code;
757     // Only update when changing tile.
758     if ((col & mask) == 0) {
759       htree_group = GetHtreeGroupForPos(hdr, col, row);
760     }
761     VP8LFillBitWindow(br);
762     code = ReadSymbol(&htree_group->htrees_[GREEN], br);
763     if (code < NUM_LITERAL_CODES) {  // Literal
764       data[pos] = code;
765       ++pos;
766       ++col;
767       if (col >= width) {
768         col = 0;
769         ++row;
770         if (row % NUM_ARGB_CACHE_ROWS == 0) {
771           ExtractPalettedAlphaRows(dec, row);
772         }
773       }
774     } else if (code < len_code_limit) {  // Backward reference
775       int dist_code, dist;
776       const int length_sym = code - NUM_LITERAL_CODES;
777       const int length = GetCopyLength(length_sym, br);
778       const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
779       VP8LFillBitWindow(br);
780       dist_code = GetCopyDistance(dist_symbol, br);
781       dist = PlaneCodeToDistance(width, dist_code);
782       if (pos >= dist && end - pos >= length) {
783         int i;
784         for (i = 0; i < length; ++i) data[pos + i] = data[pos + i - dist];
785       } else {
786         ok = 0;
787         goto End;
788       }
789       pos += length;
790       col += length;
791       while (col >= width) {
792         col -= width;
793         ++row;
794         if (row % NUM_ARGB_CACHE_ROWS == 0) {
795           ExtractPalettedAlphaRows(dec, row);
796         }
797       }
798       if (pos < last && (col & mask)) {
799         htree_group = GetHtreeGroupForPos(hdr, col, row);
800       }
801     } else {  // Not reached
802       ok = 0;
803       goto End;
804     }
805     assert(br->eos_ == VP8LIsEndOfStream(br));
806     ok = !br->error_;
807     if (!ok) goto End;
808   }
809   // Process the remaining rows corresponding to last row-block.
810   ExtractPalettedAlphaRows(dec, row);
811 
812  End:
813   if (br->error_ || !ok || (br->eos_ && pos < end)) {
814     ok = 0;
815     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
816                             : VP8_STATUS_BITSTREAM_ERROR;
817   } else {
818     dec->last_pixel_ = (int)pos;
819     if (pos == end) dec->state_ = READ_DATA;
820   }
821   return ok;
822 }
823 
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,int last_row,ProcessRowsFunc process_func)824 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
825                            int width, int height, int last_row,
826                            ProcessRowsFunc process_func) {
827   int ok = 1;
828   int row = dec->last_pixel_ / width;
829   int col = dec->last_pixel_ % width;
830   VP8LBitReader* const br = &dec->br_;
831   VP8LMetadata* const hdr = &dec->hdr_;
832   HTreeGroup* htree_group = GetHtreeGroupForPos(hdr, col, row);
833   uint32_t* src = data + dec->last_pixel_;
834   uint32_t* last_cached = src;
835   uint32_t* const src_end = data + width * height;     // End of data
836   uint32_t* const src_last = data + width * last_row;  // Last pixel to decode
837   const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
838   const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
839   VP8LColorCache* const color_cache =
840       (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
841   const int mask = hdr->huffman_mask_;
842   assert(htree_group != NULL);
843   assert(src < src_end);
844   assert(src_last <= src_end);
845 
846   while (!br->eos_ && src < src_last) {
847     int code;
848     // Only update when changing tile. Note we could use this test:
849     // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
850     // but that's actually slower and needs storing the previous col/row.
