• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "heap.h"
18 
19 #define ATRACE_TAG ATRACE_TAG_DALVIK
20 #include <cutils/trace.h>
21 
22 #include <limits>
23 #include <memory>
24 #include <unwind.h>  // For GC verification.
25 #include <vector>
26 
27 #include "art_field-inl.h"
28 #include "base/allocator.h"
29 #include "base/dumpable.h"
30 #include "base/histogram-inl.h"
31 #include "base/stl_util.h"
32 #include "base/time_utils.h"
33 #include "common_throws.h"
34 #include "cutils/sched_policy.h"
35 #include "debugger.h"
36 #include "dex_file-inl.h"
37 #include "gc/accounting/atomic_stack.h"
38 #include "gc/accounting/card_table-inl.h"
39 #include "gc/accounting/heap_bitmap-inl.h"
40 #include "gc/accounting/mod_union_table.h"
41 #include "gc/accounting/mod_union_table-inl.h"
42 #include "gc/accounting/remembered_set.h"
43 #include "gc/accounting/space_bitmap-inl.h"
44 #include "gc/collector/concurrent_copying.h"
45 #include "gc/collector/mark_compact.h"
46 #include "gc/collector/mark_sweep-inl.h"
47 #include "gc/collector/partial_mark_sweep.h"
48 #include "gc/collector/semi_space.h"
49 #include "gc/collector/sticky_mark_sweep.h"
50 #include "gc/reference_processor.h"
51 #include "gc/space/bump_pointer_space.h"
52 #include "gc/space/dlmalloc_space-inl.h"
53 #include "gc/space/image_space.h"
54 #include "gc/space/large_object_space.h"
55 #include "gc/space/region_space.h"
56 #include "gc/space/rosalloc_space-inl.h"
57 #include "gc/space/space-inl.h"
58 #include "gc/space/zygote_space.h"
59 #include "gc/task_processor.h"
60 #include "entrypoints/quick/quick_alloc_entrypoints.h"
61 #include "heap-inl.h"
62 #include "image.h"
63 #include "intern_table.h"
64 #include "mirror/class-inl.h"
65 #include "mirror/object.h"
66 #include "mirror/object-inl.h"
67 #include "mirror/object_array-inl.h"
68 #include "mirror/reference-inl.h"
69 #include "os.h"
70 #include "reflection.h"
71 #include "runtime.h"
72 #include "ScopedLocalRef.h"
73 #include "scoped_thread_state_change.h"
74 #include "handle_scope-inl.h"
75 #include "thread_list.h"
76 #include "well_known_classes.h"
77 
78 namespace art {
79 
80 namespace gc {
81 
82 static constexpr size_t kCollectorTransitionStressIterations = 0;
83 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
84 // Minimum amount of remaining bytes before a concurrent GC is triggered.
85 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
86 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
87 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
88 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
89 // threads (lower pauses, use less memory bandwidth).
90 static constexpr double kStickyGcThroughputAdjustment = 1.0;
91 // Whether or not we compact the zygote in PreZygoteFork.
92 static constexpr bool kCompactZygote = kMovingCollector;
93 // How many reserve entries are at the end of the allocation stack, these are only needed if the
94 // allocation stack overflows.
95 static constexpr size_t kAllocationStackReserveSize = 1024;
96 // Default mark stack size in bytes.
97 static const size_t kDefaultMarkStackSize = 64 * KB;
98 // Define space name.
99 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
100 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
101 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
102 static const char* kNonMovingSpaceName = "non moving space";
103 static const char* kZygoteSpaceName = "zygote space";
104 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
105 static constexpr bool kGCALotMode = false;
106 // GC alot mode uses a small allocation stack to stress test a lot of GC.
107 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
108     sizeof(mirror::HeapReference<mirror::Object>);
109 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
110 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
111     sizeof(mirror::HeapReference<mirror::Object>);
112 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
113     sizeof(mirror::HeapReference<mirror::Object>);
114 // System.runFinalization can deadlock with native allocations, to deal with this, we have a
115 // timeout on how long we wait for finalizers to run. b/21544853
116 static constexpr uint64_t kNativeAllocationFinalizeTimeout = MsToNs(250u);
117 
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t capacity,size_t non_moving_space_capacity,const std::string & image_file_name,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_max_footprint,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool use_homogeneous_space_compaction_for_oom,uint64_t min_interval_homogeneous_space_compaction_by_oom)118 Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
119            double target_utilization, double foreground_heap_growth_multiplier,
120            size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
121            const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
122            CollectorType background_collector_type,
123            space::LargeObjectSpaceType large_object_space_type, size_t large_object_threshold,
124            size_t parallel_gc_threads, size_t conc_gc_threads, bool low_memory_mode,
125            size_t long_pause_log_threshold, size_t long_gc_log_threshold,
126            bool ignore_max_footprint, bool use_tlab,
127            bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
128            bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
129            bool verify_post_gc_rosalloc, bool gc_stress_mode,
130            bool use_homogeneous_space_compaction_for_oom,
131            uint64_t min_interval_homogeneous_space_compaction_by_oom)
132     : non_moving_space_(nullptr),
133       rosalloc_space_(nullptr),
134       dlmalloc_space_(nullptr),
135       main_space_(nullptr),
136       collector_type_(kCollectorTypeNone),
137       foreground_collector_type_(foreground_collector_type),
138       background_collector_type_(background_collector_type),
139       desired_collector_type_(foreground_collector_type_),
140       pending_task_lock_(nullptr),
141       parallel_gc_threads_(parallel_gc_threads),
142       conc_gc_threads_(conc_gc_threads),
143       low_memory_mode_(low_memory_mode),
144       long_pause_log_threshold_(long_pause_log_threshold),
145       long_gc_log_threshold_(long_gc_log_threshold),
146       ignore_max_footprint_(ignore_max_footprint),
147       zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
148       zygote_space_(nullptr),
149       large_object_threshold_(large_object_threshold),
150       collector_type_running_(kCollectorTypeNone),
151       last_gc_type_(collector::kGcTypeNone),
152       next_gc_type_(collector::kGcTypePartial),
153       capacity_(capacity),
154       growth_limit_(growth_limit),
155       max_allowed_footprint_(initial_size),
156       native_footprint_gc_watermark_(initial_size),
157       native_need_to_run_finalization_(false),
158       // Initially assume we perceive jank in case the process state is never updated.
159       process_state_(kProcessStateJankPerceptible),
160       concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
161       total_bytes_freed_ever_(0),
162       total_objects_freed_ever_(0),
163       num_bytes_allocated_(0),
164       native_bytes_allocated_(0),
165       num_bytes_freed_revoke_(0),
166       verify_missing_card_marks_(false),
167       verify_system_weaks_(false),
168       verify_pre_gc_heap_(verify_pre_gc_heap),
169       verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
170       verify_post_gc_heap_(verify_post_gc_heap),
171       verify_mod_union_table_(false),
172       verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
173       verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
174       verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
175       gc_stress_mode_(gc_stress_mode),
176       /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
177        * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
178        * verification is enabled, we limit the size of allocation stacks to speed up their
179        * searching.
180        */
181       max_allocation_stack_size_(kGCALotMode ? kGcAlotAllocationStackSize
182           : (kVerifyObjectSupport > kVerifyObjectModeFast) ? kVerifyObjectAllocationStackSize :
183           kDefaultAllocationStackSize),
184       current_allocator_(kAllocatorTypeDlMalloc),
185       current_non_moving_allocator_(kAllocatorTypeNonMoving),
186       bump_pointer_space_(nullptr),
187       temp_space_(nullptr),
188       region_space_(nullptr),
189       min_free_(min_free),
190       max_free_(max_free),
191       target_utilization_(target_utilization),
192       foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
193       total_wait_time_(0),
194       total_allocation_time_(0),
195       verify_object_mode_(kVerifyObjectModeDisabled),
196       disable_moving_gc_count_(0),
197       running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
198       use_tlab_(use_tlab),
199       main_space_backup_(nullptr),
200       min_interval_homogeneous_space_compaction_by_oom_(
201           min_interval_homogeneous_space_compaction_by_oom),
202       last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
203       pending_collector_transition_(nullptr),
204       pending_heap_trim_(nullptr),
205       use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
206       running_collection_is_blocking_(false),
207       blocking_gc_count_(0U),
208       blocking_gc_time_(0U),
209       last_update_time_gc_count_rate_histograms_(  // Round down by the window duration.
210           (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
211       gc_count_last_window_(0U),
212       blocking_gc_count_last_window_(0U),
213       gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
214       blocking_gc_count_rate_histogram_("blocking gc count rate histogram", 1U,
215                                         kGcCountRateMaxBucketCount),
216       backtrace_lock_(nullptr),
217       seen_backtrace_count_(0u),
218       unique_backtrace_count_(0u) {
219   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
220     LOG(INFO) << "Heap() entering";
221   }
222   Runtime* const runtime = Runtime::Current();
223   // If we aren't the zygote, switch to the default non zygote allocator. This may update the
224   // entrypoints.
225   const bool is_zygote = runtime->IsZygote();
226   if (!is_zygote) {
227     // Background compaction is currently not supported for command line runs.
228     if (background_collector_type_ != foreground_collector_type_) {
229       VLOG(heap) << "Disabling background compaction for non zygote";
230       background_collector_type_ = foreground_collector_type_;
231     }
232   }
233   ChangeCollector(desired_collector_type_);
234   live_bitmap_.reset(new accounting::HeapBitmap(this));
235   mark_bitmap_.reset(new accounting::HeapBitmap(this));
236   // Requested begin for the alloc space, to follow the mapped image and oat files
237   uint8_t* requested_alloc_space_begin = nullptr;
238   if (foreground_collector_type_ == kCollectorTypeCC) {
239     // Need to use a low address so that we can allocate a contiguous
240     // 2 * Xmx space when there's no image (dex2oat for target).
241     CHECK_GE(300 * MB, non_moving_space_capacity);
242     requested_alloc_space_begin = reinterpret_cast<uint8_t*>(300 * MB) - non_moving_space_capacity;
243   }
244   if (!image_file_name.empty()) {
245     ATRACE_BEGIN("ImageSpace::Create");
246     std::string error_msg;
247     auto* image_space = space::ImageSpace::Create(image_file_name.c_str(), image_instruction_set,
248                                                   &error_msg);
249     ATRACE_END();
250     if (image_space != nullptr) {
251       AddSpace(image_space);
252       // Oat files referenced by image files immediately follow them in memory, ensure alloc space
253       // isn't going to get in the middle
254       uint8_t* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
255       CHECK_GT(oat_file_end_addr, image_space->End());
256       requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
257     } else {
258       LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
259                    << "Attempting to fall back to imageless running. Error was: " << error_msg;
260     }
261   }
262   /*
263   requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
264                                      +-  nonmoving space (non_moving_space_capacity)+-
265                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
266                                      +-????????????????????????????????????????????+-
267                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
268                                      +-main alloc space / bump space 1 (capacity_) +-
269                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
270                                      +-????????????????????????????????????????????+-
271                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
272                                      +-main alloc space2 / bump space 2 (capacity_)+-
273                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
274   */
275   // We don't have hspace compaction enabled with GSS or CC.
276   if (foreground_collector_type_ == kCollectorTypeGSS ||
277       foreground_collector_type_ == kCollectorTypeCC) {
278     use_homogeneous_space_compaction_for_oom_ = false;
279   }
280   bool support_homogeneous_space_compaction =
281       background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
282       use_homogeneous_space_compaction_for_oom_;
283   // We may use the same space the main space for the non moving space if we don't need to compact
284   // from the main space.
285   // This is not the case if we support homogeneous compaction or have a moving background
286   // collector type.
287   bool separate_non_moving_space = is_zygote ||
288       support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
289       IsMovingGc(background_collector_type_);
290   if (foreground_collector_type == kCollectorTypeGSS) {
291     separate_non_moving_space = false;
292   }
293   std::unique_ptr<MemMap> main_mem_map_1;
294   std::unique_ptr<MemMap> main_mem_map_2;
295   uint8_t* request_begin = requested_alloc_space_begin;
296   if (request_begin != nullptr && separate_non_moving_space) {
297     request_begin += non_moving_space_capacity;
298   }
299   std::string error_str;
300   std::unique_ptr<MemMap> non_moving_space_mem_map;
301   ATRACE_BEGIN("Create heap maps");
302   if (separate_non_moving_space) {
303     // If we are the zygote, the non moving space becomes the zygote space when we run
304     // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
305     // rename the mem map later.
306     const char* space_name = is_zygote ? kZygoteSpaceName: kNonMovingSpaceName;
307     // Reserve the non moving mem map before the other two since it needs to be at a specific
308     // address.
309     non_moving_space_mem_map.reset(
310         MemMap::MapAnonymous(space_name, requested_alloc_space_begin,
311                              non_moving_space_capacity, PROT_READ | PROT_WRITE, true, false,
312                              &error_str));
313     CHECK(non_moving_space_mem_map != nullptr) << error_str;
314     // Try to reserve virtual memory at a lower address if we have a separate non moving space.
315     request_begin = reinterpret_cast<uint8_t*>(300 * MB);
316   }
317   // Attempt to create 2 mem maps at or after the requested begin.
318   if (foreground_collector_type_ != kCollectorTypeCC) {
319     if (separate_non_moving_space) {
320       main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin,
321                                                         capacity_, &error_str));
322     } else {
323       // If no separate non-moving space, the main space must come
324       // right after the image space to avoid a gap.
325       main_mem_map_1.reset(MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity_,
326                                                 PROT_READ | PROT_WRITE, true, false,
327                                                 &error_str));
328     }
329     CHECK(main_mem_map_1.get() != nullptr) << error_str;
330   }
331   if (support_homogeneous_space_compaction ||
332       background_collector_type_ == kCollectorTypeSS ||
333       foreground_collector_type_ == kCollectorTypeSS) {
334     main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
335                                                       capacity_, &error_str));
336     CHECK(main_mem_map_2.get() != nullptr) << error_str;
337   }
338   ATRACE_END();
339   ATRACE_BEGIN("Create spaces");
340   // Create the non moving space first so that bitmaps don't take up the address range.
341   if (separate_non_moving_space) {
342     // Non moving space is always dlmalloc since we currently don't have support for multiple
343     // active rosalloc spaces.
344     const size_t size = non_moving_space_mem_map->Size();
345     non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
346         non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
347         initial_size, size, size, false);
348     non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
349     CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
350         << requested_alloc_space_begin;
351     AddSpace(non_moving_space_);
352   }
353   // Create other spaces based on whether or not we have a moving GC.
354   if (foreground_collector_type_ == kCollectorTypeCC) {
355     region_space_ = space::RegionSpace::Create("Region space", capacity_ * 2, request_begin);
356     AddSpace(region_space_);
357   } else if (IsMovingGc(foreground_collector_type_) &&
358       foreground_collector_type_ != kCollectorTypeGSS) {
359     // Create bump pointer spaces.
360     // We only to create the bump pointer if the foreground collector is a compacting GC.
361     // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
362     bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
363                                                                     main_mem_map_1.release());
364     CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
365     AddSpace(bump_pointer_space_);
366     temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
367                                                             main_mem_map_2.release());
368     CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
369     AddSpace(temp_space_);
370     CHECK(separate_non_moving_space);
371   } else {
372     CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
373     CHECK(main_space_ != nullptr);
374     AddSpace(main_space_);
375     if (!separate_non_moving_space) {
376       non_moving_space_ = main_space_;
377       CHECK(!non_moving_space_->CanMoveObjects());
378     }
379     if (foreground_collector_type_ == kCollectorTypeGSS) {
380       CHECK_EQ(foreground_collector_type_, background_collector_type_);
381       // Create bump pointer spaces instead of a backup space.
382       main_mem_map_2.release();
383       bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
384                                                             kGSSBumpPointerSpaceCapacity, nullptr);
385       CHECK(bump_pointer_space_ != nullptr);
386       AddSpace(bump_pointer_space_);
387       temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
388                                                     kGSSBumpPointerSpaceCapacity, nullptr);
389       CHECK(temp_space_ != nullptr);
390       AddSpace(temp_space_);
391     } else if (main_mem_map_2.get() != nullptr) {
392       const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
393       main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
394                                                            growth_limit_, capacity_, name, true));
395       CHECK(main_space_backup_.get() != nullptr);
396       // Add the space so its accounted for in the heap_begin and heap_end.
397       AddSpace(main_space_backup_.get());
398     }
399   }
400   CHECK(non_moving_space_ != nullptr);
401   CHECK(!non_moving_space_->CanMoveObjects());
402   // Allocate the large object space.
403   if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
404     large_object_space_ = space::FreeListSpace::Create("free list large object space", nullptr,
405                                                        capacity_);
406     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
407   } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
408     large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
409     CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
410   } else {
411     // Disable the large object space by making the cutoff excessively large.
412     large_object_threshold_ = std::numeric_limits<size_t>::max();
413     large_object_space_ = nullptr;
414   }
415   if (large_object_space_ != nullptr) {
416     AddSpace(large_object_space_);
417   }
418   // Compute heap capacity. Continuous spaces are sorted in order of Begin().
419   CHECK(!continuous_spaces_.empty());
420   // Relies on the spaces being sorted.
421   uint8_t* heap_begin = continuous_spaces_.front()->Begin();
422   uint8_t* heap_end = continuous_spaces_.back()->Limit();
423   size_t heap_capacity = heap_end - heap_begin;
424   // Remove the main backup space since it slows down the GC to have unused extra spaces.
425   // TODO: Avoid needing to do this.
426   if (main_space_backup_.get() != nullptr) {
427     RemoveSpace(main_space_backup_.get());
428   }
429   ATRACE_END();
430   // Allocate the card table.
431   ATRACE_BEGIN("Create card table");
432   card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
433   CHECK(card_table_.get() != nullptr) << "Failed to create card table";
434   ATRACE_END();
435   if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
436     rb_table_.reset(new accounting::ReadBarrierTable());
437     DCHECK(rb_table_->IsAllCleared());
438   }
439   if (GetImageSpace() != nullptr) {
440     // Don't add the image mod union table if we are running without an image, this can crash if
441     // we use the CardCache implementation.
