1 //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for DWARF4 hashing of DIEs.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ByteStreamer.h"
15 #include "DIEHash.h"
16 #include "DwarfDebug.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/CodeGen/AsmPrinter.h"
20 #include "llvm/CodeGen/DIE.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/Dwarf.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/MD5.h"
25 #include "llvm/Support/raw_ostream.h"
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "dwarfdebug"
30
31 /// \brief Grabs the string in whichever attribute is passed in and returns
32 /// a reference to it.
getDIEStringAttr(const DIE & Die,uint16_t Attr)33 static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) {
34 const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
35 const DIEAbbrev &Abbrevs = Die.getAbbrev();
36
37 // Iterate through all the attributes until we find the one we're
38 // looking for, if we can't find it return an empty string.
39 for (size_t i = 0; i < Values.size(); ++i) {
40 if (Abbrevs.getData()[i].getAttribute() == Attr) {
41 DIEValue *V = Values[i];
42 assert(isa<DIEString>(V) && "String requested. Not a string.");
43 DIEString *S = cast<DIEString>(V);
44 return S->getString();
45 }
46 }
47 return StringRef("");
48 }
49
50 /// \brief Adds the string in \p Str to the hash. This also hashes
51 /// a trailing NULL with the string.
addString(StringRef Str)52 void DIEHash::addString(StringRef Str) {
53 DEBUG(dbgs() << "Adding string " << Str << " to hash.\n");
54 Hash.update(Str);
55 Hash.update(makeArrayRef((uint8_t)'\0'));
56 }
57
58 // FIXME: The LEB128 routines are copied and only slightly modified out of
59 // LEB128.h.
60
61 /// \brief Adds the unsigned in \p Value to the hash encoded as a ULEB128.
addULEB128(uint64_t Value)62 void DIEHash::addULEB128(uint64_t Value) {
63 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
64 do {
65 uint8_t Byte = Value & 0x7f;
66 Value >>= 7;
67 if (Value != 0)
68 Byte |= 0x80; // Mark this byte to show that more bytes will follow.
69 Hash.update(Byte);
70 } while (Value != 0);
71 }
72
addSLEB128(int64_t Value)73 void DIEHash::addSLEB128(int64_t Value) {
74 DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n");
75 bool More;
76 do {
77 uint8_t Byte = Value & 0x7f;
78 Value >>= 7;
79 More = !((((Value == 0) && ((Byte & 0x40) == 0)) ||
80 ((Value == -1) && ((Byte & 0x40) != 0))));
81 if (More)
82 Byte |= 0x80; // Mark this byte to show that more bytes will follow.
83 Hash.update(Byte);
84 } while (More);
85 }
86
87 /// \brief Including \p Parent adds the context of Parent to the hash..
addParentContext(const DIE & Parent)88 void DIEHash::addParentContext(const DIE &Parent) {
89
90 DEBUG(dbgs() << "Adding parent context to hash...\n");
91
92 // [7.27.2] For each surrounding type or namespace beginning with the
93 // outermost such construct...
94 SmallVector<const DIE *, 1> Parents;
95 const DIE *Cur = &Parent;
96 while (Cur->getParent()) {
97 Parents.push_back(Cur);
98 Cur = Cur->getParent();
99 }
100 assert(Cur->getTag() == dwarf::DW_TAG_compile_unit ||
101 Cur->getTag() == dwarf::DW_TAG_type_unit);
102
103 // Reverse iterate over our list to go from the outermost construct to the
104 // innermost.
105 for (SmallVectorImpl<const DIE *>::reverse_iterator I = Parents.rbegin(),
106 E = Parents.rend();
107 I != E; ++I) {
108 const DIE &Die = **I;
109
110 // ... Append the letter "C" to the sequence...
111 addULEB128('C');
112
113 // ... Followed by the DWARF tag of the construct...
114 addULEB128(Die.getTag());
115
116 // ... Then the name, taken from the DW_AT_name attribute.
