• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
11 // accesses. Currently, it is an (incomplete) implementation of the approach
12 // described in
13 //
14 //            Practical Dependence Testing
15 //            Goff, Kennedy, Tseng
16 //            PLDI 1991
17 //
18 // There's a single entry point that analyzes the dependence between a pair
19 // of memory references in a function, returning either NULL, for no dependence,
20 // or a more-or-less detailed description of the dependence between them.
21 //
22 // Currently, the implementation cannot propagate constraints between
23 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
24 // Both of these are conservative weaknesses;
25 // that is, not a source of correctness problems.
26 //
27 // The implementation depends on the GEP instruction to differentiate
28 // subscripts. Since Clang linearizes some array subscripts, the dependence
29 // analysis is using SCEV->delinearize to recover the representation of multiple
30 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
31 // delinearization is controlled by the flag -da-delinearize.
32 //
33 // We should pay some careful attention to the possibility of integer overflow
34 // in the implementation of the various tests. This could happen with Add,
35 // Subtract, or Multiply, with both APInt's and SCEV's.
36 //
37 // Some non-linear subscript pairs can be handled by the GCD test
38 // (and perhaps other tests).
39 // Should explore how often these things occur.
40 //
41 // Finally, it seems like certain test cases expose weaknesses in the SCEV
42 // simplification, especially in the handling of sign and zero extensions.
43 // It could be useful to spend time exploring these.
44 //
45 // Please note that this is work in progress and the interface is subject to
46 // change.
47 //
48 //===----------------------------------------------------------------------===//
49 //                                                                            //
50 //                   In memory of Ken Kennedy, 1945 - 2007                    //
51 //                                                                            //
52 //===----------------------------------------------------------------------===//
53 
54 #include "llvm/Analysis/DependenceAnalysis.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/Statistic.h"
57 #include "llvm/Analysis/AliasAnalysis.h"
58 #include "llvm/Analysis/LoopInfo.h"
59 #include "llvm/Analysis/ScalarEvolution.h"
60 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
61 #include "llvm/Analysis/ValueTracking.h"
62 #include "llvm/IR/InstIterator.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/IR/Operator.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/raw_ostream.h"
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "da"
73 
74 //===----------------------------------------------------------------------===//
75 // statistics
76 
77 STATISTIC(TotalArrayPairs, "Array pairs tested");
78 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
79 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
80 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
81 STATISTIC(ZIVapplications, "ZIV applications");
82 STATISTIC(ZIVindependence, "ZIV independence");
83 STATISTIC(StrongSIVapplications, "Strong SIV applications");
84 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
85 STATISTIC(StrongSIVindependence, "Strong SIV independence");
86 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
87 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
88 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
89 STATISTIC(ExactSIVapplications, "Exact SIV applications");
90 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
91 STATISTIC(ExactSIVindependence, "Exact SIV independence");
92 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
93 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
94 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
95 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
96 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
97 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
98 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
99 STATISTIC(DeltaApplications, "Delta applications");
100 STATISTIC(DeltaSuccesses, "Delta successes");
101 STATISTIC(DeltaIndependence, "Delta independence");
102 STATISTIC(DeltaPropagations, "Delta propagations");
103 STATISTIC(GCDapplications, "GCD applications");
104 STATISTIC(GCDsuccesses, "GCD successes");
105 STATISTIC(GCDindependence, "GCD independence");
106 STATISTIC(BanerjeeApplications, "Banerjee applications");
107 STATISTIC(BanerjeeIndependence, "Banerjee independence");
108 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109 
110 static cl::opt<bool>
111 Delinearize("da-delinearize", cl::init(false), cl::Hidden, cl::ZeroOrMore,
112             cl::desc("Try to delinearize array references."));
113 
114 //===----------------------------------------------------------------------===//
115 // basics
116 
117 INITIALIZE_PASS_BEGIN(DependenceAnalysis, "da",
118                       "Dependence Analysis", true, true)
119 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
120 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
121 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
122 INITIALIZE_PASS_END(DependenceAnalysis, "da",
123                     "Dependence Analysis", true, true)
124 
125 char DependenceAnalysis::ID = 0;
126 
127 
createDependenceAnalysisPass()128 FunctionPass *llvm::createDependenceAnalysisPass() {
129   return new DependenceAnalysis();
130 }
131 
132 
runOnFunction(Function & F)133 bool DependenceAnalysis::runOnFunction(Function &F) {
134   this->F = &F;
135   AA = &getAnalysis<AliasAnalysis>();
136   SE = &getAnalysis<ScalarEvolution>();
137   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
138   return false;
139 }
140 
141 
releaseMemory()142 void DependenceAnalysis::releaseMemory() {
143 }
144 
145 
getAnalysisUsage(AnalysisUsage & AU) const146 void DependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
147   AU.setPreservesAll();
148   AU.addRequiredTransitive<AliasAnalysis>();
149   AU.addRequiredTransitive<ScalarEvolution>();
150   AU.addRequiredTransitive<LoopInfoWrapperPass>();
151 }
152 
153 
154 // Used to test the dependence analyzer.
155 // Looks through the function, noting loads and stores.
156 // Calls depends() on every possible pair and prints out the result.
157 // Ignores all other instructions.
158 static
dumpExampleDependence(raw_ostream & OS,Function * F,DependenceAnalysis * DA)159 void dumpExampleDependence(raw_ostream &OS, Function *F,
160                            DependenceAnalysis *DA) {
161   for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F);
162        SrcI != SrcE; ++SrcI) {
163     if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
164       for (inst_iterator DstI = SrcI, DstE = inst_end(F);
165            DstI != DstE; ++DstI) {
166         if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
167           OS << "da analyze - ";
168           if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
169             D->dump(OS);
170             for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
171               if (D->isSplitable(Level)) {
172                 OS << "da analyze - split level = " << Level;
173                 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
174                 OS << "!\n";
175               }
176             }
177           }
178           else
179             OS << "none!\n";
180         }
181       }
182     }
183   }
184 }
185 
186 
print(raw_ostream & OS,const Module *) const187 void DependenceAnalysis::print(raw_ostream &OS, const Module*) const {
188   dumpExampleDependence(OS, F, const_cast<DependenceAnalysis *>(this));
189 }
190 
191 //===----------------------------------------------------------------------===//
192 // Dependence methods
193 
194 // Returns true if this is an input dependence.
isInput() const195 bool Dependence::isInput() const {
196   return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
197 }
198 
199 
200 // Returns true if this is an output dependence.
isOutput() const201 bool Dependence::isOutput() const {
202   return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
203 }
204 
205 
206 // Returns true if this is an flow (aka true)  dependence.
isFlow() const207 bool Dependence::isFlow() const {
208   return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
209 }
210 
211 
212 // Returns true if this is an anti dependence.
isAnti() const213 bool Dependence::isAnti() const {
214   return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
215 }
216 
217 
218 // Returns true if a particular level is scalar; that is,
219 // if no subscript in the source or destination mention the induction
220 // variable associated with the loop at this level.
221 // Leave this out of line, so it will serve as a virtual method anchor
isScalar(unsigned level) const222 bool Dependence::isScalar(unsigned level) const {
223   return false;
224 }
225 
226 
227 //===----------------------------------------------------------------------===//
228 // FullDependence methods
229 
FullDependence(Instruction * Source,Instruction * Destination,bool PossiblyLoopIndependent,unsigned CommonLevels)230 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
231                                bool PossiblyLoopIndependent,
232                                unsigned CommonLevels)
233     : Dependence(Source, Destination), Levels(CommonLevels),
234       LoopIndependent(PossiblyLoopIndependent) {
235   Consistent = true;
236   DV = CommonLevels ? new DVEntry[CommonLevels] : nullptr;
237 }
238 
239 // The rest are simple getters that hide the implementation.
240 
241 // getDirection - Returns the direction associated with a particular level.
getDirection(unsigned Level) const242 unsigned FullDependence::getDirection(unsigned Level) const {
243   assert(0 < Level && Level <= Levels && "Level out of range");
244   return DV[Level - 1].Direction;
245 }
246 
247 
248 // Returns the distance (or NULL) associated with a particular level.
getDistance(unsigned Level) const249 const SCEV *FullDependence::getDistance(unsigned Level) const {
250   assert(0 < Level && Level <= Levels && "Level out of range");
251   return DV[Level - 1].Distance;
252 }
253 
254 
255 // Returns true if a particular level is scalar; that is,
256 // if no subscript in the source or destination mention the induction
257 // variable associated with the loop at this level.
isScalar(unsigned Level) const258 bool FullDependence::isScalar(unsigned Level) const {
259   assert(0 < Level && Level <= Levels && "Level out of range");
260   return DV[Level - 1].Scalar;
261 }
262 
263 
264 // Returns true if peeling the first iteration from this loop
265 // will break this dependence.
isPeelFirst(unsigned Level) const266 bool FullDependence::isPeelFirst(unsigned Level) const {
267   assert(0 < Level && Level <= Levels && "Level out of range");
268   return DV[Level - 1].PeelFirst;
269 }
270 
271 
272 // Returns true if peeling the last iteration from this loop
273 // will break this dependence.
isPeelLast(unsigned Level) const274 bool FullDependence::isPeelLast(unsigned Level) const {
275   assert(0 < Level && Level <= Levels && "Level out of range");
276   return DV[Level - 1].PeelLast;
277 }
278 
279 
280 // Returns true if splitting this loop will break the dependence.
isSplitable(unsigned Level) const281 bool FullDependence::isSplitable(unsigned Level) const {
282   assert(0 < Level && Level <= Levels && "Level out of range");
283   return DV[Level - 1].Splitable;
284 }
285 
286 
287 //===----------------------------------------------------------------------===//
288 // DependenceAnalysis::Constraint methods
289 
290 // If constraint is a point <X, Y>, returns X.
291 // Otherwise assert.
getX() const292 const SCEV *DependenceAnalysis::Constraint::getX() const {
293   assert(Kind == Point && "Kind should be Point");
294   return A;
295 }
296 
297 
298 // If constraint is a point <X, Y>, returns Y.
299 // Otherwise assert.
getY() const300 const SCEV *DependenceAnalysis::Constraint::getY() const {
301   assert(Kind == Point && "Kind should be Point");
302   return B;
303 }
304 
305 
306 // If constraint is a line AX + BY = C, returns A.
307 // Otherwise assert.
getA() const308 const SCEV *DependenceAnalysis::Constraint::getA() const {
309   assert((Kind == Line || Kind == Distance) &&
310          "Kind should be Line (or Distance)");
311   return A;
312 }
313 
314 
315 // If constraint is a line AX + BY = C, returns B.
316 // Otherwise assert.
getB() const317 const SCEV *DependenceAnalysis::Constraint::getB() const {
318   assert((Kind == Line || Kind == Distance) &&
319          "Kind should be Line (or Distance)");
320   return B;
321 }
322 
323 
324 // If constraint is a line AX + BY = C, returns C.
325 // Otherwise assert.
getC() const326 const SCEV *DependenceAnalysis::Constraint::getC() const {
327   assert((Kind == Line || Kind == Distance) &&
328          "Kind should be Line (or Distance)");
329   return C;
330 }
331 
332 
333 // If constraint is a distance, returns D.
334 // Otherwise assert.
getD() const335 const SCEV *DependenceAnalysis::Constraint::getD() const {
336   assert(Kind == Distance && "Kind should be Distance");
337   return SE->getNegativeSCEV(C);
338 }
339 
340 
341 // Returns the loop associated with this constraint.
getAssociatedLoop() const342 const Loop *DependenceAnalysis::Constraint::getAssociatedLoop() const {
343   assert((Kind == Distance || Kind == Line || Kind == Point) &&
344          "Kind should be Distance, Line, or Point");
345   return AssociatedLoop;
346 }
347 
348 
setPoint(const SCEV * X,const SCEV * Y,const Loop * CurLoop)349 void DependenceAnalysis::Constraint::setPoint(const SCEV *X,
350                                               const SCEV *Y,
351                                               const Loop *CurLoop) {
352   Kind = Point;
353   A = X;
354   B = Y;
355   AssociatedLoop = CurLoop;
356 }
357 
358 
setLine(const SCEV * AA,const SCEV * BB,const SCEV * CC,const Loop * CurLoop)359 void DependenceAnalysis::Constraint::setLine(const SCEV *AA,
360                                              const SCEV *BB,
361                                              const SCEV *CC,
362                                              const Loop *CurLoop) {
363   Kind = Line;
364   A = AA;
365   B = BB;
366   C = CC;
367   AssociatedLoop = CurLoop;
368 }
369 
370 
setDistance(const SCEV * D,const Loop * CurLoop)371 void DependenceAnalysis::Constraint::setDistance(const SCEV *D,
372                                                  const Loop *CurLoop) {
373   Kind = Distance;
374   A = SE->getConstant(D->getType(), 1);
375   B = SE->getNegativeSCEV(A);
376   C = SE->getNegativeSCEV(D);
377   AssociatedLoop = CurLoop;
378 }
379 
380 
setEmpty()381 void DependenceAnalysis::Constraint::setEmpty() {
382   Kind = Empty;
383 }
384 
385 
setAny(ScalarEvolution * NewSE)386 void DependenceAnalysis::Constraint::setAny(ScalarEvolution *NewSE) {
387   SE = NewSE;
388   Kind = Any;
389 }
390 
391 
392 // For debugging purposes. Dumps the constraint out to OS.
dump(raw_ostream & OS) const393 void DependenceAnalysis::Constraint::dump(raw_ostream &OS) const {
394   if (isEmpty())
395     OS << " Empty\n";
396   else if (isAny())
397     OS << " Any\n";
398   else if (isPoint())
399     OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
400   else if (isDistance())
401     OS << " Distance is " << *getD() <<
402       " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
403   else if (isLine())
404     OS << " Line is " << *getA() << "*X + " <<
405       *getB() << "*Y = " << *getC() << "\n";
406   else
407     llvm_unreachable("unknown constraint type in Constraint::dump");
408 }
409 
410 
411 // Updates X with the intersection
412 // of the Constraints X and Y. Returns true if X has changed.
413 // Corresponds to Figure 4 from the paper
414 //
415 //            Practical Dependence Testing
416 //            Goff, Kennedy, Tseng
417 //            PLDI 1991
intersectConstraints(Constraint * X,const Constraint * Y)418 bool DependenceAnalysis::intersectConstraints(Constraint *X,
419                                               const Constraint *Y) {
420   ++DeltaApplications;
421   DEBUG(dbgs() << "\tintersect constraints\n");
422   DEBUG(dbgs() << "\t    X ="; X->dump(dbgs()));
423   DEBUG(dbgs() << "\t    Y ="; Y->dump(dbgs()));
424   assert(!Y->isPoint() && "Y must not be a Point");
425   if (X->isAny()) {
426     if (Y->isAny())
427       return false;
428     *X = *Y;
429     return true;
430   }
431   if (X->isEmpty())
432     return false;
433   if (Y->isEmpty()) {
434     X->setEmpty();
435     return true;
436   }
437 
438   if (X->isDistance() && Y->isDistance()) {
439     DEBUG(dbgs() << "\t    intersect 2 distances\n");
440     if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
441       return false;
442     if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
443       X->setEmpty();
444       ++DeltaSuccesses;
445       return true;
446     }
447     // Hmmm, interesting situation.
448     // I guess if either is constant, keep it and ignore the other.
449     if (isa<SCEVConstant>(Y->getD())) {
450       *X = *Y;
451       return true;
452     }
453     return false;
454   }
455 
456   // At this point, the pseudo-code in Figure 4 of the paper
457   // checks if (X->isPoint() && Y->isPoint()).
458   // This case can't occur in our implementation,
459   // since a Point can only arise as the result of intersecting
460   // two Line constraints, and the right-hand value, Y, is never
461   // the result of an intersection.
462   assert(!(X->isPoint() && Y->isPoint()) &&
463          "We shouldn't ever see X->isPoint() && Y->isPoint()");
464 
465   if (X->isLine() && Y->isLine()) {
466     DEBUG(dbgs() << "\t    intersect 2 lines\n");
467     const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
468     const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
469     if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
470       // slopes are equal, so lines are parallel
471       DEBUG(dbgs() << "\t\tsame slope\n");
472       Prod1 = SE->getMulExpr(X->getC(), Y->getB());
473       Prod2 = SE->getMulExpr(X->getB(), Y->getC());
474       if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
475         return false;
476       if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
477         X->setEmpty();
478         ++DeltaSuccesses;
479         return true;
480       }
481       return false;
482     }
483     if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
484       // slopes differ, so lines intersect
485       DEBUG(dbgs() << "\t\tdifferent slopes\n");
486       const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
487       const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
488       const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
489       const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
490       const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
491       const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
492       const SCEVConstant *C1A2_C2A1 =
493         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
494       const SCEVConstant *C1B2_C2B1 =
495         dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
496       const SCEVConstant *A1B2_A2B1 =
497         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
498       const SCEVConstant *A2B1_A1B2 =
499         dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
500       if (!C1B2_C2B1 || !C1A2_C2A1 ||
501           !A1B2_A2B1 || !A2B1_A1B2)
502         return false;
503       APInt Xtop = C1B2_C2B1->getValue()->getValue();
504       APInt Xbot = A1B2_A2B1->getValue()->getValue();
505       APInt Ytop = C1A2_C2A1->getValue()->getValue();
506       APInt Ybot = A2B1_A1B2->getValue()->getValue();
507       DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
508       DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
509       DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
510       DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
511       APInt Xq = Xtop; // these need to be initialized, even
512       APInt Xr = Xtop; // though they're just going to be overwritten
513       APInt::sdivrem(Xtop, Xbot, Xq, Xr);
514       APInt Yq = Ytop;
515       APInt Yr = Ytop;
516       APInt::sdivrem(Ytop, Ybot, Yq, Yr);
517       if (Xr != 0 || Yr != 0) {
518         X->setEmpty();
519         ++DeltaSuccesses;
520         return true;
521       }
522       DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
523       if (Xq.slt(0) || Yq.slt(0)) {
524         X->setEmpty();
525         ++DeltaSuccesses;
526         return true;
527       }
528       if (const SCEVConstant *CUB =
529           collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
530         APInt UpperBound = CUB->getValue()->getValue();
531         DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
532         if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
533           X->setEmpty();
534           ++DeltaSuccesses;
535           return true;
536         }
537       }
538       X->setPoint(SE->getConstant(Xq),
539                   SE->getConstant(Yq),
540                   X->getAssociatedLoop());
541       ++DeltaSuccesses;
542       return true;
543     }
544     return false;
545   }
546 
547   // if (X->isLine() && Y->isPoint()) This case can't occur.
