• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #undef NDEBUG
29 
30 #include "main/glheader.h"
31 #include "main/bufferobj.h"
32 #include "main/context.h"
33 #include "main/enums.h"
34 #include "main/macros.h"
35 
36 #include "brw_draw.h"
37 #include "brw_defines.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40 
41 #include "intel_batchbuffer.h"
42 #include "intel_buffer_objects.h"
43 
44 static GLuint double_types[5] = {
45    0,
46    BRW_SURFACEFORMAT_R64_FLOAT,
47    BRW_SURFACEFORMAT_R64G64_FLOAT,
48    BRW_SURFACEFORMAT_R64G64B64_FLOAT,
49    BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
50 };
51 
52 static GLuint float_types[5] = {
53    0,
54    BRW_SURFACEFORMAT_R32_FLOAT,
55    BRW_SURFACEFORMAT_R32G32_FLOAT,
56    BRW_SURFACEFORMAT_R32G32B32_FLOAT,
57    BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
58 };
59 
60 static GLuint half_float_types[5] = {
61    0,
62    BRW_SURFACEFORMAT_R16_FLOAT,
63    BRW_SURFACEFORMAT_R16G16_FLOAT,
64    BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
65    BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
66 };
67 
68 static GLuint uint_types_direct[5] = {
69    0,
70    BRW_SURFACEFORMAT_R32_UINT,
71    BRW_SURFACEFORMAT_R32G32_UINT,
72    BRW_SURFACEFORMAT_R32G32B32_UINT,
73    BRW_SURFACEFORMAT_R32G32B32A32_UINT
74 };
75 
76 static GLuint uint_types_norm[5] = {
77    0,
78    BRW_SURFACEFORMAT_R32_UNORM,
79    BRW_SURFACEFORMAT_R32G32_UNORM,
80    BRW_SURFACEFORMAT_R32G32B32_UNORM,
81    BRW_SURFACEFORMAT_R32G32B32A32_UNORM
82 };
83 
84 static GLuint uint_types_scale[5] = {
85    0,
86    BRW_SURFACEFORMAT_R32_USCALED,
87    BRW_SURFACEFORMAT_R32G32_USCALED,
88    BRW_SURFACEFORMAT_R32G32B32_USCALED,
89    BRW_SURFACEFORMAT_R32G32B32A32_USCALED
90 };
91 
92 static GLuint int_types_direct[5] = {
93    0,
94    BRW_SURFACEFORMAT_R32_SINT,
95    BRW_SURFACEFORMAT_R32G32_SINT,
96    BRW_SURFACEFORMAT_R32G32B32_SINT,
97    BRW_SURFACEFORMAT_R32G32B32A32_SINT
98 };
99 
100 static GLuint int_types_norm[5] = {
101    0,
102    BRW_SURFACEFORMAT_R32_SNORM,
103    BRW_SURFACEFORMAT_R32G32_SNORM,
104    BRW_SURFACEFORMAT_R32G32B32_SNORM,
105    BRW_SURFACEFORMAT_R32G32B32A32_SNORM
106 };
107 
108 static GLuint int_types_scale[5] = {
109    0,
110    BRW_SURFACEFORMAT_R32_SSCALED,
111    BRW_SURFACEFORMAT_R32G32_SSCALED,
112    BRW_SURFACEFORMAT_R32G32B32_SSCALED,
113    BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
114 };
115 
116 static GLuint ushort_types_direct[5] = {
117    0,
118    BRW_SURFACEFORMAT_R16_UINT,
119    BRW_SURFACEFORMAT_R16G16_UINT,
120    BRW_SURFACEFORMAT_R16G16B16A16_UINT,