117 StringRef Name = getDIEStringAttr(Die, dwarf::DW_AT_name);
118 DEBUG(dbgs() << "... adding context: " << Name << "\n");
119 if (!Name.empty())
120 addString(Name);
121 }
122 }
123
124 // Collect all of the attributes for a particular DIE in single structure.
collectAttributes(const DIE & Die,DIEAttrs & Attrs)125 void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) {
126 const SmallVectorImpl<DIEValue *> &Values = Die.getValues();
127 const DIEAbbrev &Abbrevs = Die.getAbbrev();
128
129 #define COLLECT_ATTR(NAME) \
130 case dwarf::NAME: \
131 Attrs.NAME.Val = Values[i]; \
132 Attrs.NAME.Desc = &Abbrevs.getData()[i]; \
133 break
134
135 for (size_t i = 0, e = Values.size(); i != e; ++i) {
136 DEBUG(dbgs() << "Attribute: "
137 << dwarf::AttributeString(Abbrevs.getData()[i].getAttribute())
138 << " added.\n");
139 switch (Abbrevs.getData()[i].getAttribute()) {
140 COLLECT_ATTR(DW_AT_name);
141 COLLECT_ATTR(DW_AT_accessibility);
142 COLLECT_ATTR(DW_AT_address_class);
143 COLLECT_ATTR(DW_AT_allocated);
144 COLLECT_ATTR(DW_AT_artificial);
145 COLLECT_ATTR(DW_AT_associated);
146 COLLECT_ATTR(DW_AT_binary_scale);
147 COLLECT_ATTR(DW_AT_bit_offset);
148 COLLECT_ATTR(DW_AT_bit_size);
149 COLLECT_ATTR(DW_AT_bit_stride);
150 COLLECT_ATTR(DW_AT_byte_size);
151 COLLECT_ATTR(DW_AT_byte_stride);
152 COLLECT_ATTR(DW_AT_const_expr);
153 COLLECT_ATTR(DW_AT_const_value);
154 COLLECT_ATTR(DW_AT_containing_type);
155 COLLECT_ATTR(DW_AT_count);
156 COLLECT_ATTR(DW_AT_data_bit_offset);
157 COLLECT_ATTR(DW_AT_data_location);
158 COLLECT_ATTR(DW_AT_data_member_location);
159 COLLECT_ATTR(DW_AT_decimal_scale);
160 COLLECT_ATTR(DW_AT_decimal_sign);
161 COLLECT_ATTR(DW_AT_default_value);
162 COLLECT_ATTR(DW_AT_digit_count);
163 COLLECT_ATTR(DW_AT_discr);
164 COLLECT_ATTR(DW_AT_discr_list);
165 COLLECT_ATTR(DW_AT_discr_value);
166 COLLECT_ATTR(DW_AT_encoding);
167 COLLECT_ATTR(DW_AT_enum_class);
168 COLLECT_ATTR(DW_AT_endianity);
169 COLLECT_ATTR(DW_AT_explicit);
170 COLLECT_ATTR(DW_AT_is_optional);
171 COLLECT_ATTR(DW_AT_location);
172 COLLECT_ATTR(DW_AT_lower_bound);
173 COLLECT_ATTR(DW_AT_mutable);
174 COLLECT_ATTR(DW_AT_ordering);
175 COLLECT_ATTR(DW_AT_picture_string);
176 COLLECT_ATTR(DW_AT_prototyped);
177 COLLECT_ATTR(DW_AT_small);
178 COLLECT_ATTR(DW_AT_segment);
179 COLLECT_ATTR(DW_AT_string_length);
180 COLLECT_ATTR(DW_AT_threads_scaled);
181 COLLECT_ATTR(DW_AT_upper_bound);
182 COLLECT_ATTR(DW_AT_use_location);
183 COLLECT_ATTR(DW_AT_use_UTF8);
184 COLLECT_ATTR(DW_AT_variable_parameter);
185 COLLECT_ATTR(DW_AT_virtuality);
186 COLLECT_ATTR(DW_AT_visibility);
187 COLLECT_ATTR(DW_AT_vtable_elem_location);
188 COLLECT_ATTR(DW_AT_type);
189 default:
190 break;
191 }
192 }
193 }
194
hashShallowTypeReference(dwarf::Attribute Attribute,const DIE & Entry,StringRef Name)195 void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute,
196 const DIE &Entry, StringRef Name) {
197 // append the letter 'N'
198 addULEB128('N');
199
200 // the DWARF attribute code (DW_AT_type or DW_AT_friend),
201 addULEB128(Attribute);
202
203 // the context of the tag,
204 if (const DIE *Parent = Entry.getParent())
205 addParentContext(*Parent);
206
207 // the letter 'E',
208 addULEB128('E');
209
210 // and the name of the type.
