1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
32 #include "llvm/CodeGen/LiveStackAnalysis.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/InlineAsm.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/MC/MCAsmInfo.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/FileSystem.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetRegisterInfo.h"
50 #include "llvm/Target/TargetSubtargetInfo.h"
51 using namespace llvm;
52
53 namespace {
54 struct MachineVerifier {
55
MachineVerifier__anonf7e52e470111::MachineVerifier56 MachineVerifier(Pass *pass, const char *b) :
57 PASS(pass),
58 Banner(b)
59 {}
60
61 bool runOnMachineFunction(MachineFunction &MF);
62
63 Pass *const PASS;
64 const char *Banner;
65 const MachineFunction *MF;
66 const TargetMachine *TM;
67 const TargetInstrInfo *TII;
68 const TargetRegisterInfo *TRI;
69 const MachineRegisterInfo *MRI;
70
71 unsigned foundErrors;
72
73 typedef SmallVector<unsigned, 16> RegVector;
74 typedef SmallVector<const uint32_t*, 4> RegMaskVector;
75 typedef DenseSet<unsigned> RegSet;
76 typedef DenseMap<unsigned, const MachineInstr*> RegMap;
77 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
78
79 const MachineInstr *FirstTerminator;
80 BlockSet FunctionBlocks;
81
82 BitVector regsReserved;
83 RegSet regsLive;
84 RegVector regsDefined, regsDead, regsKilled;
85 RegMaskVector regMasks;
86 RegSet regsLiveInButUnused;
87
88 SlotIndex lastIndex;
89
90 // Add Reg and any sub-registers to RV
addRegWithSubRegs__anonf7e52e470111::MachineVerifier91 void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
92 RV.push_back(Reg);
93 if (TargetRegisterInfo::isPhysicalRegister(Reg))
94 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
95 RV.push_back(*SubRegs);
96 }
97
98 struct BBInfo {
99 // Is this MBB reachable from the MF entry point?
100 bool reachable;
101
102 // Vregs that must be live in because they are used without being
103 // defined. Map value is the user.
104 RegMap vregsLiveIn;
105
106 // Regs killed in MBB. They may be defined again, and will then be in both
107 // regsKilled and regsLiveOut.
108 RegSet regsKilled;
109
110 // Regs defined in MBB and live out. Note that vregs passing through may
111 // be live out without being mentioned here.
112 RegSet regsLiveOut;
113
114 // Vregs that pass through MBB untouched. This set is disjoint from
115 // regsKilled and regsLiveOut.
116 RegSet vregsPassed;
117
118 // Vregs that must pass through MBB because they are needed by a successor
119 // block. This set is disjoint from regsLiveOut.
120 RegSet vregsRequired;
121
122 // Set versions of block's predecessor and successor lists.
123 BlockSet Preds, Succs;
124
BBInfo__anonf7e52e470111::MachineVerifier::BBInfo125 BBInfo() : reachable(false) {}
126
127 // Add register to vregsPassed if it belongs there. Return true if
128 // anything changed.
addPassed__anonf7e52e470111::MachineVerifier::BBInfo129 bool addPassed(unsigned Reg) {
130 if (!TargetRegisterInfo::isVirtualRegister(Reg))
131 return false;
132 if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
133 return false;
134 return vregsPassed.insert(Reg).second;
135 }
136
137 // Same for a full set.
addPassed__anonf7e52e470111::MachineVerifier::BBInfo138 bool addPassed(const RegSet &RS) {
139 bool changed = false;
140 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
141 if (addPassed(*I))
142 changed = true;
143 return changed;
144 }
145
146 // Add register to vregsRequired if it belongs there. Return true if
147 // anything changed.
addRequired__anonf7e52e470111::MachineVerifier::BBInfo148 bool addRequired(unsigned Reg) {
149 if (!TargetRegisterInfo::isVirtualRegister(Reg))
150 return false;
151 if (regsLiveOut.count(Reg))
152 return false;
153 return vregsRequired.insert(Reg).second;
154 }
155
156 // Same for a full set.
addRequired__anonf7e52e470111::MachineVerifier::BBInfo157 bool addRequired(const RegSet &RS) {
158 bool changed = false;
159 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
160 if (addRequired(*I))
161 changed = true;
162 return changed;
163 }
164
165 // Same for a full map.
addRequired__anonf7e52e470111::MachineVerifier::BBInfo166 bool addRequired(const RegMap &RM) {
167 bool changed = false;
168 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
169 if (addRequired(I->first))
170 changed = true;
171 return changed;
172 }
173
174 // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anonf7e52e470111::MachineVerifier::BBInfo175 bool isLiveOut(unsigned Reg) const {
176 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
177 }
178 };
179
180 // Extra register info per MBB.