442     accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
443         "Image mod-union table", this, GetImageSpace());
444     CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
445     AddModUnionTable(mod_union_table);
446   }
447   if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
448     accounting::RememberedSet* non_moving_space_rem_set =
449         new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
450     CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
451     AddRememberedSet(non_moving_space_rem_set);
452   }
453   // TODO: Count objects in the image space here?
454   num_bytes_allocated_.StoreRelaxed(0);
455   mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
456                                                     kDefaultMarkStackSize));
457   const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
458   allocation_stack_.reset(accounting::ObjectStack::Create(
459       "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
460   live_stack_.reset(accounting::ObjectStack::Create(
461       "live stack", max_allocation_stack_size_, alloc_stack_capacity));
462   // It's still too early to take a lock because there are no threads yet, but we can create locks
463   // now. We don't create it earlier to make it clear that you can't use locks during heap
464   // initialization.
465   gc_complete_lock_ = new Mutex("GC complete lock");
466   gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
467                                                 *gc_complete_lock_));
468   task_processor_.reset(new TaskProcessor());
469   pending_task_lock_ = new Mutex("Pending task lock");
470   if (ignore_max_footprint_) {
471     SetIdealFootprint(std::numeric_limits<size_t>::max());
472     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
473   }
474   CHECK_NE(max_allowed_footprint_, 0U);
475   // Create our garbage collectors.
476   for (size_t i = 0; i < 2; ++i) {
477     const bool concurrent = i != 0;
478     if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
479         (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
480       garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
481       garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
482       garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
483     }
484   }
485   if (kMovingCollector) {
486     if (MayUseCollector(kCollectorTypeSS) || MayUseCollector(kCollectorTypeGSS) ||
487         MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
488         use_homogeneous_space_compaction_for_oom_) {
489       // TODO: Clean this up.
490       const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
491       semi_space_collector_ = new collector::SemiSpace(this, generational,
492                                                        generational ? "generational" : "");
493       garbage_collectors_.push_back(semi_space_collector_);
494     }
495     if (MayUseCollector(kCollectorTypeCC)) {
496       concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
497       garbage_collectors_.push_back(concurrent_copying_collector_);
498     }
499     if (MayUseCollector(kCollectorTypeMC)) {
500       mark_compact_collector_ = new collector::MarkCompact(this);
501       garbage_collectors_.push_back(mark_compact_collector_);
502     }
503   }
504   if (GetImageSpace() != nullptr && non_moving_space_ != nullptr &&
505       (is_zygote || separate_non_moving_space || foreground_collector_type_ == kCollectorTypeGSS)) {
506     // Check that there's no gap between the image space and the non moving space so that the
507     // immune region won't break (eg. due to a large object allocated in the gap). This is only
508     // required when we're the zygote or using GSS.
509     bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
510                                       non_moving_space_->GetMemMap());
511     if (!no_gap) {
512       PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
513       MemMap::DumpMaps(LOG(ERROR), true);
514       LOG(FATAL) << "There's a gap between the image space and the non-moving space";
515     }
516   }
517   instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
518   if (gc_stress_mode_) {
519     backtrace_lock_ = new Mutex("GC complete lock");
520   }
521   if (running_on_valgrind_ || gc_stress_mode_) {
522     instrumentation->InstrumentQuickAllocEntryPoints();
523   }
524   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
525     LOG(INFO) << "Heap() exiting";
526   }
527 }
528 
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)529 MemMap* Heap::MapAnonymousPreferredAddress(const char* name, uint8_t* request_begin,
530                                            size_t capacity, std::string* out_error_str) {
531   while (true) {
532     MemMap* map = MemMap::MapAnonymous(name, request_begin, capacity,
533                                        PROT_READ | PROT_WRITE, true, false, out_error_str);
534     if (map != nullptr || request_begin == nullptr) {
535       return map;
536     }
537     // Retry a  second time with no specified request begin.
538     request_begin = nullptr;
539   }
540 }
541 
MayUseCollector(CollectorType type) const542 bool Heap::MayUseCollector(CollectorType type) const {
543   return foreground_collector_type_ == type || background_collector_type_ == type;
544 }
545 
CreateMallocSpaceFromMemMap(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)546 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
547                                                       size_t growth_limit, size_t capacity,
548                                                       const char* name, bool can_move_objects) {
549   space::MallocSpace* malloc_space = nullptr;
550   if (kUseRosAlloc) {
551     // Create rosalloc space.
552     malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
553                                                           initial_size, growth_limit, capacity,
554                                                           low_memory_mode_, can_move_objects);
555   } else {
556     malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
557                                                           initial_size, growth_limit, capacity,
558                                                           can_move_objects);
559   }
560   if (collector::SemiSpace::kUseRememberedSet) {
561     accounting::RememberedSet* rem_set  =
562         new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
563     CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
564     AddRememberedSet(rem_set);
565   }
566   CHECK(malloc_space != nullptr) << "Failed to create " << name;
567   malloc_space->SetFootprintLimit(malloc_space->Capacity());
568   return malloc_space;
569 }
570 
CreateMainMallocSpace(MemMap * mem_map,size_t initial_size,size_t growth_limit,size_t capacity)571 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
572                                  size_t capacity) {
573   // Is background compaction is enabled?
574   bool can_move_objects = IsMovingGc(background_collector_type_) !=
575       IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
576   // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
577   // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
578   // from the main space to the zygote space. If background compaction is enabled, always pass in
579   // that we can move objets.
580   if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
581     // After the zygote we want this to be false if we don't have background compaction enabled so
582     // that getting primitive array elements is faster.
583     // We never have homogeneous compaction with GSS and don't need a space with movable objects.
584     can_move_objects = !HasZygoteSpace() && foreground_collector_type_ != kCollectorTypeGSS;
585   }
586   if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
587     RemoveRememberedSet(main_space_);
588   }
589   const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
590   main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
591                                             can_move_objects);
592   SetSpaceAsDefault(main_space_);
593   VLOG(heap) << "Created main space " << main_space_;
594 }
595 
ChangeAllocator(AllocatorType allocator)596 void Heap::ChangeAllocator(AllocatorType allocator) {
597   if (current_allocator_ != allocator) {
598     // These two allocators are only used internally and don't have any entrypoints.
599     CHECK_NE(allocator, kAllocatorTypeLOS);
600     CHECK_NE(allocator, kAllocatorTypeNonMoving);
601     current_allocator_ = allocator;
602     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
603     SetQuickAllocEntryPointsAllocator(current_allocator_);
604     Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
605   }
606 }
607 
DisableMovingGc()608 void Heap::DisableMovingGc() {
609   if (IsMovingGc(foreground_collector_type_)) {
610     foreground_collector_type_ = kCollectorTypeCMS;
611   }
612   if (IsMovingGc(background_collector_type_)) {
613     background_collector_type_ = foreground_collector_type_;
614   }
615   TransitionCollector(foreground_collector_type_);
616   ThreadList* tl = Runtime::Current()->GetThreadList();
617   Thread* self = Thread::Current();
618   ScopedThreadStateChange tsc(self, kSuspended);
619   tl->SuspendAll(__FUNCTION__);
620   // Something may have caused the transition to fail.
621   if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
622     CHECK(main_space_ != nullptr);
623     // The allocation stack may have non movable objects in it. We need to flush it since the GC
624     // can't only handle marking allocation stack objects of one non moving space and one main
625     // space.
626     {
627       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
628       FlushAllocStack();
629     }
630     main_space_->DisableMovingObjects();
631     non_moving_space_ = main_space_;
632     CHECK(!non_moving_space_->CanMoveObjects());
633   }
634   tl->ResumeAll();
635 }
636 
SafeGetClassDescriptor(mirror::Class * klass)637 std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
638   if (!IsValidContinuousSpaceObjectAddress(klass)) {
639     return StringPrintf("<non heap address klass %p>", klass);
640   }
641   mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
642   if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
643     std::string result("[");
644     result += SafeGetClassDescriptor(component_type);
645     return result;
646   } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
647     return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
648   } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
649     return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
650   } else {
651     mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
652     if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
653       return StringPrintf("<non heap address dex_cache %p>", dex_cache);
654     }
655     const DexFile* dex_file = dex_cache->GetDexFile();
656     uint16_t class_def_idx = klass->GetDexClassDefIndex();
657     if (class_def_idx == DexFile::kDexNoIndex16) {
658       return "<class def not found>";
659     }
660     const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
661     const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
662     return dex_file->GetTypeDescriptor(type_id);
663   }
664 }
665 
SafePrettyTypeOf(mirror::Object * obj)666 std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
667   if (obj == nullptr) {
668     return "null";
669   }
670   mirror::Class* klass = obj->GetClass<kVerifyNone>();
671   if (klass == nullptr) {
672     return "(class=null)";
673   }
674   std::string result(SafeGetClassDescriptor(klass));
675   if (obj->IsClass()) {
676     result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
677   }
678   return result;
679 }
680 
DumpObject(std::ostream & stream,mirror::Object * obj)681 void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
682   if (obj == nullptr) {
683     stream << "(obj=null)";
684     return;
685   }
686   if (IsAligned<kObjectAlignment>(obj)) {
687     space::Space* space = nullptr;
688     // Don't use find space since it only finds spaces which actually contain objects instead of
689     // spaces which may contain objects (e.g. cleared bump pointer spaces).
690     for (const auto& cur_space : continuous_spaces_) {
691       if (cur_space->HasAddress(obj)) {
692         space = cur_space;
693         break;
694       }
695     }
696     // Unprotect all the spaces.
697     for (const auto& con_space : continuous_spaces_) {
698       mprotect(con_space->Begin(), con_space->Capacity(), PROT_READ | PROT_WRITE);
699     }
700     stream << "Object " << obj;
701     if (space != nullptr) {
702       stream << " in space " << *space;
703     }
704     mirror::Class* klass = obj->GetClass<kVerifyNone>();
705     stream << "\nclass=" << klass;
706     if (klass != nullptr) {
707       stream << " type= " << SafePrettyTypeOf(obj);
708     }
709     // Re-protect the address we faulted on.
710     mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
711   }
712 }
713 
IsCompilingBoot() const714 bool Heap::IsCompilingBoot() const {
715   if (!Runtime::Current()->IsAotCompiler()) {
716     return false;
717   }
718   for (const auto& space : continuous_spaces_) {
719     if (space->IsImageSpace() || space->IsZygoteSpace()) {
720       return false;
721     }
722   }
723   return true;
724 }
725 
HasImageSpace() const726 bool Heap::HasImageSpace() const {
727   for (const auto& space : continuous_spaces_) {
728     if (space->IsImageSpace()) {
729       return true;
730     }
731   }
732   return false;
733 }
734 
IncrementDisableMovingGC(Thread * self)735 void Heap::IncrementDisableMovingGC(Thread* self) {
736   // Need to do this holding the lock to prevent races where the GC is about to run / running when
737   // we attempt to disable it.
738   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
739   MutexLock mu(self, *gc_complete_lock_);
740   ++disable_moving_gc_count_;
741   if (IsMovingGc(collector_type_running_)) {
742     WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
743   }
744 }
745 
DecrementDisableMovingGC(Thread * self)746 void Heap::DecrementDisableMovingGC(Thread* self) {
747   MutexLock mu(self, *gc_complete_lock_);
748   CHECK_GT(disable_moving_gc_count_, 0U);
749   --disable_moving_gc_count_;
750 }
751 
UpdateProcessState(ProcessState process_state)752 void Heap::UpdateProcessState(ProcessState process_state) {
753   if (process_state_ != process_state) {
754     process_state_ = process_state;
755     for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
756       // Start at index 1 to avoid "is always false" warning.
757       // Have iteration 1 always transition the collector.
758       TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
759                           ? foreground_collector_type_ : background_collector_type_);
760       usleep(kCollectorTransitionStressWait);
761     }
762     if (process_state_ == kProcessStateJankPerceptible) {
763       // Transition back to foreground right away to prevent jank.
764       RequestCollectorTransition(foreground_collector_type_, 0);
765     } else {
766       // Don't delay for debug builds since we may want to stress test the GC.
767       // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
768       // special handling which does a homogenous space compaction once but then doesn't transition
769       // the collector.
770       RequestCollectorTransition(background_collector_type_,
771                                  kIsDebugBuild ? 0 : kCollectorTransitionWait);
772     }
773   }
774 }
775 
CreateThreadPool()776 void Heap::CreateThreadPool() {
777   const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
778   if (num_threads != 0) {
779     thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
780   }
781 }
782 
783 // Visit objects when threads aren't suspended. If concurrent moving
784 // GC, disable moving GC and suspend threads and then visit objects.
VisitObjects(ObjectCallback callback,void * arg)785 void Heap::VisitObjects(ObjectCallback callback, void* arg) {
786   Thread* self = Thread::Current();
787   Locks::mutator_lock_->AssertSharedHeld(self);
788   DCHECK(!Locks::mutator_lock_->IsExclusiveHeld(self)) << "Call VisitObjectsPaused() instead";
789   if (IsGcConcurrentAndMoving()) {
790     // Concurrent moving GC. Just suspending threads isn't sufficient
791     // because a collection isn't one big pause and we could suspend
792     // threads in the middle (between phases) of a concurrent moving
793     // collection where it's not easily known which objects are alive
794     // (both the region space and the non-moving space) or which
795     // copies of objects to visit, and the to-space invariant could be
796     // easily broken. Visit objects while GC isn't running by using
797     // IncrementDisableMovingGC() and threads are suspended.
798     IncrementDisableMovingGC(self);
799     self->TransitionFromRunnableToSuspended(kWaitingForVisitObjects);
800     ThreadList* tl = Runtime::Current()->GetThreadList();
801     tl->SuspendAll(__FUNCTION__);
802     VisitObjectsInternalRegionSpace(callback, arg);
803     VisitObjectsInternal(callback, arg);
804     tl->ResumeAll();
805     self->TransitionFromSuspendedToRunnable();
806     DecrementDisableMovingGC(self);
807   } else {
808     // GCs can move objects, so don't allow this.
809     ScopedAssertNoThreadSuspension ants(self, "Visiting objects");
810     DCHECK(region_space_ == nullptr);
811     VisitObjectsInternal(callback, arg);
812   }
813 }
814 
815 // Visit objects when threads are already suspended.
VisitObjectsPaused(ObjectCallback callback,void * arg)816 void Heap::VisitObjectsPaused(ObjectCallback callback, void* arg) {
817   Thread* self = Thread::Current();
818   Locks::mutator_lock_->AssertExclusiveHeld(self);
819   VisitObjectsInternalRegionSpace(callback, arg);
820   VisitObjectsInternal(callback, arg);
821 }
822 
823 // Visit objects in the region spaces.
VisitObjectsInternalRegionSpace(ObjectCallback callback,void * arg)824 void Heap::VisitObjectsInternalRegionSpace(ObjectCallback callback, void* arg) {
825   Thread* self = Thread::Current();
826   Locks::mutator_lock_->AssertExclusiveHeld(self);
827   if (region_space_ != nullptr) {
828     DCHECK(IsGcConcurrentAndMoving());
829     if (!zygote_creation_lock_.IsExclusiveHeld(self)) {
830       // Exclude the pre-zygote fork time where the semi-space collector
831       // calls VerifyHeapReferences() as part of the zygote compaction
832       // which then would call here without the moving GC disabled,
833       // which is fine.
834       DCHECK(IsMovingGCDisabled(self));
835     }
836     region_space_->Walk(callback, arg);
837   }
838 }
839 
840 // Visit objects in the other spaces.
VisitObjectsInternal(ObjectCallback callback,void * arg)841 void Heap::VisitObjectsInternal(ObjectCallback callback, void* arg) {
842   if (bump_pointer_space_ != nullptr) {
843     // Visit objects in bump pointer space.
844     bump_pointer_space_->Walk(callback, arg);
845   }
846   // TODO: Switch to standard begin and end to use ranged a based loop.
847   for (auto* it = allocation_stack_->Begin(), *end = allocation_stack_->End(); it < end; ++it) {
848     mirror::Object* const obj = it->AsMirrorPtr();
849     if (obj != nullptr && obj->GetClass() != nullptr) {
850       // Avoid the race condition caused by the object not yet being written into the allocation
851       // stack or the class not yet being written in the object. Or, if
852       // kUseThreadLocalAllocationStack, there can be nulls on the allocation stack.
853       callback(obj, arg);
854     }
855   }
856   {
857     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
858     GetLiveBitmap()->Walk(callback, arg);
859   }
860 }
861 
MarkAllocStackAsLive(accounting::ObjectStack * stack)862 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
863   space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
864   space::ContinuousSpace* space2 = non_moving_space_;
865   // TODO: Generalize this to n bitmaps?
866   CHECK(space1 != nullptr);
867   CHECK(space2 != nullptr);
868   MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
869                  (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
870                  stack);
871 }
872 
DeleteThreadPool()873 void Heap::DeleteThreadPool() {
874   thread_pool_.reset(nullptr);
875 }
876 
AddSpace(space::Space * space)877 void Heap::AddSpace(space::Space* space) {
878   CHECK(space != nullptr);
879   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
880   if (space->IsContinuousSpace()) {
881     DCHECK(!space->IsDiscontinuousSpace());
882     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
883     // Continuous spaces don't necessarily have bitmaps.
884     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
885     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
886     if (live_bitmap != nullptr) {
887       CHECK(mark_bitmap != nullptr);
888       live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
889       mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
890     }
891     continuous_spaces_.push_back(continuous_space);
892     // Ensure that spaces remain sorted in increasing order of start address.