211 addString(Name);
212
213 // Currently DW_TAG_friends are not used by Clang, but if they do become so,
214 // here's the relevant spec text to implement:
215 //
216 // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram,
217 // the context is omitted and the name to be used is the ABI-specific name
218 // of the subprogram (e.g., the mangled linker name).
219 }
220
hashRepeatedTypeReference(dwarf::Attribute Attribute,unsigned DieNumber)221 void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute,
222 unsigned DieNumber) {
223 // a) If T is in the list of [previously hashed types], use the letter
224 // 'R' as the marker
225 addULEB128('R');
226
227 addULEB128(Attribute);
228
229 // and use the unsigned LEB128 encoding of [the index of T in the
230 // list] as the attribute value;
231 addULEB128(DieNumber);
232 }
233
hashDIEEntry(dwarf::Attribute Attribute,dwarf::Tag Tag,const DIE & Entry)234 void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag,
235 const DIE &Entry) {
236 assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend "
237 "tags. Add support here when there's "
238 "a use case");
239 // Step 5
240 // If the tag in Step 3 is one of [the below tags]
241 if ((Tag == dwarf::DW_TAG_pointer_type ||
242 Tag == dwarf::DW_TAG_reference_type ||
243 Tag == dwarf::DW_TAG_rvalue_reference_type ||
244 Tag == dwarf::DW_TAG_ptr_to_member_type) &&
245 // and the referenced type (via the [below attributes])
246 // FIXME: This seems overly restrictive, and causes hash mismatches
247 // there's a decl/def difference in the containing type of a
248 // ptr_to_member_type, but it's what DWARF says, for some reason.
249 Attribute == dwarf::DW_AT_type) {
250 // ... has a DW_AT_name attribute,
251 StringRef Name = getDIEStringAttr(Entry, dwarf::DW_AT_name);
252 if (!Name.empty()) {
253 hashShallowTypeReference(Attribute, Entry, Name);
254 return;
255 }
256 }
257
258 unsigned &DieNumber = Numbering[&Entry];
259 if (DieNumber) {
260 hashRepeatedTypeReference(Attribute, DieNumber);
261 return;
262 }
263
264 // otherwise, b) use the letter 'T' as the marker, ...
265 addULEB128('T');
266
267 addULEB128(Attribute);
268
269 // ... process the type T recursively by performing Steps 2 through 7, and
270 // use the result as the attribute value.
271 DieNumber = Numbering.size();
272 computeHash(Entry);
273 }
274
275 // Hash all of the values in a block like set of values. This assumes that
276 // all of the data is going to be added as integers.
hashBlockData(const SmallVectorImpl<DIEValue * > & Values)277 void DIEHash::hashBlockData(const SmallVectorImpl<DIEValue *> &Values) {
278 for (SmallVectorImpl<DIEValue *>::const_iterator I = Values.begin(),
279 E = Values.end();
280 I != E; ++I)
281 Hash.update((uint64_t)cast<DIEInteger>(*I)->getValue());
282 }
283
284 // Hash the contents of a loclistptr class.
hashLocList(const DIELocList & LocList)285 void DIEHash::hashLocList(const DIELocList &LocList) {
286 HashingByteStreamer Streamer(*this);
287 DwarfDebug &DD = *AP->getDwarfDebug();
288 for (const auto &Entry :
289 DD.getDebugLocEntries()[LocList.getValue()].List)
290 DD.emitDebugLocEntry(Streamer, Entry);
291 }
292
293 // Hash an individual attribute \param Attr based on the type of attribute and
294 // the form.