181 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
182
isReserved__anonf7e52e470111::MachineVerifier183 bool isReserved(unsigned Reg) {
184 return Reg < regsReserved.size() && regsReserved.test(Reg);
185 }
186
isAllocatable__anonf7e52e470111::MachineVerifier187 bool isAllocatable(unsigned Reg) {
188 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
189 }
190
191 // Analysis information if available
192 LiveVariables *LiveVars;
193 LiveIntervals *LiveInts;
194 LiveStacks *LiveStks;
195 SlotIndexes *Indexes;
196
197 void visitMachineFunctionBefore();
198 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
199 void visitMachineBundleBefore(const MachineInstr *MI);
200 void visitMachineInstrBefore(const MachineInstr *MI);
201 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
202 void visitMachineInstrAfter(const MachineInstr *MI);
203 void visitMachineBundleAfter(const MachineInstr *MI);
204 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
205 void visitMachineFunctionAfter();
206
207 void report(const char *msg, const MachineFunction *MF);
208 void report(const char *msg, const MachineBasicBlock *MBB);
209 void report(const char *msg, const MachineInstr *MI);
210 void report(const char *msg, const MachineOperand *MO, unsigned MONum);
211 void report(const char *msg, const MachineFunction *MF,
212 const LiveInterval &LI);
213 void report(const char *msg, const MachineBasicBlock *MBB,
214 const LiveInterval &LI);
215 void report(const char *msg, const MachineFunction *MF,
216 const LiveRange &LR, unsigned Reg, unsigned LaneMask);
217 void report(const char *msg, const MachineBasicBlock *MBB,
218 const LiveRange &LR, unsigned Reg, unsigned LaneMask);
219
220 void verifyInlineAsm(const MachineInstr *MI);
221
222 void checkLiveness(const MachineOperand *MO, unsigned MONum);
223 void markReachable(const MachineBasicBlock *MBB);
224 void calcRegsPassed();
225 void checkPHIOps(const MachineBasicBlock *MBB);
226
227 void calcRegsRequired();
228 void verifyLiveVariables();
229 void verifyLiveIntervals();
230 void verifyLiveInterval(const LiveInterval&);
231 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
232 unsigned);
233 void verifyLiveRangeSegment(const LiveRange&,
234 const LiveRange::const_iterator I, unsigned,
235 unsigned);
236 void verifyLiveRange(const LiveRange&, unsigned, unsigned LaneMask = 0);
237
238 void verifyStackFrame();
239 };
240
241 struct MachineVerifierPass : public MachineFunctionPass {
242 static char ID; // Pass ID, replacement for typeid
243 const std::string Banner;
244
MachineVerifierPass__anonf7e52e470111::MachineVerifierPass245 MachineVerifierPass(const std::string &banner = nullptr)
246 : MachineFunctionPass(ID), Banner(banner) {
247 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
248 }
249
getAnalysisUsage__anonf7e52e470111::MachineVerifierPass250 void getAnalysisUsage(AnalysisUsage &AU) const override {
251 AU.setPreservesAll();
252 MachineFunctionPass::getAnalysisUsage(AU);
253 }
254
runOnMachineFunction__anonf7e52e470111::MachineVerifierPass255 bool runOnMachineFunction(MachineFunction &MF) override {
256 MF.verify(this, Banner.c_str());
257 return false;
258 }
259 };
260
261 }
262
263 char MachineVerifierPass::ID = 0;
264 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
265 "Verify generated machine code", false, false)
266
createMachineVerifierPass(const std::string & Banner)267 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
268 return new MachineVerifierPass(Banner);
269 }
270
verify(Pass * p,const char * Banner) const271 void MachineFunction::verify(Pass *p, const char *Banner) const {
272 MachineVerifier(p, Banner)
273 .runOnMachineFunction(const_cast<MachineFunction&>(*this));
274 }
275
runOnMachineFunction(MachineFunction & MF)276 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
277 foundErrors = 0;
278
279 this->MF = &MF;
280 TM = &MF.getTarget();
281 TII = MF.getSubtarget().getInstrInfo();
282 TRI = MF.getSubtarget().getRegisterInfo();
283 MRI = &MF.getRegInfo();
284
285 LiveVars = nullptr;
286 LiveInts = nullptr;
287 LiveStks = nullptr;
288 Indexes = nullptr;
289 if (PASS) {
290 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
291 // We don't want to verify LiveVariables if LiveIntervals is available.
292 if (!LiveInts)
293 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
294 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
295 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
296 }
297
298 visitMachineFunctionBefore();
299 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
300 MFI!=MFE; ++MFI) {
301 visitMachineBasicBlockBefore(MFI);
302 // Keep track of the current bundle header.
303 const MachineInstr *CurBundle = nullptr;
304 // Do we expect the next instruction to be part of the same bundle?
305 bool InBundle = false;
306
307 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
308 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
309 if (MBBI->getParent() != MFI) {
310 report("Bad instruction parent pointer", MFI);
311 errs() << "Instruction: " << *MBBI;
312 continue;
313 }
314
315 // Check for consistent bundle flags.
316 if (InBundle && !MBBI->isBundledWithPred())
317 report("Missing BundledPred flag, "
318 "BundledSucc was set on predecessor", MBBI);
319 if (!InBundle && MBBI->isBundledWithPred())
320 report("BundledPred flag is set, "
321 "but BundledSucc not set on predecessor", MBBI);
322
323 // Is this a bundle header?
324 if (!MBBI->isInsideBundle()) {
325 if (CurBundle)
326 visitMachineBundleAfter(CurBundle);
327 CurBundle = MBBI;
328 visitMachineBundleBefore(CurBundle);
329 } else if (!CurBundle)
330 report("No bundle header", MBBI);
331 visitMachineInstrBefore(MBBI);
332 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
333 visitMachineOperand(&MBBI->getOperand(I), I);
334 visitMachineInstrAfter(MBBI);
335
336 // Was this the last bundled instruction?
337 InBundle = MBBI->isBundledWithSucc();
338 }
339 if (CurBundle)
340 visitMachineBundleAfter(CurBundle);
341 if (InBundle)
342 report("BundledSucc flag set on last instruction in block", &MFI->back());
343 visitMachineBasicBlockAfter(MFI);
344 }
345 visitMachineFunctionAfter();
346
347 if (foundErrors)
348 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
349
350 // Clean up.