893     std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
894               [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
895       return a->Begin() < b->Begin();
896     });
897   } else {
898     CHECK(space->IsDiscontinuousSpace());
899     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
900     live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
901     mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
902     discontinuous_spaces_.push_back(discontinuous_space);
903   }
904   if (space->IsAllocSpace()) {
905     alloc_spaces_.push_back(space->AsAllocSpace());
906   }
907 }
908 
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)909 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
910   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
911   if (continuous_space->IsDlMallocSpace()) {
912     dlmalloc_space_ = continuous_space->AsDlMallocSpace();
913   } else if (continuous_space->IsRosAllocSpace()) {
914     rosalloc_space_ = continuous_space->AsRosAllocSpace();
915   }
916 }
917 
RemoveSpace(space::Space * space)918 void Heap::RemoveSpace(space::Space* space) {
919   DCHECK(space != nullptr);
920   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
921   if (space->IsContinuousSpace()) {
922     DCHECK(!space->IsDiscontinuousSpace());
923     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
924     // Continuous spaces don't necessarily have bitmaps.
925     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
926     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
927     if (live_bitmap != nullptr) {
928       DCHECK(mark_bitmap != nullptr);
929       live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
930       mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
931     }
932     auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
933     DCHECK(it != continuous_spaces_.end());
934     continuous_spaces_.erase(it);
935   } else {
936     DCHECK(space->IsDiscontinuousSpace());
937     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
938     live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
939     mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
940     auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
941                         discontinuous_space);
942     DCHECK(it != discontinuous_spaces_.end());
943     discontinuous_spaces_.erase(it);
944   }
945   if (space->IsAllocSpace()) {
946     auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
947     DCHECK(it != alloc_spaces_.end());
948     alloc_spaces_.erase(it);
949   }
950 }
951 
DumpGcPerformanceInfo(std::ostream & os)952 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
953   // Dump cumulative timings.
954   os << "Dumping cumulative Gc timings\n";
955   uint64_t total_duration = 0;
956   // Dump cumulative loggers for each GC type.
957   uint64_t total_paused_time = 0;
958   for (auto& collector : garbage_collectors_) {
959     total_duration += collector->GetCumulativeTimings().GetTotalNs();
960     total_paused_time += collector->GetTotalPausedTimeNs();
961     collector->DumpPerformanceInfo(os);
962   }
963   uint64_t allocation_time =
964       static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
965   if (total_duration != 0) {
966     const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
967     os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
968     os << "Mean GC size throughput: "
969        << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
970     os << "Mean GC object throughput: "
971        << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
972   }
973   uint64_t total_objects_allocated = GetObjectsAllocatedEver();
974   os << "Total number of allocations " << total_objects_allocated << "\n";
975   os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
976   os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
977   os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
978   os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
979   os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
980   os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
981   os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
982   if (kMeasureAllocationTime) {
983     os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
984     os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
985        << "\n";
986   }
987   if (HasZygoteSpace()) {
988     os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
989   }
990   os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
991   os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
992   os << "Total GC count: " << GetGcCount() << "\n";
993   os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
994   os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
995   os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
996 
997   {
998     MutexLock mu(Thread::Current(), *gc_complete_lock_);
999     if (gc_count_rate_histogram_.SampleSize() > 0U) {
1000       os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1001       gc_count_rate_histogram_.DumpBins(os);
1002       os << "\n";
1003     }
1004     if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1005       os << "Histogram of blocking GC count per "
1006          << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1007       blocking_gc_count_rate_histogram_.DumpBins(os);
1008       os << "\n";
1009     }
1010   }
1011 
1012   BaseMutex::DumpAll(os);
1013 }
1014 
ResetGcPerformanceInfo()1015 void Heap::ResetGcPerformanceInfo() {
1016   for (auto& collector : garbage_collectors_) {
1017     collector->ResetMeasurements();
1018   }
1019   total_allocation_time_.StoreRelaxed(0);
1020   total_bytes_freed_ever_ = 0;
1021   total_objects_freed_ever_ = 0;
1022   total_wait_time_ = 0;
1023   blocking_gc_count_ = 0;
1024   blocking_gc_time_ = 0;
1025   gc_count_last_window_ = 0;
1026   blocking_gc_count_last_window_ = 0;
1027   last_update_time_gc_count_rate_histograms_ =  // Round down by the window duration.
1028       (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1029   {
1030     MutexLock mu(Thread::Current(), *gc_complete_lock_);
1031     gc_count_rate_histogram_.Reset();
1032     blocking_gc_count_rate_histogram_.Reset();
1033   }
1034 }
1035 
GetGcCount() const1036 uint64_t Heap::GetGcCount() const {
1037   uint64_t gc_count = 0U;
1038   for (auto& collector : garbage_collectors_) {
1039     gc_count += collector->GetCumulativeTimings().GetIterations();
1040   }
1041   return gc_count;
1042 }
1043 
GetGcTime() const1044 uint64_t Heap::GetGcTime() const {
1045   uint64_t gc_time = 0U;
1046   for (auto& collector : garbage_collectors_) {
1047     gc_time += collector->GetCumulativeTimings().GetTotalNs();
1048   }
1049   return gc_time;
1050 }
1051 
GetBlockingGcCount() const1052 uint64_t Heap::GetBlockingGcCount() const {
1053   return blocking_gc_count_;
1054 }
1055 
GetBlockingGcTime() const1056 uint64_t Heap::GetBlockingGcTime() const {
1057   return blocking_gc_time_;
1058 }
1059 
DumpGcCountRateHistogram(std::ostream & os) const1060 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1061   MutexLock mu(Thread::Current(), *gc_complete_lock_);
1062   if (gc_count_rate_histogram_.SampleSize() > 0U) {
1063     gc_count_rate_histogram_.DumpBins(os);
1064   }
1065 }
1066 
DumpBlockingGcCountRateHistogram(std::ostream & os) const1067 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1068   MutexLock mu(Thread::Current(), *gc_complete_lock_);
1069   if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1070     blocking_gc_count_rate_histogram_.DumpBins(os);
1071   }
1072 }
1073 
~Heap()1074 Heap::~Heap() {
1075   VLOG(heap) << "Starting ~Heap()";
1076   STLDeleteElements(&garbage_collectors_);
1077   // If we don't reset then the mark stack complains in its destructor.
1078   allocation_stack_->Reset();
1079   live_stack_->Reset();
1080   STLDeleteValues(&mod_union_tables_);
1081   STLDeleteValues(&remembered_sets_);
1082   STLDeleteElements(&continuous_spaces_);
1083   STLDeleteElements(&discontinuous_spaces_);
1084   delete gc_complete_lock_;
1085   delete pending_task_lock_;
1086   delete backtrace_lock_;
1087   if (unique_backtrace_count_.LoadRelaxed() != 0 || seen_backtrace_count_.LoadRelaxed() != 0) {
1088     LOG(INFO) << "gc stress unique=" << unique_backtrace_count_.LoadRelaxed()
1089         << " total=" << seen_backtrace_count_.LoadRelaxed() +
1090             unique_backtrace_count_.LoadRelaxed();
1091   }
1092   VLOG(heap) << "Finished ~Heap()";
1093 }
1094 
FindContinuousSpaceFromObject(const mirror::Object * obj,bool fail_ok) const1095 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
1096                                                             bool fail_ok) const {
1097   for (const auto& space : continuous_spaces_) {
1098     if (space->Contains(obj)) {
1099       return space;
1100     }
1101   }
1102   if (!fail_ok) {
1103     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
1104   }
1105   return nullptr;
1106 }
1107 
FindDiscontinuousSpaceFromObject(const mirror::Object * obj,bool fail_ok) const1108 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
1109                                                                   bool fail_ok) const {
1110   for (const auto& space : discontinuous_spaces_) {
1111     if (space->Contains(obj)) {
1112       return space;
1113     }
1114   }
1115   if (!fail_ok) {
1116     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
1117   }
1118   return nullptr;
1119 }
1120 
FindSpaceFromObject(const mirror::Object * obj,bool fail_ok) const1121 space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
1122   space::Space* result = FindContinuousSpaceFromObject(obj, true);
1123   if (result != nullptr) {
1124     return result;
1125   }
1126   return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1127 }
1128 
GetImageSpace() const1129 space::ImageSpace* Heap::GetImageSpace() const {
1130   for (const auto& space : continuous_spaces_) {
1131     if (space->IsImageSpace()) {
1132       return space->AsImageSpace();
1133     }
1134   }
1135   return nullptr;
1136 }
1137 
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1138 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1139   std::ostringstream oss;
1140   size_t total_bytes_free = GetFreeMemory();
1141   oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1142       << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
1143   // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1144   if (total_bytes_free >= byte_count) {
1145     space::AllocSpace* space = nullptr;
1146     if (allocator_type == kAllocatorTypeNonMoving) {
1147       space = non_moving_space_;
1148     } else if (allocator_type == kAllocatorTypeRosAlloc ||
1149                allocator_type == kAllocatorTypeDlMalloc) {
1150       space = main_space_;
1151     } else if (allocator_type == kAllocatorTypeBumpPointer ||
1152                allocator_type == kAllocatorTypeTLAB) {
1153       space = bump_pointer_space_;
1154     } else if (allocator_type == kAllocatorTypeRegion ||
1155                allocator_type == kAllocatorTypeRegionTLAB) {
1156       space = region_space_;
1157     }
1158     if (space != nullptr) {
1159       space->LogFragmentationAllocFailure(oss, byte_count);
1160     }
1161   }
1162   self->ThrowOutOfMemoryError(oss.str().c_str());
1163 }
1164 
DoPendingCollectorTransition()1165 void Heap::DoPendingCollectorTransition() {
1166   CollectorType desired_collector_type = desired_collector_type_;
1167   // Launch homogeneous space compaction if it is desired.
1168   if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1169     if (!CareAboutPauseTimes()) {
1170       PerformHomogeneousSpaceCompact();
1171     } else {
1172       VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1173     }
1174   } else {
1175     TransitionCollector(desired_collector_type);
1176   }
1177 }
1178 
Trim(Thread * self)1179 void Heap::Trim(Thread* self) {
1180   if (!CareAboutPauseTimes()) {
1181     ATRACE_BEGIN("Deflating monitors");
1182     // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1183     // about pauses.
1184     Runtime* runtime = Runtime::Current();
1185     runtime->GetThreadList()->SuspendAll(__FUNCTION__);
1186     uint64_t start_time = NanoTime();
1187     size_t count = runtime->GetMonitorList()->DeflateMonitors();
1188     VLOG(heap) << "Deflating " << count << " monitors took "
1189         << PrettyDuration(NanoTime() - start_time);
1190     runtime->GetThreadList()->ResumeAll();
1191     ATRACE_END();
1192   }
1193   TrimIndirectReferenceTables(self);
1194   TrimSpaces(self);
1195 }
1196 
1197 class TrimIndirectReferenceTableClosure : public Closure {
1198  public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1199   explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1200   }
Run(Thread * thread)1201   virtual void Run(Thread* thread) OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
1202     ATRACE_BEGIN("Trimming reference table");
1203     thread->GetJniEnv()->locals.Trim();
1204     ATRACE_END();
1205     // If thread is a running mutator, then act on behalf of the trim thread.
1206     // See the code in ThreadList::RunCheckpoint.
1207     if (thread->GetState() == kRunnable) {
1208       barrier_->Pass(Thread::Current());
1209     }
1210   }
1211 
1212  private:
1213   Barrier* const barrier_;
1214 };
1215 
TrimIndirectReferenceTables(Thread * self)1216 void Heap::TrimIndirectReferenceTables(Thread* self) {
1217   ScopedObjectAccess soa(self);
1218   ATRACE_BEGIN(__FUNCTION__);
1219   JavaVMExt* vm = soa.Vm();
1220   // Trim globals indirect reference table.
1221   vm->TrimGlobals();
1222   // Trim locals indirect reference tables.
1223   Barrier barrier(0);
1224   TrimIndirectReferenceTableClosure closure(&barrier);
1225   ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
1226   size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1227   if (barrier_count != 0) {
1228     barrier.Increment(self, barrier_count);
1229   }
1230   ATRACE_END();
1231 }
1232 
TrimSpaces(Thread * self)1233 void Heap::TrimSpaces(Thread* self) {
1234   {
1235     // Need to do this before acquiring the locks since we don't want to get suspended while
1236     // holding any locks.
1237     ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
1238     // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1239     // trimming.
1240     MutexLock mu(self, *gc_complete_lock_);
1241     // Ensure there is only one GC at a time.
1242     WaitForGcToCompleteLocked(kGcCauseTrim, self);
1243     collector_type_running_ = kCollectorTypeHeapTrim;
1244   }
1245   ATRACE_BEGIN(__FUNCTION__);
1246   const uint64_t start_ns = NanoTime();
1247   // Trim the managed spaces.
1248   uint64_t total_alloc_space_allocated = 0;
1249   uint64_t total_alloc_space_size = 0;
1250   uint64_t managed_reclaimed = 0;
1251   for (const auto& space : continuous_spaces_) {
1252     if (space->IsMallocSpace()) {
1253       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1254       if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1255         // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1256         // for a long period of time.
1257         managed_reclaimed += malloc_space->Trim();
1258       }
1259       total_alloc_space_size += malloc_space->Size();
1260     }
1261   }
1262   total_alloc_space_allocated = GetBytesAllocated();
1263   if (large_object_space_ != nullptr) {
1264     total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1265   }
1266   if (bump_pointer_space_ != nullptr) {
1267     total_alloc_space_allocated -= bump_pointer_space_->Size();
1268   }
1269   if (region_space_ != nullptr) {
1270     total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1271   }
1272   const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1273       static_cast<float>(total_alloc_space_size);
1274   uint64_t gc_heap_end_ns = NanoTime();
1275   // We never move things in the native heap, so we can finish the GC at this point.
1276   FinishGC(self, collector::kGcTypeNone);
1277   size_t native_reclaimed = 0;
1278 
1279 #ifdef HAVE_ANDROID_OS
1280   // Only trim the native heap if we don't care about pauses.
1281   if (!CareAboutPauseTimes()) {
1282 #if defined(USE_DLMALLOC)
1283     // Trim the native heap.
1284     dlmalloc_trim(0);
1285     dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
1286 #elif defined(USE_JEMALLOC)
1287     // Jemalloc does it's own internal trimming.
1288 #else
1289     UNIMPLEMENTED(WARNING) << "Add trimming support";
1290 #endif
1291   }
1292 #endif  // HAVE_ANDROID_OS
1293   uint64_t end_ns = NanoTime();
1294   VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1295       << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
1296       << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
1297       << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
1298       << "%.";
1299   ATRACE_END();
1300 }
1301 
IsValidObjectAddress(const mirror::Object * obj) const1302 bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
1303   // Note: we deliberately don't take the lock here, and mustn't test anything that would require
1304   // taking the lock.
1305   if (obj == nullptr) {
1306     return true;
1307   }
1308   return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
1309 }
1310 
IsNonDiscontinuousSpaceHeapAddress(const mirror::Object * obj) const1311 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
1312   return FindContinuousSpaceFromObject(obj, true) != nullptr;
1313 }
1314 
IsValidContinuousSpaceObjectAddress(const mirror::Object * obj) const1315 bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
1316   if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
1317     return false;
1318   }
1319   for (const auto& space : continuous_spaces_) {
1320     if (space->HasAddress(obj)) {
1321       return true;
1322     }
1323   }
1324   return false;
1325 }
1326 
IsLiveObjectLocked(mirror::Object * obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1327 bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
1328                               bool search_live_stack, bool sorted) {
1329   if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
1330     return false;
1331   }
1332   if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
1333     mirror::Class* klass = obj->GetClass<kVerifyNone>();
1334     if (obj == klass) {
1335       // This case happens for java.lang.Class.
1336       return true;
1337     }
1338     return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1339   } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
1340     // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1341     // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1342     return temp_space_->Contains(obj);
1343   }
1344   if (region_space_ != nullptr && region_space_->HasAddress(obj)) {
1345     return true;
1346   }
1347   space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1348   space::DiscontinuousSpace* d_space = nullptr;
1349   if (c_space != nullptr) {
1350     if (c_space->GetLiveBitmap()->Test(obj)) {
1351       return true;
1352     }
1353   } else {
1354     d_space = FindDiscontinuousSpaceFromObject(obj, true);
1355     if (d_space != nullptr) {
1356       if (d_space->GetLiveBitmap()->Test(obj)) {
1357         return true;
1358       }
1359     }
1360   }
1361   // This is covering the allocation/live stack swapping that is done without mutators suspended.
1362   for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1363     if (i > 0) {
1364       NanoSleep(MsToNs(10));
1365     }
1366     if (search_allocation_stack) {
1367       if (sorted) {
1368         if (allocation_stack_->ContainsSorted(obj)) {
1369           return true;
1370         }
1371       } else if (allocation_stack_->Contains(obj)) {
1372         return true;
1373       }
1374     }
1375 
1376     if (search_live_stack) {
1377       if (sorted) {
1378         if (live_stack_->ContainsSorted(obj)) {
1379           return true;
1380         }
1381       } else if (live_stack_->Contains(obj)) {
1382         return true;
1383       }
1384     }
1385   }
1386   // We need to check the bitmaps again since there is a race where we mark something as live and
1387   // then clear the stack containing it.
1388   if (c_space != nullptr) {
1389     if (c_space->GetLiveBitmap()->Test(obj)) {
1390       return true;
1391     }
1392   } else {
1393     d_space = FindDiscontinuousSpaceFromObject(obj, true);
1394     if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
1395       return true;
1396     }
1397   }
1398   return false;
1399 }
1400 
DumpSpaces() const1401 std::string Heap::DumpSpaces() const {
1402   std::ostringstream oss;
1403   DumpSpaces(oss);
1404   return oss.str();
1405 }
1406 
DumpSpaces(std::ostream & stream) const1407 void Heap::DumpSpaces(std::ostream& stream) const {
1408   for (const auto& space : continuous_spaces_) {
1409     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1410     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1411     stream << space << " " << *space << "\n";
1412     if (live_bitmap != nullptr) {
1413       stream << live_bitmap << " " << *live_bitmap << "\n";
1414     }
1415     if (mark_bitmap != nullptr) {
1416       stream << mark_bitmap << " " << *mark_bitmap << "\n";
1417     }
1418   }
1419   for (const auto& space : discontinuous_spaces_) {
1420     stream << space << " " << *space << "\n";
1421   }
1422 }
1423 
VerifyObjectBody(mirror::Object * obj)1424 void Heap::VerifyObjectBody(mirror::Object* obj) {
1425   if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1426     return;
1427   }
1428 
1429   // Ignore early dawn of the universe verifications.