hashAttribute(AttrEntry Attr,dwarf::Tag Tag)295 void DIEHash::hashAttribute(AttrEntry Attr, dwarf::Tag Tag) {
296 const DIEValue *Value = Attr.Val;
297 const DIEAbbrevData *Desc = Attr.Desc;
298 dwarf::Attribute Attribute = Desc->getAttribute();
299
300 // Other attribute values use the letter 'A' as the marker, and the value
301 // consists of the form code (encoded as an unsigned LEB128 value) followed by
302 // the encoding of the value according to the form code. To ensure
303 // reproducibility of the signature, the set of forms used in the signature
304 // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag,
305 // DW_FORM_string, and DW_FORM_block.
306
307 switch (Value->getType()) {
308 // 7.27 Step 3
309 // ... An attribute that refers to another type entry T is processed as
310 // follows:
311 case DIEValue::isEntry:
312 hashDIEEntry(Attribute, Tag, cast<DIEEntry>(Value)->getEntry());
313 break;
314 case DIEValue::isInteger: {
315 addULEB128('A');
316 addULEB128(Attribute);
317 switch (Desc->getForm()) {
318 case dwarf::DW_FORM_data1:
319 case dwarf::DW_FORM_data2:
320 case dwarf::DW_FORM_data4:
321 case dwarf::DW_FORM_data8:
322 case dwarf::DW_FORM_udata:
323 case dwarf::DW_FORM_sdata:
324 addULEB128(dwarf::DW_FORM_sdata);
325 addSLEB128((int64_t)cast<DIEInteger>(Value)->getValue());
326 break;
327 // DW_FORM_flag_present is just flag with a value of one. We still give it a
328 // value so just use the value.
329 case dwarf::DW_FORM_flag_present:
330 case dwarf::DW_FORM_flag:
331 addULEB128(dwarf::DW_FORM_flag);
332 addULEB128((int64_t)cast<DIEInteger>(Value)->getValue());
333 break;
334 default:
335 llvm_unreachable("Unknown integer form!");
336 }
337 break;
338 }
339 case DIEValue::isString:
340 addULEB128('A');
341 addULEB128(Attribute);
342 addULEB128(dwarf::DW_FORM_string);
343 addString(cast<DIEString>(Value)->getString());
344 break;
345 case DIEValue::isBlock:
346 case DIEValue::isLoc:
347 case DIEValue::isLocList:
348 addULEB128('A');
349 addULEB128(Attribute);
350 addULEB128(dwarf::DW_FORM_block);
351 if (isa<DIEBlock>(Value)) {
352 addULEB128(cast<DIEBlock>(Value)->ComputeSize(AP));
353 hashBlockData(cast<DIEBlock>(Value)->getValues());
354 } else if (isa<DIELoc>(Value)) {
355 addULEB128(cast<DIELoc>(Value)->ComputeSize(AP));
356 hashBlockData(cast<DIELoc>(Value)->getValues());
357 } else {
358 // We could add the block length, but that would take
359 // a bit of work and not add a lot of uniqueness
360 // to the hash in some way we could test.
361 hashLocList(*cast<DIELocList>(Value));
362 }
363 break;
364 // FIXME: It's uncertain whether or not we should handle this at the moment.
365 case DIEValue::isExpr:
366 case DIEValue::isLabel:
367 case DIEValue::isDelta:
368 case DIEValue::isTypeSignature:
369 llvm_unreachable("Add support for additional value types.");
370 }
371 }
372
373 // Go through the attributes from \param Attrs in the order specified in 7.27.4
374 // and hash them.