351 regsLive.clear();
352 regsDefined.clear();
353 regsDead.clear();
354 regsKilled.clear();
355 regMasks.clear();
356 regsLiveInButUnused.clear();
357 MBBInfoMap.clear();
358
359 return false; // no changes
360 }
361
report(const char * msg,const MachineFunction * MF)362 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
363 assert(MF);
364 errs() << '\n';
365 if (!foundErrors++) {
366 if (Banner)
367 errs() << "# " << Banner << '\n';
368 MF->print(errs(), Indexes);
369 }
370 errs() << "*** Bad machine code: " << msg << " ***\n"
371 << "- function: " << MF->getName() << "\n";
372 }
373
report(const char * msg,const MachineBasicBlock * MBB)374 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
375 assert(MBB);
376 report(msg, MBB->getParent());
377 errs() << "- basic block: BB#" << MBB->getNumber()
378 << ' ' << MBB->getName()
379 << " (" << (const void*)MBB << ')';
380 if (Indexes)
381 errs() << " [" << Indexes->getMBBStartIdx(MBB)
382 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
383 errs() << '\n';
384 }
385
report(const char * msg,const MachineInstr * MI)386 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
387 assert(MI);
388 report(msg, MI->getParent());
389 errs() << "- instruction: ";
390 if (Indexes && Indexes->hasIndex(MI))
391 errs() << Indexes->getInstructionIndex(MI) << '\t';
392 MI->print(errs(), TM);
393 }
394
report(const char * msg,const MachineOperand * MO,unsigned MONum)395 void MachineVerifier::report(const char *msg,
396 const MachineOperand *MO, unsigned MONum) {
397 assert(MO);
398 report(msg, MO->getParent());
399 errs() << "- operand " << MONum << ": ";
400 MO->print(errs(), TRI);
401 errs() << "\n";
402 }
403
report(const char * msg,const MachineFunction * MF,const LiveInterval & LI)404 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
405 const LiveInterval &LI) {
406 report(msg, MF);
407 errs() << "- interval: " << LI << '\n';
408 }
409
report(const char * msg,const MachineBasicBlock * MBB,const LiveInterval & LI)410 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
411 const LiveInterval &LI) {
412 report(msg, MBB);
413 errs() << "- interval: " << LI << '\n';
414 }
415
report(const char * msg,const MachineBasicBlock * MBB,const LiveRange & LR,unsigned Reg,unsigned LaneMask)416 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
417 const LiveRange &LR, unsigned Reg,
418 unsigned LaneMask) {
419 report(msg, MBB);
420 errs() << "- liverange: " << LR << '\n';
421 errs() << "- register: " << PrintReg(Reg, TRI) << '\n';
422 if (LaneMask != 0)
423 errs() << "- lanemask: " << format("%04X\n", LaneMask);
424 }
425
report(const char * msg,const MachineFunction * MF,const LiveRange & LR,unsigned Reg,unsigned LaneMask)426 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
427 const LiveRange &LR, unsigned Reg,
428 unsigned LaneMask) {
429 report(msg, MF);
430 errs() << "- liverange: " << LR << '\n';
431 errs() << "- register: " << PrintReg(Reg, TRI) << '\n';
432 if (LaneMask != 0)
433 errs() << "- lanemask: " << format("%04X\n", LaneMask);
434 }
435
markReachable(const MachineBasicBlock * MBB)436 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
437 BBInfo &MInfo = MBBInfoMap[MBB];
438 if (!MInfo.reachable) {
439 MInfo.reachable = true;
440 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
441 SuE = MBB->succ_end(); SuI != SuE; ++SuI)
442 markReachable(*SuI);
443 }
444 }
445
visitMachineFunctionBefore()446 void MachineVerifier::visitMachineFunctionBefore() {
447 lastIndex = SlotIndex();
448 regsReserved = MRI->getReservedRegs();
449
450 // A sub-register of a reserved register is also reserved
451 for (int Reg = regsReserved.find_first(); Reg>=0;
452 Reg = regsReserved.find_next(Reg)) {
453 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
454 // FIXME: This should probably be:
455 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
456 regsReserved.set(*SubRegs);
457 }
458 }
459
460 markReachable(&MF->front());
461
462 // Build a set of the basic blocks in the function.
463 FunctionBlocks.clear();
464 for (const auto &MBB : *MF) {
465 FunctionBlocks.insert(&MBB);
466 BBInfo &MInfo = MBBInfoMap[&MBB];
467
468 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
469 if (MInfo.Preds.size() != MBB.pred_size())
470 report("MBB has duplicate entries in its predecessor list.", &MBB);
471
472 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
473 if (MInfo.Succs.size() != MBB.succ_size())
474 report("MBB has duplicate entries in its successor list.", &MBB);
475 }
476
477 // Check that the register use lists are sane.
478 MRI->verifyUseLists();
479
480 verifyStackFrame();
481 }
482
483 // Does iterator point to a and b as the first two elements?
matchPair(MachineBasicBlock::const_succ_iterator i,const MachineBasicBlock * a,const MachineBasicBlock * b)484 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
485 const MachineBasicBlock *a, const MachineBasicBlock *b) {
486 if (*i == a)
487 return *++i == b;
488 if (*i == b)
489 return *++i == a;
490 return false;
491 }
492
493 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)494 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
495 FirstTerminator = nullptr;
496
497 if (MRI->isSSA()) {
498 // If this block has allocatable physical registers live-in, check that
499 // it is an entry block or landing pad.
500 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
501 LE = MBB->livein_end();
502 LI != LE; ++LI) {
503 unsigned reg = *LI;
504 if (isAllocatable(reg) && !MBB->isLandingPad() &&
505 MBB != MBB->getParent()->begin()) {
506 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
507 }
508 }
509 }
510
511 // Count the number of landing pad successors.
512 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
513 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
514 E = MBB->succ_end(); I != E; ++I) {
515 if ((*I)->isLandingPad())
516 LandingPadSuccs.insert(*I);
517 if (!FunctionBlocks.count(*I))
518 report("MBB has successor that isn't part of the function.", MBB);
519 if (!MBBInfoMap[*I].Preds.count(MBB)) {
520 report("Inconsistent CFG", MBB);
521 errs() << "MBB is not in the predecessor list of the successor BB#"
522 << (*I)->getNumber() << ".\n";
523 }
524 }
525
526 // Check the predecessor list.
527 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
528 E = MBB->pred_end(); I != E; ++I) {
529 if (!FunctionBlocks.count(*I))
530 report("MBB has predecessor that isn't part of the function.", MBB);
531 if (!MBBInfoMap[*I].Succs.count(MBB)) {
532 report("Inconsistent CFG", MBB);
533 errs() << "MBB is not in the successor list of the predecessor BB#"
534 << (*I)->getNumber() << ".\n";
535 }
536 }
537
538 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
539 const BasicBlock *BB = MBB->getBasicBlock();
540 if (LandingPadSuccs.size() > 1 &&
541 !(AsmInfo &&
542 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
543 BB && isa<SwitchInst>(BB->getTerminator())))
544 report("MBB has more than one landing pad successor", MBB);
545
546 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
547 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
548 SmallVector<MachineOperand, 4> Cond;
549 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
550 TBB, FBB, Cond)) {
551 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
552 // check whether its answers match up with reality.
553 if (!TBB && !FBB) {
554 // Block falls through to its successor.
555 MachineFunction::const_iterator MBBI = MBB;
556 ++MBBI;
557 if (MBBI == MF->end()) {
558 // It's possible that the block legitimately ends with a noreturn
559 // call or an unreachable, in which case it won't actually fall
560 // out the bottom of the function.