548   assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
549 
550   if (X->isPoint() && Y->isLine()) {
551     DEBUG(dbgs() << "\t    intersect Point and Line\n");
552     const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
553     const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
554     const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
555     if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
556       return false;
557     if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
558       X->setEmpty();
559       ++DeltaSuccesses;
560       return true;
561     }
562     return false;
563   }
564 
565   llvm_unreachable("shouldn't reach the end of Constraint intersection");
566   return false;
567 }
568 
569 
570 //===----------------------------------------------------------------------===//
571 // DependenceAnalysis methods
572 
573 // For debugging purposes. Dumps a dependence to OS.
dump(raw_ostream & OS) const574 void Dependence::dump(raw_ostream &OS) const {
575   bool Splitable = false;
576   if (isConfused())
577     OS << "confused";
578   else {
579     if (isConsistent())
580       OS << "consistent ";
581     if (isFlow())
582       OS << "flow";
583     else if (isOutput())
584       OS << "output";
585     else if (isAnti())
586       OS << "anti";
587     else if (isInput())
588       OS << "input";
589     unsigned Levels = getLevels();
590     OS << " [";
591     for (unsigned II = 1; II <= Levels; ++II) {
592       if (isSplitable(II))
593         Splitable = true;
594       if (isPeelFirst(II))
595         OS << 'p';
596       const SCEV *Distance = getDistance(II);
597       if (Distance)
598         OS << *Distance;
599       else if (isScalar(II))
600         OS << "S";
601       else {
602         unsigned Direction = getDirection(II);
603         if (Direction == DVEntry::ALL)
604           OS << "*";
605         else {
606           if (Direction & DVEntry::LT)
607             OS << "<";
608           if (Direction & DVEntry::EQ)
609             OS << "=";
610           if (Direction & DVEntry::GT)
611             OS << ">";
612         }
613       }
614       if (isPeelLast(II))
615         OS << 'p';
616       if (II < Levels)
617         OS << " ";
618     }
619     if (isLoopIndependent())
620       OS << "|<";
621     OS << "]";
622     if (Splitable)
623       OS << " splitable";
624   }
625   OS << "!\n";
626 }
627 
underlyingObjectsAlias(AliasAnalysis * AA,const DataLayout & DL,const Value * A,const Value * B)628 static AliasAnalysis::AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
629                                                          const DataLayout &DL,
630                                                          const Value *A,
631                                                          const Value *B) {
632   const Value *AObj = GetUnderlyingObject(A, DL);
633   const Value *BObj = GetUnderlyingObject(B, DL);
634   return AA->alias(AObj, AA->getTypeStoreSize(AObj->getType()),
635                    BObj, AA->getTypeStoreSize(BObj->getType()));
636 }
637 
638 
639 // Returns true if the load or store can be analyzed. Atomic and volatile
640 // operations have properties which this analysis does not understand.
641 static
isLoadOrStore(const Instruction * I)642 bool isLoadOrStore(const Instruction *I) {
643   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
644     return LI->isUnordered();
645   else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
646     return SI->isUnordered();
647   return false;
648 }
649 
650 
651 static
getPointerOperand(Instruction * I)652 Value *getPointerOperand(Instruction *I) {
653   if (LoadInst *LI = dyn_cast<LoadInst>(I))
654     return LI->getPointerOperand();
655   if (StoreInst *SI = dyn_cast<StoreInst>(I))
656     return SI->getPointerOperand();
657   llvm_unreachable("Value is not load or store instruction");
658   return nullptr;
659 }
660 
661 
662 // Examines the loop nesting of the Src and Dst
663 // instructions and establishes their shared loops. Sets the variables
664 // CommonLevels, SrcLevels, and MaxLevels.
665 // The source and destination instructions needn't be contained in the same
666 // loop. The routine establishNestingLevels finds the level of most deeply
667 // nested loop that contains them both, CommonLevels. An instruction that's
668 // not contained in a loop is at level = 0. MaxLevels is equal to the level
669 // of the source plus the level of the destination, minus CommonLevels.
670 // This lets us allocate vectors MaxLevels in length, with room for every
671 // distinct loop referenced in both the source and destination subscripts.
672 // The variable SrcLevels is the nesting depth of the source instruction.
673 // It's used to help calculate distinct loops referenced by the destination.
674 // Here's the map from loops to levels:
675 //            0 - unused
676 //            1 - outermost common loop
677 //          ... - other common loops
678 // CommonLevels - innermost common loop
679 //          ... - loops containing Src but not Dst
680 //    SrcLevels - innermost loop containing Src but not Dst
681 //          ... - loops containing Dst but not Src
682 //    MaxLevels - innermost loops containing Dst but not Src
683 // Consider the follow code fragment:
684 //   for (a = ...) {
685 //     for (b = ...) {
686 //       for (c = ...) {
687 //         for (d = ...) {
688 //           A[] = ...;
689 //         }
690 //       }
691 //       for (e = ...) {
692 //         for (f = ...) {
693 //           for (g = ...) {
694 //             ... = A[];
695 //           }
696 //         }
697 //       }
698 //     }
699 //   }
700 // If we're looking at the possibility of a dependence between the store
701 // to A (the Src) and the load from A (the Dst), we'll note that they
702 // have 2 loops in common, so CommonLevels will equal 2 and the direction
703 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
704 // A map from loop names to loop numbers would look like
705 //     a - 1
706 //     b - 2 = CommonLevels
707 //     c - 3
708 //     d - 4 = SrcLevels
709 //     e - 5
710 //     f - 6
711 //     g - 7 = MaxLevels
establishNestingLevels(const Instruction * Src,const Instruction * Dst)712 void DependenceAnalysis::establishNestingLevels(const Instruction *Src,
713                                                 const Instruction *Dst) {
714   const BasicBlock *SrcBlock = Src->getParent();
715   const BasicBlock *DstBlock = Dst->getParent();
716   unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
717   unsigned DstLevel = LI->getLoopDepth(DstBlock);
718   const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
719   const Loop *DstLoop = LI->getLoopFor(DstBlock);
720   SrcLevels = SrcLevel;
721   MaxLevels = SrcLevel + DstLevel;
722   while (SrcLevel > DstLevel) {
723     SrcLoop = SrcLoop->getParentLoop();
724     SrcLevel--;
725   }
726   while (DstLevel > SrcLevel) {
727     DstLoop = DstLoop->getParentLoop();
728     DstLevel--;
729   }
730   while (SrcLoop != DstLoop) {
731     SrcLoop = SrcLoop->getParentLoop();
732     DstLoop = DstLoop->getParentLoop();
733     SrcLevel--;
734   }
735   CommonLevels = SrcLevel;
736   MaxLevels -= CommonLevels;
737 }
738 
739 
740 // Given one of the loops containing the source, return
741 // its level index in our numbering scheme.
mapSrcLoop(const Loop * SrcLoop) const742 unsigned DependenceAnalysis::mapSrcLoop(const Loop *SrcLoop) const {
743   return SrcLoop->getLoopDepth();
744 }
745 
746 
747 // Given one of the loops containing the destination,
748 // return its level index in our numbering scheme.
mapDstLoop(const Loop * DstLoop) const749 unsigned DependenceAnalysis::mapDstLoop(const Loop *DstLoop) const {
750   unsigned D = DstLoop->getLoopDepth();
751   if (D > CommonLevels)
752     return D - CommonLevels + SrcLevels;
753   else
754     return D;
755 }
756 
757 
758 // Returns true if Expression is loop invariant in LoopNest.
isLoopInvariant(const SCEV * Expression,const Loop * LoopNest) const759 bool DependenceAnalysis::isLoopInvariant(const SCEV *Expression,
760                                          const Loop *LoopNest) const {
761   if (!LoopNest)
762     return true;
763   return SE->isLoopInvariant(Expression, LoopNest) &&
764     isLoopInvariant(Expression, LoopNest->getParentLoop());
765 }
766 
767 
768 
769 // Finds the set of loops from the LoopNest that
770 // have a level <= CommonLevels and are referred to by the SCEV Expression.
collectCommonLoops(const SCEV * Expression,const Loop * LoopNest,SmallBitVector & Loops) const771 void DependenceAnalysis::collectCommonLoops(const SCEV *Expression,
772                                             const Loop *LoopNest,
773                                             SmallBitVector &Loops) const {
774   while (LoopNest) {
775     unsigned Level = LoopNest->getLoopDepth();
776     if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
777       Loops.set(Level);
778     LoopNest = LoopNest->getParentLoop();
779   }
780 }
781 
unifySubscriptType(Subscript * Pair)782 void DependenceAnalysis::unifySubscriptType(Subscript *Pair) {
783   const SCEV *Src = Pair->Src;
784   const SCEV *Dst = Pair->Dst;
785   IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
786   IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
787   if (SrcTy == nullptr || DstTy == nullptr) {
788     assert(SrcTy == DstTy && "This function only unify integer types and "
789                              "expect Src and Dst share the same type "
790                              "otherwise.");
791     return;
792   }
793   if (SrcTy->getBitWidth() > DstTy->getBitWidth()) {
794     // Sign-extend Dst to typeof(Src) if typeof(Src) is wider than typeof(Dst).
795     Pair->Dst = SE->getSignExtendExpr(Dst, SrcTy);
796   } else if (SrcTy->getBitWidth() < DstTy->getBitWidth()) {
797     // Sign-extend Src to typeof(Dst) if typeof(Dst) is wider than typeof(Src).
798     Pair->Src = SE->getSignExtendExpr(Src, DstTy);
799   }
800 }
801 
802 // removeMatchingExtensions - Examines a subscript pair.
803 // If the source and destination are identically sign (or zero)
804 // extended, it strips off the extension in an effect to simplify
805 // the actual analysis.
removeMatchingExtensions(Subscript * Pair)806 void DependenceAnalysis::removeMatchingExtensions(Subscript *Pair) {
807   const SCEV *Src = Pair->Src;
808   const SCEV *Dst = Pair->Dst;
809   if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
810       (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
811     const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
812     const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
813     const SCEV *SrcCastOp = SrcCast->getOperand();
814     const SCEV *DstCastOp = DstCast->getOperand();
815     if (SrcCastOp->getType() == DstCastOp->getType()) {
816       Pair->Src = SrcCastOp;
817       Pair->Dst = DstCastOp;
818     }
819   }
820 }
821 
822 
823 // Examine the scev and return true iff it's linear.
824 // Collect any loops mentioned in the set of "Loops".
checkSrcSubscript(const SCEV * Src,const Loop * LoopNest,SmallBitVector & Loops)825 bool DependenceAnalysis::checkSrcSubscript(const SCEV *Src,
826                                            const Loop *LoopNest,
827                                            SmallBitVector &Loops) {
828   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
829   if (!AddRec)
830     return isLoopInvariant(Src, LoopNest);
831   const SCEV *Start = AddRec->getStart();
832   const SCEV *Step = AddRec->getStepRecurrence(*SE);
833   if (!isLoopInvariant(Step, LoopNest))
834     return false;
835   Loops.set(mapSrcLoop(AddRec->getLoop()));
836   return checkSrcSubscript(Start, LoopNest, Loops);
837 }
838 
839 
840 
841 // Examine the scev and return true iff it's linear.
842 // Collect any loops mentioned in the set of "Loops".
checkDstSubscript(const SCEV * Dst,const Loop * LoopNest,SmallBitVector & Loops)843 bool DependenceAnalysis::checkDstSubscript(const SCEV *Dst,
844                                            const Loop *LoopNest,
845                                            SmallBitVector &Loops) {
846   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
847   if (!AddRec)
848     return isLoopInvariant(Dst, LoopNest);
849   const SCEV *Start = AddRec->getStart();
850   const SCEV *Step = AddRec->getStepRecurrence(*SE);
851   if (!isLoopInvariant(Step, LoopNest))
852     return false;
853   Loops.set(mapDstLoop(AddRec->getLoop()));
854   return checkDstSubscript(Start, LoopNest, Loops);
855 }
856 
857 
858 // Examines the subscript pair (the Src and Dst SCEVs)
859 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
860 // Collects the associated loops in a set.
861 DependenceAnalysis::Subscript::ClassificationKind
classifyPair(const SCEV * Src,const Loop * SrcLoopNest,const SCEV * Dst,const Loop * DstLoopNest,SmallBitVector & Loops)862 DependenceAnalysis::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
863                                  const SCEV *Dst, const Loop *DstLoopNest,
864                                  SmallBitVector &Loops) {
865   SmallBitVector SrcLoops(MaxLevels + 1);
866   SmallBitVector DstLoops(MaxLevels + 1);
867   if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
868     return Subscript::NonLinear;
869   if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
870     return Subscript::NonLinear;
871   Loops = SrcLoops;
872   Loops |= DstLoops;
873   unsigned N = Loops.count();
874   if (N == 0)
875     return Subscript::ZIV;
876   if (N == 1)
877     return Subscript::SIV;
878   if (N == 2 && (SrcLoops.count() == 0 ||
879                  DstLoops.count() == 0 ||
880                  (SrcLoops.count() == 1 && DstLoops.count() == 1)))
881     return Subscript::RDIV;
882   return Subscript::MIV;
883 }
884 
885 
886 // A wrapper around SCEV::isKnownPredicate.
887 // Looks for cases where we're interested in comparing for equality.
888 // If both X and Y have been identically sign or zero extended,
889 // it strips off the (confusing) extensions before invoking
890 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
891 // will be similarly updated.
892 //
893 // If SCEV::isKnownPredicate can't prove the predicate,
894 // we try simple subtraction, which seems to help in some cases
895 // involving symbolics.
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * X,const SCEV * Y) const896 bool DependenceAnalysis::isKnownPredicate(ICmpInst::Predicate Pred,
897                                           const SCEV *X,
898                                           const SCEV *Y) const {
899   if (Pred == CmpInst::ICMP_EQ ||
900       Pred == CmpInst::ICMP_NE) {
901     if ((isa<SCEVSignExtendExpr>(X) &&
902          isa<SCEVSignExtendExpr>(Y)) ||
903         (isa<SCEVZeroExtendExpr>(X) &&
904          isa<SCEVZeroExtendExpr>(Y))) {
905       const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
906       const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
907       const SCEV *Xop = CX->getOperand();
908       const SCEV *Yop = CY->getOperand();
909       if (Xop->getType() == Yop->getType()) {
910         X = Xop;
911         Y = Yop;
912       }
913     }
914   }
915   if (SE->isKnownPredicate(Pred, X, Y))
916     return true;
917   // If SE->isKnownPredicate can't prove the condition,
918   // we try the brute-force approach of subtracting
919   // and testing the difference.
920   // By testing with SE->isKnownPredicate first, we avoid
921   // the possibility of overflow when the arguments are constants.
922   const SCEV *Delta = SE->getMinusSCEV(X, Y);
923   switch (Pred) {
924   case CmpInst::ICMP_EQ:
925     return Delta->isZero();
926   case CmpInst::ICMP_NE:
927     return SE->isKnownNonZero(Delta);
928   case CmpInst::ICMP_SGE:
929     return SE->isKnownNonNegative(Delta);
930   case CmpInst::ICMP_SLE:
931     return SE->isKnownNonPositive(Delta);
932   case CmpInst::ICMP_SGT:
933     return SE->isKnownPositive(Delta);
934   case CmpInst::ICMP_SLT:
935     return SE->isKnownNegative(Delta);
936   default:
937     llvm_unreachable("unexpected predicate in isKnownPredicate");
938   }
939 }
940 
941 
942 // All subscripts are all the same type.
943 // Loop bound may be smaller (e.g., a char).
944 // Should zero extend loop bound, since it's always >= 0.
945 // This routine collects upper bound and extends if needed.
946 // Return null if no bound available.
collectUpperBound(const Loop * L,Type * T) const947 const SCEV *DependenceAnalysis::collectUpperBound(const Loop *L,
948                                                   Type *T) const {
949   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
950     const SCEV *UB = SE->getBackedgeTakenCount(L);
951     return SE->getNoopOrZeroExtend(UB, T);
952   }
953   return nullptr;
954 }
955 
956 
957 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
958 // If the cast fails, returns NULL.
collectConstantUpperBound(const Loop * L,Type * T) const959 const SCEVConstant *DependenceAnalysis::collectConstantUpperBound(const Loop *L,
960                                                                   Type *T
961                                                                   ) const {
962   if (const SCEV *UB = collectUpperBound(L, T))
963     return dyn_cast<SCEVConstant>(UB);
964   return nullptr;
965 }
966 
967 
968 // testZIV -
969 // When we have a pair of subscripts of the form [c1] and [c2],
970 // where c1 and c2 are both loop invariant, we attack it using
971 // the ZIV test. Basically, we test by comparing the two values,
972 // but there are actually three possible results:
973 // 1) the values are equal, so there's a dependence
974 // 2) the values are different, so there's no dependence
975 // 3) the values might be equal, so we have to assume a dependence.
976 //
977 // Return true if dependence disproved.
testZIV(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const978 bool DependenceAnalysis::testZIV(const SCEV *Src,
979                                  const SCEV *Dst,
980                                  FullDependence &Result) const {
981   DEBUG(dbgs() << "    src = " << *Src << "\n");
982   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
983   ++ZIVapplications;
984   if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
985     DEBUG(dbgs() << "    provably dependent\n");
986     return false; // provably dependent
987   }
988   if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
989     DEBUG(dbgs() << "    provably independent\n");
990     ++ZIVindependence;
991     return true; // provably independent
992   }
993   DEBUG(dbgs() << "    possibly dependent\n");
994   Result.Consistent = false;
995   return false; // possibly dependent
996 }
997 
998 
999 // strongSIVtest -
1000 // From the paper, Practical Dependence Testing, Section 4.2.1
1001 //
1002 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1003 // where i is an induction variable, c1 and c2 are loop invariant,
1004 //  and a is a constant, we can solve it exactly using the Strong SIV test.
1005 //
1006 // Can prove independence. Failing that, can compute distance (and direction).
1007 // In the presence of symbolic terms, we can sometimes make progress.