121    BRW_SURFACEFORMAT_R16G16B16A16_UINT
122 };
123 
124 static GLuint ushort_types_norm[5] = {
125    0,
126    BRW_SURFACEFORMAT_R16_UNORM,
127    BRW_SURFACEFORMAT_R16G16_UNORM,
128    BRW_SURFACEFORMAT_R16G16B16_UNORM,
129    BRW_SURFACEFORMAT_R16G16B16A16_UNORM
130 };
131 
132 static GLuint ushort_types_scale[5] = {
133    0,
134    BRW_SURFACEFORMAT_R16_USCALED,
135    BRW_SURFACEFORMAT_R16G16_USCALED,
136    BRW_SURFACEFORMAT_R16G16B16_USCALED,
137    BRW_SURFACEFORMAT_R16G16B16A16_USCALED
138 };
139 
140 static GLuint short_types_direct[5] = {
141    0,
142    BRW_SURFACEFORMAT_R16_SINT,
143    BRW_SURFACEFORMAT_R16G16_SINT,
144    BRW_SURFACEFORMAT_R16G16B16A16_SINT,
145    BRW_SURFACEFORMAT_R16G16B16A16_SINT
146 };
147 
148 static GLuint short_types_norm[5] = {
149    0,
150    BRW_SURFACEFORMAT_R16_SNORM,
151    BRW_SURFACEFORMAT_R16G16_SNORM,
152    BRW_SURFACEFORMAT_R16G16B16_SNORM,
153    BRW_SURFACEFORMAT_R16G16B16A16_SNORM
154 };
155 
156 static GLuint short_types_scale[5] = {
157    0,
158    BRW_SURFACEFORMAT_R16_SSCALED,
159    BRW_SURFACEFORMAT_R16G16_SSCALED,
160    BRW_SURFACEFORMAT_R16G16B16_SSCALED,
161    BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
162 };
163 
164 static GLuint ubyte_types_direct[5] = {
165    0,
166    BRW_SURFACEFORMAT_R8_UINT,
167    BRW_SURFACEFORMAT_R8G8_UINT,
168    BRW_SURFACEFORMAT_R8G8B8A8_UINT,
169    BRW_SURFACEFORMAT_R8G8B8A8_UINT
170 };
171 
172 static GLuint ubyte_types_norm[5] = {
173    0,
174    BRW_SURFACEFORMAT_R8_UNORM,
175    BRW_SURFACEFORMAT_R8G8_UNORM,
176    BRW_SURFACEFORMAT_R8G8B8_UNORM,
177    BRW_SURFACEFORMAT_R8G8B8A8_UNORM
178 };
179 
180 static GLuint ubyte_types_scale[5] = {
181    0,
182    BRW_SURFACEFORMAT_R8_USCALED,
183    BRW_SURFACEFORMAT_R8G8_USCALED,
184    BRW_SURFACEFORMAT_R8G8B8_USCALED,
185    BRW_SURFACEFORMAT_R8G8B8A8_USCALED
186 };
187 
188 static GLuint byte_types_direct[5] = {
189    0,
190    BRW_SURFACEFORMAT_R8_SINT,
191    BRW_SURFACEFORMAT_R8G8_SINT,
192    BRW_SURFACEFORMAT_R8G8B8A8_SINT,
193    BRW_SURFACEFORMAT_R8G8B8A8_SINT
194 };
195 
196 static GLuint byte_types_norm[5] = {
197    0,
198    BRW_SURFACEFORMAT_R8_SNORM,
199    BRW_SURFACEFORMAT_R8G8_SNORM,
200    BRW_SURFACEFORMAT_R8G8B8_SNORM,
201    BRW_SURFACEFORMAT_R8G8B8A8_SNORM
202 };
203 
204 static GLuint byte_types_scale[5] = {
205    0,
206    BRW_SURFACEFORMAT_R8_SSCALED,
207    BRW_SURFACEFORMAT_R8G8_SSCALED,
208    BRW_SURFACEFORMAT_R8G8B8_SSCALED,
209    BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
210 };
211 
212 
213 /**
214  * Given vertex array type/size/format/normalized info, return
215  * the appopriate hardware surface type.