1430   if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
1431     return;
1432   }
1433   CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
1434   mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1435   CHECK(c != nullptr) << "Null class in object " << obj;
1436   CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
1437   CHECK(VerifyClassClass(c));
1438 
1439   if (verify_object_mode_ > kVerifyObjectModeFast) {
1440     // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1441     CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1442   }
1443 }
1444 
VerificationCallback(mirror::Object * obj,void * arg)1445 void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
1446   reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
1447 }
1448 
VerifyHeap()1449 void Heap::VerifyHeap() {
1450   ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1451   GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
1452 }
1453 
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1454 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1455   // Use signed comparison since freed bytes can be negative when background compaction foreground
1456   // transitions occurs. This is caused by the moving objects from a bump pointer space to a
1457   // free list backed space typically increasing memory footprint due to padding and binning.
1458   DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
1459   // Note: This relies on 2s complement for handling negative freed_bytes.
1460   num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
1461   if (Runtime::Current()->HasStatsEnabled()) {
1462     RuntimeStats* thread_stats = Thread::Current()->GetStats();
1463     thread_stats->freed_objects += freed_objects;
1464     thread_stats->freed_bytes += freed_bytes;
1465     // TODO: Do this concurrently.
1466     RuntimeStats* global_stats = Runtime::Current()->GetStats();
1467     global_stats->freed_objects += freed_objects;
1468     global_stats->freed_bytes += freed_bytes;
1469   }
1470 }
1471 
RecordFreeRevoke()1472 void Heap::RecordFreeRevoke() {
1473   // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1474   // the ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1475   // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1476   // all the way to zero exactly as the remainder will be subtracted at the next GC.
1477   size_t bytes_freed = num_bytes_freed_revoke_.LoadSequentiallyConsistent();
1478   CHECK_GE(num_bytes_freed_revoke_.FetchAndSubSequentiallyConsistent(bytes_freed),
1479            bytes_freed) << "num_bytes_freed_revoke_ underflow";
1480   CHECK_GE(num_bytes_allocated_.FetchAndSubSequentiallyConsistent(bytes_freed),
1481            bytes_freed) << "num_bytes_allocated_ underflow";
1482   GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1483 }
1484 
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1485 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1486   for (const auto& space : continuous_spaces_) {
1487     if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1488       if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1489         return space->AsContinuousSpace()->AsRosAllocSpace();
1490       }
1491     }
1492   }
1493   return nullptr;
1494 }
1495 
AllocateInternalWithGc(Thread * self,AllocatorType allocator,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,mirror::Class ** klass)1496 mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
1497                                              size_t alloc_size, size_t* bytes_allocated,
1498                                              size_t* usable_size,
1499                                              size_t* bytes_tl_bulk_allocated,
1500                                              mirror::Class** klass) {
1501   bool was_default_allocator = allocator == GetCurrentAllocator();
1502   // Make sure there is no pending exception since we may need to throw an OOME.
1503   self->AssertNoPendingException();
1504   DCHECK(klass != nullptr);
1505   StackHandleScope<1> hs(self);
1506   HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
1507   klass = nullptr;  // Invalidate for safety.
1508   // The allocation failed. If the GC is running, block until it completes, and then retry the
1509   // allocation.
1510   collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
1511   if (last_gc != collector::kGcTypeNone) {
1512     // If we were the default allocator but the allocator changed while we were suspended,
1513     // abort the allocation.
1514     if (was_default_allocator && allocator != GetCurrentAllocator()) {
1515       return nullptr;
1516     }
1517     // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1518     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1519                                                      usable_size, bytes_tl_bulk_allocated);
1520     if (ptr != nullptr) {
1521       return ptr;
1522     }
1523   }
1524 
1525   collector::GcType tried_type = next_gc_type_;
1526   const bool gc_ran =
1527       CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1528   if (was_default_allocator && allocator != GetCurrentAllocator()) {
1529     return nullptr;
1530   }
1531   if (gc_ran) {
1532     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1533                                                      usable_size, bytes_tl_bulk_allocated);
1534     if (ptr != nullptr) {
1535       return ptr;
1536     }
1537   }
1538 
1539   // Loop through our different Gc types and try to Gc until we get enough free memory.
1540   for (collector::GcType gc_type : gc_plan_) {
1541     if (gc_type == tried_type) {
1542       continue;
1543     }
1544     // Attempt to run the collector, if we succeed, re-try the allocation.
1545     const bool plan_gc_ran =
1546         CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
1547     if (was_default_allocator && allocator != GetCurrentAllocator()) {
1548       return nullptr;
1549     }
1550     if (plan_gc_ran) {
1551       // Did we free sufficient memory for the allocation to succeed?
1552       mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1553                                                        usable_size, bytes_tl_bulk_allocated);
1554       if (ptr != nullptr) {
1555         return ptr;
1556       }
1557     }
1558   }
1559   // Allocations have failed after GCs;  this is an exceptional state.
1560   // Try harder, growing the heap if necessary.
1561   mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1562                                                   usable_size, bytes_tl_bulk_allocated);
1563   if (ptr != nullptr) {
1564     return ptr;
1565   }
1566   // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
1567   // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
1568   // VM spec requires that all SoftReferences have been collected and cleared before throwing
1569   // OOME.
1570   VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
1571            << " allocation";
1572   // TODO: Run finalization, but this may cause more allocations to occur.
1573   // We don't need a WaitForGcToComplete here either.
1574   DCHECK(!gc_plan_.empty());
1575   CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
1576   if (was_default_allocator && allocator != GetCurrentAllocator()) {
1577     return nullptr;
1578   }
1579   ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size,
1580                                   bytes_tl_bulk_allocated);
1581   if (ptr == nullptr) {
1582     const uint64_t current_time = NanoTime();
1583     switch (allocator) {
1584       case kAllocatorTypeRosAlloc:
1585         // Fall-through.
1586       case kAllocatorTypeDlMalloc: {
1587         if (use_homogeneous_space_compaction_for_oom_ &&
1588             current_time - last_time_homogeneous_space_compaction_by_oom_ >
1589             min_interval_homogeneous_space_compaction_by_oom_) {
1590           last_time_homogeneous_space_compaction_by_oom_ = current_time;
1591           HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
1592           switch (result) {
1593             case HomogeneousSpaceCompactResult::kSuccess:
1594               // If the allocation succeeded, we delayed an oom.
1595               ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1596                                               usable_size, bytes_tl_bulk_allocated);
1597               if (ptr != nullptr) {
1598                 count_delayed_oom_++;
1599               }
1600               break;
1601             case HomogeneousSpaceCompactResult::kErrorReject:
1602               // Reject due to disabled moving GC.
1603               break;
1604             case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
1605               // Throw OOM by default.
1606               break;
1607             default: {
1608               UNIMPLEMENTED(FATAL) << "homogeneous space compaction result: "
1609                   << static_cast<size_t>(result);
1610               UNREACHABLE();
1611             }
1612           }
1613           // Always print that we ran homogeneous space compation since this can cause jank.
1614           VLOG(heap) << "Ran heap homogeneous space compaction, "
1615                     << " requested defragmentation "
1616                     << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1617                     << " performed defragmentation "
1618                     << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1619                     << " ignored homogeneous space compaction "
1620                     << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
1621                     << " delayed count = "
1622                     << count_delayed_oom_.LoadSequentiallyConsistent();
1623         }
1624         break;
1625       }
1626       case kAllocatorTypeNonMoving: {
1627         // Try to transition the heap if the allocation failure was due to the space being full.
1628         if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
1629           // If we aren't out of memory then the OOM was probably from the non moving space being
1630           // full. Attempt to disable compaction and turn the main space into a non moving space.
1631           DisableMovingGc();
1632           // If we are still a moving GC then something must have caused the transition to fail.
1633           if (IsMovingGc(collector_type_)) {
1634             MutexLock mu(self, *gc_complete_lock_);
1635             // If we couldn't disable moving GC, just throw OOME and return null.
1636             LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
1637                          << disable_moving_gc_count_;
1638           } else {
1639             LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
1640             ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
1641                                             usable_size, bytes_tl_bulk_allocated);
1642           }
1643         }
1644         break;
1645       }
1646       default: {
1647         // Do nothing for others allocators.
1648       }
1649     }
1650   }
1651   // If the allocation hasn't succeeded by this point, throw an OOM error.
1652   if (ptr == nullptr) {
1653     ThrowOutOfMemoryError(self, alloc_size, allocator);
1654   }
1655   return ptr;
1656 }
1657 
SetTargetHeapUtilization(float target)1658 void Heap::SetTargetHeapUtilization(float target) {
1659   DCHECK_GT(target, 0.0f);  // asserted in Java code
1660   DCHECK_LT(target, 1.0f);
1661   target_utilization_ = target;
1662 }
1663 
GetObjectsAllocated() const1664 size_t Heap::GetObjectsAllocated() const {
1665   Thread* self = Thread::Current();
1666   ScopedThreadStateChange tsc(self, kWaitingForGetObjectsAllocated);
1667   auto* tl = Runtime::Current()->GetThreadList();
1668   // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
1669   tl->SuspendAll(__FUNCTION__);
1670   size_t total = 0;
1671   {
1672     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1673     for (space::AllocSpace* space : alloc_spaces_) {
1674       total += space->GetObjectsAllocated();
1675     }
1676   }
1677   tl->ResumeAll();
1678   return total;
1679 }
1680 
GetObjectsAllocatedEver() const1681 uint64_t Heap::GetObjectsAllocatedEver() const {
1682   uint64_t total = GetObjectsFreedEver();
1683   // If we are detached, we can't use GetObjectsAllocated since we can't change thread states.
1684   if (Thread::Current() != nullptr) {
1685     total += GetObjectsAllocated();
1686   }
1687   return total;
1688 }
1689 
GetBytesAllocatedEver() const1690 uint64_t Heap::GetBytesAllocatedEver() const {
1691   return GetBytesFreedEver() + GetBytesAllocated();
1692 }
1693 
1694 class InstanceCounter {
1695  public:
InstanceCounter(const std::vector<mirror::Class * > & classes,bool use_is_assignable_from,uint64_t * counts)1696   InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
1697       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1698       : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
1699   }
Callback(mirror::Object * obj,void * arg)1700   static void Callback(mirror::Object* obj, void* arg)
1701       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1702     InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
1703     mirror::Class* instance_class = obj->GetClass();
1704     CHECK(instance_class != nullptr);
1705     for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
1706       if (instance_counter->use_is_assignable_from_) {
1707         if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
1708           ++instance_counter->counts_[i];
1709         }
1710       } else if (instance_class == instance_counter->classes_[i]) {
1711         ++instance_counter->counts_[i];
1712       }
1713     }
1714   }
1715 
1716  private:
1717   const std::vector<mirror::Class*>& classes_;
1718   bool use_is_assignable_from_;
1719   uint64_t* const counts_;
1720   DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
1721 };
1722 
CountInstances(const std::vector<mirror::Class * > & classes,bool use_is_assignable_from,uint64_t * counts)1723 void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
1724                           uint64_t* counts) {
1725   InstanceCounter counter(classes, use_is_assignable_from, counts);
1726   VisitObjects(InstanceCounter::Callback, &counter);
1727 }
1728 
1729 class InstanceCollector {
1730  public:
InstanceCollector(mirror::Class * c,int32_t max_count,std::vector<mirror::Object * > & instances)1731   InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
1732       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1733       : class_(c), max_count_(max_count), instances_(instances) {
1734   }
Callback(mirror::Object * obj,void * arg)1735   static void Callback(mirror::Object* obj, void* arg)
1736       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1737     DCHECK(arg != nullptr);
1738     InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
1739     if (obj->GetClass() == instance_collector->class_) {
1740       if (instance_collector->max_count_ == 0 ||
1741           instance_collector->instances_.size() < instance_collector->max_count_) {
1742         instance_collector->instances_.push_back(obj);
1743       }
1744     }
1745   }
1746 
1747  private:
1748   const mirror::Class* const class_;
1749   const uint32_t max_count_;
1750   std::vector<mirror::Object*>& instances_;
1751   DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
1752 };
1753 
GetInstances(mirror::Class * c,int32_t max_count,std::vector<mirror::Object * > & instances)1754 void Heap::GetInstances(mirror::Class* c, int32_t max_count,
1755                         std::vector<mirror::Object*>& instances) {
1756   InstanceCollector collector(c, max_count, instances);
1757   VisitObjects(&InstanceCollector::Callback, &collector);
1758 }
1759 
1760 class ReferringObjectsFinder {
1761  public:
ReferringObjectsFinder(mirror::Object * object,int32_t max_count,std::vector<mirror::Object * > & referring_objects)1762   ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
1763                          std::vector<mirror::Object*>& referring_objects)
1764       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1765       : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
1766   }
1767 
Callback(mirror::Object * obj,void * arg)1768   static void Callback(mirror::Object* obj, void* arg)
1769       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
1770     reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
1771   }
1772 
1773   // For bitmap Visit.
1774   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
1775   // annotalysis on visitors.
operator ()(mirror::Object * o) const1776   void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
1777     o->VisitReferences<true>(*this, VoidFunctor());
1778   }
1779 
1780   // For Object::VisitReferences.
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1781   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1782       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1783     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
1784     if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
1785       referring_objects_.push_back(obj);
1786     }
1787   }
1788 
1789  private:
1790   const mirror::Object* const object_;
1791   const uint32_t max_count_;
1792   std::vector<mirror::Object*>& referring_objects_;
1793   DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
1794 };
1795 
GetReferringObjects(mirror::Object * o,int32_t max_count,std::vector<mirror::Object * > & referring_objects)1796 void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
1797                                std::vector<mirror::Object*>& referring_objects) {
1798   ReferringObjectsFinder finder(o, max_count, referring_objects);
1799   VisitObjects(&ReferringObjectsFinder::Callback, &finder);
1800 }
1801 
CollectGarbage(bool clear_soft_references)1802 void Heap::CollectGarbage(bool clear_soft_references) {
1803   // Even if we waited for a GC we still need to do another GC since weaks allocated during the
1804   // last GC will not have necessarily been cleared.
1805   CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
1806 }
1807 
PerformHomogeneousSpaceCompact()1808 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
1809   Thread* self = Thread::Current();
1810   // Inc requested homogeneous space compaction.
1811   count_requested_homogeneous_space_compaction_++;
1812   // Store performed homogeneous space compaction at a new request arrival.
1813   ThreadList* tl = Runtime::Current()->GetThreadList();
1814   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1815   Locks::mutator_lock_->AssertNotHeld(self);
1816   {
1817     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1818     MutexLock mu(self, *gc_complete_lock_);
1819     // Ensure there is only one GC at a time.
1820     WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
1821     // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
1822     // is non zero.
1823     // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
1824     // exit.
1825     if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
1826         !main_space_->CanMoveObjects()) {
1827       return HomogeneousSpaceCompactResult::kErrorReject;
1828     }
1829     collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
1830   }
1831   if (Runtime::Current()->IsShuttingDown(self)) {
1832     // Don't allow heap transitions to happen if the runtime is shutting down since these can
1833     // cause objects to get finalized.
1834     FinishGC(self, collector::kGcTypeNone);
1835     return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
1836   }
1837   // Suspend all threads.
1838   tl->SuspendAll(__FUNCTION__);
1839   uint64_t start_time = NanoTime();
1840   // Launch compaction.
1841   space::MallocSpace* to_space = main_space_backup_.release();
1842   space::MallocSpace* from_space = main_space_;
1843   to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
1844   const uint64_t space_size_before_compaction = from_space->Size();
1845   AddSpace(to_space);
1846   // Make sure that we will have enough room to copy.
1847   CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
1848   collector::GarbageCollector* collector = Compact(to_space, from_space,
1849                                                    kGcCauseHomogeneousSpaceCompact);
1850   const uint64_t space_size_after_compaction = to_space->Size();
1851   main_space_ = to_space;
1852   main_space_backup_.reset(from_space);
1853   RemoveSpace(from_space);
1854   SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
1855   // Update performed homogeneous space compaction count.
1856   count_performed_homogeneous_space_compaction_++;
1857   // Print statics log and resume all threads.
1858   uint64_t duration = NanoTime() - start_time;
1859   VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
1860              << PrettySize(space_size_before_compaction) << " -> "
1861              << PrettySize(space_size_after_compaction) << " compact-ratio: "
1862              << std::fixed << static_cast<double>(space_size_after_compaction) /
1863              static_cast<double>(space_size_before_compaction);
1864   tl->ResumeAll();
1865   // Finish GC.
1866   reference_processor_.EnqueueClearedReferences(self);
1867   GrowForUtilization(semi_space_collector_);
1868   LogGC(kGcCauseHomogeneousSpaceCompact, collector);
1869   FinishGC(self, collector::kGcTypeFull);
1870   return HomogeneousSpaceCompactResult::kSuccess;
1871 }
1872 
TransitionCollector(CollectorType collector_type)1873 void Heap::TransitionCollector(CollectorType collector_type) {
1874   if (collector_type == collector_type_) {
1875     return;
1876   }
1877   VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
1878              << " -> " << static_cast<int>(collector_type);
1879   uint64_t start_time = NanoTime();
1880   uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
1881   Runtime* const runtime = Runtime::Current();
1882   ThreadList* const tl = runtime->GetThreadList();
1883   Thread* const self = Thread::Current();
1884   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
1885   Locks::mutator_lock_->AssertNotHeld(self);
1886   // Busy wait until we can GC (StartGC can fail if we have a non-zero
1887   // compacting_gc_disable_count_, this should rarely occurs).