1008 //
1009 // If there's a dependence,
1010 //
1011 //    c1 + a*i = c2 + a*i'
1012 //
1013 // The dependence distance is
1014 //
1015 //    d = i' - i = (c1 - c2)/a
1016 //
1017 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1018 // loop's upper bound. If a dependence exists, the dependence direction is
1019 // defined as
1020 //
1021 //                { < if d > 0
1022 //    direction = { = if d = 0
1023 //                { > if d < 0
1024 //
1025 // Return true if dependence disproved.
strongSIVtest(const SCEV * Coeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1026 bool DependenceAnalysis::strongSIVtest(const SCEV *Coeff,
1027                                        const SCEV *SrcConst,
1028                                        const SCEV *DstConst,
1029                                        const Loop *CurLoop,
1030                                        unsigned Level,
1031                                        FullDependence &Result,
1032                                        Constraint &NewConstraint) const {
1033   DEBUG(dbgs() << "\tStrong SIV test\n");
1034   DEBUG(dbgs() << "\t    Coeff = " << *Coeff);
1035   DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1036   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst);
1037   DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1038   DEBUG(dbgs() << "\t    DstConst = " << *DstConst);
1039   DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1040   ++StrongSIVapplications;
1041   assert(0 < Level && Level <= CommonLevels && "level out of range");
1042   Level--;
1043 
1044   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1045   DEBUG(dbgs() << "\t    Delta = " << *Delta);
1046   DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1047 
1048   // check that |Delta| < iteration count
1049   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1050     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound);
1051     DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1052     const SCEV *AbsDelta =
1053       SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1054     const SCEV *AbsCoeff =
1055       SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1056     const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1057     if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1058       // Distance greater than trip count - no dependence
1059       ++StrongSIVindependence;
1060       ++StrongSIVsuccesses;
1061       return true;
1062     }
1063   }
1064 
1065   // Can we compute distance?
1066   if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1067     APInt ConstDelta = cast<SCEVConstant>(Delta)->getValue()->getValue();
1068     APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getValue()->getValue();
1069     APInt Distance  = ConstDelta; // these need to be initialized
1070     APInt Remainder = ConstDelta;
1071     APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1072     DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1073     DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1074     // Make sure Coeff divides Delta exactly
1075     if (Remainder != 0) {
1076       // Coeff doesn't divide Distance, no dependence
1077       ++StrongSIVindependence;
1078       ++StrongSIVsuccesses;
1079       return true;
1080     }
1081     Result.DV[Level].Distance = SE->getConstant(Distance);
1082     NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1083     if (Distance.sgt(0))
1084       Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1085     else if (Distance.slt(0))
1086       Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1087     else
1088       Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1089     ++StrongSIVsuccesses;
1090   }
1091   else if (Delta->isZero()) {
1092     // since 0/X == 0
1093     Result.DV[Level].Distance = Delta;
1094     NewConstraint.setDistance(Delta, CurLoop);
1095     Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1096     ++StrongSIVsuccesses;
1097   }
1098   else {
1099     if (Coeff->isOne()) {
1100       DEBUG(dbgs() << "\t    Distance = " << *Delta << "\n");
1101       Result.DV[Level].Distance = Delta; // since X/1 == X
1102       NewConstraint.setDistance(Delta, CurLoop);
1103     }
1104     else {
1105       Result.Consistent = false;
1106       NewConstraint.setLine(Coeff,
1107                             SE->getNegativeSCEV(Coeff),
1108                             SE->getNegativeSCEV(Delta), CurLoop);
1109     }
1110 
1111     // maybe we can get a useful direction
1112     bool DeltaMaybeZero     = !SE->isKnownNonZero(Delta);
1113     bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1114     bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1115     bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1116     bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1117     // The double negatives above are confusing.
1118     // It helps to read !SE->isKnownNonZero(Delta)
1119     // as "Delta might be Zero"
1120     unsigned NewDirection = Dependence::DVEntry::NONE;
1121     if ((DeltaMaybePositive && CoeffMaybePositive) ||
1122         (DeltaMaybeNegative && CoeffMaybeNegative))
1123       NewDirection = Dependence::DVEntry::LT;
1124     if (DeltaMaybeZero)
1125       NewDirection |= Dependence::DVEntry::EQ;
1126     if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1127         (DeltaMaybePositive && CoeffMaybeNegative))
1128       NewDirection |= Dependence::DVEntry::GT;
1129     if (NewDirection < Result.DV[Level].Direction)
1130       ++StrongSIVsuccesses;
1131     Result.DV[Level].Direction &= NewDirection;
1132   }
1133   return false;
1134 }
1135 
1136 
1137 // weakCrossingSIVtest -
1138 // From the paper, Practical Dependence Testing, Section 4.2.2
1139 //
1140 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1141 // where i is an induction variable, c1 and c2 are loop invariant,
1142 // and a is a constant, we can solve it exactly using the
1143 // Weak-Crossing SIV test.
1144 //
1145 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1146 // the two lines, where i = i', yielding
1147 //
1148 //    c1 + a*i = c2 - a*i
1149 //    2a*i = c2 - c1
1150 //    i = (c2 - c1)/2a
1151 //
1152 // If i < 0, there is no dependence.
1153 // If i > upperbound, there is no dependence.
1154 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1155 // If i = upperbound, there's a dependence with distance = 0.
1156 // If i is integral, there's a dependence (all directions).
1157 // If the non-integer part = 1/2, there's a dependence (<> directions).
1158 // Otherwise, there's no dependence.
1159 //
1160 // Can prove independence. Failing that,
1161 // can sometimes refine the directions.
1162 // Can determine iteration for splitting.
1163 //
1164 // Return true if dependence disproved.
weakCrossingSIVtest(const SCEV * Coeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint,const SCEV * & SplitIter) const1165 bool DependenceAnalysis::weakCrossingSIVtest(const SCEV *Coeff,
1166                                              const SCEV *SrcConst,
1167                                              const SCEV *DstConst,
1168                                              const Loop *CurLoop,
1169                                              unsigned Level,
1170                                              FullDependence &Result,
1171                                              Constraint &NewConstraint,
1172                                              const SCEV *&SplitIter) const {
1173   DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1174   DEBUG(dbgs() << "\t    Coeff = " << *Coeff << "\n");
1175   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1176   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1177   ++WeakCrossingSIVapplications;
1178   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1179   Level--;
1180   Result.Consistent = false;
1181   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1182   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1183   NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1184   if (Delta->isZero()) {
1185     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1186     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1187     ++WeakCrossingSIVsuccesses;
1188     if (!Result.DV[Level].Direction) {
1189       ++WeakCrossingSIVindependence;
1190       return true;
1191     }
1192     Result.DV[Level].Distance = Delta; // = 0
1193     return false;
1194   }
1195   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1196   if (!ConstCoeff)
1197     return false;
1198 
1199   Result.DV[Level].Splitable = true;
1200   if (SE->isKnownNegative(ConstCoeff)) {
1201     ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1202     assert(ConstCoeff &&
1203            "dynamic cast of negative of ConstCoeff should yield constant");
1204     Delta = SE->getNegativeSCEV(Delta);
1205   }
1206   assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1207 
1208   // compute SplitIter for use by DependenceAnalysis::getSplitIteration()
1209   SplitIter =
1210     SE->getUDivExpr(SE->getSMaxExpr(SE->getConstant(Delta->getType(), 0),
1211                                     Delta),
1212                     SE->getMulExpr(SE->getConstant(Delta->getType(), 2),
1213                                    ConstCoeff));
1214   DEBUG(dbgs() << "\t    Split iter = " << *SplitIter << "\n");
1215 
1216   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1217   if (!ConstDelta)
1218     return false;
1219 
1220   // We're certain that ConstCoeff > 0; therefore,
1221   // if Delta < 0, then no dependence.
1222   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1223   DEBUG(dbgs() << "\t    ConstCoeff = " << *ConstCoeff << "\n");
1224   if (SE->isKnownNegative(Delta)) {
1225     // No dependence, Delta < 0
1226     ++WeakCrossingSIVindependence;
1227     ++WeakCrossingSIVsuccesses;
1228     return true;
1229   }
1230 
1231   // We're certain that Delta > 0 and ConstCoeff > 0.
1232   // Check Delta/(2*ConstCoeff) against upper loop bound
1233   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1234     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1235     const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1236     const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1237                                     ConstantTwo);
1238     DEBUG(dbgs() << "\t    ML = " << *ML << "\n");
1239     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1240       // Delta too big, no dependence
1241       ++WeakCrossingSIVindependence;
1242       ++WeakCrossingSIVsuccesses;
1243       return true;
1244     }
1245     if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1246       // i = i' = UB
1247       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1248       Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1249       ++WeakCrossingSIVsuccesses;
1250       if (!Result.DV[Level].Direction) {
1251         ++WeakCrossingSIVindependence;
1252         return true;
1253       }
1254       Result.DV[Level].Splitable = false;
1255       Result.DV[Level].Distance = SE->getConstant(Delta->getType(), 0);
1256       return false;
1257     }
1258   }
1259 
1260   // check that Coeff divides Delta
1261   APInt APDelta = ConstDelta->getValue()->getValue();
1262   APInt APCoeff = ConstCoeff->getValue()->getValue();
1263   APInt Distance = APDelta; // these need to be initialzed
1264   APInt Remainder = APDelta;
1265   APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1266   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1267   if (Remainder != 0) {
1268     // Coeff doesn't divide Delta, no dependence
1269     ++WeakCrossingSIVindependence;
1270     ++WeakCrossingSIVsuccesses;
1271     return true;
1272   }
1273   DEBUG(dbgs() << "\t    Distance = " << Distance << "\n");
1274 
1275   // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1276   APInt Two = APInt(Distance.getBitWidth(), 2, true);
1277   Remainder = Distance.srem(Two);
1278   DEBUG(dbgs() << "\t    Remainder = " << Remainder << "\n");
1279   if (Remainder != 0) {
1280     // Equal direction isn't possible
1281     Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1282     ++WeakCrossingSIVsuccesses;
1283   }
1284   return false;
1285 }
1286 
1287 
1288 // Kirch's algorithm, from
1289 //
1290 //        Optimizing Supercompilers for Supercomputers
1291 //        Michael Wolfe
1292 //        MIT Press, 1989
1293 //
1294 // Program 2.1, page 29.
1295 // Computes the GCD of AM and BM.
1296 // Also finds a solution to the equation ax - by = gcd(a, b).
1297 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1298 static
findGCD(unsigned Bits,APInt AM,APInt BM,APInt Delta,APInt & G,APInt & X,APInt & Y)1299 bool findGCD(unsigned Bits, APInt AM, APInt BM, APInt Delta,
1300              APInt &G, APInt &X, APInt &Y) {
1301   APInt A0(Bits, 1, true), A1(Bits, 0, true);
1302   APInt B0(Bits, 0, true), B1(Bits, 1, true);
1303   APInt G0 = AM.abs();
1304   APInt G1 = BM.abs();
1305   APInt Q = G0; // these need to be initialized
1306   APInt R = G0;
1307   APInt::sdivrem(G0, G1, Q, R);
1308   while (R != 0) {
1309     APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1310     APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1311     G0 = G1; G1 = R;
1312     APInt::sdivrem(G0, G1, Q, R);
1313   }
1314   G = G1;
1315   DEBUG(dbgs() << "\t    GCD = " << G << "\n");
1316   X = AM.slt(0) ? -A1 : A1;
1317   Y = BM.slt(0) ? B1 : -B1;
1318 
1319   // make sure gcd divides Delta
1320   R = Delta.srem(G);
1321   if (R != 0)
1322     return true; // gcd doesn't divide Delta, no dependence
1323   Q = Delta.sdiv(G);
1324   X *= Q;
1325   Y *= Q;
1326   return false;
1327 }
1328 
1329 
1330 static
floorOfQuotient(APInt A,APInt B)1331 APInt floorOfQuotient(APInt A, APInt B) {
1332   APInt Q = A; // these need to be initialized
1333   APInt R = A;
1334   APInt::sdivrem(A, B, Q, R);
1335   if (R == 0)
1336     return Q;
1337   if ((A.sgt(0) && B.sgt(0)) ||
1338       (A.slt(0) && B.slt(0)))
1339     return Q;
1340   else
1341     return Q - 1;
1342 }
1343 
1344 
1345 static
ceilingOfQuotient(APInt A,APInt B)1346 APInt ceilingOfQuotient(APInt A, APInt B) {
1347   APInt Q = A; // these need to be initialized
1348   APInt R = A;
1349   APInt::sdivrem(A, B, Q, R);
1350   if (R == 0)
1351     return Q;
1352   if ((A.sgt(0) && B.sgt(0)) ||
1353       (A.slt(0) && B.slt(0)))
1354     return Q + 1;
1355   else
1356     return Q;
1357 }
1358 
1359 
1360 static
maxAPInt(APInt A,APInt B)1361 APInt maxAPInt(APInt A, APInt B) {
1362   return A.sgt(B) ? A : B;
1363 }
1364 
1365 
1366 static
minAPInt(APInt A,APInt B)1367 APInt minAPInt(APInt A, APInt B) {
1368   return A.slt(B) ? A : B;
1369 }
1370 
1371 
1372 // exactSIVtest -
1373 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1374 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1375 // and a2 are constant, we can solve it exactly using an algorithm developed
1376 // by Banerjee and Wolfe. See Section 2.5.3 in
1377 //
1378 //        Optimizing Supercompilers for Supercomputers
1379 //        Michael Wolfe
1380 //        MIT Press, 1989
1381 //
1382 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1383 // so use them if possible. They're also a bit better with symbolics and,
1384 // in the case of the strong SIV test, can compute Distances.
1385 //
1386 // Return true if dependence disproved.
exactSIVtest(const SCEV * SrcCoeff,const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1387 bool DependenceAnalysis::exactSIVtest(const SCEV *SrcCoeff,
1388                                       const SCEV *DstCoeff,
1389                                       const SCEV *SrcConst,
1390                                       const SCEV *DstConst,
1391                                       const Loop *CurLoop,
1392                                       unsigned Level,
1393                                       FullDependence &Result,
1394                                       Constraint &NewConstraint) const {
1395   DEBUG(dbgs() << "\tExact SIV test\n");
1396   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1397   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1398   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1399   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1400   ++ExactSIVapplications;
1401   assert(0 < Level && Level <= CommonLevels && "Level out of range");
1402   Level--;
1403   Result.Consistent = false;
1404   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1405   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1406   NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1407                         Delta, CurLoop);
1408   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1409   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1410   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1411   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1412     return false;
1413 
1414   // find gcd
1415   APInt G, X, Y;
1416   APInt AM = ConstSrcCoeff->getValue()->getValue();
1417   APInt BM = ConstDstCoeff->getValue()->getValue();
1418   unsigned Bits = AM.getBitWidth();
1419   if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1420     // gcd doesn't divide Delta, no dependence
1421     ++ExactSIVindependence;
1422     ++ExactSIVsuccesses;
1423     return true;
1424   }
1425 
1426   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1427 
1428   // since SCEV construction normalizes, LM = 0
1429   APInt UM(Bits, 1, true);
1430   bool UMvalid = false;
1431   // UM is perhaps unavailable, let's check
1432   if (const SCEVConstant *CUB =
1433       collectConstantUpperBound(CurLoop, Delta->getType())) {
1434     UM = CUB->getValue()->getValue();
1435     DEBUG(dbgs() << "\t    UM = " << UM << "\n");
1436     UMvalid = true;
1437   }
1438 
1439   APInt TU(APInt::getSignedMaxValue(Bits));
1440   APInt TL(APInt::getSignedMinValue(Bits));
1441 
1442   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1443   APInt TMUL = BM.sdiv(G);
1444   if (TMUL.sgt(0)) {
1445     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1446     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1447     if (UMvalid) {
1448       TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1449       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1450     }
1451   }
1452   else {
1453     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1454     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1455     if (UMvalid) {
1456       TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1457       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1458     }
1459   }
1460 
1461   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1462   TMUL = AM.sdiv(G);
1463   if (TMUL.sgt(0)) {
1464     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1465     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1466     if (UMvalid) {
1467       TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1468       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1469     }
1470   }
1471   else {
1472     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1473     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1474     if (UMvalid) {
1475       TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1476       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1477     }
1478   }
1479   if (TL.sgt(TU)) {
1480     ++ExactSIVindependence;
1481     ++ExactSIVsuccesses;
1482     return true;
1483   }
1484 
1485   // explore directions
1486   unsigned NewDirection = Dependence::DVEntry::NONE;
1487 
1488   // less than
1489   APInt SaveTU(TU); // save these
1490   APInt SaveTL(TL);
1491   DEBUG(dbgs() << "\t    exploring LT direction\n");
1492   TMUL = AM - BM;
1493   if (TMUL.sgt(0)) {
1494     TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1495     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1496   }
1497   else {
1498     TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1499     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1500   }
1501   if (TL.sle(TU)) {
1502     NewDirection |= Dependence::DVEntry::LT;
1503     ++ExactSIVsuccesses;
1504   }
1505 
1506   // equal
1507   TU = SaveTU; // restore
1508   TL = SaveTL;
1509   DEBUG(dbgs() << "\t    exploring EQ direction\n");
1510   if (TMUL.sgt(0)) {
1511     TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1512     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1513   }
1514   else {
1515     TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1516     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1517   }
1518   TMUL = BM - AM;
1519   if (TMUL.sgt(0)) {
1520     TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1521     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1522   }
1523   else {
1524     TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1525     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1526   }
1527   if (TL.sle(TU)) {
1528     NewDirection |= Dependence::DVEntry::EQ;
1529     ++ExactSIVsuccesses;
1530   }
1531 
1532   // greater than
1533   TU = SaveTU; // restore
1534   TL = SaveTL;
1535   DEBUG(dbgs() << "\t    exploring GT direction\n");
1536   if (TMUL.sgt(0)) {
1537     TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1538     DEBUG(dbgs() << "\t\t    TL = " << TL << "\n");
1539   }
1540   else {
1541     TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1542     DEBUG(dbgs() << "\t\t    TU = " << TU << "\n");
1543   }
1544   if (TL.sle(TU)) {
1545     NewDirection |= Dependence::DVEntry::GT;
1546     ++ExactSIVsuccesses;
1547   }
1548 
1549   // finished
1550   Result.DV[Level].Direction &= NewDirection;
1551   if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1552     ++ExactSIVindependence;
1553   return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1554 }
1555 
1556 
1557 
1558 // Return true if the divisor evenly divides the dividend.