216  * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
217  */
get_surface_type(GLenum type,GLuint size,GLenum format,bool normalized,bool integer)218 static GLuint get_surface_type( GLenum type, GLuint size,
219                                 GLenum format, bool normalized, bool integer )
220 {
221    if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
222       printf("type %s size %d normalized %d\n",
223 		   _mesa_lookup_enum_by_nr(type), size, normalized);
224 
225    if (integer) {
226       assert(format == GL_RGBA); /* sanity check */
227       switch (type) {
228       case GL_INT: return int_types_direct[size];
229       case GL_SHORT: return short_types_direct[size];
230       case GL_BYTE: return byte_types_direct[size];
231       case GL_UNSIGNED_INT: return uint_types_direct[size];
232       case GL_UNSIGNED_SHORT: return ushort_types_direct[size];
233       case GL_UNSIGNED_BYTE: return ubyte_types_direct[size];
234       default: assert(0); return 0;
235       }
236    } else if (normalized) {
237       switch (type) {
238       case GL_DOUBLE: return double_types[size];
239       case GL_FLOAT: return float_types[size];
240       case GL_HALF_FLOAT: return half_float_types[size];
241       case GL_INT: return int_types_norm[size];
242       case GL_SHORT: return short_types_norm[size];
243       case GL_BYTE: return byte_types_norm[size];
244       case GL_UNSIGNED_INT: return uint_types_norm[size];
245       case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
246       case GL_UNSIGNED_BYTE:
247          if (format == GL_BGRA) {
248             /* See GL_EXT_vertex_array_bgra */
249             assert(size == 4);
250             return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
251          }
252          else {
253             return ubyte_types_norm[size];
254          }
255       default: assert(0); return 0;
256       }
257    }
258    else {
259       assert(format == GL_RGBA); /* sanity check */
260       switch (type) {
261       case GL_DOUBLE: return double_types[size];
262       case GL_FLOAT: return float_types[size];
263       case GL_HALF_FLOAT: return half_float_types[size];
264       case GL_INT: return int_types_scale[size];
265       case GL_SHORT: return short_types_scale[size];
266       case GL_BYTE: return byte_types_scale[size];
267       case GL_UNSIGNED_INT: return uint_types_scale[size];
268       case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
269       case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
270       /* This produces GL_FIXED inputs as values between INT32_MIN and
271        * INT32_MAX, which will be scaled down by 1/65536 by the VS.
272        */
273       case GL_FIXED: return int_types_scale[size];
274       default: assert(0); return 0;
275       }
276    }
277 }
278 
279 
get_size(GLenum type)280 static GLuint get_size( GLenum type )
281 {
282    switch (type) {
283    case GL_DOUBLE: return sizeof(GLdouble);
284    case GL_FLOAT: return sizeof(GLfloat);
285    case GL_HALF_FLOAT: return sizeof(GLhalfARB);
286    case GL_INT: return sizeof(GLint);
287    case GL_SHORT: return sizeof(GLshort);
288    case GL_BYTE: return sizeof(GLbyte);
289    case GL_UNSIGNED_INT: return sizeof(GLuint);
290    case GL_UNSIGNED_SHORT: return sizeof(GLushort);
291    case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
292    case GL_FIXED: return sizeof(GLuint);
293    default: assert(0); return 0;
294    }
295 }
296 
get_index_type(GLenum type)297 static GLuint get_index_type(GLenum type)
298 {
299    switch (type) {
300    case GL_UNSIGNED_BYTE:  return BRW_INDEX_BYTE;
301    case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
302    case GL_UNSIGNED_INT:   return BRW_INDEX_DWORD;
303    default: assert(0); return 0;
304    }
305 }
306 
307 static void
copy_array_to_vbo_array(struct brw_context * brw,struct brw_vertex_element * element,int min,int max,struct brw_vertex_buffer * buffer,GLuint dst_stride)308 copy_array_to_vbo_array(struct brw_context *brw,
309 			struct brw_vertex_element *element,
310 			int min, int max,
311 			struct brw_vertex_buffer *buffer,
312 			GLuint dst_stride)
313 {
314    if (min == -1) {
315       /* If we don't have computed min/max bounds, then this must be a use of
316        * the current attribute, which has a 0 stride.  Otherwise, we wouldn't
317        * know what data to upload.