1888   for (;;) {
1889     {
1890       ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
1891       MutexLock mu(self, *gc_complete_lock_);
1892       // Ensure there is only one GC at a time.
1893       WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
1894       // Currently we only need a heap transition if we switch from a moving collector to a
1895       // non-moving one, or visa versa.
1896       const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
1897       // If someone else beat us to it and changed the collector before we could, exit.
1898       // This is safe to do before the suspend all since we set the collector_type_running_ before
1899       // we exit the loop. If another thread attempts to do the heap transition before we exit,
1900       // then it would get blocked on WaitForGcToCompleteLocked.
1901       if (collector_type == collector_type_) {
1902         return;
1903       }
1904       // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
1905       if (!copying_transition || disable_moving_gc_count_ == 0) {
1906         // TODO: Not hard code in semi-space collector?
1907         collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
1908         break;
1909       }
1910     }
1911     usleep(1000);
1912   }
1913   if (runtime->IsShuttingDown(self)) {
1914     // Don't allow heap transitions to happen if the runtime is shutting down since these can
1915     // cause objects to get finalized.
1916     FinishGC(self, collector::kGcTypeNone);
1917     return;
1918   }
1919   collector::GarbageCollector* collector = nullptr;
1920   tl->SuspendAll(__FUNCTION__);
1921   switch (collector_type) {
1922     case kCollectorTypeSS: {
1923       if (!IsMovingGc(collector_type_)) {
1924         // Create the bump pointer space from the backup space.
1925         CHECK(main_space_backup_ != nullptr);
1926         std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
1927         // We are transitioning from non moving GC -> moving GC, since we copied from the bump
1928         // pointer space last transition it will be protected.
1929         CHECK(mem_map != nullptr);
1930         mem_map->Protect(PROT_READ | PROT_WRITE);
1931         bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
1932                                                                         mem_map.release());
1933         AddSpace(bump_pointer_space_);
1934         collector = Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
1935         // Use the now empty main space mem map for the bump pointer temp space.
1936         mem_map.reset(main_space_->ReleaseMemMap());
1937         // Unset the pointers just in case.
1938         if (dlmalloc_space_ == main_space_) {
1939           dlmalloc_space_ = nullptr;
1940         } else if (rosalloc_space_ == main_space_) {
1941           rosalloc_space_ = nullptr;
1942         }
1943         // Remove the main space so that we don't try to trim it, this doens't work for debug
1944         // builds since RosAlloc attempts to read the magic number from a protected page.
1945         RemoveSpace(main_space_);
1946         RemoveRememberedSet(main_space_);
1947         delete main_space_;  // Delete the space since it has been removed.
1948         main_space_ = nullptr;
1949         RemoveRememberedSet(main_space_backup_.get());
1950         main_space_backup_.reset(nullptr);  // Deletes the space.
1951         temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
1952                                                                 mem_map.release());
1953         AddSpace(temp_space_);
1954       }
1955       break;
1956     }
1957     case kCollectorTypeMS:
1958       // Fall through.
1959     case kCollectorTypeCMS: {
1960       if (IsMovingGc(collector_type_)) {
1961         CHECK(temp_space_ != nullptr);
1962         std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
1963         RemoveSpace(temp_space_);
1964         temp_space_ = nullptr;
1965         mem_map->Protect(PROT_READ | PROT_WRITE);
1966         CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize,
1967                               std::min(mem_map->Size(), growth_limit_), mem_map->Size());
1968         mem_map.release();
1969         // Compact to the main space from the bump pointer space, don't need to swap semispaces.
1970         AddSpace(main_space_);
1971         collector = Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
1972         mem_map.reset(bump_pointer_space_->ReleaseMemMap());
1973         RemoveSpace(bump_pointer_space_);
1974         bump_pointer_space_ = nullptr;
1975         const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
1976         // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
1977         if (kIsDebugBuild && kUseRosAlloc) {
1978           mem_map->Protect(PROT_READ | PROT_WRITE);
1979         }
1980         main_space_backup_.reset(CreateMallocSpaceFromMemMap(
1981             mem_map.get(), kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
1982             mem_map->Size(), name, true));
1983         if (kIsDebugBuild && kUseRosAlloc) {
1984           mem_map->Protect(PROT_NONE);
1985         }
1986         mem_map.release();
1987       }
1988       break;
1989     }
1990     default: {
1991       LOG(FATAL) << "Attempted to transition to invalid collector type "
1992                  << static_cast<size_t>(collector_type);
1993       break;
1994     }
1995   }
1996   ChangeCollector(collector_type);
1997   tl->ResumeAll();
1998   // Can't call into java code with all threads suspended.
1999   reference_processor_.EnqueueClearedReferences(self);
2000   uint64_t duration = NanoTime() - start_time;
2001   GrowForUtilization(semi_space_collector_);
2002   DCHECK(collector != nullptr);
2003   LogGC(kGcCauseCollectorTransition, collector);
2004   FinishGC(self, collector::kGcTypeFull);
2005   int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
2006   int32_t delta_allocated = before_allocated - after_allocated;
2007   std::string saved_str;
2008   if (delta_allocated >= 0) {
2009     saved_str = " saved at least " + PrettySize(delta_allocated);
2010   } else {
2011     saved_str = " expanded " + PrettySize(-delta_allocated);
2012   }
2013   VLOG(heap) << "Heap transition to " << process_state_ << " took "
2014       << PrettyDuration(duration) << saved_str;
2015 }
2016 
ChangeCollector(CollectorType collector_type)2017 void Heap::ChangeCollector(CollectorType collector_type) {
2018   // TODO: Only do this with all mutators suspended to avoid races.
2019   if (collector_type != collector_type_) {
2020     if (collector_type == kCollectorTypeMC) {
2021       // Don't allow mark compact unless support is compiled in.
2022       CHECK(kMarkCompactSupport);
2023     }
2024     collector_type_ = collector_type;
2025     gc_plan_.clear();
2026     switch (collector_type_) {
2027       case kCollectorTypeCC: {
2028         gc_plan_.push_back(collector::kGcTypeFull);
2029         if (use_tlab_) {
2030           ChangeAllocator(kAllocatorTypeRegionTLAB);
2031         } else {
2032           ChangeAllocator(kAllocatorTypeRegion);
2033         }
2034         break;
2035       }
2036       case kCollectorTypeMC:  // Fall-through.
2037       case kCollectorTypeSS:  // Fall-through.
2038       case kCollectorTypeGSS: {
2039         gc_plan_.push_back(collector::kGcTypeFull);
2040         if (use_tlab_) {
2041           ChangeAllocator(kAllocatorTypeTLAB);
2042         } else {
2043           ChangeAllocator(kAllocatorTypeBumpPointer);
2044         }
2045         break;
2046       }
2047       case kCollectorTypeMS: {
2048         gc_plan_.push_back(collector::kGcTypeSticky);
2049         gc_plan_.push_back(collector::kGcTypePartial);
2050         gc_plan_.push_back(collector::kGcTypeFull);
2051         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2052         break;
2053       }
2054       case kCollectorTypeCMS: {
2055         gc_plan_.push_back(collector::kGcTypeSticky);
2056         gc_plan_.push_back(collector::kGcTypePartial);
2057         gc_plan_.push_back(collector::kGcTypeFull);
2058         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2059         break;
2060       }
2061       default: {
2062         UNIMPLEMENTED(FATAL);
2063         UNREACHABLE();
2064       }
2065     }
2066     if (IsGcConcurrent()) {
2067       concurrent_start_bytes_ =
2068           std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
2069     } else {
2070       concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2071     }
2072   }
2073 }
2074 
2075 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2076 class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
2077  public:
ZygoteCompactingCollector(gc::Heap * heap)2078   explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
2079       bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
2080   }
2081 
BuildBins(space::ContinuousSpace * space)2082   void BuildBins(space::ContinuousSpace* space) {
2083     bin_live_bitmap_ = space->GetLiveBitmap();
2084     bin_mark_bitmap_ = space->GetMarkBitmap();
2085     BinContext context;
2086     context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
2087     context.collector_ = this;
2088     WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2089     // Note: This requires traversing the space in increasing order of object addresses.
2090     bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
2091     // Add the last bin which spans after the last object to the end of the space.
2092     AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
2093   }
2094 
2095  private:
2096   struct BinContext {
2097     uintptr_t prev_;  // The end of the previous object.
2098     ZygoteCompactingCollector* collector_;
2099   };
2100   // Maps from bin sizes to locations.
2101   std::multimap<size_t, uintptr_t> bins_;
2102   // Live bitmap of the space which contains the bins.
2103   accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2104   // Mark bitmap of the space which contains the bins.
2105   accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2106 
Callback(mirror::Object * obj,void * arg)2107   static void Callback(mirror::Object* obj, void* arg)
2108       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2109     DCHECK(arg != nullptr);
2110     BinContext* context = reinterpret_cast<BinContext*>(arg);
2111     ZygoteCompactingCollector* collector = context->collector_;
2112     uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2113     size_t bin_size = object_addr - context->prev_;
2114     // Add the bin consisting of the end of the previous object to the start of the current object.
2115     collector->AddBin(bin_size, context->prev_);
2116     context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
2117   }
2118 
AddBin(size_t size,uintptr_t position)2119   void AddBin(size_t size, uintptr_t position) {
2120     if (size != 0) {
2121       bins_.insert(std::make_pair(size, position));
2122     }
2123   }
2124 
ShouldSweepSpace(space::ContinuousSpace * space) const2125   virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
2126     // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2127     // allocator.
2128     UNUSED(space);
2129     return false;
2130   }
2131 
MarkNonForwardedObject(mirror::Object * obj)2132   virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
2133       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2134     size_t obj_size = obj->SizeOf();
2135     size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2136     mirror::Object* forward_address;
2137     // Find the smallest bin which we can move obj in.
2138     auto it = bins_.lower_bound(alloc_size);
2139     if (it == bins_.end()) {
2140       // No available space in the bins, place it in the target space instead (grows the zygote
2141       // space).
2142       size_t bytes_allocated, dummy;
2143       forward_address = to_space_->Alloc(self_, alloc_size, &bytes_allocated, nullptr, &dummy);
2144       if (to_space_live_bitmap_ != nullptr) {
2145         to_space_live_bitmap_->Set(forward_address);
2146       } else {
2147         GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2148         GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2149       }
2150     } else {
2151       size_t size = it->first;
2152       uintptr_t pos = it->second;
2153       bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
2154       forward_address = reinterpret_cast<mirror::Object*>(pos);
2155       // Set the live and mark bits so that sweeping system weaks works properly.
2156       bin_live_bitmap_->Set(forward_address);
2157       bin_mark_bitmap_->Set(forward_address);
2158       DCHECK_GE(size, alloc_size);
2159       // Add a new bin with the remaining space.
2160       AddBin(size - alloc_size, pos + alloc_size);
2161     }
2162     // Copy the object over to its new location. Don't use alloc_size to avoid valgrind error.
2163     memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2164     if (kUseBakerOrBrooksReadBarrier) {
2165       obj->AssertReadBarrierPointer();
2166       if (kUseBrooksReadBarrier) {
2167         DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
2168         forward_address->SetReadBarrierPointer(forward_address);
2169       }
2170       forward_address->AssertReadBarrierPointer();
2171     }
2172     return forward_address;
2173   }
2174 };
2175 
UnBindBitmaps()2176 void Heap::UnBindBitmaps() {
2177   TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2178   for (const auto& space : GetContinuousSpaces()) {
2179     if (space->IsContinuousMemMapAllocSpace()) {
2180       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2181       if (alloc_space->HasBoundBitmaps()) {
2182         alloc_space->UnBindBitmaps();
2183       }
2184     }
2185   }
2186 }
2187 
PreZygoteFork()2188 void Heap::PreZygoteFork() {
2189   if (!HasZygoteSpace()) {
2190     // We still want to GC in case there is some unreachable non moving objects that could cause a
2191     // suboptimal bin packing when we compact the zygote space.
2192     CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
2193   }
2194   Thread* self = Thread::Current();
2195   MutexLock mu(self, zygote_creation_lock_);
2196   // Try to see if we have any Zygote spaces.
2197   if (HasZygoteSpace()) {
2198     return;
2199   }
2200   Runtime::Current()->GetInternTable()->SwapPostZygoteWithPreZygote();
2201   Runtime::Current()->GetClassLinker()->MoveClassTableToPreZygote();
2202   VLOG(heap) << "Starting PreZygoteFork";
2203   // Trim the pages at the end of the non moving space.
2204   non_moving_space_->Trim();
2205   // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2206   // there.
2207   non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2208   const bool same_space = non_moving_space_ == main_space_;
2209   if (kCompactZygote) {
2210     // Temporarily disable rosalloc verification because the zygote
2211     // compaction will mess up the rosalloc internal metadata.
2212     ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2213     ZygoteCompactingCollector zygote_collector(this);
2214     zygote_collector.BuildBins(non_moving_space_);
2215     // Create a new bump pointer space which we will compact into.
2216     space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2217                                          non_moving_space_->Limit());
2218     // Compact the bump pointer space to a new zygote bump pointer space.
2219     bool reset_main_space = false;
2220     if (IsMovingGc(collector_type_)) {
2221       if (collector_type_ == kCollectorTypeCC) {
2222         zygote_collector.SetFromSpace(region_space_);
2223       } else {
2224         zygote_collector.SetFromSpace(bump_pointer_space_);
2225       }
2226     } else {
2227       CHECK(main_space_ != nullptr);
2228       CHECK_NE(main_space_, non_moving_space_)
2229           << "Does not make sense to compact within the same space";
2230       // Copy from the main space.
2231       zygote_collector.SetFromSpace(main_space_);
2232       reset_main_space = true;
2233     }
2234     zygote_collector.SetToSpace(&target_space);
2235     zygote_collector.SetSwapSemiSpaces(false);
2236     zygote_collector.Run(kGcCauseCollectorTransition, false);
2237     if (reset_main_space) {
2238       main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2239       madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2240       MemMap* mem_map = main_space_->ReleaseMemMap();
2241       RemoveSpace(main_space_);
2242       space::Space* old_main_space = main_space_;
2243       CreateMainMallocSpace(mem_map, kDefaultInitialSize, std::min(mem_map->Size(), growth_limit_),
2244                             mem_map->Size());
2245       delete old_main_space;
2246       AddSpace(main_space_);
2247     } else {
2248       if (collector_type_ == kCollectorTypeCC) {
2249         region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2250       } else {
2251         bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2252       }
2253     }
2254     if (temp_space_ != nullptr) {
2255       CHECK(temp_space_->IsEmpty());
2256     }
2257     total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2258     total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2259     // Update the end and write out image.
2260     non_moving_space_->SetEnd(target_space.End());
2261     non_moving_space_->SetLimit(target_space.Limit());
2262     VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2263   }
2264   // Change the collector to the post zygote one.
2265   ChangeCollector(foreground_collector_type_);
2266   // Save the old space so that we can remove it after we complete creating the zygote space.
2267   space::MallocSpace* old_alloc_space = non_moving_space_;
2268   // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2269   // the remaining available space.
2270   // Remove the old space before creating the zygote space since creating the zygote space sets
2271   // the old alloc space's bitmaps to null.
2272   RemoveSpace(old_alloc_space);
2273   if (collector::SemiSpace::kUseRememberedSet) {
2274     // Sanity bound check.
2275     FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2276     // Remove the remembered set for the now zygote space (the old
2277     // non-moving space). Note now that we have compacted objects into
2278     // the zygote space, the data in the remembered set is no longer
2279     // needed. The zygote space will instead have a mod-union table
2280     // from this point on.
2281     RemoveRememberedSet(old_alloc_space);
2282   }
2283   // Remaining space becomes the new non moving space.
2284   zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2285                                                      &non_moving_space_);
2286   CHECK(!non_moving_space_->CanMoveObjects());
2287   if (same_space) {
2288     main_space_ = non_moving_space_;
2289     SetSpaceAsDefault(main_space_);
2290   }
2291   delete old_alloc_space;
2292   CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2293   AddSpace(zygote_space_);
2294   non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2295   AddSpace(non_moving_space_);
2296   // Create the zygote space mod union table.
2297   accounting::ModUnionTable* mod_union_table =
2298       new accounting::ModUnionTableCardCache("zygote space mod-union table", this,
2299                                              zygote_space_);
2300   CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2301   // Set all the cards in the mod-union table since we don't know which objects contain references
2302   // to large objects.
2303   mod_union_table->SetCards();
2304   AddModUnionTable(mod_union_table);
2305   large_object_space_->SetAllLargeObjectsAsZygoteObjects(self);
2306   if (collector::SemiSpace::kUseRememberedSet) {
2307     // Add a new remembered set for the post-zygote non-moving space.
2308     accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2309         new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2310                                       non_moving_space_);
2311     CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2312         << "Failed to create post-zygote non-moving space remembered set";
2313     AddRememberedSet(post_zygote_non_moving_space_rem_set);
2314   }
2315 }
2316 
FlushAllocStack()2317 void Heap::FlushAllocStack() {
2318   MarkAllocStackAsLive(allocation_stack_.get());
2319   allocation_stack_->Reset();
2320 }
2321 
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2322 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2323                           accounting::ContinuousSpaceBitmap* bitmap2,
2324                           accounting::LargeObjectBitmap* large_objects,
2325                           accounting::ObjectStack* stack) {
2326   DCHECK(bitmap1 != nullptr);
2327   DCHECK(bitmap2 != nullptr);
2328   const auto* limit = stack->End();
2329   for (auto* it = stack->Begin(); it != limit; ++it) {
2330     const mirror::Object* obj = it->AsMirrorPtr();
2331     if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2332       if (bitmap1->HasAddress(obj)) {
2333         bitmap1->Set(obj);
2334       } else if (bitmap2->HasAddress(obj)) {
2335         bitmap2->Set(obj);
2336       } else {
2337         DCHECK(large_objects != nullptr);
2338         large_objects->Set(obj);
2339       }
2340     }
2341   }
2342 }
2343 
SwapSemiSpaces()2344 void Heap::SwapSemiSpaces() {
2345   CHECK(bump_pointer_space_ != nullptr);
2346   CHECK(temp_space_ != nullptr);
2347   std::swap(bump_pointer_space_, temp_space_);
2348 }
2349 
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2350 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2351                                            space::ContinuousMemMapAllocSpace* source_space,
2352                                            GcCause gc_cause) {
2353   CHECK(kMovingCollector);
2354   if (target_space != source_space) {
2355     // Don't swap spaces since this isn't a typical semi space collection.