hashAttributes(const DIEAttrs & Attrs,dwarf::Tag Tag)375 void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) {
376 #define ADD_ATTR(ATTR) \
377 { \
378 if (ATTR.Val != 0) \
379 hashAttribute(ATTR, Tag); \
380 }
381
382 ADD_ATTR(Attrs.DW_AT_name);
383 ADD_ATTR(Attrs.DW_AT_accessibility);
384 ADD_ATTR(Attrs.DW_AT_address_class);
385 ADD_ATTR(Attrs.DW_AT_allocated);
386 ADD_ATTR(Attrs.DW_AT_artificial);
387 ADD_ATTR(Attrs.DW_AT_associated);
388 ADD_ATTR(Attrs.DW_AT_binary_scale);
389 ADD_ATTR(Attrs.DW_AT_bit_offset);
390 ADD_ATTR(Attrs.DW_AT_bit_size);
391 ADD_ATTR(Attrs.DW_AT_bit_stride);
392 ADD_ATTR(Attrs.DW_AT_byte_size);
393 ADD_ATTR(Attrs.DW_AT_byte_stride);
394 ADD_ATTR(Attrs.DW_AT_const_expr);
395 ADD_ATTR(Attrs.DW_AT_const_value);
396 ADD_ATTR(Attrs.DW_AT_containing_type);
397 ADD_ATTR(Attrs.DW_AT_count);
398 ADD_ATTR(Attrs.DW_AT_data_bit_offset);
399 ADD_ATTR(Attrs.DW_AT_data_location);
400 ADD_ATTR(Attrs.DW_AT_data_member_location);
401 ADD_ATTR(Attrs.DW_AT_decimal_scale);
402 ADD_ATTR(Attrs.DW_AT_decimal_sign);
403 ADD_ATTR(Attrs.DW_AT_default_value);
404 ADD_ATTR(Attrs.DW_AT_digit_count);
405 ADD_ATTR(Attrs.DW_AT_discr);
406 ADD_ATTR(Attrs.DW_AT_discr_list);
407 ADD_ATTR(Attrs.DW_AT_discr_value);
408 ADD_ATTR(Attrs.DW_AT_encoding);
409 ADD_ATTR(Attrs.DW_AT_enum_class);
410 ADD_ATTR(Attrs.DW_AT_endianity);
411 ADD_ATTR(Attrs.DW_AT_explicit);
412 ADD_ATTR(Attrs.DW_AT_is_optional);
413 ADD_ATTR(Attrs.DW_AT_location);
414 ADD_ATTR(Attrs.DW_AT_lower_bound);
415 ADD_ATTR(Attrs.DW_AT_mutable);
416 ADD_ATTR(Attrs.DW_AT_ordering);
417 ADD_ATTR(Attrs.DW_AT_picture_string);
418 ADD_ATTR(Attrs.DW_AT_prototyped);
419 ADD_ATTR(Attrs.DW_AT_small);
420 ADD_ATTR(Attrs.DW_AT_segment);
421 ADD_ATTR(Attrs.DW_AT_string_length);
422 ADD_ATTR(Attrs.DW_AT_threads_scaled);
423 ADD_ATTR(Attrs.DW_AT_upper_bound);
424 ADD_ATTR(Attrs.DW_AT_use_location);
425 ADD_ATTR(Attrs.DW_AT_use_UTF8);
426 ADD_ATTR(Attrs.DW_AT_variable_parameter);
427 ADD_ATTR(Attrs.DW_AT_virtuality);
428 ADD_ATTR(Attrs.DW_AT_visibility);
429 ADD_ATTR(Attrs.DW_AT_vtable_elem_location);
430 ADD_ATTR(Attrs.DW_AT_type);
431
432 // FIXME: Add the extended attributes.
433 }
434
435 // Add all of the attributes for \param Die to the hash.
addAttributes(const DIE & Die)436 void DIEHash::addAttributes(const DIE &Die) {
437 DIEAttrs Attrs = {};
438 collectAttributes(Die, Attrs);
439 hashAttributes(Attrs, Die.getTag());
440 }
441
hashNestedType(const DIE & Die,StringRef Name)442 void DIEHash::hashNestedType(const DIE &Die, StringRef Name) {
443 // 7.27 Step 7
444 // ... append the letter 'S',
445 addULEB128('S');
446
447 // the tag of C,
448 addULEB128(Die.getTag());
449
450 // and the name.