561 } else if (MBB->succ_size() == LandingPadSuccs.size()) {
562 // It's possible that the block legitimately ends with a noreturn
563 // call or an unreachable, in which case it won't actuall fall
564 // out of the block.
565 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
566 report("MBB exits via unconditional fall-through but doesn't have "
567 "exactly one CFG successor!", MBB);
568 } else if (!MBB->isSuccessor(MBBI)) {
569 report("MBB exits via unconditional fall-through but its successor "
570 "differs from its CFG successor!", MBB);
571 }
572 if (!MBB->empty() && MBB->back().isBarrier() &&
573 !TII->isPredicated(&MBB->back())) {
574 report("MBB exits via unconditional fall-through but ends with a "
575 "barrier instruction!", MBB);
576 }
577 if (!Cond.empty()) {
578 report("MBB exits via unconditional fall-through but has a condition!",
579 MBB);
580 }
581 } else if (TBB && !FBB && Cond.empty()) {
582 // Block unconditionally branches somewhere.
583 // If the block has exactly one successor, that happens to be a
584 // landingpad, accept it as valid control flow.
585 if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
586 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
587 *MBB->succ_begin() != *LandingPadSuccs.begin())) {
588 report("MBB exits via unconditional branch but doesn't have "
589 "exactly one CFG successor!", MBB);
590 } else if (!MBB->isSuccessor(TBB)) {
591 report("MBB exits via unconditional branch but the CFG "
592 "successor doesn't match the actual successor!", MBB);
593 }
594 if (MBB->empty()) {
595 report("MBB exits via unconditional branch but doesn't contain "
596 "any instructions!", MBB);
597 } else if (!MBB->back().isBarrier()) {
598 report("MBB exits via unconditional branch but doesn't end with a "
599 "barrier instruction!", MBB);
600 } else if (!MBB->back().isTerminator()) {
601 report("MBB exits via unconditional branch but the branch isn't a "
602 "terminator instruction!", MBB);
603 }
604 } else if (TBB && !FBB && !Cond.empty()) {
605 // Block conditionally branches somewhere, otherwise falls through.
606 MachineFunction::const_iterator MBBI = MBB;
607 ++MBBI;
608 if (MBBI == MF->end()) {
609 report("MBB conditionally falls through out of function!", MBB);
610 } else if (MBB->succ_size() == 1) {
611 // A conditional branch with only one successor is weird, but allowed.
612 if (&*MBBI != TBB)
613 report("MBB exits via conditional branch/fall-through but only has "
614 "one CFG successor!", MBB);
615 else if (TBB != *MBB->succ_begin())
616 report("MBB exits via conditional branch/fall-through but the CFG "
617 "successor don't match the actual successor!", MBB);
618 } else if (MBB->succ_size() != 2) {
619 report("MBB exits via conditional branch/fall-through but doesn't have "
620 "exactly two CFG successors!", MBB);
621 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
622 report("MBB exits via conditional branch/fall-through but the CFG "
623 "successors don't match the actual successors!", MBB);
624 }
625 if (MBB->empty()) {
626 report("MBB exits via conditional branch/fall-through but doesn't "
627 "contain any instructions!", MBB);
628 } else if (MBB->back().isBarrier()) {
629 report("MBB exits via conditional branch/fall-through but ends with a "
630 "barrier instruction!", MBB);
631 } else if (!MBB->back().isTerminator()) {
632 report("MBB exits via conditional branch/fall-through but the branch "
633 "isn't a terminator instruction!", MBB);
634 }
635 } else if (TBB && FBB) {
636 // Block conditionally branches somewhere, otherwise branches
637 // somewhere else.
638 if (MBB->succ_size() == 1) {
639 // A conditional branch with only one successor is weird, but allowed.
640 if (FBB != TBB)
641 report("MBB exits via conditional branch/branch through but only has "
642 "one CFG successor!", MBB);
643 else if (TBB != *MBB->succ_begin())
644 report("MBB exits via conditional branch/branch through but the CFG "
645 "successor don't match the actual successor!", MBB);
646 } else if (MBB->succ_size() != 2) {
647 report("MBB exits via conditional branch/branch but doesn't have "
648 "exactly two CFG successors!", MBB);
649 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
650 report("MBB exits via conditional branch/branch but the CFG "
651 "successors don't match the actual successors!", MBB);
652 }
653 if (MBB->empty()) {
654 report("MBB exits via conditional branch/branch but doesn't "
655 "contain any instructions!", MBB);
656 } else if (!MBB->back().isBarrier()) {
657 report("MBB exits via conditional branch/branch but doesn't end with a "
658 "barrier instruction!", MBB);
659 } else if (!MBB->back().isTerminator()) {
660 report("MBB exits via conditional branch/branch but the branch "
661 "isn't a terminator instruction!", MBB);
662 }
663 if (Cond.empty()) {
664 report("MBB exits via conditinal branch/branch but there's no "
665 "condition!", MBB);
666 }
667 } else {
668 report("AnalyzeBranch returned invalid data!", MBB);
669 }
670 }
671
672 regsLive.clear();
673 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
674 E = MBB->livein_end(); I != E; ++I) {
675 if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
676 report("MBB live-in list contains non-physical register", MBB);
677 continue;
678 }
679 for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
680 SubRegs.isValid(); ++SubRegs)
681 regsLive.insert(*SubRegs);
682 }
683 regsLiveInButUnused = regsLive;
684
685 const MachineFrameInfo *MFI = MF->getFrameInfo();
686 assert(MFI && "Function has no frame info");
687 BitVector PR = MFI->getPristineRegs(MBB);
688 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
689 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
690 SubRegs.isValid(); ++SubRegs)
691 regsLive.insert(*SubRegs);
692 }
693
694 regsKilled.clear();
695 regsDefined.clear();
696
697 if (Indexes)
698 lastIndex = Indexes->getMBBStartIdx(MBB);
699 }
700
701 // This function gets called for all bundle headers, including normal
702 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)703 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
704 if (Indexes && Indexes->hasIndex(MI)) {
705 SlotIndex idx = Indexes->getInstructionIndex(MI);
706 if (!(idx > lastIndex)) {
707 report("Instruction index out of order", MI);
708 errs() << "Last instruction was at " << lastIndex << '\n';
709 }
710 lastIndex = idx;
711 }
712
713 // Ensure non-terminators don't follow terminators.