2356     semi_space_collector_->SetSwapSemiSpaces(false);
2357     semi_space_collector_->SetFromSpace(source_space);
2358     semi_space_collector_->SetToSpace(target_space);
2359     semi_space_collector_->Run(gc_cause, false);
2360     return semi_space_collector_;
2361   } else {
2362     CHECK(target_space->IsBumpPointerSpace())
2363         << "In-place compaction is only supported for bump pointer spaces";
2364     mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
2365     mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
2366     return mark_compact_collector_;
2367   }
2368 }
2369 
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references)2370 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
2371                                                bool clear_soft_references) {
2372   Thread* self = Thread::Current();
2373   Runtime* runtime = Runtime::Current();
2374   // If the heap can't run the GC, silently fail and return that no GC was run.
2375   switch (gc_type) {
2376     case collector::kGcTypePartial: {
2377       if (!HasZygoteSpace()) {
2378         return collector::kGcTypeNone;
2379       }
2380       break;
2381     }
2382     default: {
2383       // Other GC types don't have any special cases which makes them not runnable. The main case
2384       // here is full GC.
2385     }
2386   }
2387   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
2388   Locks::mutator_lock_->AssertNotHeld(self);
2389   if (self->IsHandlingStackOverflow()) {
2390     // If we are throwing a stack overflow error we probably don't have enough remaining stack
2391     // space to run the GC.
2392     return collector::kGcTypeNone;
2393   }
2394   bool compacting_gc;
2395   {
2396     gc_complete_lock_->AssertNotHeld(self);
2397     ScopedThreadStateChange tsc2(self, kWaitingForGcToComplete);
2398     MutexLock mu(self, *gc_complete_lock_);
2399     // Ensure there is only one GC at a time.
2400     WaitForGcToCompleteLocked(gc_cause, self);
2401     compacting_gc = IsMovingGc(collector_type_);
2402     // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2403     if (compacting_gc && disable_moving_gc_count_ != 0) {
2404       LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2405       return collector::kGcTypeNone;
2406     }
2407     collector_type_running_ = collector_type_;
2408   }
2409   if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2410     ++runtime->GetStats()->gc_for_alloc_count;
2411     ++self->GetStats()->gc_for_alloc_count;
2412   }
2413   const uint64_t bytes_allocated_before_gc = GetBytesAllocated();
2414   // Approximate heap size.
2415   ATRACE_INT("Heap size (KB)", bytes_allocated_before_gc / KB);
2416 
2417   DCHECK_LT(gc_type, collector::kGcTypeMax);
2418   DCHECK_NE(gc_type, collector::kGcTypeNone);
2419 
2420   collector::GarbageCollector* collector = nullptr;
2421   // TODO: Clean this up.
2422   if (compacting_gc) {
2423     DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2424            current_allocator_ == kAllocatorTypeTLAB ||
2425            current_allocator_ == kAllocatorTypeRegion ||
2426            current_allocator_ == kAllocatorTypeRegionTLAB);
2427     switch (collector_type_) {
2428       case kCollectorTypeSS:
2429         // Fall-through.
2430       case kCollectorTypeGSS:
2431         semi_space_collector_->SetFromSpace(bump_pointer_space_);
2432         semi_space_collector_->SetToSpace(temp_space_);
2433         semi_space_collector_->SetSwapSemiSpaces(true);
2434         collector = semi_space_collector_;
2435         break;
2436       case kCollectorTypeCC:
2437         concurrent_copying_collector_->SetRegionSpace(region_space_);
2438         collector = concurrent_copying_collector_;
2439         break;
2440       case kCollectorTypeMC:
2441         mark_compact_collector_->SetSpace(bump_pointer_space_);
2442         collector = mark_compact_collector_;
2443         break;
2444       default:
2445         LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2446     }
2447     if (collector != mark_compact_collector_ && collector != concurrent_copying_collector_) {
2448       temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2449       CHECK(temp_space_->IsEmpty());
2450     }
2451     gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
2452   } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2453       current_allocator_ == kAllocatorTypeDlMalloc) {
2454     collector = FindCollectorByGcType(gc_type);
2455   } else {
2456     LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2457   }
2458   if (IsGcConcurrent()) {
2459     // Disable concurrent GC check so that we don't have spammy JNI requests.
2460     // This gets recalculated in GrowForUtilization. It is important that it is disabled /
2461     // calculated in the same thread so that there aren't any races that can cause it to become
2462     // permanantly disabled. b/17942071
2463     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2464   }
2465   CHECK(collector != nullptr)
2466       << "Could not find garbage collector with collector_type="
2467       << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
2468   collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2469   total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
2470   total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
2471   RequestTrim(self);
2472   // Enqueue cleared references.
2473   reference_processor_.EnqueueClearedReferences(self);
2474   // Grow the heap so that we know when to perform the next GC.
2475   GrowForUtilization(collector, bytes_allocated_before_gc);
2476   LogGC(gc_cause, collector);
2477   FinishGC(self, gc_type);
2478   // Inform DDMS that a GC completed.
2479   Dbg::GcDidFinish();
2480   return gc_type;
2481 }
2482 
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2483 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2484   const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2485   const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2486   // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2487   // (mutator time blocked >= long_pause_log_threshold_).
2488   bool log_gc = gc_cause == kGcCauseExplicit;
2489   if (!log_gc && CareAboutPauseTimes()) {
2490     // GC for alloc pauses the allocating thread, so consider it as a pause.
2491     log_gc = duration > long_gc_log_threshold_ ||
2492         (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2493     for (uint64_t pause : pause_times) {
2494       log_gc = log_gc || pause >= long_pause_log_threshold_;
2495     }
2496   }
2497   if (log_gc) {
2498     const size_t percent_free = GetPercentFree();
2499     const size_t current_heap_size = GetBytesAllocated();
2500     const size_t total_memory = GetTotalMemory();
2501     std::ostringstream pause_string;
2502     for (size_t i = 0; i < pause_times.size(); ++i) {
2503       pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2504                    << ((i != pause_times.size() - 1) ? "," : "");
2505     }
2506     LOG(INFO) << gc_cause << " " << collector->GetName()
2507               << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
2508               << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
2509               << current_gc_iteration_.GetFreedLargeObjects() << "("
2510               << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2511               << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2512               << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2513               << " total " << PrettyDuration((duration / 1000) * 1000);
2514     VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2515   }
2516 }
2517 
FinishGC(Thread * self,collector::GcType gc_type)2518 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2519   MutexLock mu(self, *gc_complete_lock_);
2520   collector_type_running_ = kCollectorTypeNone;
2521   if (gc_type != collector::kGcTypeNone) {
2522     last_gc_type_ = gc_type;
2523 
2524     // Update stats.
2525     ++gc_count_last_window_;
2526     if (running_collection_is_blocking_) {
2527       // If the currently running collection was a blocking one,
2528       // increment the counters and reset the flag.
2529       ++blocking_gc_count_;
2530       blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2531       ++blocking_gc_count_last_window_;
2532     }
2533     // Update the gc count rate histograms if due.
2534     UpdateGcCountRateHistograms();
2535   }
2536   // Reset.
2537   running_collection_is_blocking_ = false;
2538   // Wake anyone who may have been waiting for the GC to complete.
2539   gc_complete_cond_->Broadcast(self);
2540 }
2541 
UpdateGcCountRateHistograms()2542 void Heap::UpdateGcCountRateHistograms() {
2543   // Invariant: if the time since the last update includes more than
2544   // one windows, all the GC runs (if > 0) must have happened in first
2545   // window because otherwise the update must have already taken place
2546   // at an earlier GC run. So, we report the non-first windows with
2547   // zero counts to the histograms.
2548   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2549   uint64_t now = NanoTime();
2550   DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2551   uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2552   uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2553   if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
2554     // Record the first window.
2555     gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1);  // Exclude the current run.
2556     blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
2557         blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
2558     // Record the other windows (with zero counts).
2559     for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
2560       gc_count_rate_histogram_.AddValue(0);
2561       blocking_gc_count_rate_histogram_.AddValue(0);
2562     }
2563     // Update the last update time and reset the counters.
2564     last_update_time_gc_count_rate_histograms_ =
2565         (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
2566     gc_count_last_window_ = 1;  // Include the current run.
2567     blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
2568   }
2569   DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2570 }
2571 
2572 class RootMatchesObjectVisitor : public SingleRootVisitor {
2573  public:
RootMatchesObjectVisitor(const mirror::Object * obj)2574   explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
2575 
VisitRoot(mirror::Object * root,const RootInfo & info)2576   void VisitRoot(mirror::Object* root, const RootInfo& info)
2577       OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2578     if (root == obj_) {
2579       LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
2580     }
2581   }
2582 
2583  private:
2584   const mirror::Object* const obj_;
2585 };
2586 
2587 
2588 class ScanVisitor {
2589  public:
operator ()(const mirror::Object * obj) const2590   void operator()(const mirror::Object* obj) const {
2591     LOG(ERROR) << "Would have rescanned object " << obj;
2592   }
2593 };
2594 
2595 // Verify a reference from an object.
2596 class VerifyReferenceVisitor : public SingleRootVisitor {
2597  public:
VerifyReferenceVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2598   explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2599       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
2600       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
2601 
GetFailureCount() const2602   size_t GetFailureCount() const {
2603     return fail_count_->LoadSequentiallyConsistent();
2604   }
2605 
operator ()(mirror::Class * klass,mirror::Reference * ref) const2606   void operator()(mirror::Class* klass, mirror::Reference* ref) const
2607       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2608     UNUSED(klass);
2609     if (verify_referent_) {
2610       VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
2611     }
2612   }
2613 
operator ()(mirror::Object * obj,MemberOffset offset,bool) const2614   void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
2615       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2616     VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
2617   }
2618 
IsLive(mirror::Object * obj) const2619   bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
2620     return heap_->IsLiveObjectLocked(obj, true, false, true);
2621   }
2622 
VisitRoot(mirror::Object * root,const RootInfo & root_info)2623   void VisitRoot(mirror::Object* root, const RootInfo& root_info) OVERRIDE
2624       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2625     if (root == nullptr) {
2626       LOG(ERROR) << "Root is null with info " << root_info.GetType();
2627     } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
2628       LOG(ERROR) << "Root " << root << " is dead with type " << PrettyTypeOf(root)
2629           << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
2630     }
2631   }
2632 
2633  private:
2634   // TODO: Fix the no thread safety analysis.
2635   // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const2636   bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
2637       NO_THREAD_SAFETY_ANALYSIS {
2638     if (ref == nullptr || IsLive(ref)) {
2639       // Verify that the reference is live.
2640       return true;
2641     }
2642     if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
2643       // Print message on only on first failure to prevent spam.
2644       LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
2645     }
2646     if (obj != nullptr) {
2647       // Only do this part for non roots.
2648       accounting::CardTable* card_table = heap_->GetCardTable();
2649       accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
2650       accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2651       uint8_t* card_addr = card_table->CardFromAddr(obj);
2652       LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
2653                  << offset << "\n card value = " << static_cast<int>(*card_addr);
2654       if (heap_->IsValidObjectAddress(obj->GetClass())) {
2655         LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
2656       } else {
2657         LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
2658       }
2659 
2660       // Attempt to find the class inside of the recently freed objects.
2661       space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
2662       if (ref_space != nullptr && ref_space->IsMallocSpace()) {
2663         space::MallocSpace* space = ref_space->AsMallocSpace();
2664         mirror::Class* ref_class = space->FindRecentFreedObject(ref);
2665         if (ref_class != nullptr) {
2666           LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
2667                      << PrettyClass(ref_class);
2668         } else {
2669           LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
2670         }
2671       }
2672 
2673       if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
2674           ref->GetClass()->IsClass()) {
2675         LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
2676       } else {
2677         LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
2678                    << ") is not a valid heap address";
2679       }
2680 
2681       card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
2682       void* cover_begin = card_table->AddrFromCard(card_addr);
2683       void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
2684           accounting::CardTable::kCardSize);
2685       LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
2686           << "-" << cover_end;
2687       accounting::ContinuousSpaceBitmap* bitmap =
2688           heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
2689 
2690       if (bitmap == nullptr) {
2691         LOG(ERROR) << "Object " << obj << " has no bitmap";
2692         if (!VerifyClassClass(obj->GetClass())) {
2693           LOG(ERROR) << "Object " << obj << " failed class verification!";
2694         }
2695       } else {
2696         // Print out how the object is live.
2697         if (bitmap->Test(obj)) {
2698           LOG(ERROR) << "Object " << obj << " found in live bitmap";
2699         }
2700         if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
2701           LOG(ERROR) << "Object " << obj << " found in allocation stack";
2702         }
2703         if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
2704           LOG(ERROR) << "Object " << obj << " found in live stack";
2705         }
2706         if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
2707           LOG(ERROR) << "Ref " << ref << " found in allocation stack";
2708         }
2709         if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
2710           LOG(ERROR) << "Ref " << ref << " found in live stack";
2711         }
2712         // Attempt to see if the card table missed the reference.
2713         ScanVisitor scan_visitor;
2714         uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
2715         card_table->Scan<false>(bitmap, byte_cover_begin,
2716                                 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
2717       }
2718 
2719       // Search to see if any of the roots reference our object.
2720       RootMatchesObjectVisitor visitor1(obj);
2721       Runtime::Current()->VisitRoots(&visitor1);
2722       // Search to see if any of the roots reference our reference.
2723       RootMatchesObjectVisitor visitor2(ref);
2724       Runtime::Current()->VisitRoots(&visitor2);
2725     }
2726     return false;
2727   }
2728 
2729   Heap* const heap_;
2730   Atomic<size_t>* const fail_count_;
2731   const bool verify_referent_;
2732 };
2733 
2734 // Verify all references within an object, for use with HeapBitmap::Visit.
2735 class VerifyObjectVisitor {
2736  public:
VerifyObjectVisitor(Heap * heap,Atomic<size_t> * fail_count,bool verify_referent)2737   explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
2738       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
2739   }
2740 
operator ()(mirror::Object * obj) const2741   void operator()(mirror::Object* obj) const
2742       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2743     // Note: we are verifying the references in obj but not obj itself, this is because obj must
2744     // be live or else how did we find it in the live bitmap?
2745     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2746     // The class doesn't count as a reference but we should verify it anyways.
2747     obj->VisitReferences<true>(visitor, visitor);
2748   }
2749 
VisitCallback(mirror::Object * obj,void * arg)2750   static void VisitCallback(mirror::Object* obj, void* arg)
2751       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2752     VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
2753     visitor->operator()(obj);
2754   }
2755 
VerifyRoots()2756   void VerifyRoots() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2757       LOCKS_EXCLUDED(Locks::heap_bitmap_lock_) {
2758     ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2759     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
2760     Runtime::Current()->VisitRoots(&visitor);
2761   }
2762 
GetFailureCount() const2763   size_t GetFailureCount() const {
2764     return fail_count_->LoadSequentiallyConsistent();
2765   }
2766 
2767  private:
2768   Heap* const heap_;
2769   Atomic<size_t>* const fail_count_;
2770   const bool verify_referent_;
2771 };
2772 
PushOnAllocationStackWithInternalGC(Thread * self,mirror::Object ** obj)2773 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2774   // Slow path, the allocation stack push back must have already failed.
2775   DCHECK(!allocation_stack_->AtomicPushBack(*obj));
2776   do {
2777     // TODO: Add handle VerifyObject.
2778     StackHandleScope<1> hs(self);
2779     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2780     // Push our object into the reserve region of the allocaiton stack. This is only required due
2781     // to heap verification requiring that roots are live (either in the live bitmap or in the
2782     // allocation stack).
2783     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2784     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2785   } while (!allocation_stack_->AtomicPushBack(*obj));
2786 }
2787 
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,mirror::Object ** obj)2788 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
2789   // Slow path, the allocation stack push back must have already failed.
2790   DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
2791   StackReference<mirror::Object>* start_address;
2792   StackReference<mirror::Object>* end_address;
2793   while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
2794                                             &end_address)) {
2795     // TODO: Add handle VerifyObject.
2796     StackHandleScope<1> hs(self);
2797     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
2798     // Push our object into the reserve region of the allocaiton stack. This is only required due
2799     // to heap verification requiring that roots are live (either in the live bitmap or in the
2800     // allocation stack).
2801     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
2802     // Push into the reserve allocation stack.
2803     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
2804   }
2805   self->SetThreadLocalAllocationStack(start_address, end_address);
2806   // Retry on the new thread-local allocation stack.
2807   CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
2808 }
2809 
2810 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)2811 size_t Heap::VerifyHeapReferences(bool verify_referents) {
2812   Thread* self = Thread::Current();
2813   Locks::mutator_lock_->AssertExclusiveHeld(self);
2814   // Lets sort our allocation stacks so that we can efficiently binary search them.
2815   allocation_stack_->Sort();
2816   live_stack_->Sort();
2817   // Since we sorted the allocation stack content, need to revoke all
2818   // thread-local allocation stacks.
2819   RevokeAllThreadLocalAllocationStacks(self);
2820   Atomic<size_t> fail_count_(0);
2821   VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
2822   // Verify objects in the allocation stack since these will be objects which were:
2823   // 1. Allocated prior to the GC (pre GC verification).
2824   // 2. Allocated during the GC (pre sweep GC verification).
2825   // We don't want to verify the objects in the live stack since they themselves may be
2826   // pointing to dead objects if they are not reachable.