851     if ((col & mask) == 0) {
852       htree_group = GetHtreeGroupForPos(hdr, col, row);
853     }
854     VP8LFillBitWindow(br);
855     code = ReadSymbol(&htree_group->htrees_[GREEN], br);
856     if (code < NUM_LITERAL_CODES) {  // Literal
857       int red, green, blue, alpha;
858       red = ReadSymbol(&htree_group->htrees_[RED], br);
859       green = code;
860       VP8LFillBitWindow(br);
861       blue = ReadSymbol(&htree_group->htrees_[BLUE], br);
862       alpha = ReadSymbol(&htree_group->htrees_[ALPHA], br);
863       *src = ((uint32_t)alpha << 24) | (red << 16) | (green << 8) | blue;
864     AdvanceByOne:
865       ++src;
866       ++col;
867       if (col >= width) {
868         col = 0;
869         ++row;
870         if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) {
871           process_func(dec, row);
872         }
873         if (color_cache != NULL) {
874           while (last_cached < src) {
875             VP8LColorCacheInsert(color_cache, *last_cached++);
876           }
877         }
878       }
879     } else if (code < len_code_limit) {  // Backward reference
880       int dist_code, dist;
881       const int length_sym = code - NUM_LITERAL_CODES;
882       const int length = GetCopyLength(length_sym, br);
883       const int dist_symbol = ReadSymbol(&htree_group->htrees_[DIST], br);
884       VP8LFillBitWindow(br);
885       dist_code = GetCopyDistance(dist_symbol, br);
886       dist = PlaneCodeToDistance(width, dist_code);
887       if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
888         ok = 0;
889         goto End;
890       } else {
891         int i;
892         for (i = 0; i < length; ++i) src[i] = src[i - dist];
893         src += length;
894       }
895       col += length;
896       while (col >= width) {
897         col -= width;
898         ++row;
899         if ((row % NUM_ARGB_CACHE_ROWS == 0) && (process_func != NULL)) {
900           process_func(dec, row);
901         }
902       }
903       if (src < src_end) {
904         if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
905         if (color_cache != NULL) {
906           while (last_cached < src) {
907             VP8LColorCacheInsert(color_cache, *last_cached++);
908           }
909         }
910       }
911     } else if (code < color_cache_limit) {  // Color cache
912       const int key = code - len_code_limit;
913       assert(color_cache != NULL);
914       while (last_cached < src) {
915         VP8LColorCacheInsert(color_cache, *last_cached++);
916       }
917       *src = VP8LColorCacheLookup(color_cache, key);
918       goto AdvanceByOne;
919     } else {  // Not reached
920       ok = 0;
921       goto End;
922     }
923     assert(br->eos_ == VP8LIsEndOfStream(br));
924     ok = !br->error_;
925     if (!ok) goto End;
926   }
927   // Process the remaining rows corresponding to last row-block.
928   if (process_func != NULL) process_func(dec, row);
929 
930  End:
931   if (br->error_ || !ok || (br->eos_ && src < src_end)) {
932     ok = 0;
933     dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
934                             : VP8_STATUS_BITSTREAM_ERROR;
935   } else {
936     dec->last_pixel_ = (int)(src - data);
937     if (src == src_end) dec->state_ = READ_DATA;
938   }
939   return ok;
940 }
941 
942 // -----------------------------------------------------------------------------
943 // VP8LTransform
944 
ClearTransform(VP8LTransform * const transform)945 static void ClearTransform(VP8LTransform* const transform) {
946   WebPSafeFree(transform->data_);
947   transform->data_ = NULL;
948 }
949 
950 // For security reason, we need to remap the color map to span
951 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)952 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
953   int i;
954   const int final_num_colors = 1 << (8 >> transform->bits_);
955   uint32_t* const new_color_map =
956       (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
957                                 sizeof(*new_color_map));
958   if (new_color_map == NULL) {
959     return 0;
960   } else {
961     uint8_t* const data = (uint8_t*)transform->data_;
962     uint8_t* const new_data = (uint8_t*)new_color_map;
963     new_color_map[0] = transform->data_[0];
964     for (i = 4; i < 4 * num_colors; ++i) {
965       // Equivalent to AddPixelEq(), on a byte-basis.
966       new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
967     }
968     for (; i < 4 * final_num_colors; ++i)
969       new_data[i] = 0;  // black tail.
970     WebPSafeFree(transform->data_);
971     transform->data_ = new_color_map;
972   }
973   return 1;
974 }
975 
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)976 static int ReadTransform(int* const xsize, int const* ysize,
977                          VP8LDecoder* const dec) {
978   int ok = 1;
979   VP8LBitReader* const br = &dec->br_;
980   VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
981   const VP8LImageTransformType type =
982       (VP8LImageTransformType)VP8LReadBits(br, 2);
983 
984   // Each transform type can only be present once in the stream.
985   if (dec->transforms_seen_ & (1U << type)) {
986     return 0;  // Already there, let's not accept the second same transform.