1559 static
isRemainderZero(const SCEVConstant * Dividend,const SCEVConstant * Divisor)1560 bool isRemainderZero(const SCEVConstant *Dividend,
1561                      const SCEVConstant *Divisor) {
1562   APInt ConstDividend = Dividend->getValue()->getValue();
1563   APInt ConstDivisor = Divisor->getValue()->getValue();
1564   return ConstDividend.srem(ConstDivisor) == 0;
1565 }
1566 
1567 
1568 // weakZeroSrcSIVtest -
1569 // From the paper, Practical Dependence Testing, Section 4.2.2
1570 //
1571 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1572 // where i is an induction variable, c1 and c2 are loop invariant,
1573 // and a is a constant, we can solve it exactly using the
1574 // Weak-Zero SIV test.
1575 //
1576 // Given
1577 //
1578 //    c1 = c2 + a*i
1579 //
1580 // we get
1581 //
1582 //    (c1 - c2)/a = i
1583 //
1584 // If i is not an integer, there's no dependence.
1585 // If i < 0 or > UB, there's no dependence.
1586 // If i = 0, the direction is <= and peeling the
1587 // 1st iteration will break the dependence.
1588 // If i = UB, the direction is >= and peeling the
1589 // last iteration will break the dependence.
1590 // Otherwise, the direction is *.
1591 //
1592 // Can prove independence. Failing that, we can sometimes refine
1593 // the directions. Can sometimes show that first or last
1594 // iteration carries all the dependences (so worth peeling).
1595 //
1596 // (see also weakZeroDstSIVtest)
1597 //
1598 // Return true if dependence disproved.
weakZeroSrcSIVtest(const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1599 bool DependenceAnalysis::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1600                                             const SCEV *SrcConst,
1601                                             const SCEV *DstConst,
1602                                             const Loop *CurLoop,
1603                                             unsigned Level,
1604                                             FullDependence &Result,
1605                                             Constraint &NewConstraint) const {
1606   // For the WeakSIV test, it's possible the loop isn't common to
1607   // the Src and Dst loops. If it isn't, then there's no need to
1608   // record a direction.
1609   DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1610   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << "\n");
1611   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1612   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1613   ++WeakZeroSIVapplications;
1614   assert(0 < Level && Level <= MaxLevels && "Level out of range");
1615   Level--;
1616   Result.Consistent = false;
1617   const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1618   NewConstraint.setLine(SE->getConstant(Delta->getType(), 0),
1619                         DstCoeff, Delta, CurLoop);
1620   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1621   if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1622     if (Level < CommonLevels) {
1623       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1624       Result.DV[Level].PeelFirst = true;
1625       ++WeakZeroSIVsuccesses;
1626     }
1627     return false; // dependences caused by first iteration
1628   }
1629   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1630   if (!ConstCoeff)
1631     return false;
1632   const SCEV *AbsCoeff =
1633     SE->isKnownNegative(ConstCoeff) ?
1634     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1635   const SCEV *NewDelta =
1636     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1637 
1638   // check that Delta/SrcCoeff < iteration count
1639   // really check NewDelta < count*AbsCoeff
1640   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1641     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1642     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1643     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1644       ++WeakZeroSIVindependence;
1645       ++WeakZeroSIVsuccesses;
1646       return true;
1647     }
1648     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1649       // dependences caused by last iteration
1650       if (Level < CommonLevels) {
1651         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1652         Result.DV[Level].PeelLast = true;
1653         ++WeakZeroSIVsuccesses;
1654       }
1655       return false;
1656     }
1657   }
1658 
1659   // check that Delta/SrcCoeff >= 0
1660   // really check that NewDelta >= 0
1661   if (SE->isKnownNegative(NewDelta)) {
1662     // No dependence, newDelta < 0
1663     ++WeakZeroSIVindependence;
1664     ++WeakZeroSIVsuccesses;
1665     return true;
1666   }
1667 
1668   // if SrcCoeff doesn't divide Delta, then no dependence
1669   if (isa<SCEVConstant>(Delta) &&
1670       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1671     ++WeakZeroSIVindependence;
1672     ++WeakZeroSIVsuccesses;
1673     return true;
1674   }
1675   return false;
1676 }
1677 
1678 
1679 // weakZeroDstSIVtest -
1680 // From the paper, Practical Dependence Testing, Section 4.2.2
1681 //
1682 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1683 // where i is an induction variable, c1 and c2 are loop invariant,
1684 // and a is a constant, we can solve it exactly using the
1685 // Weak-Zero SIV test.
1686 //
1687 // Given
1688 //
1689 //    c1 + a*i = c2
1690 //
1691 // we get
1692 //
1693 //    i = (c2 - c1)/a
1694 //
1695 // If i is not an integer, there's no dependence.
1696 // If i < 0 or > UB, there's no dependence.
1697 // If i = 0, the direction is <= and peeling the
1698 // 1st iteration will break the dependence.
1699 // If i = UB, the direction is >= and peeling the
1700 // last iteration will break the dependence.
1701 // Otherwise, the direction is *.
1702 //
1703 // Can prove independence. Failing that, we can sometimes refine
1704 // the directions. Can sometimes show that first or last
1705 // iteration carries all the dependences (so worth peeling).
1706 //
1707 // (see also weakZeroSrcSIVtest)
1708 //
1709 // Return true if dependence disproved.
weakZeroDstSIVtest(const SCEV * SrcCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * CurLoop,unsigned Level,FullDependence & Result,Constraint & NewConstraint) const1710 bool DependenceAnalysis::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1711                                             const SCEV *SrcConst,
1712                                             const SCEV *DstConst,
1713                                             const Loop *CurLoop,
1714                                             unsigned Level,
1715                                             FullDependence &Result,
1716                                             Constraint &NewConstraint) const {
1717   // For the WeakSIV test, it's possible the loop isn't common to the
1718   // Src and Dst loops. If it isn't, then there's no need to record a direction.
1719   DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1720   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << "\n");
1721   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1722   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1723   ++WeakZeroSIVapplications;
1724   assert(0 < Level && Level <= SrcLevels && "Level out of range");
1725   Level--;
1726   Result.Consistent = false;
1727   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1728   NewConstraint.setLine(SrcCoeff, SE->getConstant(Delta->getType(), 0),
1729                         Delta, CurLoop);
1730   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1731   if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1732     if (Level < CommonLevels) {
1733       Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1734       Result.DV[Level].PeelFirst = true;
1735       ++WeakZeroSIVsuccesses;
1736     }
1737     return false; // dependences caused by first iteration
1738   }
1739   const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1740   if (!ConstCoeff)
1741     return false;
1742   const SCEV *AbsCoeff =
1743     SE->isKnownNegative(ConstCoeff) ?
1744     SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1745   const SCEV *NewDelta =
1746     SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1747 
1748   // check that Delta/SrcCoeff < iteration count
1749   // really check NewDelta < count*AbsCoeff
1750   if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1751     DEBUG(dbgs() << "\t    UpperBound = " << *UpperBound << "\n");
1752     const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1753     if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1754       ++WeakZeroSIVindependence;
1755       ++WeakZeroSIVsuccesses;
1756       return true;
1757     }
1758     if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1759       // dependences caused by last iteration
1760       if (Level < CommonLevels) {
1761         Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1762         Result.DV[Level].PeelLast = true;
1763         ++WeakZeroSIVsuccesses;
1764       }
1765       return false;
1766     }
1767   }
1768 
1769   // check that Delta/SrcCoeff >= 0
1770   // really check that NewDelta >= 0
1771   if (SE->isKnownNegative(NewDelta)) {
1772     // No dependence, newDelta < 0
1773     ++WeakZeroSIVindependence;
1774     ++WeakZeroSIVsuccesses;
1775     return true;
1776   }
1777 
1778   // if SrcCoeff doesn't divide Delta, then no dependence
1779   if (isa<SCEVConstant>(Delta) &&
1780       !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1781     ++WeakZeroSIVindependence;
1782     ++WeakZeroSIVsuccesses;
1783     return true;
1784   }
1785   return false;
1786 }
1787 
1788 
1789 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1790 // Things of the form [c1 + a*i] and [c2 + b*j],
1791 // where i and j are induction variable, c1 and c2 are loop invariant,
1792 // and a and b are constants.
1793 // Returns true if any possible dependence is disproved.
1794 // Marks the result as inconsistent.
1795 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
exactRDIVtest(const SCEV * SrcCoeff,const SCEV * DstCoeff,const SCEV * SrcConst,const SCEV * DstConst,const Loop * SrcLoop,const Loop * DstLoop,FullDependence & Result) const1796 bool DependenceAnalysis::exactRDIVtest(const SCEV *SrcCoeff,
1797                                        const SCEV *DstCoeff,
1798                                        const SCEV *SrcConst,
1799                                        const SCEV *DstConst,
1800                                        const Loop *SrcLoop,
1801                                        const Loop *DstLoop,
1802                                        FullDependence &Result) const {
1803   DEBUG(dbgs() << "\tExact RDIV test\n");
1804   DEBUG(dbgs() << "\t    SrcCoeff = " << *SrcCoeff << " = AM\n");
1805   DEBUG(dbgs() << "\t    DstCoeff = " << *DstCoeff << " = BM\n");
1806   DEBUG(dbgs() << "\t    SrcConst = " << *SrcConst << "\n");
1807   DEBUG(dbgs() << "\t    DstConst = " << *DstConst << "\n");
1808   ++ExactRDIVapplications;
1809   Result.Consistent = false;
1810   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1811   DEBUG(dbgs() << "\t    Delta = " << *Delta << "\n");
1812   const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1813   const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1814   const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1815   if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1816     return false;
1817 
1818   // find gcd
1819   APInt G, X, Y;
1820   APInt AM = ConstSrcCoeff->getValue()->getValue();
1821   APInt BM = ConstDstCoeff->getValue()->getValue();
1822   unsigned Bits = AM.getBitWidth();
1823   if (findGCD(Bits, AM, BM, ConstDelta->getValue()->getValue(), G, X, Y)) {
1824     // gcd doesn't divide Delta, no dependence
1825     ++ExactRDIVindependence;
1826     return true;
1827   }
1828 
1829   DEBUG(dbgs() << "\t    X = " << X << ", Y = " << Y << "\n");
1830 
1831   // since SCEV construction seems to normalize, LM = 0
1832   APInt SrcUM(Bits, 1, true);
1833   bool SrcUMvalid = false;
1834   // SrcUM is perhaps unavailable, let's check
1835   if (const SCEVConstant *UpperBound =
1836       collectConstantUpperBound(SrcLoop, Delta->getType())) {
1837     SrcUM = UpperBound->getValue()->getValue();
1838     DEBUG(dbgs() << "\t    SrcUM = " << SrcUM << "\n");
1839     SrcUMvalid = true;
1840   }
1841 
1842   APInt DstUM(Bits, 1, true);
1843   bool DstUMvalid = false;
1844   // UM is perhaps unavailable, let's check
1845   if (const SCEVConstant *UpperBound =
1846       collectConstantUpperBound(DstLoop, Delta->getType())) {
1847     DstUM = UpperBound->getValue()->getValue();
1848     DEBUG(dbgs() << "\t    DstUM = " << DstUM << "\n");
1849     DstUMvalid = true;
1850   }
1851 
1852   APInt TU(APInt::getSignedMaxValue(Bits));
1853   APInt TL(APInt::getSignedMinValue(Bits));
1854 
1855   // test(BM/G, LM-X) and test(-BM/G, X-UM)
1856   APInt TMUL = BM.sdiv(G);
1857   if (TMUL.sgt(0)) {
1858     TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1859     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1860     if (SrcUMvalid) {
1861       TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1862       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1863     }
1864   }
1865   else {
1866     TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1867     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1868     if (SrcUMvalid) {
1869       TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1870       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1871     }
1872   }
1873 
1874   // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1875   TMUL = AM.sdiv(G);
1876   if (TMUL.sgt(0)) {
1877     TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1878     DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1879     if (DstUMvalid) {
1880       TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1881       DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1882     }
1883   }
1884   else {
1885     TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1886     DEBUG(dbgs() << "\t    TU = " << TU << "\n");
1887     if (DstUMvalid) {
1888       TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1889       DEBUG(dbgs() << "\t    TL = " << TL << "\n");
1890     }
1891   }
1892   if (TL.sgt(TU))
1893     ++ExactRDIVindependence;
1894   return TL.sgt(TU);
1895 }
1896 
1897 
1898 // symbolicRDIVtest -
1899 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1900 // introduce a special case of Banerjee's Inequalities (also called the
1901 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
1902 // particularly cases with symbolics. Since it's only able to disprove
1903 // dependence (not compute distances or directions), we'll use it as a
1904 // fall back for the other tests.
1905 //
1906 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
1907 // where i and j are induction variables and c1 and c2 are loop invariants,
1908 // we can use the symbolic tests to disprove some dependences, serving as a
1909 // backup for the RDIV test. Note that i and j can be the same variable,
1910 // letting this test serve as a backup for the various SIV tests.
1911 //
1912 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
1913 //  0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
1914 // loop bounds for the i and j loops, respectively. So, ...
1915 //
1916 // c1 + a1*i = c2 + a2*j
1917 // a1*i - a2*j = c2 - c1
1918 //
1919 // To test for a dependence, we compute c2 - c1 and make sure it's in the
1920 // range of the maximum and minimum possible values of a1*i - a2*j.
1921 // Considering the signs of a1 and a2, we have 4 possible cases:
1922 //
1923 // 1) If a1 >= 0 and a2 >= 0, then
1924 //        a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
1925 //              -a2*N2 <= c2 - c1 <= a1*N1
1926 //
1927 // 2) If a1 >= 0 and a2 <= 0, then
1928 //        a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
1929 //                  0 <= c2 - c1 <= a1*N1 - a2*N2
1930 //
1931 // 3) If a1 <= 0 and a2 >= 0, then
1932 //        a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
1933 //        a1*N1 - a2*N2 <= c2 - c1 <= 0
1934 //
1935 // 4) If a1 <= 0 and a2 <= 0, then
1936 //        a1*N1 - a2*0  <= c2 - c1 <= a1*0 - a2*N2
1937 //        a1*N1         <= c2 - c1 <=       -a2*N2
1938 //
1939 // return true if dependence disproved
symbolicRDIVtest(const SCEV * A1,const SCEV * A2,const SCEV * C1,const SCEV * C2,const Loop * Loop1,const Loop * Loop2) const1940 bool DependenceAnalysis::symbolicRDIVtest(const SCEV *A1,
1941                                           const SCEV *A2,
1942                                           const SCEV *C1,
1943                                           const SCEV *C2,
1944                                           const Loop *Loop1,
1945                                           const Loop *Loop2) const {
1946   ++SymbolicRDIVapplications;
1947   DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
1948   DEBUG(dbgs() << "\t    A1 = " << *A1);
1949   DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
1950   DEBUG(dbgs() << "\t    A2 = " << *A2 << "\n");
1951   DEBUG(dbgs() << "\t    C1 = " << *C1 << "\n");
1952   DEBUG(dbgs() << "\t    C2 = " << *C2 << "\n");
1953   const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
1954   const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
1955   DEBUG(if (N1) dbgs() << "\t    N1 = " << *N1 << "\n");
1956   DEBUG(if (N2) dbgs() << "\t    N2 = " << *N2 << "\n");
1957   const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
1958   const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
1959   DEBUG(dbgs() << "\t    C2 - C1 = " << *C2_C1 << "\n");
1960   DEBUG(dbgs() << "\t    C1 - C2 = " << *C1_C2 << "\n");
1961   if (SE->isKnownNonNegative(A1)) {
1962     if (SE->isKnownNonNegative(A2)) {
1963       // A1 >= 0 && A2 >= 0
1964       if (N1) {
1965         // make sure that c2 - c1 <= a1*N1
1966         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1967         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
1968         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
1969           ++SymbolicRDIVindependence;
1970           return true;
1971         }
1972       }
1973       if (N2) {
1974         // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
1975         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1976         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
1977         if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
1978           ++SymbolicRDIVindependence;
1979           return true;
1980         }
1981       }
1982     }
1983     else if (SE->isKnownNonPositive(A2)) {
1984       // a1 >= 0 && a2 <= 0
1985       if (N1 && N2) {
1986         // make sure that c2 - c1 <= a1*N1 - a2*N2
1987         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
1988         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
1989         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
1990         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
1991         if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
1992           ++SymbolicRDIVindependence;
1993           return true;
1994         }
1995       }
1996       // make sure that 0 <= c2 - c1
1997       if (SE->isKnownNegative(C2_C1)) {
1998         ++SymbolicRDIVindependence;
1999         return true;
2000       }
2001     }
2002   }
2003   else if (SE->isKnownNonPositive(A1)) {
2004     if (SE->isKnownNonNegative(A2)) {
2005       // a1 <= 0 && a2 >= 0
2006       if (N1 && N2) {
2007         // make sure that a1*N1 - a2*N2 <= c2 - c1
2008         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2009         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2010         const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2011         DEBUG(dbgs() << "\t    A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2012         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2013           ++SymbolicRDIVindependence;
2014           return true;
2015         }
2016       }
2017       // make sure that c2 - c1 <= 0
2018       if (SE->isKnownPositive(C2_C1)) {
2019         ++SymbolicRDIVindependence;
2020         return true;
2021       }
2022     }
2023     else if (SE->isKnownNonPositive(A2)) {
2024       // a1 <= 0 && a2 <= 0
2025       if (N1) {
2026         // make sure that a1*N1 <= c2 - c1
2027         const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2028         DEBUG(dbgs() << "\t    A1*N1 = " << *A1N1 << "\n");
2029         if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2030           ++SymbolicRDIVindependence;
2031           return true;
2032         }
2033       }
2034       if (N2) {
2035         // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2036         const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2037         DEBUG(dbgs() << "\t    A2*N2 = " << *A2N2 << "\n");
2038         if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2039           ++SymbolicRDIVindependence;
2040           return true;
2041         }
2042       }
2043     }
2044   }
2045   return false;
2046 }
2047 
2048 
2049 // testSIV -
2050 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2051 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2052 // a2 are constant, we attack it with an SIV test. While they can all be
2053 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2054 // they apply; they're cheaper and sometimes more precise.