318        */
319       assert(element->glarray->StrideB == 0);
320 
321       intel_upload_data(&brw->intel, element->glarray->Ptr,
322                         element->element_size,
323                         element->element_size,
324 			&buffer->bo, &buffer->offset);
325 
326       buffer->stride = 0;
327       return;
328    }
329 
330    int src_stride = element->glarray->StrideB;
331    const unsigned char *src = element->glarray->Ptr + min * src_stride;
332    int count = max - min + 1;
333    GLuint size = count * dst_stride;
334 
335    if (dst_stride == src_stride) {
336       intel_upload_data(&brw->intel, src, size, dst_stride,
337 			&buffer->bo, &buffer->offset);
338    } else {
339       char * const map = intel_upload_map(&brw->intel, size, dst_stride);
340       char *dst = map;
341 
342       while (count--) {
343 	 memcpy(dst, src, dst_stride);
344 	 src += src_stride;
345 	 dst += dst_stride;
346       }
347       intel_upload_unmap(&brw->intel, map, size, dst_stride,
348 			 &buffer->bo, &buffer->offset);
349    }
350    buffer->stride = dst_stride;
351 }
352 
brw_prepare_vertices(struct brw_context * brw)353 static void brw_prepare_vertices(struct brw_context *brw)
354 {
355    struct gl_context *ctx = &brw->intel.ctx;
356    struct intel_context *intel = intel_context(ctx);
357    /* CACHE_NEW_VS_PROG */
358    GLbitfield64 vs_inputs = brw->vs.prog_data->inputs_read;
359    const unsigned char *ptr = NULL;
360    GLuint interleaved = 0;
361    unsigned int min_index = brw->vb.min_index;
362    unsigned int max_index = brw->vb.max_index;
363    int delta, i, j;
364 
365    struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
366    GLuint nr_uploads = 0;
367 
368    /* _NEW_POLYGON
369     *
370     * On gen6+, edge flags don't end up in the VUE (either in or out of the
371     * VS).  Instead, they're uploaded as the last vertex element, and the data
372     * is passed sideband through the fixed function units.  So, we need to
373     * prepare the vertex buffer for it, but it's not present in inputs_read.
374     */
375    if (intel->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
376                            ctx->Polygon.BackMode != GL_FILL)) {
377       vs_inputs |= VERT_BIT_EDGEFLAG;
378    }
379 
380    /* First build an array of pointers to ve's in vb.inputs_read
381     */
382    if (0)
383       printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
384 
385    /* Accumulate the list of enabled arrays. */
386    brw->vb.nr_enabled = 0;
387    while (vs_inputs) {
388       GLuint i = ffsll(vs_inputs) - 1;
389       struct brw_vertex_element *input = &brw->vb.inputs[i];
390 
391       vs_inputs &= ~BITFIELD64_BIT(i);
392       if (input->glarray->Size && get_size(input->glarray->Type))
393          brw->vb.enabled[brw->vb.nr_enabled++] = input;
394    }
395 
396    if (brw->vb.nr_enabled == 0)
397       return;
398 
399    if (brw->vb.nr_buffers)
400       goto prepare;
401 
402    for (i = j = 0; i < brw->vb.nr_enabled; i++) {
403       struct brw_vertex_element *input = brw->vb.enabled[i];
404       const struct gl_client_array *glarray = input->glarray;
405       int type_size = get_size(glarray->Type);
406 
407       input->element_size = type_size * glarray->Size;
408 
409       if (_mesa_is_bufferobj(glarray->BufferObj)) {
410 	 struct intel_buffer_object *intel_buffer =
411 	    intel_buffer_object(glarray->BufferObj);
412 	 int k;
413 
414 	 for (k = 0; k < i; k++) {
415 	    const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
416 	    if (glarray->BufferObj == other->BufferObj &&
417 		glarray->StrideB == other->StrideB &&
418 		glarray->InstanceDivisor == other->InstanceDivisor &&
419 		(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
420 	    {
421 	       input->buffer = brw->vb.enabled[k]->buffer;
422 	       input->offset = glarray->Ptr - other->Ptr;
423 	       break;
424 	    }
425 	 }
426 	 if (k == i) {
427 	    struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
428 
429 	    /* Named buffer object: Just reference its contents directly. */
430             buffer->bo = intel_bufferobj_source(intel,
431                                                 intel_buffer, type_size,
432 						&buffer->offset);
433 	    drm_intel_bo_reference(buffer->bo);
434 	    buffer->offset += (uintptr_t)glarray->Ptr;
435 	    buffer->stride = glarray->StrideB;
436 	    buffer->step_rate = glarray->InstanceDivisor;
437 
438 	    input->buffer = j++;
439 	    input->offset = 0;
440 	 }
441 
442 	 /* This is a common place to reach if the user mistakenly supplies
443 	  * a pointer in place of a VBO offset.  If we just let it go through,
444 	  * we may end up dereferencing a pointer beyond the bounds of the
445 	  * GTT.  We would hope that the VBO's max_index would save us, but
446 	  * Mesa appears to hand us min/max values not clipped to the
447 	  * array object's _MaxElement, and _MaxElement frequently appears
448 	  * to be wrong anyway.