987   }
988   dec->transforms_seen_ |= (1U << type);
989 
990   transform->type_ = type;
991   transform->xsize_ = *xsize;
992   transform->ysize_ = *ysize;
993   transform->data_ = NULL;
994   ++dec->next_transform_;
995   assert(dec->next_transform_ <= NUM_TRANSFORMS);
996 
997   switch (type) {
998     case PREDICTOR_TRANSFORM:
999     case CROSS_COLOR_TRANSFORM:
1000       transform->bits_ = VP8LReadBits(br, 3) + 2;
1001       ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
1002                                                transform->bits_),
1003                              VP8LSubSampleSize(transform->ysize_,
1004                                                transform->bits_),
1005                              0, dec, &transform->data_);
1006       break;
1007     case COLOR_INDEXING_TRANSFORM: {
1008        const int num_colors = VP8LReadBits(br, 8) + 1;
1009        const int bits = (num_colors > 16) ? 0
1010                       : (num_colors > 4) ? 1
1011                       : (num_colors > 2) ? 2
1012                       : 3;
1013        *xsize = VP8LSubSampleSize(transform->xsize_, bits);
1014        transform->bits_ = bits;
1015        ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
1016        ok = ok && ExpandColorMap(num_colors, transform);
1017       break;
1018     }
1019     case SUBTRACT_GREEN:
1020       break;
1021     default:
1022       assert(0);    // can't happen
1023       break;
1024   }
1025 
1026   return ok;
1027 }
1028 
1029 // -----------------------------------------------------------------------------
1030 // VP8LMetadata
1031 
InitMetadata(VP8LMetadata * const hdr)1032 static void InitMetadata(VP8LMetadata* const hdr) {
1033   assert(hdr);
1034   memset(hdr, 0, sizeof(*hdr));
1035 }
1036 
ClearMetadata(VP8LMetadata * const hdr)1037 static void ClearMetadata(VP8LMetadata* const hdr) {
1038   assert(hdr);
1039 
1040   WebPSafeFree(hdr->huffman_image_);
1041   VP8LHtreeGroupsFree(hdr->htree_groups_, hdr->num_htree_groups_);
1042   VP8LColorCacheClear(&hdr->color_cache_);
1043   InitMetadata(hdr);
1044 }
1045 
1046 // -----------------------------------------------------------------------------
1047 // VP8LDecoder
1048 
VP8LNew(void)1049 VP8LDecoder* VP8LNew(void) {
1050   VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
1051   if (dec == NULL) return NULL;
1052   dec->status_ = VP8_STATUS_OK;
1053   dec->action_ = READ_DIM;
1054   dec->state_ = READ_DIM;
1055 
1056   VP8LDspInit();  // Init critical function pointers.
1057 
1058   return dec;
1059 }
1060 
VP8LClear(VP8LDecoder * const dec)1061 void VP8LClear(VP8LDecoder* const dec) {
1062   int i;
1063   if (dec == NULL) return;
1064   ClearMetadata(&dec->hdr_);
1065 
1066   WebPSafeFree(dec->pixels_);
1067   dec->pixels_ = NULL;
1068   for (i = 0; i < dec->next_transform_; ++i) {
1069     ClearTransform(&dec->transforms_[i]);
1070   }
1071   dec->next_transform_ = 0;
1072   dec->transforms_seen_ = 0;
1073 
1074   WebPSafeFree(dec->rescaler_memory);
1075   dec->rescaler_memory = NULL;
1076 
1077   dec->output_ = NULL;   // leave no trace behind
1078 }
1079 
VP8LDelete(VP8LDecoder * const dec)1080 void VP8LDelete(VP8LDecoder* const dec) {
1081   if (dec != NULL) {
1082     VP8LClear(dec);
1083     WebPSafeFree(dec);
1084   }
1085 }
1086 
UpdateDecoder(VP8LDecoder * const dec,int width,int height)1087 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
1088   VP8LMetadata* const hdr = &dec->hdr_;
1089   const int num_bits = hdr->huffman_subsample_bits_;
1090   dec->width_ = width;
1091   dec->height_ = height;
1092 
1093   hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
1094   hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
1095 }
1096 
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)1097 static int DecodeImageStream(int xsize, int ysize,
1098                              int is_level0,
1099                              VP8LDecoder* const dec,
1100                              uint32_t** const decoded_data) {
1101   int ok = 1;
1102   int transform_xsize = xsize;
1103   int transform_ysize = ysize;
1104   VP8LBitReader* const br = &dec->br_;
1105   VP8LMetadata* const hdr = &dec->hdr_;
1106   uint32_t* data = NULL;
1107   int color_cache_bits = 0;
1108 
1109   // Read the transforms (may recurse).
1110   if (is_level0) {
1111     while (ok && VP8LReadBits(br, 1)) {
1112       ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
1113     }
1114   }
1115 
1116   // Color cache
1117   if (ok && VP8LReadBits(br, 1)) {
1118     color_cache_bits = VP8LReadBits(br, 4);
1119     ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
1120     if (!ok) {
1121       dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1122       goto End;
1123     }
1124   }
1125 
1126   // Read the Huffman codes (may recurse).