714 // Ignore predicated terminators formed by if conversion.
715 // FIXME: If conversion shouldn't need to violate this rule.
716 if (MI->isTerminator() && !TII->isPredicated(MI)) {
717 if (!FirstTerminator)
718 FirstTerminator = MI;
719 } else if (FirstTerminator) {
720 report("Non-terminator instruction after the first terminator", MI);
721 errs() << "First terminator was:\t" << *FirstTerminator;
722 }
723 }
724
725 // The operands on an INLINEASM instruction must follow a template.
726 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)727 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
728 // The first two operands on INLINEASM are the asm string and global flags.
729 if (MI->getNumOperands() < 2) {
730 report("Too few operands on inline asm", MI);
731 return;
732 }
733 if (!MI->getOperand(0).isSymbol())
734 report("Asm string must be an external symbol", MI);
735 if (!MI->getOperand(1).isImm())
736 report("Asm flags must be an immediate", MI);
737 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
738 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
739 if (!isUInt<5>(MI->getOperand(1).getImm()))
740 report("Unknown asm flags", &MI->getOperand(1), 1);
741
742 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
743
744 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
745 unsigned NumOps;
746 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
747 const MachineOperand &MO = MI->getOperand(OpNo);
748 // There may be implicit ops after the fixed operands.
749 if (!MO.isImm())
750 break;
751 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
752 }
753
754 if (OpNo > MI->getNumOperands())
755 report("Missing operands in last group", MI);
756
757 // An optional MDNode follows the groups.
758 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
759 ++OpNo;
760
761 // All trailing operands must be implicit registers.
762 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
763 const MachineOperand &MO = MI->getOperand(OpNo);
764 if (!MO.isReg() || !MO.isImplicit())
765 report("Expected implicit register after groups", &MO, OpNo);
766 }
767 }
768
visitMachineInstrBefore(const MachineInstr * MI)769 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
770 const MCInstrDesc &MCID = MI->getDesc();
771 if (MI->getNumOperands() < MCID.getNumOperands()) {
772 report("Too few operands", MI);
773 errs() << MCID.getNumOperands() << " operands expected, but "
774 << MI->getNumOperands() << " given.\n";
775 }
776
777 // Check the tied operands.
778 if (MI->isInlineAsm())
779 verifyInlineAsm(MI);
780
781 // Check the MachineMemOperands for basic consistency.
782 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
783 E = MI->memoperands_end(); I != E; ++I) {
784 if ((*I)->isLoad() && !MI->mayLoad())
785 report("Missing mayLoad flag", MI);
786 if ((*I)->isStore() && !MI->mayStore())
787 report("Missing mayStore flag", MI);
788 }
789
790 // Debug values must not have a slot index.
791 // Other instructions must have one, unless they are inside a bundle.
792 if (LiveInts) {
793 bool mapped = !LiveInts->isNotInMIMap(MI);
794 if (MI->isDebugValue()) {
795 if (mapped)
796 report("Debug instruction has a slot index", MI);
797 } else if (MI->isInsideBundle()) {
798 if (mapped)
799 report("Instruction inside bundle has a slot index", MI);
800 } else {
801 if (!mapped)
802 report("Missing slot index", MI);
803 }
804 }
805
806 StringRef ErrorInfo;
807 if (!TII->verifyInstruction(MI, ErrorInfo))
808 report(ErrorInfo.data(), MI);
809 }
810
811 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)812 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
813 const MachineInstr *MI = MO->getParent();
814 const MCInstrDesc &MCID = MI->getDesc();
815
816 // The first MCID.NumDefs operands must be explicit register defines
817 if (MONum < MCID.getNumDefs()) {
818 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
819 if (!MO->isReg())
820 report("Explicit definition must be a register", MO, MONum);
821 else if (!MO->isDef() && !MCOI.isOptionalDef())
822 report("Explicit definition marked as use", MO, MONum);
823 else if (MO->isImplicit())
824 report("Explicit definition marked as implicit", MO, MONum);
825 } else if (MONum < MCID.getNumOperands()) {
826 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
827 // Don't check if it's the last operand in a variadic instruction. See,
828 // e.g., LDM_RET in the arm back end.
829 if (MO->isReg() &&
830 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
831 if (MO->isDef() && !MCOI.isOptionalDef())
832 report("Explicit operand marked as def", MO, MONum);
833 if (MO->isImplicit())
834 report("Explicit operand marked as implicit", MO, MONum);
835 }
836
837 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
838 if (TiedTo != -1) {
839 if (!MO->isReg())
840 report("Tied use must be a register", MO, MONum);
841 else if (!MO->isTied())
842 report("Operand should be tied", MO, MONum);
843 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
844 report("Tied def doesn't match MCInstrDesc", MO, MONum);
845 } else if (MO->isReg() && MO->isTied())
846 report("Explicit operand should not be tied", MO, MONum);
847 } else {
848 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
849 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
850 report("Extra explicit operand on non-variadic instruction", MO, MONum);
851 }
852
853 switch (MO->getType()) {
854 case MachineOperand::MO_Register: {
855 const unsigned Reg = MO->getReg();
856 if (!Reg)
857 return;
858 if (MRI->tracksLiveness() && !MI->isDebugValue())
859 checkLiveness(MO, MONum);
860
861 // Verify the consistency of tied operands.
862 if (MO->isTied()) {
863 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
864 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
865 if (!OtherMO.isReg())
866 report("Must be tied to a register", MO, MONum);
867 if (!OtherMO.isTied())
868 report("Missing tie flags on tied operand", MO, MONum);
869 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
870 report("Inconsistent tie links", MO, MONum);
871 if (MONum < MCID.getNumDefs()) {
872 if (OtherIdx < MCID.getNumOperands()) {
873 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
874 report("Explicit def tied to explicit use without tie constraint",
875 MO, MONum);
876 } else {
877 if (!OtherMO.isImplicit())
878 report("Explicit def should be tied to implicit use", MO, MONum);
879 }
880 }
881 }
882
883 // Verify two-address constraints after leaving SSA form.
884 unsigned DefIdx;
885 if (!MRI->isSSA() && MO->isUse() &&
886 MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
887 Reg != MI->getOperand(DefIdx).getReg())
888 report("Two-address instruction operands must be identical", MO, MONum);
889
890 // Check register classes.