449 	  *
450 	  * The VBO spec allows application termination in this case, and it's
451 	  * probably a service to the poor programmer to do so rather than
452 	  * trying to just not render.
453 	  */
454 	 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
455       } else {
456 	 /* Queue the buffer object up to be uploaded in the next pass,
457 	  * when we've decided if we're doing interleaved or not.
458 	  */
459 	 if (nr_uploads == 0) {
460 	    interleaved = glarray->StrideB;
461 	    ptr = glarray->Ptr;
462 	 }
463 	 else if (interleaved != glarray->StrideB ||
464 		  (uintptr_t)(glarray->Ptr - ptr) > interleaved)
465 	 {
466 	    interleaved = 0;
467 	 }
468 	 else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1))
469 	 {
470 	    /* enforce natural alignment (for doubles) */
471 	    interleaved = 0;
472 	 }
473 
474 	 upload[nr_uploads++] = input;
475       }
476    }
477 
478    /* If we need to upload all the arrays, then we can trim those arrays to
479     * only the used elements [min_index, max_index] so long as we adjust all
480     * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
481     */
482    brw->vb.start_vertex_bias = 0;
483    delta = min_index;
484    if (nr_uploads == brw->vb.nr_enabled) {
485       brw->vb.start_vertex_bias = -delta;
486       delta = 0;
487    }
488    if (delta && !brw->intel.intelScreen->relaxed_relocations)
489       min_index = delta = 0;
490 
491    /* Handle any arrays to be uploaded. */
492    if (nr_uploads > 1) {
493       if (interleaved) {
494 	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
495 	 /* All uploads are interleaved, so upload the arrays together as
496 	  * interleaved.  First, upload the contents and set up upload[0].
497 	  */
498 	 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
499 				 buffer, interleaved);
500 	 buffer->offset -= delta * interleaved;
501 
502 	 for (i = 0; i < nr_uploads; i++) {
503 	    /* Then, just point upload[i] at upload[0]'s buffer. */
504 	    upload[i]->offset =
505 	       ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
506 	    upload[i]->buffer = j;
507 	 }
508 	 j++;
509 
510 	 nr_uploads = 0;
511       }
512    }
513    /* Upload non-interleaved arrays */
514    for (i = 0; i < nr_uploads; i++) {
515       struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
516       if (upload[i]->glarray->InstanceDivisor == 0) {
517          copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
518                                  buffer, upload[i]->element_size);
519       } else {
520          /* This is an instanced attribute, since its InstanceDivisor
521           * is not zero. Therefore, its data will be stepped after the
522           * instanced draw has been run InstanceDivisor times.
523           */
524          uint32_t instanced_attr_max_index =
525             (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
526          copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
527                                  buffer, upload[i]->element_size);
528       }
529       buffer->offset -= delta * buffer->stride;
530       buffer->step_rate = upload[i]->glarray->InstanceDivisor;
531       upload[i]->buffer = j++;
532       upload[i]->offset = 0;
533    }
534 
535    /* can we simply extend the current vb? */
536    if (j == brw->vb.nr_current_buffers) {
537       int delta = 0;
538       for (i = 0; i < j; i++) {
539 	 int d;
540 
541 	 if (brw->vb.current_buffers[i].handle != brw->vb.buffers[i].bo->handle ||
542 	     brw->vb.current_buffers[i].stride != brw->vb.buffers[i].stride ||
543 	     brw->vb.current_buffers[i].step_rate != brw->vb.buffers[i].step_rate)
544 	    break;
545 
546 	 d = brw->vb.buffers[i].offset - brw->vb.current_buffers[i].offset;
547 	 if (d < 0)
548 	    break;
549 	 if (i == 0)
550 	    delta = d / brw->vb.current_buffers[i].stride;
551 	 if (delta * brw->vb.current_buffers[i].stride != d)
552 	    break;
553       }
554 
555       if (i == j) {
556 	 brw->vb.start_vertex_bias += delta;
557 	 while (--j >= 0)
558 	    drm_intel_bo_unreference(brw->vb.buffers[j].bo);
559 	 j = 0;
560       }
561    }
562 
563    brw->vb.nr_buffers = j;
564 
565 prepare:
566    brw_prepare_query_begin(brw);
567 }
568 
brw_emit_vertices(struct brw_context * brw)569 static void brw_emit_vertices(struct brw_context *brw)
570 {
571    struct gl_context *ctx = &brw->intel.ctx;
572    struct intel_context *intel = intel_context(ctx);
573    GLuint i, nr_elements;
574 
575    brw_prepare_vertices(brw);
576 
577    brw_emit_query_begin(brw);
578 
579    /* If the VS doesn't read any inputs (calculating vertex position from
580     * a state variable for some reason, for example), emit a single pad
581     * VERTEX_ELEMENT struct and bail.