2827   VisitObjectsPaused(VerifyObjectVisitor::VisitCallback, &visitor);
2828   // Verify the roots:
2829   visitor.VerifyRoots();
2830   if (visitor.GetFailureCount() > 0) {
2831     // Dump mod-union tables.
2832     for (const auto& table_pair : mod_union_tables_) {
2833       accounting::ModUnionTable* mod_union_table = table_pair.second;
2834       mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
2835     }
2836     // Dump remembered sets.
2837     for (const auto& table_pair : remembered_sets_) {
2838       accounting::RememberedSet* remembered_set = table_pair.second;
2839       remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
2840     }
2841     DumpSpaces(LOG(ERROR));
2842   }
2843   return visitor.GetFailureCount();
2844 }
2845 
2846 class VerifyReferenceCardVisitor {
2847  public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)2848   VerifyReferenceCardVisitor(Heap* heap, bool* failed)
2849       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
2850                             Locks::heap_bitmap_lock_)
2851       : heap_(heap), failed_(failed) {
2852   }
2853 
2854   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
2855   // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const2856   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
2857       NO_THREAD_SAFETY_ANALYSIS {
2858     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
2859     // Filter out class references since changing an object's class does not mark the card as dirty.
2860     // Also handles large objects, since the only reference they hold is a class reference.
2861     if (ref != nullptr && !ref->IsClass()) {
2862       accounting::CardTable* card_table = heap_->GetCardTable();
2863       // If the object is not dirty and it is referencing something in the live stack other than
2864       // class, then it must be on a dirty card.
2865       if (!card_table->AddrIsInCardTable(obj)) {
2866         LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
2867         *failed_ = true;
2868       } else if (!card_table->IsDirty(obj)) {
2869         // TODO: Check mod-union tables.
2870         // Card should be either kCardDirty if it got re-dirtied after we aged it, or
2871         // kCardDirty - 1 if it didnt get touched since we aged it.
2872         accounting::ObjectStack* live_stack = heap_->live_stack_.get();
2873         if (live_stack->ContainsSorted(ref)) {
2874           if (live_stack->ContainsSorted(obj)) {
2875             LOG(ERROR) << "Object " << obj << " found in live stack";
2876           }
2877           if (heap_->GetLiveBitmap()->Test(obj)) {
2878             LOG(ERROR) << "Object " << obj << " found in live bitmap";
2879           }
2880           LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
2881                     << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
2882 
2883           // Print which field of the object is dead.
2884           if (!obj->IsObjectArray()) {
2885             mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
2886             CHECK(klass != nullptr);
2887             auto* fields = is_static ? klass->GetSFields() : klass->GetIFields();
2888             auto num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields();
2889             CHECK_EQ(fields == nullptr, num_fields == 0u);
2890             for (size_t i = 0; i < num_fields; ++i) {
2891               ArtField* cur = &fields[i];
2892               if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
2893                 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
2894                           << PrettyField(cur);
2895                 break;
2896               }
2897             }
2898           } else {
2899             mirror::ObjectArray<mirror::Object>* object_array =
2900                 obj->AsObjectArray<mirror::Object>();
2901             for (int32_t i = 0; i < object_array->GetLength(); ++i) {
2902               if (object_array->Get(i) == ref) {
2903                 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
2904               }
2905             }
2906           }
2907 
2908           *failed_ = true;
2909         }
2910       }
2911     }
2912   }
2913 
2914  private:
2915   Heap* const heap_;
2916   bool* const failed_;
2917 };
2918 
2919 class VerifyLiveStackReferences {
2920  public:
VerifyLiveStackReferences(Heap * heap)2921   explicit VerifyLiveStackReferences(Heap* heap)
2922       : heap_(heap),
2923         failed_(false) {}
2924 
operator ()(mirror::Object * obj) const2925   void operator()(mirror::Object* obj) const
2926       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2927     VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
2928     obj->VisitReferences<true>(visitor, VoidFunctor());
2929   }
2930 
Failed() const2931   bool Failed() const {
2932     return failed_;
2933   }
2934 
2935  private:
2936   Heap* const heap_;
2937   bool failed_;
2938 };
2939 
VerifyMissingCardMarks()2940 bool Heap::VerifyMissingCardMarks() {
2941   Thread* self = Thread::Current();
2942   Locks::mutator_lock_->AssertExclusiveHeld(self);
2943   // We need to sort the live stack since we binary search it.
2944   live_stack_->Sort();
2945   // Since we sorted the allocation stack content, need to revoke all
2946   // thread-local allocation stacks.
2947   RevokeAllThreadLocalAllocationStacks(self);
2948   VerifyLiveStackReferences visitor(this);
2949   GetLiveBitmap()->Visit(visitor);
2950   // We can verify objects in the live stack since none of these should reference dead objects.
2951   for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
2952     if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
2953       visitor(it->AsMirrorPtr());
2954     }
2955   }
2956   return !visitor.Failed();
2957 }
2958 
SwapStacks(Thread * self)2959 void Heap::SwapStacks(Thread* self) {
2960   UNUSED(self);
2961   if (kUseThreadLocalAllocationStack) {
2962     live_stack_->AssertAllZero();
2963   }
2964   allocation_stack_.swap(live_stack_);
2965 }
2966 
RevokeAllThreadLocalAllocationStacks(Thread * self)2967 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
2968   // This must be called only during the pause.
2969   DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
2970   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
2971   MutexLock mu2(self, *Locks::thread_list_lock_);
2972   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2973   for (Thread* t : thread_list) {
2974     t->RevokeThreadLocalAllocationStack();
2975   }
2976 }
2977 
AssertThreadLocalBuffersAreRevoked(Thread * thread)2978 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
2979   if (kIsDebugBuild) {
2980     if (rosalloc_space_ != nullptr) {
2981       rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
2982     }
2983     if (bump_pointer_space_ != nullptr) {
2984       bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
2985     }
2986   }
2987 }
2988 
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()2989 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
2990   if (kIsDebugBuild) {
2991     if (bump_pointer_space_ != nullptr) {
2992       bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
2993     }
2994   }
2995 }
2996 
FindModUnionTableFromSpace(space::Space * space)2997 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
2998   auto it = mod_union_tables_.find(space);
2999   if (it == mod_union_tables_.end()) {
3000     return nullptr;
3001   }
3002   return it->second;
3003 }
3004 
FindRememberedSetFromSpace(space::Space * space)3005 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3006   auto it = remembered_sets_.find(space);
3007   if (it == remembered_sets_.end()) {
3008     return nullptr;
3009   }
3010   return it->second;
3011 }
3012 
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3013 void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets, bool process_alloc_space_cards,
3014                         bool clear_alloc_space_cards) {
3015   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3016   // Clear cards and keep track of cards cleared in the mod-union table.
3017   for (const auto& space : continuous_spaces_) {
3018     accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3019     accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3020     if (table != nullptr) {
3021       const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3022           "ImageModUnionClearCards";
3023       TimingLogger::ScopedTiming t2(name, timings);
3024       table->ClearCards();
3025     } else if (use_rem_sets && rem_set != nullptr) {
3026       DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
3027           << static_cast<int>(collector_type_);
3028       TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3029       rem_set->ClearCards();
3030     } else if (process_alloc_space_cards) {
3031       TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3032       if (clear_alloc_space_cards) {
3033         card_table_->ClearCardRange(space->Begin(), space->End());
3034       } else {
3035         // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3036         // cards were dirty before the GC started.
3037         // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3038         // -> clean(cleaning thread).
3039         // The races are we either end up with: Aged card, unaged card. Since we have the
3040         // checkpoint roots and then we scan / update mod union tables after. We will always
3041         // scan either card. If we end up with the non aged card, we scan it it in the pause.
3042         card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3043                                        VoidFunctor());
3044       }
3045     }
3046   }
3047 }
3048 
IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object> *,void *)3049 static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
3050 }
3051 
PreGcVerificationPaused(collector::GarbageCollector * gc)3052 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3053   Thread* const self = Thread::Current();
3054   TimingLogger* const timings = current_gc_iteration_.GetTimings();
3055   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3056   if (verify_pre_gc_heap_) {
3057     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3058     size_t failures = VerifyHeapReferences();
3059     if (failures > 0) {
3060       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3061           << " failures";
3062     }
3063   }
3064   // Check that all objects which reference things in the live stack are on dirty cards.
3065   if (verify_missing_card_marks_) {
3066     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3067     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3068     SwapStacks(self);
3069     // Sort the live stack so that we can quickly binary search it later.
3070     CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3071                                     << " missing card mark verification failed\n" << DumpSpaces();
3072     SwapStacks(self);
3073   }
3074   if (verify_mod_union_table_) {
3075     TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3076     ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3077     for (const auto& table_pair : mod_union_tables_) {
3078       accounting::ModUnionTable* mod_union_table = table_pair.second;
3079       mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
3080       mod_union_table->Verify();
3081     }
3082   }
3083 }
3084 
PreGcVerification(collector::GarbageCollector * gc)3085 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3086   if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3087     collector::GarbageCollector::ScopedPause pause(gc);
3088     PreGcVerificationPaused(gc);
3089   }
3090 }
3091 
PrePauseRosAllocVerification(collector::GarbageCollector * gc)3092 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
3093   UNUSED(gc);
3094   // TODO: Add a new runtime option for this?
3095   if (verify_pre_gc_rosalloc_) {
3096     RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3097   }
3098 }
3099 
PreSweepingGcVerification(collector::GarbageCollector * gc)3100 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3101   Thread* const self = Thread::Current();
3102   TimingLogger* const timings = current_gc_iteration_.GetTimings();
3103   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3104   // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3105   // reachable objects.
3106   if (verify_pre_sweeping_heap_) {
3107     TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3108     CHECK_NE(self->GetState(), kRunnable);
3109     {
3110       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3111       // Swapping bound bitmaps does nothing.
3112       gc->SwapBitmaps();
3113     }
3114     // Pass in false since concurrent reference processing can mean that the reference referents
3115     // may point to dead objects at the point which PreSweepingGcVerification is called.
3116     size_t failures = VerifyHeapReferences(false);
3117     if (failures > 0) {
3118       LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3119           << " failures";
3120     }
3121     {
3122       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3123       gc->SwapBitmaps();
3124     }
3125   }
3126   if (verify_pre_sweeping_rosalloc_) {
3127     RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3128   }
3129 }
3130 
PostGcVerificationPaused(collector::GarbageCollector * gc)3131 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3132   // Only pause if we have to do some verification.
3133   Thread* const self = Thread::Current();
3134   TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3135   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3136   if (verify_system_weaks_) {
3137     ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3138     collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3139     mark_sweep->VerifySystemWeaks();
3140   }
3141   if (verify_post_gc_rosalloc_) {
3142     RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3143   }
3144   if (verify_post_gc_heap_) {
3145     TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3146     size_t failures = VerifyHeapReferences();
3147     if (failures > 0) {
3148       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3149           << " failures";
3150     }
3151   }
3152 }
3153 
PostGcVerification(collector::GarbageCollector * gc)3154 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3155   if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3156     collector::GarbageCollector::ScopedPause pause(gc);
3157     PostGcVerificationPaused(gc);
3158   }
3159 }
3160 
RosAllocVerification(TimingLogger * timings,const char * name)3161 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3162   TimingLogger::ScopedTiming t(name, timings);
3163   for (const auto& space : continuous_spaces_) {
3164     if (space->IsRosAllocSpace()) {
3165       VLOG(heap) << name << " : " << space->GetName();
3166       space->AsRosAllocSpace()->Verify();
3167     }
3168   }
3169 }
3170 
WaitForGcToComplete(GcCause cause,Thread * self)3171 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3172   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
3173   MutexLock mu(self, *gc_complete_lock_);
3174   return WaitForGcToCompleteLocked(cause, self);
3175 }
3176 
WaitForGcToCompleteLocked(GcCause cause,Thread * self)3177 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3178   collector::GcType last_gc_type = collector::kGcTypeNone;
3179   uint64_t wait_start = NanoTime();
3180   while (collector_type_running_ != kCollectorTypeNone) {
3181     if (self != task_processor_->GetRunningThread()) {
3182       // The current thread is about to wait for a currently running
3183       // collection to finish. If the waiting thread is not the heap
3184       // task daemon thread, the currently running collection is
3185       // considered as a blocking GC.
3186       running_collection_is_blocking_ = true;
3187       VLOG(gc) << "Waiting for a blocking GC " << cause;
3188     }
3189     ATRACE_BEGIN("GC: Wait For Completion");
3190     // We must wait, change thread state then sleep on gc_complete_cond_;
3191     gc_complete_cond_->Wait(self);
3192     last_gc_type = last_gc_type_;
3193     ATRACE_END();
3194   }
3195   uint64_t wait_time = NanoTime() - wait_start;
3196   total_wait_time_ += wait_time;
3197   if (wait_time > long_pause_log_threshold_) {
3198     LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
3199         << " for cause " << cause;
3200   }
3201   if (self != task_processor_->GetRunningThread()) {
3202     // The current thread is about to run a collection. If the thread
3203     // is not the heap task daemon thread, it's considered as a
3204     // blocking GC (i.e., blocking itself).
3205     running_collection_is_blocking_ = true;
3206     VLOG(gc) << "Starting a blocking GC " << cause;
3207   }
3208   return last_gc_type;
3209 }
3210 
DumpForSigQuit(std::ostream & os)3211 void Heap::DumpForSigQuit(std::ostream& os) {
3212   os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3213      << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
3214   DumpGcPerformanceInfo(os);
3215 }
3216 
GetPercentFree()3217 size_t Heap::GetPercentFree() {
3218   return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
3219 }
3220 
SetIdealFootprint(size_t max_allowed_footprint)3221 void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
3222   if (max_allowed_footprint > GetMaxMemory()) {
3223     VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
3224              << PrettySize(GetMaxMemory());
3225     max_allowed_footprint = GetMaxMemory();
3226   }
3227   max_allowed_footprint_ = max_allowed_footprint;
3228 }
3229 
IsMovableObject(const mirror::Object * obj) const3230 bool Heap::IsMovableObject(const mirror::Object* obj) const {
3231   if (kMovingCollector) {
3232     space::Space* space = FindContinuousSpaceFromObject(obj, true);
3233     if (space != nullptr) {
3234       // TODO: Check large object?
3235       return space->CanMoveObjects();
3236     }
3237   }
3238   return false;
3239 }
3240 
UpdateMaxNativeFootprint()3241 void Heap::UpdateMaxNativeFootprint() {
3242   size_t native_size = native_bytes_allocated_.LoadRelaxed();
3243   // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
3244   size_t target_size = native_size / GetTargetHeapUtilization();
3245   if (target_size > native_size + max_free_) {
3246     target_size = native_size + max_free_;
3247   } else if (target_size < native_size + min_free_) {
3248     target_size = native_size + min_free_;
3249   }
3250   native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
3251 }
3252 
FindCollectorByGcType(collector::GcType gc_type)3253 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3254   for (const auto& collector : garbage_collectors_) {
3255     if (collector->GetCollectorType() == collector_type_ &&
3256         collector->GetGcType() == gc_type) {
3257       return collector;
3258     }
3259   }
3260   return nullptr;
3261 }
3262 
HeapGrowthMultiplier() const3263 double Heap::HeapGrowthMultiplier() const {
3264   // If we don't care about pause times we are background, so return 1.0.
3265   if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
3266     return 1.0;
3267   }
3268   return foreground_heap_growth_multiplier_;
3269 }
3270 
GrowForUtilization(collector::GarbageCollector * collector_ran,uint64_t bytes_allocated_before_gc)3271 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3272                               uint64_t bytes_allocated_before_gc) {
3273   // We know what our utilization is at this moment.
3274   // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3275   const uint64_t bytes_allocated = GetBytesAllocated();
3276   uint64_t target_size;
3277   collector::GcType gc_type = collector_ran->GetGcType();
3278   const double multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
3279   // foreground.
3280   const uint64_t adjusted_min_free = static_cast<uint64_t>(min_free_ * multiplier);
3281   const uint64_t adjusted_max_free = static_cast<uint64_t>(max_free_ * multiplier);
3282   if (gc_type != collector::kGcTypeSticky) {
3283     // Grow the heap for non sticky GC.
3284     ssize_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
3285     CHECK_GE(delta, 0);
3286     target_size = bytes_allocated + delta * multiplier;
3287     target_size = std::min(target_size, bytes_allocated + adjusted_max_free);
3288     target_size = std::max(target_size, bytes_allocated + adjusted_min_free);
3289     native_need_to_run_finalization_ = true;
3290     next_gc_type_ = collector::kGcTypeSticky;
3291   } else {
3292     collector::GcType non_sticky_gc_type =
3293         HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
3294     // Find what the next non sticky collector will be.
3295     collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3296     // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3297     // do another sticky collection next.
3298     // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
3299     // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3300     // if the sticky GC throughput always remained >= the full/partial throughput.
3301     if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
3302         non_sticky_collector->GetEstimatedMeanThroughput() &&
3303         non_sticky_collector->NumberOfIterations() > 0 &&
3304         bytes_allocated <= max_allowed_footprint_) {
3305       next_gc_type_ = collector::kGcTypeSticky;
3306     } else {
3307       next_gc_type_ = non_sticky_gc_type;
3308     }
3309     // If we have freed enough memory, shrink the heap back down.
3310     if (bytes_allocated + adjusted_max_free < max_allowed_footprint_) {
3311       target_size = bytes_allocated + adjusted_max_free;
3312     } else {
3313       target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
3314     }
3315   }
3316   if (!ignore_max_footprint_) {
3317     SetIdealFootprint(target_size);
3318     if (IsGcConcurrent()) {
3319       const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3320           current_gc_iteration_.GetFreedLargeObjectBytes() +
3321           current_gc_iteration_.GetFreedRevokeBytes();
3322       // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3323       // how many bytes were allocated during the GC we need to add freed_bytes back on.
3324       CHECK_GE(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3325       const uint64_t bytes_allocated_during_gc = bytes_allocated + freed_bytes -
3326           bytes_allocated_before_gc;
3327       // Calculate when to perform the next ConcurrentGC.