2055 //
2056 // Return true if dependence disproved.
testSIV(const SCEV * Src,const SCEV * Dst,unsigned & Level,FullDependence & Result,Constraint & NewConstraint,const SCEV * & SplitIter) const2057 bool DependenceAnalysis::testSIV(const SCEV *Src,
2058                                  const SCEV *Dst,
2059                                  unsigned &Level,
2060                                  FullDependence &Result,
2061                                  Constraint &NewConstraint,
2062                                  const SCEV *&SplitIter) const {
2063   DEBUG(dbgs() << "    src = " << *Src << "\n");
2064   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2065   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2066   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2067   if (SrcAddRec && DstAddRec) {
2068     const SCEV *SrcConst = SrcAddRec->getStart();
2069     const SCEV *DstConst = DstAddRec->getStart();
2070     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2071     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2072     const Loop *CurLoop = SrcAddRec->getLoop();
2073     assert(CurLoop == DstAddRec->getLoop() &&
2074            "both loops in SIV should be same");
2075     Level = mapSrcLoop(CurLoop);
2076     bool disproven;
2077     if (SrcCoeff == DstCoeff)
2078       disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2079                                 Level, Result, NewConstraint);
2080     else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2081       disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2082                                       Level, Result, NewConstraint, SplitIter);
2083     else
2084       disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2085                                Level, Result, NewConstraint);
2086     return disproven ||
2087       gcdMIVtest(Src, Dst, Result) ||
2088       symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2089   }
2090   if (SrcAddRec) {
2091     const SCEV *SrcConst = SrcAddRec->getStart();
2092     const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2093     const SCEV *DstConst = Dst;
2094     const Loop *CurLoop = SrcAddRec->getLoop();
2095     Level = mapSrcLoop(CurLoop);
2096     return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2097                               Level, Result, NewConstraint) ||
2098       gcdMIVtest(Src, Dst, Result);
2099   }
2100   if (DstAddRec) {
2101     const SCEV *DstConst = DstAddRec->getStart();
2102     const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2103     const SCEV *SrcConst = Src;
2104     const Loop *CurLoop = DstAddRec->getLoop();
2105     Level = mapDstLoop(CurLoop);
2106     return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2107                               CurLoop, Level, Result, NewConstraint) ||
2108       gcdMIVtest(Src, Dst, Result);
2109   }
2110   llvm_unreachable("SIV test expected at least one AddRec");
2111   return false;
2112 }
2113 
2114 
2115 // testRDIV -
2116 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2117 // where i and j are induction variables, c1 and c2 are loop invariant,
2118 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2119 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2120 // It doesn't make sense to talk about distance or direction in this case,
2121 // so there's no point in making special versions of the Strong SIV test or
2122 // the Weak-crossing SIV test.
2123 //
2124 // With minor algebra, this test can also be used for things like
2125 // [c1 + a1*i + a2*j][c2].
2126 //
2127 // Return true if dependence disproved.
testRDIV(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const2128 bool DependenceAnalysis::testRDIV(const SCEV *Src,
2129                                   const SCEV *Dst,
2130                                   FullDependence &Result) const {
2131   // we have 3 possible situations here:
2132   //   1) [a*i + b] and [c*j + d]
2133   //   2) [a*i + c*j + b] and [d]
2134   //   3) [b] and [a*i + c*j + d]
2135   // We need to find what we've got and get organized
2136 
2137   const SCEV *SrcConst, *DstConst;
2138   const SCEV *SrcCoeff, *DstCoeff;
2139   const Loop *SrcLoop, *DstLoop;
2140 
2141   DEBUG(dbgs() << "    src = " << *Src << "\n");
2142   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2143   const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2144   const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2145   if (SrcAddRec && DstAddRec) {
2146     SrcConst = SrcAddRec->getStart();
2147     SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2148     SrcLoop = SrcAddRec->getLoop();
2149     DstConst = DstAddRec->getStart();
2150     DstCoeff = DstAddRec->getStepRecurrence(*SE);
2151     DstLoop = DstAddRec->getLoop();
2152   }
2153   else if (SrcAddRec) {
2154     if (const SCEVAddRecExpr *tmpAddRec =
2155         dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2156       SrcConst = tmpAddRec->getStart();
2157       SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2158       SrcLoop = tmpAddRec->getLoop();
2159       DstConst = Dst;
2160       DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2161       DstLoop = SrcAddRec->getLoop();
2162     }
2163     else
2164       llvm_unreachable("RDIV reached by surprising SCEVs");
2165   }
2166   else if (DstAddRec) {
2167     if (const SCEVAddRecExpr *tmpAddRec =
2168         dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2169       DstConst = tmpAddRec->getStart();
2170       DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2171       DstLoop = tmpAddRec->getLoop();
2172       SrcConst = Src;
2173       SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2174       SrcLoop = DstAddRec->getLoop();
2175     }
2176     else
2177       llvm_unreachable("RDIV reached by surprising SCEVs");
2178   }
2179   else
2180     llvm_unreachable("RDIV expected at least one AddRec");
2181   return exactRDIVtest(SrcCoeff, DstCoeff,
2182                        SrcConst, DstConst,
2183                        SrcLoop, DstLoop,
2184                        Result) ||
2185     gcdMIVtest(Src, Dst, Result) ||
2186     symbolicRDIVtest(SrcCoeff, DstCoeff,
2187                      SrcConst, DstConst,
2188                      SrcLoop, DstLoop);
2189 }
2190 
2191 
2192 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2193 // Return true if dependence disproved.
2194 // Can sometimes refine direction vectors.
testMIV(const SCEV * Src,const SCEV * Dst,const SmallBitVector & Loops,FullDependence & Result) const2195 bool DependenceAnalysis::testMIV(const SCEV *Src,
2196                                  const SCEV *Dst,
2197                                  const SmallBitVector &Loops,
2198                                  FullDependence &Result) const {
2199   DEBUG(dbgs() << "    src = " << *Src << "\n");
2200   DEBUG(dbgs() << "    dst = " << *Dst << "\n");
2201   Result.Consistent = false;
2202   return gcdMIVtest(Src, Dst, Result) ||
2203     banerjeeMIVtest(Src, Dst, Loops, Result);
2204 }
2205 
2206 
2207 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2208 // in this case 10. If there is no constant part, returns NULL.
2209 static
getConstantPart(const SCEVMulExpr * Product)2210 const SCEVConstant *getConstantPart(const SCEVMulExpr *Product) {
2211   for (unsigned Op = 0, Ops = Product->getNumOperands(); Op < Ops; Op++) {
2212     if (const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Product->getOperand(Op)))
2213       return Constant;
2214   }
2215   return nullptr;
2216 }
2217 
2218 
2219 //===----------------------------------------------------------------------===//
2220 // gcdMIVtest -
2221 // Tests an MIV subscript pair for dependence.
2222 // Returns true if any possible dependence is disproved.
2223 // Marks the result as inconsistent.
2224 // Can sometimes disprove the equal direction for 1 or more loops,
2225 // as discussed in Michael Wolfe's book,
2226 // High Performance Compilers for Parallel Computing, page 235.
2227 //
2228 // We spend some effort (code!) to handle cases like
2229 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2230 // but M and N are just loop-invariant variables.
2231 // This should help us handle linearized subscripts;
2232 // also makes this test a useful backup to the various SIV tests.
2233 //
2234 // It occurs to me that the presence of loop-invariant variables
2235 // changes the nature of the test from "greatest common divisor"
2236 // to "a common divisor".
gcdMIVtest(const SCEV * Src,const SCEV * Dst,FullDependence & Result) const2237 bool DependenceAnalysis::gcdMIVtest(const SCEV *Src,
2238                                     const SCEV *Dst,
2239                                     FullDependence &Result) const {
2240   DEBUG(dbgs() << "starting gcd\n");
2241   ++GCDapplications;
2242   unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2243   APInt RunningGCD = APInt::getNullValue(BitWidth);
2244 
2245   // Examine Src coefficients.
2246   // Compute running GCD and record source constant.
2247   // Because we're looking for the constant at the end of the chain,
2248   // we can't quit the loop just because the GCD == 1.
2249   const SCEV *Coefficients = Src;
2250   while (const SCEVAddRecExpr *AddRec =
2251          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2252     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2253     const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2254     if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2255       // If the coefficient is the product of a constant and other stuff,
2256       // we can use the constant in the GCD computation.
2257       Constant = getConstantPart(Product);
2258     if (!Constant)
2259       return false;
2260     APInt ConstCoeff = Constant->getValue()->getValue();
2261     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2262     Coefficients = AddRec->getStart();
2263   }
2264   const SCEV *SrcConst = Coefficients;
2265 
2266   // Examine Dst coefficients.
2267   // Compute running GCD and record destination constant.
2268   // Because we're looking for the constant at the end of the chain,
2269   // we can't quit the loop just because the GCD == 1.
2270   Coefficients = Dst;
2271   while (const SCEVAddRecExpr *AddRec =
2272          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2273     const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2274     const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Coeff);
2275     if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2276       // If the coefficient is the product of a constant and other stuff,
2277       // we can use the constant in the GCD computation.
2278       Constant = getConstantPart(Product);
2279     if (!Constant)
2280       return false;
2281     APInt ConstCoeff = Constant->getValue()->getValue();
2282     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2283     Coefficients = AddRec->getStart();
2284   }
2285   const SCEV *DstConst = Coefficients;
2286 
2287   APInt ExtraGCD = APInt::getNullValue(BitWidth);
2288   const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2289   DEBUG(dbgs() << "    Delta = " << *Delta << "\n");
2290   const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2291   if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2292     // If Delta is a sum of products, we may be able to make further progress.
2293     for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2294       const SCEV *Operand = Sum->getOperand(Op);
2295       if (isa<SCEVConstant>(Operand)) {
2296         assert(!Constant && "Surprised to find multiple constants");
2297         Constant = cast<SCEVConstant>(Operand);
2298       }
2299       else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2300         // Search for constant operand to participate in GCD;
2301         // If none found; return false.
2302         const SCEVConstant *ConstOp = getConstantPart(Product);
2303         if (!ConstOp)
2304           return false;
2305         APInt ConstOpValue = ConstOp->getValue()->getValue();
2306         ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2307                                                    ConstOpValue.abs());
2308       }
2309       else
2310         return false;
2311     }
2312   }
2313   if (!Constant)
2314     return false;
2315   APInt ConstDelta = cast<SCEVConstant>(Constant)->getValue()->getValue();
2316   DEBUG(dbgs() << "    ConstDelta = " << ConstDelta << "\n");
2317   if (ConstDelta == 0)
2318     return false;
2319   RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2320   DEBUG(dbgs() << "    RunningGCD = " << RunningGCD << "\n");
2321   APInt Remainder = ConstDelta.srem(RunningGCD);
2322   if (Remainder != 0) {
2323     ++GCDindependence;
2324     return true;
2325   }
2326 
2327   // Try to disprove equal directions.
2328   // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2329   // the code above can't disprove the dependence because the GCD = 1.
2330   // So we consider what happen if i = i' and what happens if j = j'.
2331   // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2332   // which is infeasible, so we can disallow the = direction for the i level.
2333   // Setting j = j' doesn't help matters, so we end up with a direction vector
2334   // of [<>, *]
2335   //
2336   // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2337   // we need to remember that the constant part is 5 and the RunningGCD should
2338   // be initialized to ExtraGCD = 30.
2339   DEBUG(dbgs() << "    ExtraGCD = " << ExtraGCD << '\n');
2340 
2341   bool Improved = false;
2342   Coefficients = Src;
2343   while (const SCEVAddRecExpr *AddRec =
2344          dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2345     Coefficients = AddRec->getStart();
2346     const Loop *CurLoop = AddRec->getLoop();
2347     RunningGCD = ExtraGCD;
2348     const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2349     const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2350     const SCEV *Inner = Src;
2351     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2352       AddRec = cast<SCEVAddRecExpr>(Inner);
2353       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2354       if (CurLoop == AddRec->getLoop())
2355         ; // SrcCoeff == Coeff
2356       else {
2357         if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2358           // If the coefficient is the product of a constant and other stuff,
2359           // we can use the constant in the GCD computation.
2360           Constant = getConstantPart(Product);
2361         else
2362           Constant = cast<SCEVConstant>(Coeff);
2363         APInt ConstCoeff = Constant->getValue()->getValue();
2364         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2365       }
2366       Inner = AddRec->getStart();
2367     }
2368     Inner = Dst;
2369     while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2370       AddRec = cast<SCEVAddRecExpr>(Inner);
2371       const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2372       if (CurLoop == AddRec->getLoop())
2373         DstCoeff = Coeff;
2374       else {
2375         if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Coeff))
2376           // If the coefficient is the product of a constant and other stuff,
2377           // we can use the constant in the GCD computation.
2378           Constant = getConstantPart(Product);
2379         else
2380           Constant = cast<SCEVConstant>(Coeff);
2381         APInt ConstCoeff = Constant->getValue()->getValue();
2382         RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2383       }
2384       Inner = AddRec->getStart();
2385     }
2386     Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2387     if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Delta))
2388       // If the coefficient is the product of a constant and other stuff,
2389       // we can use the constant in the GCD computation.
2390       Constant = getConstantPart(Product);
2391     else if (isa<SCEVConstant>(Delta))
2392       Constant = cast<SCEVConstant>(Delta);
2393     else {
2394       // The difference of the two coefficients might not be a product
2395       // or constant, in which case we give up on this direction.
2396       continue;
2397     }
2398     APInt ConstCoeff = Constant->getValue()->getValue();
2399     RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2400     DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2401     if (RunningGCD != 0) {
2402       Remainder = ConstDelta.srem(RunningGCD);
2403       DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2404       if (Remainder != 0) {
2405         unsigned Level = mapSrcLoop(CurLoop);
2406         Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2407         Improved = true;
2408       }
2409     }
2410   }
2411   if (Improved)
2412     ++GCDsuccesses;
2413   DEBUG(dbgs() << "all done\n");
2414   return false;
2415 }
2416 
2417 
2418 //===----------------------------------------------------------------------===//
2419 // banerjeeMIVtest -
2420 // Use Banerjee's Inequalities to test an MIV subscript pair.
2421 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2422 // Generally follows the discussion in Section 2.5.2 of
2423 //
2424 //    Optimizing Supercompilers for Supercomputers
2425 //    Michael Wolfe
2426 //
2427 // The inequalities given on page 25 are simplified in that loops are
2428 // normalized so that the lower bound is always 0 and the stride is always 1.
2429 // For example, Wolfe gives
2430 //
2431 //     LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2432 //
2433 // where A_k is the coefficient of the kth index in the source subscript,
2434 // B_k is the coefficient of the kth index in the destination subscript,
2435 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2436 // index, and N_k is the stride of the kth index. Since all loops are normalized
2437 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2438 // equation to
2439 //
2440 //     LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2441 //            = (A^-_k - B_k)^- (U_k - 1)  - B_k
2442 //
2443 // Similar simplifications are possible for the other equations.
2444 //
2445 // When we can't determine the number of iterations for a loop,
2446 // we use NULL as an indicator for the worst case, infinity.
2447 // When computing the upper bound, NULL denotes +inf;
2448 // for the lower bound, NULL denotes -inf.
2449 //
2450 // Return true if dependence disproved.
banerjeeMIVtest(const SCEV * Src,const SCEV * Dst,const SmallBitVector & Loops,FullDependence & Result) const2451 bool DependenceAnalysis::banerjeeMIVtest(const SCEV *Src,
2452                                          const SCEV *Dst,
2453                                          const SmallBitVector &Loops,
2454                                          FullDependence &Result) const {
2455   DEBUG(dbgs() << "starting Banerjee\n");
2456   ++BanerjeeApplications;
2457   DEBUG(dbgs() << "    Src = " << *Src << '\n');
2458   const SCEV *A0;
2459   CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2460   DEBUG(dbgs() << "    Dst = " << *Dst << '\n');
2461   const SCEV *B0;
2462   CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2463   BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2464   const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2465   DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2466 
2467   // Compute bounds for all the * directions.
2468   DEBUG(dbgs() << "\tBounds[*]\n");
2469   for (unsigned K = 1; K <= MaxLevels; ++K) {
2470     Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2471     Bound[K].Direction = Dependence::DVEntry::ALL;
2472     Bound[K].DirSet = Dependence::DVEntry::NONE;
2473     findBoundsALL(A, B, Bound, K);
2474 #ifndef NDEBUG
2475     DEBUG(dbgs() << "\t    " << K << '\t');
2476     if (Bound[K].Lower[Dependence::DVEntry::ALL])
2477       DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2478     else
2479       DEBUG(dbgs() << "-inf\t");
2480     if (Bound[K].Upper[Dependence::DVEntry::ALL])
2481       DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2482     else
2483       DEBUG(dbgs() << "+inf\n");
2484 #endif
2485   }
2486 
2487   // Test the *, *, *, ... case.
2488   bool Disproved = false;
2489   if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2490     // Explore the direction vector hierarchy.