1127   ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
1128                               color_cache_bits, is_level0);
1129   if (!ok) {
1130     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1131     goto End;
1132   }
1133 
1134   // Finish setting up the color-cache
1135   if (color_cache_bits > 0) {
1136     hdr->color_cache_size_ = 1 << color_cache_bits;
1137     if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1138       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1139       ok = 0;
1140       goto End;
1141     }
1142   } else {
1143     hdr->color_cache_size_ = 0;
1144   }
1145   UpdateDecoder(dec, transform_xsize, transform_ysize);
1146 
1147   if (is_level0) {   // level 0 complete
1148     dec->state_ = READ_HDR;
1149     goto End;
1150   }
1151 
1152   {
1153     const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1154     data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1155     if (data == NULL) {
1156       dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1157       ok = 0;
1158       goto End;
1159     }
1160   }
1161 
1162   // Use the Huffman trees to decode the LZ77 encoded data.
1163   ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
1164                        transform_ysize, NULL);
1165   ok = ok && !br->error_;
1166 
1167  End:
1168 
1169   if (!ok) {
1170     WebPSafeFree(data);
1171     ClearMetadata(hdr);
1172     // If not enough data (br.eos_) resulted in BIT_STREAM_ERROR, update the
1173     // status appropriately.
1174     if (dec->status_ == VP8_STATUS_BITSTREAM_ERROR && dec->br_.eos_) {
1175       dec->status_ = VP8_STATUS_SUSPENDED;
1176     }
1177   } else {
1178     if (decoded_data != NULL) {
1179       *decoded_data = data;
1180     } else {
1181       // We allocate image data in this function only for transforms. At level 0
1182       // (that is: not the transforms), we shouldn't have allocated anything.
1183       assert(data == NULL);
1184       assert(is_level0);
1185     }
1186     dec->last_pixel_ = 0;  // Reset for future DECODE_DATA_FUNC() calls.
1187     if (!is_level0) ClearMetadata(hdr);  // Clean up temporary data behind.
1188   }
1189   return ok;
1190 }
1191 
1192 //------------------------------------------------------------------------------
1193 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers32b(VP8LDecoder * const dec,int final_width)1194 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
1195   const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1196   // Scratch buffer corresponding to top-prediction row for transforming the
1197   // first row in the row-blocks. Not needed for paletted alpha.
1198   const uint64_t cache_top_pixels = (uint16_t)final_width;
1199   // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1200   const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1201   const uint64_t total_num_pixels =
1202       num_pixels + cache_top_pixels + cache_pixels;
1203 
1204   assert(dec->width_ <= final_width);
1205   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
1206   if (dec->pixels_ == NULL) {
1207     dec->argb_cache_ = NULL;    // for sanity check
1208     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1209     return 0;
1210   }
1211   dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
1212   return 1;
1213 }
1214 
AllocateInternalBuffers8b(VP8LDecoder * const dec)1215 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
1216   const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
1217   dec->argb_cache_ = NULL;    // for sanity check
1218   dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
1219   if (dec->pixels_ == NULL) {
1220     dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1221     return 0;
1222   }
1223   return 1;
1224 }
1225 
1226 //------------------------------------------------------------------------------
1227 
1228 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int row)1229 static void ExtractAlphaRows(VP8LDecoder* const dec, int row) {
1230   const int num_rows = row - dec->last_row_;
1231   const uint32_t* const in = dec->pixels_ + dec->width_ * dec->last_row_;
1232 
1233   if (num_rows <= 0) return;  // Nothing to be done.
1234   ApplyInverseTransforms(dec, num_rows, in);
1235 
1236   // Extract alpha (which is stored in the green plane).
1237   {
1238     const int width = dec->io_->width;      // the final width (!= dec->width_)
1239     const int cache_pixs = width * num_rows;
1240     uint8_t* const dst = (uint8_t*)dec->io_->opaque + width * dec->last_row_;
1241     const uint32_t* const src = dec->argb_cache_;
1242     int i;
1243     for (i = 0; i < cache_pixs; ++i) dst[i] = (src[i] >> 8) & 0xff;
1244   }
1245   dec->last_row_ = dec->last_out_row_ = row;
1246 }
1247 
VP8LDecodeAlphaHeader(ALPHDecoder * const alph_dec,const uint8_t * const data,size_t data_size,uint8_t * const output)1248 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
1249                           const uint8_t* const data, size_t data_size,
1250                           uint8_t* const output) {
1251   int ok = 0;
1252   VP8LDecoder* dec;
1253   VP8Io* io;
1254   assert(alph_dec != NULL);
1255   alph_dec->vp8l_dec_ = VP8LNew();
1256   if (alph_dec->vp8l_dec_ == NULL) return 0;
1257   dec = alph_dec->vp8l_dec_;
1258 
1259   dec->width_ = alph_dec->width_;
1260   dec->height_ = alph_dec->height_;
1261   dec->io_ = &alph_dec->io_;
1262   io = dec->io_;