451 addString(Name);
452 }
453
454 // Compute the hash of a DIE. This is based on the type signature computation
455 // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a
456 // flattened description of the DIE.
computeHash(const DIE & Die)457 void DIEHash::computeHash(const DIE &Die) {
458 // Append the letter 'D', followed by the DWARF tag of the DIE.
459 addULEB128('D');
460 addULEB128(Die.getTag());
461
462 // Add each of the attributes of the DIE.
463 addAttributes(Die);
464
465 // Then hash each of the children of the DIE.
466 for (auto &C : Die.getChildren()) {
467 // 7.27 Step 7
468 // If C is a nested type entry or a member function entry, ...
469 if (isType(C->getTag()) || C->getTag() == dwarf::DW_TAG_subprogram) {
470 StringRef Name = getDIEStringAttr(*C, dwarf::DW_AT_name);
471 // ... and has a DW_AT_name attribute
472 if (!Name.empty()) {
473 hashNestedType(*C, Name);
474 continue;
475 }
476 }
477 computeHash(*C);
478 }
479
480 // Following the last (or if there are no children), append a zero byte.
481 Hash.update(makeArrayRef((uint8_t)'\0'));
482 }
483
484 /// This is based on the type signature computation given in section 7.27 of the
485 /// DWARF4 standard. It is the md5 hash of a flattened description of the DIE
486 /// with the exception that we are hashing only the context and the name of the
487 /// type.
computeDIEODRSignature(const DIE & Die)488 uint64_t DIEHash::computeDIEODRSignature(const DIE &Die) {
489
490 // Add the contexts to the hash. We won't be computing the ODR hash for
491 // function local types so it's safe to use the generic context hashing
492 // algorithm here.
493 // FIXME: If we figure out how to account for linkage in some way we could
494 // actually do this with a slight modification to the parent hash algorithm.
495 if (const DIE *Parent = Die.getParent())
496 addParentContext(*Parent);
497
498 // Add the current DIE information.
499
500 // Add the DWARF tag of the DIE.
501 addULEB128(Die.getTag());
502
503 // Add the name of the type to the hash.
504 addString(getDIEStringAttr(Die, dwarf::DW_AT_name));
505
506 // Now get the result.
507 MD5::MD5Result Result;
508 Hash.final(Result);
509
510 // ... take the least significant 8 bytes and return those. Our MD5
511 // implementation always returns its results in little endian, swap bytes
512 // appropriately.
513 return support::endian::read64le(Result + 8);
514 }
515
516 /// This is based on the type signature computation given in section 7.27 of the
517 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
518 /// with the inclusion of the full CU and all top level CU entities.
519 // TODO: Initialize the type chain at 0 instead of 1 for CU signatures.
computeCUSignature(const DIE & Die)520 uint64_t DIEHash::computeCUSignature(const DIE &Die) {
521 Numbering.clear();
522 Numbering[&Die] = 1;
523
524 // Hash the DIE.
525 computeHash(Die);
526
527 // Now return the result.
528 MD5::MD5Result Result;
529 Hash.final(Result);
530
531 // ... take the least significant 8 bytes and return those. Our MD5
532 // implementation always returns its results in little endian, swap bytes
533 // appropriately.
534 return support::endian::read64le(Result + 8);
535 }
536
537 /// This is based on the type signature computation given in section 7.27 of the
538 /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE
539 /// with the inclusion of additional forms not specifically called out in the
540 /// standard.
computeTypeSignature(const DIE & Die)541 uint64_t DIEHash::computeTypeSignature(const DIE &Die) {
542 Numbering.clear();
543 Numbering[&Die] = 1;
544
545 if (const DIE *Parent = Die.getParent())
546 addParentContext(*Parent);
547
548 // Hash the DIE.
549 computeHash(Die);
550
551 // Now return the result.
552 MD5::MD5Result Result;
553 Hash.final(Result);
554
555 // ... take the least significant 8 bytes and return those. Our MD5
556 // implementation always returns its results in little endian, swap bytes
557 // appropriately.
558 return support::endian::read64le(Result + 8);
559 }
560