2491     unsigned DepthExpanded = 0;
2492     unsigned NewDeps = exploreDirections(1, A, B, Bound,
2493                                          Loops, DepthExpanded, Delta);
2494     if (NewDeps > 0) {
2495       bool Improved = false;
2496       for (unsigned K = 1; K <= CommonLevels; ++K) {
2497         if (Loops[K]) {
2498           unsigned Old = Result.DV[K - 1].Direction;
2499           Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2500           Improved |= Old != Result.DV[K - 1].Direction;
2501           if (!Result.DV[K - 1].Direction) {
2502             Improved = false;
2503             Disproved = true;
2504             break;
2505           }
2506         }
2507       }
2508       if (Improved)
2509         ++BanerjeeSuccesses;
2510     }
2511     else {
2512       ++BanerjeeIndependence;
2513       Disproved = true;
2514     }
2515   }
2516   else {
2517     ++BanerjeeIndependence;
2518     Disproved = true;
2519   }
2520   delete [] Bound;
2521   delete [] A;
2522   delete [] B;
2523   return Disproved;
2524 }
2525 
2526 
2527 // Hierarchically expands the direction vector
2528 // search space, combining the directions of discovered dependences
2529 // in the DirSet field of Bound. Returns the number of distinct
2530 // dependences discovered. If the dependence is disproved,
2531 // it will return 0.
exploreDirections(unsigned Level,CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,const SmallBitVector & Loops,unsigned & DepthExpanded,const SCEV * Delta) const2532 unsigned DependenceAnalysis::exploreDirections(unsigned Level,
2533                                                CoefficientInfo *A,
2534                                                CoefficientInfo *B,
2535                                                BoundInfo *Bound,
2536                                                const SmallBitVector &Loops,
2537                                                unsigned &DepthExpanded,
2538                                                const SCEV *Delta) const {
2539   if (Level > CommonLevels) {
2540     // record result
2541     DEBUG(dbgs() << "\t[");
2542     for (unsigned K = 1; K <= CommonLevels; ++K) {
2543       if (Loops[K]) {
2544         Bound[K].DirSet |= Bound[K].Direction;
2545 #ifndef NDEBUG
2546         switch (Bound[K].Direction) {
2547         case Dependence::DVEntry::LT:
2548           DEBUG(dbgs() << " <");
2549           break;
2550         case Dependence::DVEntry::EQ:
2551           DEBUG(dbgs() << " =");
2552           break;
2553         case Dependence::DVEntry::GT:
2554           DEBUG(dbgs() << " >");
2555           break;
2556         case Dependence::DVEntry::ALL:
2557           DEBUG(dbgs() << " *");
2558           break;
2559         default:
2560           llvm_unreachable("unexpected Bound[K].Direction");
2561         }
2562 #endif
2563       }
2564     }
2565     DEBUG(dbgs() << " ]\n");
2566     return 1;
2567   }
2568   if (Loops[Level]) {
2569     if (Level > DepthExpanded) {
2570       DepthExpanded = Level;
2571       // compute bounds for <, =, > at current level
2572       findBoundsLT(A, B, Bound, Level);
2573       findBoundsGT(A, B, Bound, Level);
2574       findBoundsEQ(A, B, Bound, Level);
2575 #ifndef NDEBUG
2576       DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2577       DEBUG(dbgs() << "\t    <\t");
2578       if (Bound[Level].Lower[Dependence::DVEntry::LT])
2579         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] << '\t');
2580       else
2581         DEBUG(dbgs() << "-inf\t");
2582       if (Bound[Level].Upper[Dependence::DVEntry::LT])
2583         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] << '\n');
2584       else
2585         DEBUG(dbgs() << "+inf\n");
2586       DEBUG(dbgs() << "\t    =\t");
2587       if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2588         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] << '\t');
2589       else
2590         DEBUG(dbgs() << "-inf\t");
2591       if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2592         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] << '\n');
2593       else
2594         DEBUG(dbgs() << "+inf\n");
2595       DEBUG(dbgs() << "\t    >\t");
2596       if (Bound[Level].Lower[Dependence::DVEntry::GT])
2597         DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] << '\t');
2598       else
2599         DEBUG(dbgs() << "-inf\t");
2600       if (Bound[Level].Upper[Dependence::DVEntry::GT])
2601         DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] << '\n');
2602       else
2603         DEBUG(dbgs() << "+inf\n");
2604 #endif
2605     }
2606 
2607     unsigned NewDeps = 0;
2608 
2609     // test bounds for <, *, *, ...
2610     if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2611       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2612                                    Loops, DepthExpanded, Delta);
2613 
2614     // Test bounds for =, *, *, ...
2615     if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2616       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2617                                    Loops, DepthExpanded, Delta);
2618 
2619     // test bounds for >, *, *, ...
2620     if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2621       NewDeps += exploreDirections(Level + 1, A, B, Bound,
2622                                    Loops, DepthExpanded, Delta);
2623 
2624     Bound[Level].Direction = Dependence::DVEntry::ALL;
2625     return NewDeps;
2626   }
2627   else
2628     return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2629 }
2630 
2631 
2632 // Returns true iff the current bounds are plausible.
testBounds(unsigned char DirKind,unsigned Level,BoundInfo * Bound,const SCEV * Delta) const2633 bool DependenceAnalysis::testBounds(unsigned char DirKind,
2634                                     unsigned Level,
2635                                     BoundInfo *Bound,
2636                                     const SCEV *Delta) const {
2637   Bound[Level].Direction = DirKind;
2638   if (const SCEV *LowerBound = getLowerBound(Bound))
2639     if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2640       return false;
2641   if (const SCEV *UpperBound = getUpperBound(Bound))
2642     if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2643       return false;
2644   return true;
2645 }
2646 
2647 
2648 // Computes the upper and lower bounds for level K
2649 // using the * direction. Records them in Bound.
2650 // Wolfe gives the equations
2651 //
2652 //    LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2653 //    UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2654 //
2655 // Since we normalize loops, we can simplify these equations to
2656 //
2657 //    LB^*_k = (A^-_k - B^+_k)U_k
2658 //    UB^*_k = (A^+_k - B^-_k)U_k
2659 //
2660 // We must be careful to handle the case where the upper bound is unknown.
2661 // Note that the lower bound is always <= 0
2662 // and the upper bound is always >= 0.
findBoundsALL(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2663 void DependenceAnalysis::findBoundsALL(CoefficientInfo *A,
2664                                        CoefficientInfo *B,
2665                                        BoundInfo *Bound,
2666                                        unsigned K) const {
2667   Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2668   Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2669   if (Bound[K].Iterations) {
2670     Bound[K].Lower[Dependence::DVEntry::ALL] =
2671       SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2672                      Bound[K].Iterations);
2673     Bound[K].Upper[Dependence::DVEntry::ALL] =
2674       SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2675                      Bound[K].Iterations);
2676   }
2677   else {
2678     // If the difference is 0, we won't need to know the number of iterations.
2679     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2680       Bound[K].Lower[Dependence::DVEntry::ALL] =
2681         SE->getConstant(A[K].Coeff->getType(), 0);
2682     if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2683       Bound[K].Upper[Dependence::DVEntry::ALL] =
2684         SE->getConstant(A[K].Coeff->getType(), 0);
2685   }
2686 }
2687 
2688 
2689 // Computes the upper and lower bounds for level K
2690 // using the = direction. Records them in Bound.
2691 // Wolfe gives the equations
2692 //
2693 //    LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2694 //    UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2695 //
2696 // Since we normalize loops, we can simplify these equations to
2697 //
2698 //    LB^=_k = (A_k - B_k)^- U_k
2699 //    UB^=_k = (A_k - B_k)^+ U_k
2700 //
2701 // We must be careful to handle the case where the upper bound is unknown.
2702 // Note that the lower bound is always <= 0
2703 // and the upper bound is always >= 0.
findBoundsEQ(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2704 void DependenceAnalysis::findBoundsEQ(CoefficientInfo *A,
2705                                       CoefficientInfo *B,
2706                                       BoundInfo *Bound,
2707                                       unsigned K) const {
2708   Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2709   Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2710   if (Bound[K].Iterations) {
2711     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2712     const SCEV *NegativePart = getNegativePart(Delta);
2713     Bound[K].Lower[Dependence::DVEntry::EQ] =
2714       SE->getMulExpr(NegativePart, Bound[K].Iterations);
2715     const SCEV *PositivePart = getPositivePart(Delta);
2716     Bound[K].Upper[Dependence::DVEntry::EQ] =
2717       SE->getMulExpr(PositivePart, Bound[K].Iterations);
2718   }
2719   else {
2720     // If the positive/negative part of the difference is 0,
2721     // we won't need to know the number of iterations.
2722     const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2723     const SCEV *NegativePart = getNegativePart(Delta);
2724     if (NegativePart->isZero())
2725       Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2726     const SCEV *PositivePart = getPositivePart(Delta);
2727     if (PositivePart->isZero())
2728       Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2729   }
2730 }
2731 
2732 
2733 // Computes the upper and lower bounds for level K
2734 // using the < direction. Records them in Bound.
2735 // Wolfe gives the equations
2736 //
2737 //    LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2738 //    UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2739 //
2740 // Since we normalize loops, we can simplify these equations to
2741 //
2742 //    LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2743 //    UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2744 //
2745 // We must be careful to handle the case where the upper bound is unknown.
findBoundsLT(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2746 void DependenceAnalysis::findBoundsLT(CoefficientInfo *A,
2747                                       CoefficientInfo *B,
2748                                       BoundInfo *Bound,
2749                                       unsigned K) const {
2750   Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2751   Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2752   if (Bound[K].Iterations) {
2753     const SCEV *Iter_1 =
2754       SE->getMinusSCEV(Bound[K].Iterations,
2755                        SE->getConstant(Bound[K].Iterations->getType(), 1));
2756     const SCEV *NegPart =
2757       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2758     Bound[K].Lower[Dependence::DVEntry::LT] =
2759       SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2760     const SCEV *PosPart =
2761       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2762     Bound[K].Upper[Dependence::DVEntry::LT] =
2763       SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2764   }
2765   else {
2766     // If the positive/negative part of the difference is 0,
2767     // we won't need to know the number of iterations.
2768     const SCEV *NegPart =
2769       getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2770     if (NegPart->isZero())
2771       Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2772     const SCEV *PosPart =
2773       getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2774     if (PosPart->isZero())
2775       Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2776   }
2777 }
2778 
2779 
2780 // Computes the upper and lower bounds for level K
2781 // using the > direction. Records them in Bound.
2782 // Wolfe gives the equations
2783 //
2784 //    LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2785 //    UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2786 //
2787 // Since we normalize loops, we can simplify these equations to
2788 //
2789 //    LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2790 //    UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2791 //
2792 // We must be careful to handle the case where the upper bound is unknown.
findBoundsGT(CoefficientInfo * A,CoefficientInfo * B,BoundInfo * Bound,unsigned K) const2793 void DependenceAnalysis::findBoundsGT(CoefficientInfo *A,
2794                                       CoefficientInfo *B,
2795                                       BoundInfo *Bound,
2796                                       unsigned K) const {
2797   Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2798   Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2799   if (Bound[K].Iterations) {
2800     const SCEV *Iter_1 =
2801       SE->getMinusSCEV(Bound[K].Iterations,
2802                        SE->getConstant(Bound[K].Iterations->getType(), 1));
2803     const SCEV *NegPart =
2804       getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2805     Bound[K].Lower[Dependence::DVEntry::GT] =
2806       SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2807     const SCEV *PosPart =
2808       getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2809     Bound[K].Upper[Dependence::DVEntry::GT] =
2810       SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2811   }
2812   else {
2813     // If the positive/negative part of the difference is 0,
2814     // we won't need to know the number of iterations.
2815     const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2816     if (NegPart->isZero())
2817       Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2818     const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2819     if (PosPart->isZero())
2820       Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2821   }
2822 }
2823 
2824 
2825 // X^+ = max(X, 0)
getPositivePart(const SCEV * X) const2826 const SCEV *DependenceAnalysis::getPositivePart(const SCEV *X) const {
2827   return SE->getSMaxExpr(X, SE->getConstant(X->getType(), 0));
2828 }
2829 
2830 
2831 // X^- = min(X, 0)
getNegativePart(const SCEV * X) const2832 const SCEV *DependenceAnalysis::getNegativePart(const SCEV *X) const {
2833   return SE->getSMinExpr(X, SE->getConstant(X->getType(), 0));
2834 }
2835 
2836 
2837 // Walks through the subscript,
2838 // collecting each coefficient, the associated loop bounds,
2839 // and recording its positive and negative parts for later use.
2840 DependenceAnalysis::CoefficientInfo *
collectCoeffInfo(const SCEV * Subscript,bool SrcFlag,const SCEV * & Constant) const2841 DependenceAnalysis::collectCoeffInfo(const SCEV *Subscript,
2842                                      bool SrcFlag,
2843                                      const SCEV *&Constant) const {
2844   const SCEV *Zero = SE->getConstant(Subscript->getType(), 0);
2845   CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2846   for (unsigned K = 1; K <= MaxLevels; ++K) {
2847     CI[K].Coeff = Zero;
2848     CI[K].PosPart = Zero;
2849     CI[K].NegPart = Zero;
2850     CI[K].Iterations = nullptr;
2851   }
2852   while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2853     const Loop *L = AddRec->getLoop();
2854     unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2855     CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2856     CI[K].PosPart = getPositivePart(CI[K].Coeff);
2857     CI[K].NegPart = getNegativePart(CI[K].Coeff);
2858     CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2859     Subscript = AddRec->getStart();
2860   }
2861   Constant = Subscript;
2862 #ifndef NDEBUG
2863   DEBUG(dbgs() << "\tCoefficient Info\n");
2864   for (unsigned K = 1; K <= MaxLevels; ++K) {
2865     DEBUG(dbgs() << "\t    " << K << "\t" << *CI[K].Coeff);
2866     DEBUG(dbgs() << "\tPos Part = ");
2867     DEBUG(dbgs() << *CI[K].PosPart);
2868     DEBUG(dbgs() << "\tNeg Part = ");
2869     DEBUG(dbgs() << *CI[K].NegPart);
2870     DEBUG(dbgs() << "\tUpper Bound = ");
2871     if (CI[K].Iterations)
2872       DEBUG(dbgs() << *CI[K].Iterations);
2873     else
2874       DEBUG(dbgs() << "+inf");
2875     DEBUG(dbgs() << '\n');
2876   }
2877   DEBUG(dbgs() << "\t    Constant = " << *Subscript << '\n');
2878 #endif
2879   return CI;
2880 }
2881 
2882 
2883 // Looks through all the bounds info and
2884 // computes the lower bound given the current direction settings
2885 // at each level. If the lower bound for any level is -inf,
2886 // the result is -inf.
getLowerBound(BoundInfo * Bound) const2887 const SCEV *DependenceAnalysis::getLowerBound(BoundInfo *Bound) const {
2888   const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2889   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2890     if (Bound[K].Lower[Bound[K].Direction])
2891       Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2892     else
2893       Sum = nullptr;
2894   }
2895   return Sum;
2896 }
2897 
2898 
2899 // Looks through all the bounds info and
2900 // computes the upper bound given the current direction settings
2901 // at each level. If the upper bound at any level is +inf,
2902 // the result is +inf.
getUpperBound(BoundInfo * Bound) const2903 const SCEV *DependenceAnalysis::getUpperBound(BoundInfo *Bound) const {
2904   const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2905   for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2906     if (Bound[K].Upper[Bound[K].Direction])
2907       Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2908     else
2909       Sum = nullptr;
2910   }
2911   return Sum;
2912 }
2913 
2914 
2915 //===----------------------------------------------------------------------===//
2916 // Constraint manipulation for Delta test.
2917 
2918 // Given a linear SCEV,
2919 // return the coefficient (the step)
2920 // corresponding to the specified loop.
2921 // If there isn't one, return 0.
2922 // For example, given a*i + b*j + c*k, zeroing the coefficient
2923 // corresponding to the j loop would yield b.
findCoefficient(const SCEV * Expr,const Loop * TargetLoop) const2924 const SCEV *DependenceAnalysis::findCoefficient(const SCEV *Expr,
2925                                                 const Loop *TargetLoop)  const {
2926   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2927   if (!AddRec)
2928     return SE->getConstant(Expr->getType(), 0);
2929   if (AddRec->getLoop() == TargetLoop)
2930     return AddRec->getStepRecurrence(*SE);
2931   return findCoefficient(AddRec->getStart(), TargetLoop);
2932 }
2933 
2934 
2935 // Given a linear SCEV,
2936 // return the SCEV given by zeroing out the coefficient
2937 // corresponding to the specified loop.
2938 // For example, given a*i + b*j + c*k, zeroing the coefficient
2939 // corresponding to the j loop would yield a*i + c*k.
zeroCoefficient(const SCEV * Expr,const Loop * TargetLoop) const2940 const SCEV *DependenceAnalysis::zeroCoefficient(const SCEV *Expr,
2941                                                 const Loop *TargetLoop)  const {
2942   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2943   if (!AddRec)
2944     return Expr; // ignore
2945   if (AddRec->getLoop() == TargetLoop)
2946     return AddRec->getStart();
2947   return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
2948                            AddRec->getStepRecurrence(*SE),
2949                            AddRec->getLoop(),
2950                            AddRec->getNoWrapFlags());
2951 }
2952 
2953 
2954 // Given a linear SCEV Expr,
2955 // return the SCEV given by adding some Value to the
2956 // coefficient corresponding to the specified TargetLoop.
2957 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
2958 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
addToCoefficient(const SCEV * Expr,const Loop * TargetLoop,const SCEV * Value) const2959 const SCEV *DependenceAnalysis::addToCoefficient(const SCEV *Expr,
2960                                                  const Loop *TargetLoop,
2961                                                  const SCEV *Value)  const {
2962   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2963   if (!AddRec) // create a new addRec
2964     return SE->getAddRecExpr(Expr,
2965                              Value,
2966                              TargetLoop,
2967                              SCEV::FlagAnyWrap); // Worst case, with no info.
2968   if (AddRec->getLoop() == TargetLoop) {
2969     const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
2970     if (Sum->isZero())
2971       return AddRec->getStart();
2972     return SE->getAddRecExpr(AddRec->getStart(),
2973                              Sum,
2974                              AddRec->getLoop(),
2975                              AddRec->getNoWrapFlags());
2976   }
2977   if (SE->isLoopInvariant(AddRec, TargetLoop))
2978     return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
2979   return SE->getAddRecExpr(
2980       addToCoefficient(AddRec->getStart(), TargetLoop, Value),
2981       AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
2982       AddRec->getNoWrapFlags());
2983 }
2984 
2985 
2986 // Review the constraints, looking for opportunities
2987 // to simplify a subscript pair (Src and Dst).
2988 // Return true if some simplification occurs.
2989 // If the simplification isn't exact (that is, if it is conservative
2990 // in terms of dependence), set consistent to false.
2991 // Corresponds to Figure 5 from the paper
2992 //
2993 //            Practical Dependence Testing
2994 //            Goff, Kennedy, Tseng
2995 //            PLDI 1991
propagate(const SCEV * & Src,const SCEV * & Dst,SmallBitVector & Loops,SmallVectorImpl<Constraint> & Constraints,bool & Consistent)2996 bool DependenceAnalysis::propagate(const SCEV *&Src,
2997                                    const SCEV *&Dst,
2998                                    SmallBitVector &Loops,
2999                                    SmallVectorImpl<Constraint> &Constraints,
3000                                    bool &Consistent) {
3001   bool Result = false;
3002   for (int LI = Loops.find_first(); LI >= 0; LI = Loops.find_next(LI)) {
3003     DEBUG(dbgs() << "\t    Constraint[" << LI << "] is");
3004     DEBUG(Constraints[LI].dump(dbgs()));
3005     if (Constraints[LI].isDistance())
3006       Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3007     else if (Constraints[LI].isLine())
3008       Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3009     else if (Constraints[LI].isPoint())
3010       Result |= propagatePoint(Src, Dst, Constraints[LI]);
3011   }
3012   return Result;
3013 }
3014 
3015 
3016 // Attempt to propagate a distance
3017 // constraint into a subscript pair (Src and Dst).
