• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_CUTILS_ATOMIC_H
18 #define ANDROID_CUTILS_ATOMIC_H
19 
20 #include <stdint.h>
21 #include <sys/types.h>
22 #include <stdatomic.h>
23 
24 #ifndef ANDROID_ATOMIC_INLINE
25 #define ANDROID_ATOMIC_INLINE static inline
26 #endif
27 
28 /*
29  * A handful of basic atomic operations.
30  * THESE ARE HERE FOR LEGACY REASONS ONLY.  AVOID.
31  *
32  * PREFERRED ALTERNATIVES:
33  * - Use C++/C/pthread locks/mutexes whenever there is not a
34  *   convincing reason to do otherwise.  Note that very clever and
35  *   complicated, but correct, lock-free code is often slower than
36  *   using locks, especially where nontrivial data structures
37  *   are involved.
38  * - C11 stdatomic.h.
39  * - Where supported, C++11 std::atomic<T> .
40  *
41  * PLEASE STOP READING HERE UNLESS YOU ARE TRYING TO UNDERSTAND
42  * OR UPDATE OLD CODE.
43  *
44  * The "acquire" and "release" terms can be defined intuitively in terms
45  * of the placement of memory barriers in a simple lock implementation:
46  *   - wait until compare-and-swap(lock-is-free --> lock-is-held) succeeds
47  *   - barrier
48  *   - [do work]
49  *   - barrier
50  *   - store(lock-is-free)
51  * In very crude terms, the initial (acquire) barrier prevents any of the
52  * "work" from happening before the lock is held, and the later (release)
53  * barrier ensures that all of the work happens before the lock is released.
54  * (Think of cached writes, cache read-ahead, and instruction reordering
55  * around the CAS and store instructions.)
56  *
57  * The barriers must apply to both the compiler and the CPU.  Note it is
58  * legal for instructions that occur before an "acquire" barrier to be
59  * moved down below it, and for instructions that occur after a "release"
60  * barrier to be moved up above it.
61  *
62  * The ARM-driven implementation we use here is short on subtlety,
63  * and actually requests a full barrier from the compiler and the CPU.
64  * The only difference between acquire and release is in whether they
65  * are issued before or after the atomic operation with which they
66  * are associated.  To ease the transition to C/C++ atomic intrinsics,
67  * you should not rely on this, and instead assume that only the minimal
68  * acquire/release protection is provided.
69  *
70  * NOTE: all int32_t* values are expected to be aligned on 32-bit boundaries.
71  * If they are not, atomicity is not guaranteed.
72  */
73 
74 /*
75  * Basic arithmetic and bitwise operations.  These all provide a
76  * barrier with "release" ordering, and return the previous value.
77  *
78  * These have the same characteristics (e.g. what happens on overflow)
79  * as the equivalent non-atomic C operations.
80  */
81 ANDROID_ATOMIC_INLINE
android_atomic_inc(volatile int32_t * addr)82 int32_t android_atomic_inc(volatile int32_t* addr)
83 {
84     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
85         /* Int32_t, if it exists, is the same as int_least32_t. */
86     return atomic_fetch_add_explicit(a, 1, memory_order_release);
87 }
88 
89 ANDROID_ATOMIC_INLINE
android_atomic_dec(volatile int32_t * addr)90 int32_t android_atomic_dec(volatile int32_t* addr)
91 {
92     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
93     return atomic_fetch_sub_explicit(a, 1, memory_order_release);
94 }
95 
96 ANDROID_ATOMIC_INLINE
android_atomic_add(int32_t value,volatile int32_t * addr)97 int32_t android_atomic_add(int32_t value, volatile int32_t* addr)
98 {
99     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
100     return atomic_fetch_add_explicit(a, value, memory_order_release);
101 }
102 
103 ANDROID_ATOMIC_INLINE
android_atomic_and(int32_t value,volatile int32_t * addr)104 int32_t android_atomic_and(int32_t value, volatile int32_t* addr)
105 {
106     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
107     return atomic_fetch_and_explicit(a, value, memory_order_release);
108 }
109 
110 ANDROID_ATOMIC_INLINE
android_atomic_or(int32_t value,volatile int32_t * addr)111 int32_t android_atomic_or(int32_t value, volatile int32_t* addr)
112 {
113     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
114     return atomic_fetch_or_explicit(a, value, memory_order_release);
115 }
116 
117 /*
118  * Perform an atomic load with "acquire" or "release" ordering.
119  *
120  * Note that the notion of a "release" ordering for a load does not
121  * really fit into the C11 or C++11 memory model.  The extra ordering
122  * is normally observable only by code using memory_order_relaxed
123  * atomics, or data races.  In the rare cases in which such ordering
124  * is called for, use memory_order_relaxed atomics and a leading
125  * atomic_thread_fence (typically with memory_order_acquire,
126  * not memory_order_release!) instead.  If you do not understand
127  * this comment, you are in the vast majority, and should not be
128  * using release loads or replacing them with anything other than
129  * locks or default sequentially consistent atomics.