1263 
1264   VP8InitIo(io);
1265   WebPInitCustomIo(NULL, io);  // Just a sanity Init. io won't be used.
1266   io->opaque = output;
1267   io->width = alph_dec->width_;
1268   io->height = alph_dec->height_;
1269 
1270   dec->status_ = VP8_STATUS_OK;
1271   VP8LInitBitReader(&dec->br_, data, data_size);
1272 
1273   dec->action_ = READ_HDR;
1274   if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
1275     goto Err;
1276   }
1277 
1278   // Special case: if alpha data uses only the color indexing transform and
1279   // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1280   // method that only needs allocation of 1 byte per pixel (alpha channel).
1281   if (dec->next_transform_ == 1 &&
1282       dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1283       Is8bOptimizable(&dec->hdr_)) {
1284     alph_dec->use_8b_decode = 1;
1285     ok = AllocateInternalBuffers8b(dec);
1286   } else {
1287     // Allocate internal buffers (note that dec->width_ may have changed here).
1288     alph_dec->use_8b_decode = 0;
1289     ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
1290   }
1291 
1292   if (!ok) goto Err;
1293 
1294   dec->action_ = READ_DATA;
1295   return 1;
1296 
1297  Err:
1298   VP8LDelete(alph_dec->vp8l_dec_);
1299   alph_dec->vp8l_dec_ = NULL;
1300   return 0;
1301 }
1302 
VP8LDecodeAlphaImageStream(ALPHDecoder * const alph_dec,int last_row)1303 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
1304   VP8LDecoder* const dec = alph_dec->vp8l_dec_;
1305   assert(dec != NULL);
1306   assert(dec->action_ == READ_DATA);
1307   assert(last_row <= dec->height_);
1308 
1309   if (dec->last_pixel_ == dec->width_ * dec->height_) {
1310     return 1;  // done
1311   }
1312 
1313   // Decode (with special row processing).
1314   return alph_dec->use_8b_decode ?
1315       DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1316                       last_row) :
1317       DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1318                       last_row, ExtractAlphaRows);
1319 }
1320 
1321 //------------------------------------------------------------------------------
1322 
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1323 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1324   int width, height, has_alpha;
1325 
1326   if (dec == NULL) return 0;
1327   if (io == NULL) {
1328     dec->status_ = VP8_STATUS_INVALID_PARAM;
1329     return 0;
1330   }
1331 
1332   dec->io_ = io;
1333   dec->status_ = VP8_STATUS_OK;
1334   VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1335   if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1336     dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1337     goto Error;
1338   }
1339   dec->state_ = READ_DIM;
1340   io->width = width;
1341   io->height = height;
1342 
1343   dec->action_ = READ_HDR;
1344   if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1345   return 1;
1346 
1347  Error:
1348   VP8LClear(dec);
1349   assert(dec->status_ != VP8_STATUS_OK);
1350   return 0;
1351 }
1352 
VP8LDecodeImage(VP8LDecoder * const dec)1353 int VP8LDecodeImage(VP8LDecoder* const dec) {
1354   VP8Io* io = NULL;
1355   WebPDecParams* params = NULL;
1356 
1357   // Sanity checks.
1358   if (dec == NULL) return 0;
1359 
1360   dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1361   assert(dec->hdr_.htree_groups_ != NULL);
1362   assert(dec->hdr_.num_htree_groups_ > 0);
1363 
1364   io = dec->io_;
1365   assert(io != NULL);
1366   params = (WebPDecParams*)io->opaque;
1367   assert(params != NULL);
1368   dec->output_ = params->output;
1369   assert(dec->output_ != NULL);
1370 
1371   // Initialization.
1372   if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1373     dec->status_ = VP8_STATUS_INVALID_PARAM;
1374     goto Err;
1375   }
1376 
1377   if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
1378 
1379   if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1380 
1381   if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
1382     // need the alpha-multiply functions for premultiplied output or rescaling
1383     WebPInitAlphaProcessing();
1384   }
1385 
1386   // Decode.
1387   dec->action_ = READ_DATA;
1388   if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1389                        dec->height_, ProcessRows)) {
1390     goto Err;
1391   }
1392 
1393   // Cleanup.
1394   params->last_y = dec->last_out_row_;
1395   VP8LClear(dec);
1396   return 1;
1397 
1398  Err:
1399   VP8LClear(dec);
1400   assert(dec->status_ != VP8_STATUS_OK);
1401   return 0;
1402 }
1403 
1404 //------------------------------------------------------------------------------
1405