3018 // Return true if some simplification occurs.
3019 // If the simplification isn't exact (that is, if it is conservative
3020 // in terms of dependence), set consistent to false.
propagateDistance(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint,bool & Consistent)3021 bool DependenceAnalysis::propagateDistance(const SCEV *&Src,
3022                                            const SCEV *&Dst,
3023                                            Constraint &CurConstraint,
3024                                            bool &Consistent) {
3025   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3026   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3027   const SCEV *A_K = findCoefficient(Src, CurLoop);
3028   if (A_K->isZero())
3029     return false;
3030   const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3031   Src = SE->getMinusSCEV(Src, DA_K);
3032   Src = zeroCoefficient(Src, CurLoop);
3033   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3034   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3035   Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3036   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3037   if (!findCoefficient(Dst, CurLoop)->isZero())
3038     Consistent = false;
3039   return true;
3040 }
3041 
3042 
3043 // Attempt to propagate a line
3044 // constraint into a subscript pair (Src and Dst).
3045 // Return true if some simplification occurs.
3046 // If the simplification isn't exact (that is, if it is conservative
3047 // in terms of dependence), set consistent to false.
propagateLine(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint,bool & Consistent)3048 bool DependenceAnalysis::propagateLine(const SCEV *&Src,
3049                                        const SCEV *&Dst,
3050                                        Constraint &CurConstraint,
3051                                        bool &Consistent) {
3052   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3053   const SCEV *A = CurConstraint.getA();
3054   const SCEV *B = CurConstraint.getB();
3055   const SCEV *C = CurConstraint.getC();
3056   DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C << "\n");
3057   DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3058   DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3059   if (A->isZero()) {
3060     const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3061     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3062     if (!Bconst || !Cconst) return false;
3063     APInt Beta = Bconst->getValue()->getValue();
3064     APInt Charlie = Cconst->getValue()->getValue();
3065     APInt CdivB = Charlie.sdiv(Beta);
3066     assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3067     const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3068     //    Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3069     Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3070     Dst = zeroCoefficient(Dst, CurLoop);
3071     if (!findCoefficient(Src, CurLoop)->isZero())
3072       Consistent = false;
3073   }
3074   else if (B->isZero()) {
3075     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3076     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3077     if (!Aconst || !Cconst) return false;
3078     APInt Alpha = Aconst->getValue()->getValue();
3079     APInt Charlie = Cconst->getValue()->getValue();
3080     APInt CdivA = Charlie.sdiv(Alpha);
3081     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3082     const SCEV *A_K = findCoefficient(Src, CurLoop);
3083     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3084     Src = zeroCoefficient(Src, CurLoop);
3085     if (!findCoefficient(Dst, CurLoop)->isZero())
3086       Consistent = false;
3087   }
3088   else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3089     const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3090     const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3091     if (!Aconst || !Cconst) return false;
3092     APInt Alpha = Aconst->getValue()->getValue();
3093     APInt Charlie = Cconst->getValue()->getValue();
3094     APInt CdivA = Charlie.sdiv(Alpha);
3095     assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3096     const SCEV *A_K = findCoefficient(Src, CurLoop);
3097     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3098     Src = zeroCoefficient(Src, CurLoop);
3099     Dst = addToCoefficient(Dst, CurLoop, A_K);
3100     if (!findCoefficient(Dst, CurLoop)->isZero())
3101       Consistent = false;
3102   }
3103   else {
3104     // paper is incorrect here, or perhaps just misleading
3105     const SCEV *A_K = findCoefficient(Src, CurLoop);
3106     Src = SE->getMulExpr(Src, A);
3107     Dst = SE->getMulExpr(Dst, A);
3108     Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3109     Src = zeroCoefficient(Src, CurLoop);
3110     Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3111     if (!findCoefficient(Dst, CurLoop)->isZero())
3112       Consistent = false;
3113   }
3114   DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3115   DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3116   return true;
3117 }
3118 
3119 
3120 // Attempt to propagate a point
3121 // constraint into a subscript pair (Src and Dst).
3122 // Return true if some simplification occurs.
propagatePoint(const SCEV * & Src,const SCEV * & Dst,Constraint & CurConstraint)3123 bool DependenceAnalysis::propagatePoint(const SCEV *&Src,
3124                                         const SCEV *&Dst,
3125                                         Constraint &CurConstraint) {
3126   const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3127   const SCEV *A_K = findCoefficient(Src, CurLoop);
3128   const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3129   const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3130   const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3131   DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3132   Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3133   Src = zeroCoefficient(Src, CurLoop);
3134   DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3135   DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3136   Dst = zeroCoefficient(Dst, CurLoop);
3137   DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3138   return true;
3139 }
3140 
3141 
3142 // Update direction vector entry based on the current constraint.
updateDirection(Dependence::DVEntry & Level,const Constraint & CurConstraint) const3143 void DependenceAnalysis::updateDirection(Dependence::DVEntry &Level,
3144                                          const Constraint &CurConstraint
3145                                          ) const {
3146   DEBUG(dbgs() << "\tUpdate direction, constraint =");
3147   DEBUG(CurConstraint.dump(dbgs()));
3148   if (CurConstraint.isAny())
3149     ; // use defaults
3150   else if (CurConstraint.isDistance()) {
3151     // this one is consistent, the others aren't
3152     Level.Scalar = false;
3153     Level.Distance = CurConstraint.getD();
3154     unsigned NewDirection = Dependence::DVEntry::NONE;
3155     if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3156       NewDirection = Dependence::DVEntry::EQ;
3157     if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3158       NewDirection |= Dependence::DVEntry::LT;
3159     if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3160       NewDirection |= Dependence::DVEntry::GT;
3161     Level.Direction &= NewDirection;
3162   }
3163   else if (CurConstraint.isLine()) {
3164     Level.Scalar = false;
3165     Level.Distance = nullptr;
3166     // direction should be accurate
3167   }
3168   else if (CurConstraint.isPoint()) {
3169     Level.Scalar = false;
3170     Level.Distance = nullptr;
3171     unsigned NewDirection = Dependence::DVEntry::NONE;
3172     if (!isKnownPredicate(CmpInst::ICMP_NE,
3173                           CurConstraint.getY(),
3174                           CurConstraint.getX()))
3175       // if X may be = Y
3176       NewDirection |= Dependence::DVEntry::EQ;
3177     if (!isKnownPredicate(CmpInst::ICMP_SLE,
3178                           CurConstraint.getY(),
3179                           CurConstraint.getX()))
3180       // if Y may be > X
3181       NewDirection |= Dependence::DVEntry::LT;
3182     if (!isKnownPredicate(CmpInst::ICMP_SGE,
3183                           CurConstraint.getY(),
3184                           CurConstraint.getX()))
3185       // if Y may be < X
3186       NewDirection |= Dependence::DVEntry::GT;
3187     Level.Direction &= NewDirection;
3188   }
3189   else
3190     llvm_unreachable("constraint has unexpected kind");
3191 }
3192 
3193 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3194 /// source and destination array references are recurrences on a nested loop,
3195 /// this function flattens the nested recurrences into separate recurrences
3196 /// for each loop level.
tryDelinearize(const SCEV * SrcSCEV,const SCEV * DstSCEV,SmallVectorImpl<Subscript> & Pair,const SCEV * ElementSize)3197 bool DependenceAnalysis::tryDelinearize(const SCEV *SrcSCEV,
3198                                         const SCEV *DstSCEV,
3199                                         SmallVectorImpl<Subscript> &Pair,
3200                                         const SCEV *ElementSize) {
3201   const SCEVUnknown *SrcBase =
3202       dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcSCEV));
3203   const SCEVUnknown *DstBase =
3204       dyn_cast<SCEVUnknown>(SE->getPointerBase(DstSCEV));
3205 
3206   if (!SrcBase || !DstBase || SrcBase != DstBase)
3207     return false;
3208 
3209   SrcSCEV = SE->getMinusSCEV(SrcSCEV, SrcBase);
3210   DstSCEV = SE->getMinusSCEV(DstSCEV, DstBase);
3211 
3212   const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3213   const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3214   if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3215     return false;
3216 
3217   // First step: collect parametric terms in both array references.
3218   SmallVector<const SCEV *, 4> Terms;
3219   SrcAR->collectParametricTerms(*SE, Terms);
3220   DstAR->collectParametricTerms(*SE, Terms);
3221 
3222   // Second step: find subscript sizes.
3223   SmallVector<const SCEV *, 4> Sizes;
3224   SE->findArrayDimensions(Terms, Sizes, ElementSize);
3225 
3226   // Third step: compute the access functions for each subscript.
3227   SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3228   SrcAR->computeAccessFunctions(*SE, SrcSubscripts, Sizes);
3229   DstAR->computeAccessFunctions(*SE, DstSubscripts, Sizes);
3230 
3231   // Fail when there is only a subscript: that's a linearized access function.
3232   if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3233       SrcSubscripts.size() != DstSubscripts.size())
3234     return false;
3235 
3236   int size = SrcSubscripts.size();
3237 
3238   DEBUG({
3239       dbgs() << "\nSrcSubscripts: ";
3240     for (int i = 0; i < size; i++)
3241       dbgs() << *SrcSubscripts[i];
3242     dbgs() << "\nDstSubscripts: ";
3243     for (int i = 0; i < size; i++)
3244       dbgs() << *DstSubscripts[i];
3245     });
3246 
3247   // The delinearization transforms a single-subscript MIV dependence test into
3248   // a multi-subscript SIV dependence test that is easier to compute. So we
3249   // resize Pair to contain as many pairs of subscripts as the delinearization
3250   // has found, and then initialize the pairs following the delinearization.
3251   Pair.resize(size);
3252   for (int i = 0; i < size; ++i) {
3253     Pair[i].Src = SrcSubscripts[i];
3254     Pair[i].Dst = DstSubscripts[i];
3255     unifySubscriptType(&Pair[i]);
3256 
3257     // FIXME: we should record the bounds SrcSizes[i] and DstSizes[i] that the
3258     // delinearization has found, and add these constraints to the dependence
3259     // check to avoid memory accesses overflow from one dimension into another.
3260     // This is related to the problem of determining the existence of data
3261     // dependences in array accesses using a different number of subscripts: in
3262     // C one can access an array A[100][100]; as A[0][9999], *A[9999], etc.
3263   }
3264 
3265   return true;
3266 }
3267 
3268 //===----------------------------------------------------------------------===//
3269 
3270 #ifndef NDEBUG
3271 // For debugging purposes, dump a small bit vector to dbgs().
dumpSmallBitVector(SmallBitVector & BV)3272 static void dumpSmallBitVector(SmallBitVector &BV) {
3273   dbgs() << "{";
3274   for (int VI = BV.find_first(); VI >= 0; VI = BV.find_next(VI)) {
3275     dbgs() << VI;
3276     if (BV.find_next(VI) >= 0)
3277       dbgs() << ' ';
3278   }
3279   dbgs() << "}\n";
3280 }
3281 #endif
3282 
3283 
3284 // depends -
3285 // Returns NULL if there is no dependence.
3286 // Otherwise, return a Dependence with as many details as possible.
3287 // Corresponds to Section 3.1 in the paper
3288 //
3289 //            Practical Dependence Testing
3290 //            Goff, Kennedy, Tseng
3291 //            PLDI 1991
3292 //
3293 // Care is required to keep the routine below, getSplitIteration(),
3294 // up to date with respect to this routine.
3295 std::unique_ptr<Dependence>
depends(Instruction * Src,Instruction * Dst,bool PossiblyLoopIndependent)3296 DependenceAnalysis::depends(Instruction *Src, Instruction *Dst,
3297                             bool PossiblyLoopIndependent) {
3298   if (Src == Dst)
3299     PossiblyLoopIndependent = false;
3300 
3301   if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3302       (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3303     // if both instructions don't reference memory, there's no dependence
3304     return nullptr;
3305 
3306   if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3307     // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3308     DEBUG(dbgs() << "can only handle simple loads and stores\n");
3309     return make_unique<Dependence>(Src, Dst);
3310   }
3311 
3312   Value *SrcPtr = getPointerOperand(Src);
3313   Value *DstPtr = getPointerOperand(Dst);
3314 
3315   switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
3316                                  SrcPtr)) {
3317   case AliasAnalysis::MayAlias:
3318   case AliasAnalysis::PartialAlias:
3319     // cannot analyse objects if we don't understand their aliasing.
3320     DEBUG(dbgs() << "can't analyze may or partial alias\n");
3321     return make_unique<Dependence>(Src, Dst);
3322   case AliasAnalysis::NoAlias:
3323     // If the objects noalias, they are distinct, accesses are independent.
3324     DEBUG(dbgs() << "no alias\n");
3325     return nullptr;
3326   case AliasAnalysis::MustAlias:
3327     break; // The underlying objects alias; test accesses for dependence.
3328   }
3329 
3330   // establish loop nesting levels
3331   establishNestingLevels(Src, Dst);
3332   DEBUG(dbgs() << "    common nesting levels = " << CommonLevels << "\n");
3333   DEBUG(dbgs() << "    maximum nesting levels = " << MaxLevels << "\n");
3334 
3335   FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3336   ++TotalArrayPairs;
3337 
3338   // See if there are GEPs we can use.
3339   bool UsefulGEP = false;
3340   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3341   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3342   if (SrcGEP && DstGEP &&
3343       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3344     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3345     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3346     DEBUG(dbgs() << "    SrcPtrSCEV = " << *SrcPtrSCEV << "\n");
3347     DEBUG(dbgs() << "    DstPtrSCEV = " << *DstPtrSCEV << "\n");
3348 
3349     UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3350                 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
3351                 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
3352   }
3353   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3354   SmallVector<Subscript, 4> Pair(Pairs);
3355   if (UsefulGEP) {
3356     DEBUG(dbgs() << "    using GEPs\n");
3357     unsigned P = 0;
3358     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3359            SrcEnd = SrcGEP->idx_end(),
3360            DstIdx = DstGEP->idx_begin();
3361          SrcIdx != SrcEnd;
3362          ++SrcIdx, ++DstIdx, ++P) {
3363       Pair[P].Src = SE->getSCEV(*SrcIdx);
3364       Pair[P].Dst = SE->getSCEV(*DstIdx);
3365       unifySubscriptType(&Pair[P]);
3366     }
3367   }
3368   else {
3369     DEBUG(dbgs() << "    ignoring GEPs\n");
3370     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3371     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3372     DEBUG(dbgs() << "    SrcSCEV = " << *SrcSCEV << "\n");
3373     DEBUG(dbgs() << "    DstSCEV = " << *DstSCEV << "\n");
3374     Pair[0].Src = SrcSCEV;
3375     Pair[0].Dst = DstSCEV;
3376   }
3377 
3378   if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
3379       tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
3380     DEBUG(dbgs() << "    delinerized GEP\n");
3381     Pairs = Pair.size();
3382   }
3383 
3384   for (unsigned P = 0; P < Pairs; ++P) {
3385     Pair[P].Loops.resize(MaxLevels + 1);
3386     Pair[P].GroupLoops.resize(MaxLevels + 1);
3387     Pair[P].Group.resize(Pairs);
3388     removeMatchingExtensions(&Pair[P]);
3389     Pair[P].Classification =
3390       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3391                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3392                    Pair[P].Loops);
3393     Pair[P].GroupLoops = Pair[P].Loops;
3394     Pair[P].Group.set(P);
3395     DEBUG(dbgs() << "    subscript " << P << "\n");
3396     DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3397     DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3398     DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3399     DEBUG(dbgs() << "\tloops = ");
3400     DEBUG(dumpSmallBitVector(Pair[P].Loops));
3401   }
3402 
3403   SmallBitVector Separable(Pairs);
3404   SmallBitVector Coupled(Pairs);
3405 
3406   // Partition subscripts into separable and minimally-coupled groups
3407   // Algorithm in paper is algorithmically better;
3408   // this may be faster in practice. Check someday.
3409   //
3410   // Here's an example of how it works. Consider this code:
3411   //
3412   //   for (i = ...) {
3413   //     for (j = ...) {
3414   //       for (k = ...) {
3415   //         for (l = ...) {
3416   //           for (m = ...) {
3417   //             A[i][j][k][m] = ...;
3418   //             ... = A[0][j][l][i + j];
3419   //           }
3420   //         }
3421   //       }
3422   //     }
3423   //   }
3424   //
3425   // There are 4 subscripts here:
3426   //    0 [i] and [0]
3427   //    1 [j] and [j]
3428   //    2 [k] and [l]
3429   //    3 [m] and [i + j]
3430   //
3431   // We've already classified each subscript pair as ZIV, SIV, etc.,
3432   // and collected all the loops mentioned by pair P in Pair[P].Loops.
3433   // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3434   // and set Pair[P].Group = {P}.
3435   //
3436   //      Src Dst    Classification Loops  GroupLoops Group
3437   //    0 [i] [0]         SIV       {1}      {1}        {0}
3438   //    1 [j] [j]         SIV       {2}      {2}        {1}
3439   //    2 [k] [l]         RDIV      {3,4}    {3,4}      {2}
3440   //    3 [m] [i + j]     MIV       {1,2,5}  {1,2,5}    {3}
3441   //
3442   // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3443   // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3444   //
3445   // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3446   // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3447   // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3448   // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3449   // to either Separable or Coupled).
3450   //
3451   // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3452   // Next, 1 and 3. The intersectionof their GroupLoops = {2}, not empty,
3453   // so Pair[3].Group = {0, 1, 3} and Done = false.
3454   //
3455   // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3456   // Since Done remains true, we add 2 to the set of Separable pairs.
3457   //
3458   // Finally, we consider 3. There's nothing to compare it with,
3459   // so Done remains true and we add it to the Coupled set.
3460   // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3461   //
3462   // In the end, we've got 1 separable subscript and 1 coupled group.