130  */
131 ANDROID_ATOMIC_INLINE
android_atomic_acquire_load(volatile const int32_t * addr)132 int32_t android_atomic_acquire_load(volatile const int32_t* addr)
133 {
134     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
135     return atomic_load_explicit(a, memory_order_acquire);
136 }
137 
138 ANDROID_ATOMIC_INLINE
android_atomic_release_load(volatile const int32_t * addr)139 int32_t android_atomic_release_load(volatile const int32_t* addr)
140 {
141     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
142     atomic_thread_fence(memory_order_seq_cst);
143     /* Any reasonable clients of this interface would probably prefer   */
144     /* something weaker.  But some remaining clients seem to be         */
145     /* abusing this API in strange ways, e.g. by using it as a fence.   */
146     /* Thus we are conservative until we can get rid of remaining       */
147     /* clients (and this function).                                     */
148     return atomic_load_explicit(a, memory_order_relaxed);
149 }
150 
151 /*
152  * Perform an atomic store with "acquire" or "release" ordering.
153  *
154  * Note that the notion of an "acquire" ordering for a store does not
155  * really fit into the C11 or C++11 memory model.  The extra ordering
156  * is normally observable only by code using memory_order_relaxed
157  * atomics, or data races.  In the rare cases in which such ordering
158  * is called for, use memory_order_relaxed atomics and a trailing
159  * atomic_thread_fence (typically with memory_order_release,
160  * not memory_order_acquire!) instead.
161  */
162 ANDROID_ATOMIC_INLINE
android_atomic_acquire_store(int32_t value,volatile int32_t * addr)163 void android_atomic_acquire_store(int32_t value, volatile int32_t* addr)
164 {
165     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
166     atomic_store_explicit(a, value, memory_order_relaxed);
167     atomic_thread_fence(memory_order_seq_cst);
168     /* Again overly conservative to accomodate weird clients.   */
169 }
170 
171 ANDROID_ATOMIC_INLINE
android_atomic_release_store(int32_t value,volatile int32_t * addr)172 void android_atomic_release_store(int32_t value, volatile int32_t* addr)
173 {
174     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
175     atomic_store_explicit(a, value, memory_order_release);
176 }
177 
178 /*
179  * Compare-and-set operation with "acquire" or "release" ordering.
180  *
181  * This returns zero if the new value was successfully stored, which will
182  * only happen when *addr == oldvalue.
183  *
184  * (The return value is inverted from implementations on other platforms,
185  * but matches the ARM ldrex/strex result.)
186  *
187  * Implementations that use the release CAS in a loop may be less efficient
188  * than possible, because we re-issue the memory barrier on each iteration.
189  */
190 ANDROID_ATOMIC_INLINE
android_atomic_acquire_cas(int32_t oldvalue,int32_t newvalue,volatile int32_t * addr)191 int android_atomic_acquire_cas(int32_t oldvalue, int32_t newvalue,
192                            volatile int32_t* addr)
193 {
194     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
195     return (int)(!atomic_compare_exchange_strong_explicit(
196                                           a, &oldvalue, newvalue,
197                                           memory_order_acquire,
198                                           memory_order_acquire));
199 }
200 
201 ANDROID_ATOMIC_INLINE
android_atomic_release_cas(int32_t oldvalue,int32_t newvalue,volatile int32_t * addr)202 int android_atomic_release_cas(int32_t oldvalue, int32_t newvalue,
203                                volatile int32_t* addr)
204 {
205     volatile atomic_int_least32_t* a = (volatile atomic_int_least32_t*)addr;
206     return (int)(!atomic_compare_exchange_strong_explicit(
207                                           a, &oldvalue, newvalue,
208                                           memory_order_release,
209                                           memory_order_relaxed));
210 }
211 
212 /*
213  * Fence primitives.
214  */
215 ANDROID_ATOMIC_INLINE
android_compiler_barrier(void)216 void android_compiler_barrier(void)
217 {
218     __asm__ __volatile__ ("" : : : "memory");
219     /* Could probably also be:                          */
220     /* atomic_signal_fence(memory_order_seq_cst);       */
221 }
222 
223 ANDROID_ATOMIC_INLINE
android_memory_barrier(void)224 void android_memory_barrier(void)
225 {
226     atomic_thread_fence(memory_order_seq_cst);
227 }
228 
229 /*
230  * Aliases for code using an older version of this header.  These are now
231  * deprecated and should not be used.  The definitions will be removed
232  * in a future release.
233  */
234 #define android_atomic_write android_atomic_release_store
235 #define android_atomic_cmpxchg android_atomic_release_cas
236 
237 #endif // ANDROID_CUTILS_ATOMIC_H
238