582     *
583     * The stale VB state stays in place, but they don't do anything unless
584     * a VE loads from them.
585     */
586    if (brw->vb.nr_enabled == 0) {
587       BEGIN_BATCH(3);
588       OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | 1);
589       if (intel->gen >= 6) {
590 	 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
591 		   GEN6_VE0_VALID |
592 		   (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
593 		   (0 << BRW_VE0_SRC_OFFSET_SHIFT));
594       } else {
595 	 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
596 		   BRW_VE0_VALID |
597 		   (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
598 		   (0 << BRW_VE0_SRC_OFFSET_SHIFT));
599       }
600       OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
601 		(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
602 		(BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
603 		(BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
604       CACHED_BATCH();
605       return;
606    }
607 
608    /* Now emit VB and VEP state packets.
609     */
610 
611    if (brw->vb.nr_buffers) {
612       if (intel->gen >= 6) {
613 	 assert(brw->vb.nr_buffers <= 33);
614       } else {
615 	 assert(brw->vb.nr_buffers <= 17);
616       }
617 
618       BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
619       OUT_BATCH((_3DSTATE_VERTEX_BUFFERS << 16) | (4*brw->vb.nr_buffers - 1));
620       for (i = 0; i < brw->vb.nr_buffers; i++) {
621 	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
622 	 uint32_t dw0;
623 
624 	 if (intel->gen >= 6) {
625 	    dw0 = buffer->step_rate
626 	             ? GEN6_VB0_ACCESS_INSTANCEDATA
627 	             : GEN6_VB0_ACCESS_VERTEXDATA;
628 	    dw0 |= i << GEN6_VB0_INDEX_SHIFT;
629 	 } else {
630 	    dw0 = buffer->step_rate
631 	             ? BRW_VB0_ACCESS_INSTANCEDATA
632 	             : BRW_VB0_ACCESS_VERTEXDATA;
633 	    dw0 |= i << BRW_VB0_INDEX_SHIFT;
634 	 }
635 
636 	 if (intel->gen >= 7)
637 	    dw0 |= GEN7_VB0_ADDRESS_MODIFYENABLE;
638 
639 	 OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
640 	 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
641 	 if (intel->gen >= 5) {
642 	    OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
643 	 } else
644 	    OUT_BATCH(0);
645 	 OUT_BATCH(buffer->step_rate);
646 
647 	 brw->vb.current_buffers[i].handle = buffer->bo->handle;
648 	 brw->vb.current_buffers[i].offset = buffer->offset;
649 	 brw->vb.current_buffers[i].stride = buffer->stride;
650 	 brw->vb.current_buffers[i].step_rate = buffer->step_rate;
651       }
652       brw->vb.nr_current_buffers = i;
653       ADVANCE_BATCH();
654    }
655 
656    nr_elements = brw->vb.nr_enabled + brw->vs.prog_data->uses_vertexid;
657 
658    /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS, presumably
659     * for VertexID/InstanceID.
660     */
661    if (intel->gen >= 6) {
662       assert(nr_elements <= 34);
663    } else {
664       assert(nr_elements <= 18);
665    }
666 
667    struct brw_vertex_element *gen6_edgeflag_input = NULL;
668 
669    BEGIN_BATCH(1 + nr_elements * 2);
670    OUT_BATCH((_3DSTATE_VERTEX_ELEMENTS << 16) | (2 * nr_elements - 1));
671    for (i = 0; i < brw->vb.nr_enabled; i++) {
672       struct brw_vertex_element *input = brw->vb.enabled[i];
673       uint32_t format = get_surface_type(input->glarray->Type,
674 					 input->glarray->Size,
675 					 input->glarray->Format,
676 					 input->glarray->Normalized,
677                                          input->glarray->Integer);
678       uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
679       uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
680       uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
681       uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
682 
683       /* The gen4 driver expects edgeflag to come in as a float, and passes
684        * that float on to the tests in the clipper.  Mesa's current vertex
685        * attribute value for EdgeFlag is stored as a float, which works out.