3463   for (unsigned SI = 0; SI < Pairs; ++SI) {
3464     if (Pair[SI].Classification == Subscript::NonLinear) {
3465       // ignore these, but collect loops for later
3466       ++NonlinearSubscriptPairs;
3467       collectCommonLoops(Pair[SI].Src,
3468                          LI->getLoopFor(Src->getParent()),
3469                          Pair[SI].Loops);
3470       collectCommonLoops(Pair[SI].Dst,
3471                          LI->getLoopFor(Dst->getParent()),
3472                          Pair[SI].Loops);
3473       Result.Consistent = false;
3474     } else if (Pair[SI].Classification == Subscript::ZIV) {
3475       // always separable
3476       Separable.set(SI);
3477     }
3478     else {
3479       // SIV, RDIV, or MIV, so check for coupled group
3480       bool Done = true;
3481       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3482         SmallBitVector Intersection = Pair[SI].GroupLoops;
3483         Intersection &= Pair[SJ].GroupLoops;
3484         if (Intersection.any()) {
3485           // accumulate set of all the loops in group
3486           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3487           // accumulate set of all subscripts in group
3488           Pair[SJ].Group |= Pair[SI].Group;
3489           Done = false;
3490         }
3491       }
3492       if (Done) {
3493         if (Pair[SI].Group.count() == 1) {
3494           Separable.set(SI);
3495           ++SeparableSubscriptPairs;
3496         }
3497         else {
3498           Coupled.set(SI);
3499           ++CoupledSubscriptPairs;
3500         }
3501       }
3502     }
3503   }
3504 
3505   DEBUG(dbgs() << "    Separable = ");
3506   DEBUG(dumpSmallBitVector(Separable));
3507   DEBUG(dbgs() << "    Coupled = ");
3508   DEBUG(dumpSmallBitVector(Coupled));
3509 
3510   Constraint NewConstraint;
3511   NewConstraint.setAny(SE);
3512 
3513   // test separable subscripts
3514   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3515     DEBUG(dbgs() << "testing subscript " << SI);
3516     switch (Pair[SI].Classification) {
3517     case Subscript::ZIV:
3518       DEBUG(dbgs() << ", ZIV\n");
3519       if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3520         return nullptr;
3521       break;
3522     case Subscript::SIV: {
3523       DEBUG(dbgs() << ", SIV\n");
3524       unsigned Level;
3525       const SCEV *SplitIter = nullptr;
3526       if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3527                   SplitIter))
3528         return nullptr;
3529       break;
3530     }
3531     case Subscript::RDIV:
3532       DEBUG(dbgs() << ", RDIV\n");
3533       if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3534         return nullptr;
3535       break;
3536     case Subscript::MIV:
3537       DEBUG(dbgs() << ", MIV\n");
3538       if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3539         return nullptr;
3540       break;
3541     default:
3542       llvm_unreachable("subscript has unexpected classification");
3543     }
3544   }
3545 
3546   if (Coupled.count()) {
3547     // test coupled subscript groups
3548     DEBUG(dbgs() << "starting on coupled subscripts\n");
3549     DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3550     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3551     for (unsigned II = 0; II <= MaxLevels; ++II)
3552       Constraints[II].setAny(SE);
3553     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3554       DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3555       SmallBitVector Group(Pair[SI].Group);
3556       SmallBitVector Sivs(Pairs);
3557       SmallBitVector Mivs(Pairs);
3558       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3559       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3560         DEBUG(dbgs() << SJ << " ");
3561         if (Pair[SJ].Classification == Subscript::SIV)
3562           Sivs.set(SJ);
3563         else
3564           Mivs.set(SJ);
3565       }
3566       DEBUG(dbgs() << "}\n");
3567       while (Sivs.any()) {
3568         bool Changed = false;
3569         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3570           DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3571           // SJ is an SIV subscript that's part of the current coupled group
3572           unsigned Level;
3573           const SCEV *SplitIter = nullptr;
3574           DEBUG(dbgs() << "SIV\n");
3575           if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3576                       SplitIter))
3577             return nullptr;
3578           ConstrainedLevels.set(Level);
3579           if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3580             if (Constraints[Level].isEmpty()) {
3581               ++DeltaIndependence;
3582               return nullptr;
3583             }
3584             Changed = true;
3585           }
3586           Sivs.reset(SJ);
3587         }
3588         if (Changed) {
3589           // propagate, possibly creating new SIVs and ZIVs
3590           DEBUG(dbgs() << "    propagating\n");
3591           DEBUG(dbgs() << "\tMivs = ");
3592           DEBUG(dumpSmallBitVector(Mivs));
3593           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3594             // SJ is an MIV subscript that's part of the current coupled group
3595             DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3596             if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3597                           Constraints, Result.Consistent)) {
3598               DEBUG(dbgs() << "\t    Changed\n");
3599               ++DeltaPropagations;
3600               Pair[SJ].Classification =
3601                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3602                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3603                              Pair[SJ].Loops);
3604               switch (Pair[SJ].Classification) {
3605               case Subscript::ZIV:
3606                 DEBUG(dbgs() << "ZIV\n");
3607                 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3608                   return nullptr;
3609                 Mivs.reset(SJ);
3610                 break;
3611               case Subscript::SIV:
3612                 Sivs.set(SJ);
3613                 Mivs.reset(SJ);
3614                 break;
3615               case Subscript::RDIV:
3616               case Subscript::MIV:
3617                 break;
3618               default:
3619                 llvm_unreachable("bad subscript classification");
3620               }
3621             }
3622           }
3623         }
3624       }
3625 
3626       // test & propagate remaining RDIVs
3627       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3628         if (Pair[SJ].Classification == Subscript::RDIV) {
3629           DEBUG(dbgs() << "RDIV test\n");
3630           if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3631             return nullptr;
3632           // I don't yet understand how to propagate RDIV results
3633           Mivs.reset(SJ);
3634         }
3635       }
3636 
3637       // test remaining MIVs
3638       // This code is temporary.
3639       // Better to somehow test all remaining subscripts simultaneously.
3640       for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3641         if (Pair[SJ].Classification == Subscript::MIV) {
3642           DEBUG(dbgs() << "MIV test\n");
3643           if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3644             return nullptr;
3645         }
3646         else
3647           llvm_unreachable("expected only MIV subscripts at this point");
3648       }
3649 
3650       // update Result.DV from constraint vector
3651       DEBUG(dbgs() << "    updating\n");
3652       for (int SJ = ConstrainedLevels.find_first(); SJ >= 0;
3653            SJ = ConstrainedLevels.find_next(SJ)) {
3654         if (SJ > (int)CommonLevels)
3655           break;
3656         updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3657         if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3658           return nullptr;
3659       }
3660     }
3661   }
3662 
3663   // Make sure the Scalar flags are set correctly.
3664   SmallBitVector CompleteLoops(MaxLevels + 1);
3665   for (unsigned SI = 0; SI < Pairs; ++SI)
3666     CompleteLoops |= Pair[SI].Loops;
3667   for (unsigned II = 1; II <= CommonLevels; ++II)
3668     if (CompleteLoops[II])
3669       Result.DV[II - 1].Scalar = false;
3670 
3671   if (PossiblyLoopIndependent) {
3672     // Make sure the LoopIndependent flag is set correctly.
3673     // All directions must include equal, otherwise no
3674     // loop-independent dependence is possible.
3675     for (unsigned II = 1; II <= CommonLevels; ++II) {
3676       if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3677         Result.LoopIndependent = false;
3678         break;
3679       }
3680     }
3681   }
3682   else {
3683     // On the other hand, if all directions are equal and there's no
3684     // loop-independent dependence possible, then no dependence exists.
3685     bool AllEqual = true;
3686     for (unsigned II = 1; II <= CommonLevels; ++II) {
3687       if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3688         AllEqual = false;
3689         break;
3690       }
3691     }
3692     if (AllEqual)
3693       return nullptr;
3694   }
3695 
3696   auto Final = make_unique<FullDependence>(Result);
3697   Result.DV = nullptr;
3698   return std::move(Final);
3699 }
3700 
3701 
3702 
3703 //===----------------------------------------------------------------------===//
3704 // getSplitIteration -
3705 // Rather than spend rarely-used space recording the splitting iteration
3706 // during the Weak-Crossing SIV test, we re-compute it on demand.
3707 // The re-computation is basically a repeat of the entire dependence test,
3708 // though simplified since we know that the dependence exists.
3709 // It's tedious, since we must go through all propagations, etc.
3710 //
3711 // Care is required to keep this code up to date with respect to the routine
3712 // above, depends().
3713 //
3714 // Generally, the dependence analyzer will be used to build
3715 // a dependence graph for a function (basically a map from instructions
3716 // to dependences). Looking for cycles in the graph shows us loops
3717 // that cannot be trivially vectorized/parallelized.
3718 //
3719 // We can try to improve the situation by examining all the dependences
3720 // that make up the cycle, looking for ones we can break.
3721 // Sometimes, peeling the first or last iteration of a loop will break
3722 // dependences, and we've got flags for those possibilities.
3723 // Sometimes, splitting a loop at some other iteration will do the trick,
3724 // and we've got a flag for that case. Rather than waste the space to
3725 // record the exact iteration (since we rarely know), we provide
3726 // a method that calculates the iteration. It's a drag that it must work
3727 // from scratch, but wonderful in that it's possible.
3728 //
3729 // Here's an example:
3730 //
3731 //    for (i = 0; i < 10; i++)
3732 //        A[i] = ...
3733 //        ... = A[11 - i]
3734 //
3735 // There's a loop-carried flow dependence from the store to the load,
3736 // found by the weak-crossing SIV test. The dependence will have a flag,
3737 // indicating that the dependence can be broken by splitting the loop.
3738 // Calling getSplitIteration will return 5.
3739 // Splitting the loop breaks the dependence, like so:
3740 //
3741 //    for (i = 0; i <= 5; i++)
3742 //        A[i] = ...
3743 //        ... = A[11 - i]
3744 //    for (i = 6; i < 10; i++)
3745 //        A[i] = ...
3746 //        ... = A[11 - i]
3747 //
3748 // breaks the dependence and allows us to vectorize/parallelize
3749 // both loops.
getSplitIteration(const Dependence & Dep,unsigned SplitLevel)3750 const  SCEV *DependenceAnalysis::getSplitIteration(const Dependence &Dep,
3751                                                    unsigned SplitLevel) {
3752   assert(Dep.isSplitable(SplitLevel) &&
3753          "Dep should be splitable at SplitLevel");
3754   Instruction *Src = Dep.getSrc();
3755   Instruction *Dst = Dep.getDst();
3756   assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3757   assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3758   assert(isLoadOrStore(Src));
3759   assert(isLoadOrStore(Dst));
3760   Value *SrcPtr = getPointerOperand(Src);
3761   Value *DstPtr = getPointerOperand(Dst);
3762   assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(), DstPtr,
3763                                 SrcPtr) == AliasAnalysis::MustAlias);
3764 
3765   // establish loop nesting levels
3766   establishNestingLevels(Src, Dst);
3767 
3768   FullDependence Result(Src, Dst, false, CommonLevels);
3769 
3770   // See if there are GEPs we can use.
3771   bool UsefulGEP = false;
3772   GEPOperator *SrcGEP = dyn_cast<GEPOperator>(SrcPtr);
3773   GEPOperator *DstGEP = dyn_cast<GEPOperator>(DstPtr);
3774   if (SrcGEP && DstGEP &&
3775       SrcGEP->getPointerOperandType() == DstGEP->getPointerOperandType()) {
3776     const SCEV *SrcPtrSCEV = SE->getSCEV(SrcGEP->getPointerOperand());
3777     const SCEV *DstPtrSCEV = SE->getSCEV(DstGEP->getPointerOperand());
3778     UsefulGEP = isLoopInvariant(SrcPtrSCEV, LI->getLoopFor(Src->getParent())) &&
3779                 isLoopInvariant(DstPtrSCEV, LI->getLoopFor(Dst->getParent())) &&
3780                 (SrcGEP->getNumOperands() == DstGEP->getNumOperands());
3781   }
3782   unsigned Pairs = UsefulGEP ? SrcGEP->idx_end() - SrcGEP->idx_begin() : 1;
3783   SmallVector<Subscript, 4> Pair(Pairs);
3784   if (UsefulGEP) {
3785     unsigned P = 0;
3786     for (GEPOperator::const_op_iterator SrcIdx = SrcGEP->idx_begin(),
3787            SrcEnd = SrcGEP->idx_end(),
3788            DstIdx = DstGEP->idx_begin();
3789          SrcIdx != SrcEnd;
3790          ++SrcIdx, ++DstIdx, ++P) {
3791       Pair[P].Src = SE->getSCEV(*SrcIdx);
3792       Pair[P].Dst = SE->getSCEV(*DstIdx);
3793     }
3794   }
3795   else {
3796     const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3797     const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3798     Pair[0].Src = SrcSCEV;
3799     Pair[0].Dst = DstSCEV;
3800   }
3801 
3802   if (Delinearize && Pairs == 1 && CommonLevels > 1 &&
3803       tryDelinearize(Pair[0].Src, Pair[0].Dst, Pair, SE->getElementSize(Src))) {
3804     DEBUG(dbgs() << "    delinerized GEP\n");
3805     Pairs = Pair.size();
3806   }
3807 
3808   for (unsigned P = 0; P < Pairs; ++P) {
3809     Pair[P].Loops.resize(MaxLevels + 1);
3810     Pair[P].GroupLoops.resize(MaxLevels + 1);
3811     Pair[P].Group.resize(Pairs);
3812     removeMatchingExtensions(&Pair[P]);
3813     Pair[P].Classification =
3814       classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3815                    Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3816                    Pair[P].Loops);
3817     Pair[P].GroupLoops = Pair[P].Loops;
3818     Pair[P].Group.set(P);
3819   }
3820 
3821   SmallBitVector Separable(Pairs);
3822   SmallBitVector Coupled(Pairs);
3823 
3824   // partition subscripts into separable and minimally-coupled groups
3825   for (unsigned SI = 0; SI < Pairs; ++SI) {
3826     if (Pair[SI].Classification == Subscript::NonLinear) {
3827       // ignore these, but collect loops for later
3828       collectCommonLoops(Pair[SI].Src,
3829                          LI->getLoopFor(Src->getParent()),
3830                          Pair[SI].Loops);
3831       collectCommonLoops(Pair[SI].Dst,
3832                          LI->getLoopFor(Dst->getParent()),
3833                          Pair[SI].Loops);
3834       Result.Consistent = false;
3835     }
3836     else if (Pair[SI].Classification == Subscript::ZIV)
3837       Separable.set(SI);
3838     else {
3839       // SIV, RDIV, or MIV, so check for coupled group
3840       bool Done = true;
3841       for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3842         SmallBitVector Intersection = Pair[SI].GroupLoops;
3843         Intersection &= Pair[SJ].GroupLoops;
3844         if (Intersection.any()) {
3845           // accumulate set of all the loops in group
3846           Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3847           // accumulate set of all subscripts in group
3848           Pair[SJ].Group |= Pair[SI].Group;
3849           Done = false;
3850         }
3851       }
3852       if (Done) {
3853         if (Pair[SI].Group.count() == 1)
3854           Separable.set(SI);
3855         else
3856           Coupled.set(SI);
3857       }
3858     }
3859   }
3860 
3861   Constraint NewConstraint;
3862   NewConstraint.setAny(SE);
3863 
3864   // test separable subscripts
3865   for (int SI = Separable.find_first(); SI >= 0; SI = Separable.find_next(SI)) {
3866     switch (Pair[SI].Classification) {
3867     case Subscript::SIV: {
3868       unsigned Level;
3869       const SCEV *SplitIter = nullptr;
3870       (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3871                      Result, NewConstraint, SplitIter);
3872       if (Level == SplitLevel) {
3873         assert(SplitIter != nullptr);
3874         return SplitIter;
3875       }
3876       break;
3877     }
3878     case Subscript::ZIV:
3879     case Subscript::RDIV:
3880     case Subscript::MIV:
3881       break;
3882     default:
3883       llvm_unreachable("subscript has unexpected classification");
3884     }
3885   }
3886 
3887   if (Coupled.count()) {
3888     // test coupled subscript groups
3889     SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3890     for (unsigned II = 0; II <= MaxLevels; ++II)
3891       Constraints[II].setAny(SE);
3892     for (int SI = Coupled.find_first(); SI >= 0; SI = Coupled.find_next(SI)) {
3893       SmallBitVector Group(Pair[SI].Group);
3894       SmallBitVector Sivs(Pairs);
3895       SmallBitVector Mivs(Pairs);
3896       SmallBitVector ConstrainedLevels(MaxLevels + 1);
3897       for (int SJ = Group.find_first(); SJ >= 0; SJ = Group.find_next(SJ)) {
3898         if (Pair[SJ].Classification == Subscript::SIV)
3899           Sivs.set(SJ);
3900         else
3901           Mivs.set(SJ);
3902       }
3903       while (Sivs.any()) {
3904         bool Changed = false;
3905         for (int SJ = Sivs.find_first(); SJ >= 0; SJ = Sivs.find_next(SJ)) {
3906           // SJ is an SIV subscript that's part of the current coupled group
3907           unsigned Level;
3908           const SCEV *SplitIter = nullptr;
3909           (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3910                          Result, NewConstraint, SplitIter);
3911           if (Level == SplitLevel && SplitIter)
3912             return SplitIter;
3913           ConstrainedLevels.set(Level);
3914           if (intersectConstraints(&Constraints[Level], &NewConstraint))
3915             Changed = true;
3916           Sivs.reset(SJ);
3917         }
3918         if (Changed) {
3919           // propagate, possibly creating new SIVs and ZIVs
3920           for (int SJ = Mivs.find_first(); SJ >= 0; SJ = Mivs.find_next(SJ)) {
3921             // SJ is an MIV subscript that's part of the current coupled group
3922             if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3923                           Pair[SJ].Loops, Constraints, Result.Consistent)) {
3924               Pair[SJ].Classification =
3925                 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3926                              Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3927                              Pair[SJ].Loops);
3928               switch (Pair[SJ].Classification) {
3929               case Subscript::ZIV:
3930                 Mivs.reset(SJ);
3931                 break;
3932               case Subscript::SIV:
3933                 Sivs.set(SJ);
3934                 Mivs.reset(SJ);
3935                 break;
3936               case Subscript::RDIV:
3937               case Subscript::MIV:
3938                 break;
3939               default:
3940                 llvm_unreachable("bad subscript classification");
3941               }
3942             }
3943           }
3944         }
3945       }
3946     }
3947   }
3948   llvm_unreachable("somehow reached end of routine");
3949   return nullptr;
3950 }
3951