3328       // Calculate the estimated GC duration.
3329       const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
3330       // Estimate how many remaining bytes we will have when we need to start the next GC.
3331       size_t remaining_bytes = bytes_allocated_during_gc * gc_duration_seconds;
3332       remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3333       remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3334       if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
3335         // A never going to happen situation that from the estimated allocation rate we will exceed
3336         // the applications entire footprint with the given estimated allocation rate. Schedule
3337         // another GC nearly straight away.
3338         remaining_bytes = kMinConcurrentRemainingBytes;
3339       }
3340       DCHECK_LE(remaining_bytes, max_allowed_footprint_);
3341       DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
3342       // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3343       // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3344       // right away.
3345       concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
3346                                          static_cast<size_t>(bytes_allocated));
3347     }
3348   }
3349 }
3350 
ClampGrowthLimit()3351 void Heap::ClampGrowthLimit() {
3352   // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3353   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
3354   capacity_ = growth_limit_;
3355   for (const auto& space : continuous_spaces_) {
3356     if (space->IsMallocSpace()) {
3357       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3358       malloc_space->ClampGrowthLimit();
3359     }
3360   }
3361   // This space isn't added for performance reasons.
3362   if (main_space_backup_.get() != nullptr) {
3363     main_space_backup_->ClampGrowthLimit();
3364   }
3365 }
3366 
ClearGrowthLimit()3367 void Heap::ClearGrowthLimit() {
3368   growth_limit_ = capacity_;
3369   for (const auto& space : continuous_spaces_) {
3370     if (space->IsMallocSpace()) {
3371       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3372       malloc_space->ClearGrowthLimit();
3373       malloc_space->SetFootprintLimit(malloc_space->Capacity());
3374     }
3375   }
3376   // This space isn't added for performance reasons.
3377   if (main_space_backup_.get() != nullptr) {
3378     main_space_backup_->ClearGrowthLimit();
3379     main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3380   }
3381 }
3382 
AddFinalizerReference(Thread * self,mirror::Object ** object)3383 void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
3384   ScopedObjectAccess soa(self);
3385   ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
3386   jvalue args[1];
3387   args[0].l = arg.get();
3388   InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
3389   // Restore object in case it gets moved.
3390   *object = soa.Decode<mirror::Object*>(arg.get());
3391 }
3392 
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,mirror::Object ** obj)3393 void Heap::RequestConcurrentGCAndSaveObject(Thread* self, bool force_full, mirror::Object** obj) {
3394   StackHandleScope<1> hs(self);
3395   HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3396   RequestConcurrentGC(self, force_full);
3397 }
3398 
3399 class Heap::ConcurrentGCTask : public HeapTask {
3400  public:
ConcurrentGCTask(uint64_t target_time,bool force_full)3401   explicit ConcurrentGCTask(uint64_t target_time, bool force_full)
3402     : HeapTask(target_time), force_full_(force_full) { }
Run(Thread * self)3403   virtual void Run(Thread* self) OVERRIDE {
3404     gc::Heap* heap = Runtime::Current()->GetHeap();
3405     heap->ConcurrentGC(self, force_full_);
3406     heap->ClearConcurrentGCRequest();
3407   }
3408 
3409  private:
3410   const bool force_full_;  // If true, force full (or partial) collection.
3411 };
3412 
CanAddHeapTask(Thread * self)3413 static bool CanAddHeapTask(Thread* self) LOCKS_EXCLUDED(Locks::runtime_shutdown_lock_) {
3414   Runtime* runtime = Runtime::Current();
3415   return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3416       !self->IsHandlingStackOverflow();
3417 }
3418 
ClearConcurrentGCRequest()3419 void Heap::ClearConcurrentGCRequest() {
3420   concurrent_gc_pending_.StoreRelaxed(false);
3421 }
3422 
RequestConcurrentGC(Thread * self,bool force_full)3423 void Heap::RequestConcurrentGC(Thread* self, bool force_full) {
3424   if (CanAddHeapTask(self) &&
3425       concurrent_gc_pending_.CompareExchangeStrongSequentiallyConsistent(false, true)) {
3426     task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(),  // Start straight away.
3427                                                         force_full));
3428   }
3429 }
3430 
ConcurrentGC(Thread * self,bool force_full)3431 void Heap::ConcurrentGC(Thread* self, bool force_full) {
3432   if (!Runtime::Current()->IsShuttingDown(self)) {
3433     // Wait for any GCs currently running to finish.
3434     if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
3435       // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
3436       // instead. E.g. can't do partial, so do full instead.
3437       collector::GcType next_gc_type = next_gc_type_;
3438       // If forcing full and next gc type is sticky, override with a non-sticky type.
3439       if (force_full && next_gc_type == collector::kGcTypeSticky) {
3440         next_gc_type = HasZygoteSpace() ? collector::kGcTypePartial : collector::kGcTypeFull;
3441       }
3442       if (CollectGarbageInternal(next_gc_type, kGcCauseBackground, false) ==
3443           collector::kGcTypeNone) {
3444         for (collector::GcType gc_type : gc_plan_) {
3445           // Attempt to run the collector, if we succeed, we are done.
3446           if (gc_type > next_gc_type &&
3447               CollectGarbageInternal(gc_type, kGcCauseBackground, false) !=
3448                   collector::kGcTypeNone) {
3449             break;
3450           }
3451         }
3452       }
3453     }
3454   }
3455 }
3456 
3457 class Heap::CollectorTransitionTask : public HeapTask {
3458  public:
CollectorTransitionTask(uint64_t target_time)3459   explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) { }
Run(Thread * self)3460   virtual void Run(Thread* self) OVERRIDE {
3461     gc::Heap* heap = Runtime::Current()->GetHeap();
3462     heap->DoPendingCollectorTransition();
3463     heap->ClearPendingCollectorTransition(self);
3464   }
3465 };
3466 
ClearPendingCollectorTransition(Thread * self)3467 void Heap::ClearPendingCollectorTransition(Thread* self) {
3468   MutexLock mu(self, *pending_task_lock_);
3469   pending_collector_transition_ = nullptr;
3470 }
3471 
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)3472 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
3473   Thread* self = Thread::Current();
3474   desired_collector_type_ = desired_collector_type;
3475   if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
3476     return;
3477   }
3478   CollectorTransitionTask* added_task = nullptr;
3479   const uint64_t target_time = NanoTime() + delta_time;
3480   {
3481     MutexLock mu(self, *pending_task_lock_);
3482     // If we have an existing collector transition, update the targe time to be the new target.
3483     if (pending_collector_transition_ != nullptr) {
3484       task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
3485       return;
3486     }
3487     added_task = new CollectorTransitionTask(target_time);
3488     pending_collector_transition_ = added_task;
3489   }
3490   task_processor_->AddTask(self, added_task);
3491 }
3492 
3493 class Heap::HeapTrimTask : public HeapTask {
3494  public:
HeapTrimTask(uint64_t delta_time)3495   explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)3496   virtual void Run(Thread* self) OVERRIDE {
3497     gc::Heap* heap = Runtime::Current()->GetHeap();
3498     heap->Trim(self);
3499     heap->ClearPendingTrim(self);
3500   }
3501 };
3502 
ClearPendingTrim(Thread * self)3503 void Heap::ClearPendingTrim(Thread* self) {
3504   MutexLock mu(self, *pending_task_lock_);
3505   pending_heap_trim_ = nullptr;
3506 }
3507 
RequestTrim(Thread * self)3508 void Heap::RequestTrim(Thread* self) {
3509   if (!CanAddHeapTask(self)) {
3510     return;
3511   }
3512   // GC completed and now we must decide whether to request a heap trim (advising pages back to the
3513   // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
3514   // a space it will hold its lock and can become a cause of jank.
3515   // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
3516   // forking.
3517 
3518   // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
3519   // because that only marks object heads, so a large array looks like lots of empty space. We
3520   // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
3521   // to utilization (which is probably inversely proportional to how much benefit we can expect).
3522   // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
3523   // not how much use we're making of those pages.
3524   HeapTrimTask* added_task = nullptr;
3525   {
3526     MutexLock mu(self, *pending_task_lock_);
3527     if (pending_heap_trim_ != nullptr) {
3528       // Already have a heap trim request in task processor, ignore this request.
3529       return;
3530     }
3531     added_task = new HeapTrimTask(kHeapTrimWait);
3532     pending_heap_trim_ = added_task;
3533   }
3534   task_processor_->AddTask(self, added_task);
3535 }
3536 
RevokeThreadLocalBuffers(Thread * thread)3537 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
3538   if (rosalloc_space_ != nullptr) {
3539     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3540     if (freed_bytes_revoke > 0U) {
3541       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3542       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3543     }
3544   }
3545   if (bump_pointer_space_ != nullptr) {
3546     CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
3547   }
3548   if (region_space_ != nullptr) {
3549     CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
3550   }
3551 }
3552 
RevokeRosAllocThreadLocalBuffers(Thread * thread)3553 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
3554   if (rosalloc_space_ != nullptr) {
3555     size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
3556     if (freed_bytes_revoke > 0U) {
3557       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3558       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3559     }
3560   }
3561 }
3562 
RevokeAllThreadLocalBuffers()3563 void Heap::RevokeAllThreadLocalBuffers() {
3564   if (rosalloc_space_ != nullptr) {
3565     size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
3566     if (freed_bytes_revoke > 0U) {
3567       num_bytes_freed_revoke_.FetchAndAddSequentiallyConsistent(freed_bytes_revoke);
3568       CHECK_GE(num_bytes_allocated_.LoadRelaxed(), num_bytes_freed_revoke_.LoadRelaxed());
3569     }
3570   }
3571   if (bump_pointer_space_ != nullptr) {
3572     CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
3573   }
3574   if (region_space_ != nullptr) {
3575     CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
3576   }
3577 }
3578 
IsGCRequestPending() const3579 bool Heap::IsGCRequestPending() const {
3580   return concurrent_gc_pending_.LoadRelaxed();
3581 }
3582 
RunFinalization(JNIEnv * env,uint64_t timeout)3583 void Heap::RunFinalization(JNIEnv* env, uint64_t timeout) {
3584   env->CallStaticVoidMethod(WellKnownClasses::dalvik_system_VMRuntime,
3585                             WellKnownClasses::dalvik_system_VMRuntime_runFinalization,
3586                             static_cast<jlong>(timeout));
3587 }
3588 
RegisterNativeAllocation(JNIEnv * env,size_t bytes)3589 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
3590   Thread* self = ThreadForEnv(env);
3591   if (native_need_to_run_finalization_) {
3592     RunFinalization(env, kNativeAllocationFinalizeTimeout);
3593     UpdateMaxNativeFootprint();
3594     native_need_to_run_finalization_ = false;
3595   }
3596   // Total number of native bytes allocated.
3597   size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
3598   new_native_bytes_allocated += bytes;
3599   if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
3600     collector::GcType gc_type = HasZygoteSpace() ? collector::kGcTypePartial :
3601         collector::kGcTypeFull;
3602 
3603     // The second watermark is higher than the gc watermark. If you hit this it means you are
3604     // allocating native objects faster than the GC can keep up with.
3605     if (new_native_bytes_allocated > growth_limit_) {
3606       if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
3607         // Just finished a GC, attempt to run finalizers.
3608         RunFinalization(env, kNativeAllocationFinalizeTimeout);
3609         CHECK(!env->ExceptionCheck());
3610         // Native bytes allocated may be updated by finalization, refresh it.
3611         new_native_bytes_allocated = native_bytes_allocated_.LoadRelaxed();
3612       }
3613       // If we still are over the watermark, attempt a GC for alloc and run finalizers.
3614       if (new_native_bytes_allocated > growth_limit_) {
3615         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3616         RunFinalization(env, kNativeAllocationFinalizeTimeout);
3617         native_need_to_run_finalization_ = false;
3618         CHECK(!env->ExceptionCheck());
3619       }
3620       // We have just run finalizers, update the native watermark since it is very likely that
3621       // finalizers released native managed allocations.
3622       UpdateMaxNativeFootprint();
3623     } else if (!IsGCRequestPending()) {
3624       if (IsGcConcurrent()) {
3625         RequestConcurrentGC(self, true);  // Request non-sticky type.
3626       } else {
3627         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
3628       }
3629     }
3630   }
3631 }
3632 
RegisterNativeFree(JNIEnv * env,size_t bytes)3633 void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
3634   size_t expected_size;
3635   do {
3636     expected_size = native_bytes_allocated_.LoadRelaxed();
3637     if (UNLIKELY(bytes > expected_size)) {
3638       ScopedObjectAccess soa(env);
3639       env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
3640                     StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
3641                                  "registered as allocated", bytes, expected_size).c_str());
3642       break;
3643     }
3644   } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
3645                                                                expected_size - bytes));
3646 }
3647 
GetTotalMemory() const3648 size_t Heap::GetTotalMemory() const {
3649   return std::max(max_allowed_footprint_, GetBytesAllocated());
3650 }
3651 
AddModUnionTable(accounting::ModUnionTable * mod_union_table)3652 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
3653   DCHECK(mod_union_table != nullptr);
3654   mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
3655 }
3656 
CheckPreconditionsForAllocObject(mirror::Class * c,size_t byte_count)3657 void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
3658   CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
3659         (c->IsVariableSize() || c->GetObjectSize() == byte_count));
3660   CHECK_GE(byte_count, sizeof(mirror::Object));
3661 }
3662 
AddRememberedSet(accounting::RememberedSet * remembered_set)3663 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
3664   CHECK(remembered_set != nullptr);
3665   space::Space* space = remembered_set->GetSpace();
3666   CHECK(space != nullptr);
3667   CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
3668   remembered_sets_.Put(space, remembered_set);
3669   CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
3670 }
3671 
RemoveRememberedSet(space::Space * space)3672 void Heap::RemoveRememberedSet(space::Space* space) {
3673   CHECK(space != nullptr);
3674   auto it = remembered_sets_.find(space);
3675   CHECK(it != remembered_sets_.end());
3676   delete it->second;
3677   remembered_sets_.erase(it);
3678   CHECK(remembered_sets_.find(space) == remembered_sets_.end());
3679 }
3680 
ClearMarkedObjects()3681 void Heap::ClearMarkedObjects() {
3682   // Clear all of the spaces' mark bitmaps.
3683   for (const auto& space : GetContinuousSpaces()) {
3684     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
3685     if (space->GetLiveBitmap() != mark_bitmap) {
3686       mark_bitmap->Clear();
3687     }
3688   }
3689   // Clear the marked objects in the discontinous space object sets.
3690   for (const auto& space : GetDiscontinuousSpaces()) {
3691     space->GetMarkBitmap()->Clear();
3692   }
3693 }
3694 
3695 // Based on debug malloc logic from libc/bionic/debug_stacktrace.cpp.
3696 class StackCrawlState {
3697  public:
StackCrawlState(uintptr_t * frames,size_t max_depth,size_t skip_count)3698   StackCrawlState(uintptr_t* frames, size_t max_depth, size_t skip_count)
3699       : frames_(frames), frame_count_(0), max_depth_(max_depth), skip_count_(skip_count) {
3700   }
GetFrameCount() const3701   size_t GetFrameCount() const {
3702     return frame_count_;
3703   }
Callback(_Unwind_Context * context,void * arg)3704   static _Unwind_Reason_Code Callback(_Unwind_Context* context, void* arg) {
3705     auto* const state = reinterpret_cast<StackCrawlState*>(arg);
3706     const uintptr_t ip = _Unwind_GetIP(context);
3707     // The first stack frame is get_backtrace itself. Skip it.
3708     if (ip != 0 && state->skip_count_ > 0) {
3709       --state->skip_count_;
3710       return _URC_NO_REASON;
3711     }
3712     // ip may be off for ARM but it shouldn't matter since we only use it for hashing.
3713     state->frames_[state->frame_count_] = ip;
3714     state->frame_count_++;
3715     return state->frame_count_ >= state->max_depth_ ? _URC_END_OF_STACK : _URC_NO_REASON;
3716   }
3717 
3718  private:
3719   uintptr_t* const frames_;
3720   size_t frame_count_;
3721   const size_t max_depth_;
3722   size_t skip_count_;
3723 };
3724 
get_backtrace(uintptr_t * frames,size_t max_depth)3725 static size_t get_backtrace(uintptr_t* frames, size_t max_depth) {
3726   StackCrawlState state(frames, max_depth, 0u);
3727   _Unwind_Backtrace(&StackCrawlState::Callback, &state);
3728   return state.GetFrameCount();
3729 }
3730 
CheckGcStressMode(Thread * self,mirror::Object ** obj)3731 void Heap::CheckGcStressMode(Thread* self, mirror::Object** obj) {
3732   auto* const runtime = Runtime::Current();
3733   if (gc_stress_mode_ && runtime->GetClassLinker()->IsInitialized() &&
3734       !runtime->IsActiveTransaction() && mirror::Class::HasJavaLangClass()) {
3735     // Check if we should GC.
3736     bool new_backtrace = false;
3737     {
3738       static constexpr size_t kMaxFrames = 16u;
3739       uintptr_t backtrace[kMaxFrames];
3740       const size_t frames = get_backtrace(backtrace, kMaxFrames);
3741       uint64_t hash = 0;
3742       for (size_t i = 0; i < frames; ++i) {
3743         hash = hash * 2654435761 + backtrace[i];
3744         hash += (hash >> 13) ^ (hash << 6);
3745       }
3746       MutexLock mu(self, *backtrace_lock_);
3747       new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
3748       if (new_backtrace) {
3749         seen_backtraces_.insert(hash);
3750       }
3751     }
3752     if (new_backtrace) {
3753       StackHandleScope<1> hs(self);
3754       auto h = hs.NewHandleWrapper(obj);
3755       CollectGarbage(false);
3756       unique_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
3757     } else {
3758       seen_backtrace_count_.FetchAndAddSequentiallyConsistent(1);
3759     }
3760   }
3761 }
3762 
3763 }  // namespace gc
3764 }  // namespace art
3765