686        * glEdgeFlagPointer, on the other hand, gives us an unnormalized
687        * integer ubyte.  Just rewrite that to convert to a float.
688        */
689       if (input->attrib == VERT_ATTRIB_EDGEFLAG) {
690          /* Gen6+ passes edgeflag as sideband along with the vertex, instead
691           * of in the VUE.  We have to upload it sideband as the last vertex
692           * element according to the B-Spec.
693           */
694          if (intel->gen >= 6) {
695             gen6_edgeflag_input = input;
696             continue;
697          }
698 
699          if (format == BRW_SURFACEFORMAT_R8_UINT)
700             format = BRW_SURFACEFORMAT_R8_SSCALED;
701       }
702 
703       switch (input->glarray->Size) {
704       case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
705       case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
706       case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
707       case 3: comp3 = input->glarray->Integer ? BRW_VE1_COMPONENT_STORE_1_INT
708                                               : BRW_VE1_COMPONENT_STORE_1_FLT;
709 	 break;
710       }
711 
712       if (intel->gen >= 6) {
713 	 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
714 		   GEN6_VE0_VALID |
715 		   (format << BRW_VE0_FORMAT_SHIFT) |
716 		   (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
717       } else {
718 	 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
719 		   BRW_VE0_VALID |
720 		   (format << BRW_VE0_FORMAT_SHIFT) |
721 		   (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
722       }
723 
724       if (intel->gen >= 5)
725           OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
726                     (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
727                     (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
728                     (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
729       else
730           OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
731                     (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
732                     (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
733                     (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
734                     ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
735    }
736 
737    if (intel->gen >= 6 && gen6_edgeflag_input) {
738       uint32_t format = get_surface_type(gen6_edgeflag_input->glarray->Type,
739                                          gen6_edgeflag_input->glarray->Size,
740                                          gen6_edgeflag_input->glarray->Format,
741                                          gen6_edgeflag_input->glarray->Normalized,
742                                          gen6_edgeflag_input->glarray->Integer);
743 
744       OUT_BATCH((gen6_edgeflag_input->buffer << GEN6_VE0_INDEX_SHIFT) |
745                 GEN6_VE0_VALID |
746                 GEN6_VE0_EDGE_FLAG_ENABLE |
747                 (format << BRW_VE0_FORMAT_SHIFT) |
748                 (gen6_edgeflag_input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
749       OUT_BATCH((BRW_VE1_COMPONENT_STORE_SRC << BRW_VE1_COMPONENT_0_SHIFT) |
750                 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
751                 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
752                 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
753    }
754 
755    if (brw->vs.prog_data->uses_vertexid) {
756       uint32_t dw0 = 0, dw1 = 0;
757 
758       dw1 = ((BRW_VE1_COMPONENT_STORE_VID << BRW_VE1_COMPONENT_0_SHIFT) |
759 	     (BRW_VE1_COMPONENT_STORE_IID << BRW_VE1_COMPONENT_1_SHIFT) |
760 	     (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
761 	     (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_3_SHIFT));
762 
763       if (intel->gen >= 6) {
764 	 dw0 |= GEN6_VE0_VALID;
765       } else {
766 	 dw0 |= BRW_VE0_VALID;
767 	 dw1 |= (i * 4) << BRW_VE1_DST_OFFSET_SHIFT;
768       }
769 
770       /* Note that for gl_VertexID, gl_InstanceID, and gl_PrimitiveID values,
771        * the format is ignored and the value is always int.