891 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
892 unsigned SubIdx = MO->getSubReg();
893
894 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
895 if (SubIdx) {
896 report("Illegal subregister index for physical register", MO, MONum);
897 return;
898 }
899 if (const TargetRegisterClass *DRC =
900 TII->getRegClass(MCID, MONum, TRI, *MF)) {
901 if (!DRC->contains(Reg)) {
902 report("Illegal physical register for instruction", MO, MONum);
903 errs() << TRI->getName(Reg) << " is not a "
904 << TRI->getRegClassName(DRC) << " register.\n";
905 }
906 }
907 } else {
908 // Virtual register.
909 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
910 if (SubIdx) {
911 const TargetRegisterClass *SRC =
912 TRI->getSubClassWithSubReg(RC, SubIdx);
913 if (!SRC) {
914 report("Invalid subregister index for virtual register", MO, MONum);
915 errs() << "Register class " << TRI->getRegClassName(RC)
916 << " does not support subreg index " << SubIdx << "\n";
917 return;
918 }
919 if (RC != SRC) {
920 report("Invalid register class for subregister index", MO, MONum);
921 errs() << "Register class " << TRI->getRegClassName(RC)
922 << " does not fully support subreg index " << SubIdx << "\n";
923 return;
924 }
925 }
926 if (const TargetRegisterClass *DRC =
927 TII->getRegClass(MCID, MONum, TRI, *MF)) {
928 if (SubIdx) {
929 const TargetRegisterClass *SuperRC =
930 TRI->getLargestLegalSuperClass(RC, *MF);
931 if (!SuperRC) {
932 report("No largest legal super class exists.", MO, MONum);
933 return;
934 }
935 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
936 if (!DRC) {
937 report("No matching super-reg register class.", MO, MONum);
938 return;
939 }
940 }
941 if (!RC->hasSuperClassEq(DRC)) {
942 report("Illegal virtual register for instruction", MO, MONum);
943 errs() << "Expected a " << TRI->getRegClassName(DRC)
944 << " register, but got a " << TRI->getRegClassName(RC)
945 << " register\n";
946 }
947 }
948 }
949 }
950 break;
951 }
952
953 case MachineOperand::MO_RegisterMask:
954 regMasks.push_back(MO->getRegMask());
955 break;
956
957 case MachineOperand::MO_MachineBasicBlock:
958 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
959 report("PHI operand is not in the CFG", MO, MONum);
960 break;
961
962 case MachineOperand::MO_FrameIndex:
963 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
964 LiveInts && !LiveInts->isNotInMIMap(MI)) {
965 LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
966 SlotIndex Idx = LiveInts->getInstructionIndex(MI);
967 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
968 report("Instruction loads from dead spill slot", MO, MONum);
969 errs() << "Live stack: " << LI << '\n';
970 }
971 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
972 report("Instruction stores to dead spill slot", MO, MONum);
973 errs() << "Live stack: " << LI << '\n';
974 }
975 }
976 break;
977
978 default:
979 break;
980 }
981 }
982
checkLiveness(const MachineOperand * MO,unsigned MONum)983 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
984 const MachineInstr *MI = MO->getParent();
985 const unsigned Reg = MO->getReg();
986
987 // Both use and def operands can read a register.
988 if (MO->readsReg()) {
989 regsLiveInButUnused.erase(Reg);
990
991 if (MO->isKill())
992 addRegWithSubRegs(regsKilled, Reg);
993
994 // Check that LiveVars knows this kill.
995 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
996 MO->isKill()) {
997 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
998 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
999 report("Kill missing from LiveVariables", MO, MONum);
1000 }
1001
1002 // Check LiveInts liveness and kill.
1003 if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
1004 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
1005 // Check the cached regunit intervals.
1006 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1007 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1008 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) {
1009 LiveQueryResult LRQ = LR->Query(UseIdx);
1010 if (!LRQ.valueIn()) {
1011 report("No live segment at use", MO, MONum);
1012 errs() << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
1013 << ' ' << *LR << '\n';
1014 }
1015 if (MO->isKill() && !LRQ.isKill()) {
1016 report("Live range continues after kill flag", MO, MONum);
1017 errs() << PrintRegUnit(*Units, TRI) << ' ' << *LR << '\n';
1018 }
1019 }
1020 }
1021 }
1022
1023 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1024 if (LiveInts->hasInterval(Reg)) {
1025 // This is a virtual register interval.
1026 const LiveInterval &LI = LiveInts->getInterval(Reg);
1027 LiveQueryResult LRQ = LI.Query(UseIdx);
1028 if (!LRQ.valueIn()) {
1029 report("No live segment at use", MO, MONum);
1030 errs() << UseIdx << " is not live in " << LI << '\n';
1031 }
1032 // Check for extra kill flags.
1033 // Note that we allow missing kill flags for now.
1034 if (MO->isKill() && !LRQ.isKill()) {
1035 report("Live range continues after kill flag", MO, MONum);
1036 errs() << "Live range: " << LI << '\n';
1037 }
1038 } else {
1039 report("Virtual register has no live interval", MO, MONum);
1040 }
1041 }
1042 }
1043
1044 // Use of a dead register.
1045 if (!regsLive.count(Reg)) {
1046 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1047 // Reserved registers may be used even when 'dead'.
1048 bool Bad = !isReserved(Reg);
1049 // We are fine if just any subregister has a defined value.
1050 if (Bad) {
1051 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1052 ++SubRegs) {
1053 if (regsLive.count(*SubRegs)) {
1054 Bad = false;
1055 break;
1056 }
1057 }
1058 }
1059 // If there is an additional implicit-use of a super register we stop
1060 // here. By definition we are fine if the super register is not
1061 // (completely) dead, if the complete super register is dead we will
1062 // get a report for its operand.
1063 if (Bad) {
1064 for (const MachineOperand &MOP : MI->uses()) {
1065 if (!MOP.isReg())
1066 continue;
1067 if (!MOP.isImplicit())
1068 continue;
1069 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1070 ++SubRegs) {
1071 if (*SubRegs == Reg) {
1072 Bad = false;
1073 break;
1074 }
1075 }
1076 }
1077 }
1078 if (Bad)
1079 report("Using an undefined physical register", MO, MONum);
1080 } else if (MRI->def_empty(Reg)) {
1081 report("Reading virtual register without a def", MO, MONum);
1082 } else {
1083 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1084 // We don't know which virtual registers are live in, so only complain
1085 // if vreg was killed in this MBB. Otherwise keep track of vregs that
1086 // must be live in. PHI instructions are handled separately.