772        */
773 
774       OUT_BATCH(dw0);
775       OUT_BATCH(dw1);
776    }
777 
778    CACHED_BATCH();
779 }
780 
781 const struct brw_tracked_state brw_vertices = {
782    .dirty = {
783       .mesa = _NEW_POLYGON,
784       .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
785       .cache = CACHE_NEW_VS_PROG,
786    },
787    .emit = brw_emit_vertices,
788 };
789 
brw_upload_indices(struct brw_context * brw)790 static void brw_upload_indices(struct brw_context *brw)
791 {
792    struct gl_context *ctx = &brw->intel.ctx;
793    struct intel_context *intel = &brw->intel;
794    const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
795    GLuint ib_size;
796    drm_intel_bo *bo = NULL;
797    struct gl_buffer_object *bufferobj;
798    GLuint offset;
799    GLuint ib_type_size;
800 
801    if (index_buffer == NULL)
802       return;
803 
804    ib_type_size = get_size(index_buffer->type);
805    ib_size = ib_type_size * index_buffer->count;
806    bufferobj = index_buffer->obj;
807 
808    /* Turn into a proper VBO:
809     */
810    if (!_mesa_is_bufferobj(bufferobj)) {
811 
812       /* Get new bufferobj, offset:
813        */
814       intel_upload_data(&brw->intel, index_buffer->ptr, ib_size, ib_type_size,
815 			&bo, &offset);
816       brw->ib.start_vertex_offset = offset / ib_type_size;
817    } else {
818       offset = (GLuint) (unsigned long) index_buffer->ptr;
819 
820       /* If the index buffer isn't aligned to its element size, we have to
821        * rebase it into a temporary.
822        */
823        if ((get_size(index_buffer->type) - 1) & offset) {
824            GLubyte *map = ctx->Driver.MapBufferRange(ctx,
825 						     offset,
826 						     ib_size,
827 						     GL_MAP_WRITE_BIT,
828 						     bufferobj);
829 
830 	   intel_upload_data(&brw->intel, map, ib_size, ib_type_size,
831 			     &bo, &offset);
832 	   brw->ib.start_vertex_offset = offset / ib_type_size;
833 
834            ctx->Driver.UnmapBuffer(ctx, bufferobj);
835        } else {
836 	  /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
837 	   * the index buffer state when we're just moving the start index
838 	   * of our drawing.
839 	   */
840 	  brw->ib.start_vertex_offset = offset / ib_type_size;
841 
842 	  bo = intel_bufferobj_source(intel,
843 				      intel_buffer_object(bufferobj),
844 				      ib_type_size,
845 				      &offset);
846 	  drm_intel_bo_reference(bo);
847 
848 	  brw->ib.start_vertex_offset += offset / ib_type_size;
849        }
850    }
851 
852    if (brw->ib.bo != bo) {
853       drm_intel_bo_unreference(brw->ib.bo);
854       brw->ib.bo = bo;
855 
856       brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
857    } else {
858       drm_intel_bo_unreference(bo);
859    }
860 
861    if (index_buffer->type != brw->ib.type) {
862       brw->ib.type = index_buffer->type;
863       brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
864    }
865 }
866 
867 const struct brw_tracked_state brw_indices = {
868    .dirty = {
869       .mesa = 0,
870       .brw = BRW_NEW_INDICES,
871       .cache = 0,
872    },
873    .emit = brw_upload_indices,
874 };
875 
brw_emit_index_buffer(struct brw_context * brw)876 static void brw_emit_index_buffer(struct brw_context *brw)
877 {
878    struct intel_context *intel = &brw->intel;
879    const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
880    GLuint cut_index_setting;
881 
882    if (index_buffer == NULL)
883       return;
884 
885    if (brw->prim_restart.enable_cut_index && !intel->is_haswell) {
886       cut_index_setting = BRW_CUT_INDEX_ENABLE;
887    } else {
888       cut_index_setting = 0;
889    }
890 
891    BEGIN_BATCH(3);
892    OUT_BATCH(CMD_INDEX_BUFFER << 16 |
893              cut_index_setting |
894              get_index_type(index_buffer->type) << 8 |
895              1);
896    OUT_RELOC(brw->ib.bo,
897              I915_GEM_DOMAIN_VERTEX, 0,
898              0);
899    OUT_RELOC(brw->ib.bo,
900              I915_GEM_DOMAIN_VERTEX, 0,
901 	     brw->ib.bo->size - 1);
902    ADVANCE_BATCH();
903 }
904 
905 const struct brw_tracked_state brw_index_buffer = {
906    .dirty = {
907       .mesa = 0,
908       .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
909       .cache = 0,
910    },
911    .emit = brw_emit_index_buffer,
912 };
913