1087 if (MInfo.regsKilled.count(Reg))
1088 report("Using a killed virtual register", MO, MONum);
1089 else if (!MI->isPHI())
1090 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1091 }
1092 }
1093 }
1094
1095 if (MO->isDef()) {
1096 // Register defined.
1097 // TODO: verify that earlyclobber ops are not used.
1098 if (MO->isDead())
1099 addRegWithSubRegs(regsDead, Reg);
1100 else
1101 addRegWithSubRegs(regsDefined, Reg);
1102
1103 // Verify SSA form.
1104 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1105 std::next(MRI->def_begin(Reg)) != MRI->def_end())
1106 report("Multiple virtual register defs in SSA form", MO, MONum);
1107
1108 // Check LiveInts for a live segment, but only for virtual registers.
1109 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1110 !LiveInts->isNotInMIMap(MI)) {
1111 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1112 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1113 if (LiveInts->hasInterval(Reg)) {
1114 const LiveInterval &LI = LiveInts->getInterval(Reg);
1115 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1116 assert(VNI && "NULL valno is not allowed");
1117 if (VNI->def != DefIdx) {
1118 report("Inconsistent valno->def", MO, MONum);
1119 errs() << "Valno " << VNI->id << " is not defined at "
1120 << DefIdx << " in " << LI << '\n';
1121 }
1122 } else {
1123 report("No live segment at def", MO, MONum);
1124 errs() << DefIdx << " is not live in " << LI << '\n';
1125 }
1126 // Check that, if the dead def flag is present, LiveInts agree.
1127 if (MO->isDead()) {
1128 LiveQueryResult LRQ = LI.Query(DefIdx);
1129 if (!LRQ.isDeadDef()) {
1130 report("Live range continues after dead def flag", MO, MONum);
1131 errs() << "Live range: " << LI << '\n';
1132 }
1133 }
1134 } else {
1135 report("Virtual register has no Live interval", MO, MONum);
1136 }
1137 }
1138 }
1139 }
1140
visitMachineInstrAfter(const MachineInstr * MI)1141 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1142 }
1143
1144 // This function gets called after visiting all instructions in a bundle. The
1145 // argument points to the bundle header.
1146 // Normal stand-alone instructions are also considered 'bundles', and this
1147 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)1148 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1149 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1150 set_union(MInfo.regsKilled, regsKilled);
1151 set_subtract(regsLive, regsKilled); regsKilled.clear();
1152 // Kill any masked registers.
1153 while (!regMasks.empty()) {
1154 const uint32_t *Mask = regMasks.pop_back_val();
1155 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1156 if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1157 MachineOperand::clobbersPhysReg(Mask, *I))
1158 regsDead.push_back(*I);
1159 }
1160 set_subtract(regsLive, regsDead); regsDead.clear();
1161 set_union(regsLive, regsDefined); regsDefined.clear();
1162 }
1163
1164 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)1165 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1166 MBBInfoMap[MBB].regsLiveOut = regsLive;
1167 regsLive.clear();
1168
1169 if (Indexes) {
1170 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1171 if (!(stop > lastIndex)) {
1172 report("Block ends before last instruction index", MBB);
1173 errs() << "Block ends at " << stop
1174 << " last instruction was at " << lastIndex << '\n';
1175 }
1176 lastIndex = stop;
1177 }
1178 }
1179
1180 // Calculate the largest possible vregsPassed sets. These are the registers that
1181 // can pass through an MBB live, but may not be live every time. It is assumed
1182 // that all vregsPassed sets are empty before the call.
calcRegsPassed()1183 void MachineVerifier::calcRegsPassed() {
1184 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1185 // have any vregsPassed.
1186 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1187 for (const auto &MBB : *MF) {
1188 BBInfo &MInfo = MBBInfoMap[&MBB];
1189 if (!MInfo.reachable)
1190 continue;
1191 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1192 SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1193 BBInfo &SInfo = MBBInfoMap[*SuI];
1194 if (SInfo.addPassed(MInfo.regsLiveOut))
1195 todo.insert(*SuI);
1196 }
1197 }
1198
1199 // Iteratively push vregsPassed to successors. This will converge to the same
1200 // final state regardless of DenseSet iteration order.
1201 while (!todo.empty()) {
1202 const MachineBasicBlock *MBB = *todo.begin();
1203 todo.erase(MBB);
1204 BBInfo &MInfo = MBBInfoMap[MBB];
1205 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1206 SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1207 if (*SuI == MBB)
1208 continue;
1209 BBInfo &SInfo = MBBInfoMap[*SuI];
1210 if (SInfo.addPassed(MInfo.vregsPassed))
1211 todo.insert(*SuI);
1212 }
1213 }
1214 }
1215
1216 // Calculate the set of virtual registers that must be passed through each basic
1217 // block in order to satisfy the requirements of successor blocks. This is very
1218 // similar to calcRegsPassed, only backwards.
calcRegsRequired()1219 void MachineVerifier::calcRegsRequired() {
1220 // First push live-in regs to predecessors' vregsRequired.
1221 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1222 for (const auto &MBB : *MF) {
1223 BBInfo &MInfo = MBBInfoMap[&MBB];
1224 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1225 PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1226 BBInfo &PInfo = MBBInfoMap[*PrI];
1227 if (PInfo.addRequired(MInfo.vregsLiveIn))
1228 todo.insert(*PrI);
1229 }
1230 }
1231
1232 // Iteratively push vregsRequired to predecessors. This will converge to the
1233 // same final state regardless of DenseSet iteration order.
1234 while (!todo.empty()) {
1235 const MachineBasicBlock *MBB = *todo.begin();
1236 todo.erase(MBB);
1237 BBInfo &MInfo = MBBInfoMap[MBB];
1238 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1239 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1240 if (*PrI == MBB)
1241 continue;
1242 BBInfo &SInfo = MBBInfoMap[*PrI];
1243 if (SInfo.addRequired(MInfo.vregsRequired))
1244 todo.insert(*PrI);
1245 }
1246 }
1247 }
1248
1249 // Check PHI instructions at the beginning of MBB. It is assumed that
1250 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock * MBB)1251 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1252 SmallPtrSet<const MachineBasicBlock*, 8> seen;
1253 for (const auto &BBI : *MBB) {
1254 if (!BBI.isPHI())
1255 break;
1256 seen.clear();
1257
1258 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
1259 unsigned Reg = BBI.getOperand(i).getReg();
1260 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB();
1261 if (!Pre->isSuccessor(MBB))
1262 continue;
1263 seen.insert(Pre);
1264 BBInfo &PrInfo = MBBInfoMap[Pre];
1265 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1266 report("PHI operand is not live-out from predecessor",
1267 &BBI.getOperand(i), i);
1268 }
1269
1270 // Did we see all predecessors?
1271 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1272 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1273 if (!seen.count(*PrI)) {
1274 report("Missing PHI operand", &BBI);
1275 errs() << "BB#" << (*PrI)->getNumber()
1276 << " is a predecessor according to the CFG.\n";
1277 }
1278 }
1279 }
1280 }
1281
visitMachineFunctionAfter()1282 void MachineVerifier::visitMachineFunctionAfter() {
1283 calcRegsPassed();
1284
1285 for (const auto &MBB : *MF) {
1286 BBInfo &MInfo = MBBInfoMap[&MBB];
1287
1288 // Skip unreachable MBBs.
1289 if (!MInfo.reachable)
1290 continue;
1291
1292 checkPHIOps(&MBB);
1293 }
1294
1295 // Now check liveness info if available
1296 calcRegsRequired();
1297
1298 // Check for killed virtual registers that should be live out.
1299 for (const auto &MBB : *MF) {
1300 BBInfo &MInfo = MBBInfoMap[&MBB];
1301 for (RegSet::iterator
1302 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1303 ++I)
1304 if (MInfo.regsKilled.count(*I)) {
1305 report("Virtual register killed in block, but needed live out.", &MBB);
1306 errs() << "Virtual register " << PrintReg(*I)
1307 << " is used after the block.\n";
1308 }
1309 }
1310
1311 if (!MF->empty()) {
1312 BBInfo &MInfo = MBBInfoMap[&MF->front()];
1313 for (RegSet::iterator
1314 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1315 ++I)
1316 report("Virtual register def doesn't dominate all uses.",
1317 MRI->getVRegDef(*I));
1318 }
1319
1320 if (LiveVars)
1321 verifyLiveVariables();
1322 if (LiveInts)
1323 verifyLiveIntervals();
1324 }
1325
verifyLiveVariables()1326 void MachineVerifier::verifyLiveVariables() {
1327 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1328 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1329 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1330 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1331 for (const auto &MBB : *MF) {
1332 BBInfo &MInfo = MBBInfoMap[&MBB];
1333
1334 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1335 if (MInfo.vregsRequired.count(Reg)) {
1336 if (!VI.AliveBlocks.test(MBB.getNumber())) {
1337 report("LiveVariables: Block missing from AliveBlocks", &MBB);
1338 errs() << "Virtual register " << PrintReg(Reg)
1339 << " must be live through the block.\n";
1340 }
1341 } else {
1342 if (VI.AliveBlocks.test(MBB.getNumber())) {
1343 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1344 errs() << "Virtual register " << PrintReg(Reg)
1345 << " is not needed live through the block.\n";
1346 }
1347 }
1348 }
1349 }
1350 }
1351
verifyLiveIntervals()1352 void MachineVerifier::verifyLiveIntervals() {
1353 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1354 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1355 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1356
1357 // Spilling and splitting may leave unused registers around. Skip them.
1358 if (MRI->reg_nodbg_empty(Reg))
1359 continue;
1360
1361 if (!LiveInts->hasInterval(Reg)) {
1362 report("Missing live interval for virtual register", MF);
1363 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n";
1364 continue;
1365 }
1366
1367 const LiveInterval &LI = LiveInts->getInterval(Reg);
1368 assert(Reg == LI.reg && "Invalid reg to interval mapping");
1369 verifyLiveInterval(LI);
1370 }
1371
1372 // Verify all the cached regunit intervals.
1373 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1374 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1375 verifyLiveRange(*LR, i);
1376 }
1377
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,unsigned Reg,unsigned LaneMask)1378 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1379 const VNInfo *VNI, unsigned Reg,
1380 unsigned LaneMask) {
1381 if (VNI->isUnused())
1382 return;
1383
1384 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1385
1386 if (!DefVNI) {
1387 report("Valno not live at def and not marked unused", MF, LR, Reg,
1388 LaneMask);
1389 errs() << "Valno #" << VNI->id << '\n';
1390 return;
1391 }
1392
1393 if (DefVNI != VNI) {
1394 report("Live segment at def has different valno", MF, LR, Reg, LaneMask);
1395 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def
1396 << " where valno #" << DefVNI->id << " is live\n";
1397 return;
1398 }
1399
1400 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1401 if (!MBB) {
1402 report("Invalid definition index", MF, LR, Reg, LaneMask);
1403 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def
1404 << " in " << LR << '\n';
1405 return;
1406 }
1407
1408 if (VNI->isPHIDef()) {
1409 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1410 report("PHIDef value is not defined at MBB start", MBB, LR, Reg,
1411 LaneMask);
1412 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def
1413 << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
1414 }
1415 return;
1416 }
1417
1418 // Non-PHI def.
1419 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1420 if (!MI) {
1421 report("No instruction at def index", MBB, LR, Reg, LaneMask);
1422 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1423 return;
1424 }
1425
1426 if (Reg != 0) {
1427 bool hasDef = false;
1428 bool isEarlyClobber = false;
1429 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1430 if (!MOI->isReg() || !MOI->isDef())
1431 continue;
1432 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1433 if (MOI->getReg() != Reg)
1434 continue;
1435 } else {
1436 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1437 !TRI->hasRegUnit(MOI->getReg(), Reg))
1438 continue;
1439 }
1440 if (LaneMask != 0 &&
1441 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask) == 0)
1442 continue;
1443 hasDef = true;
1444 if (MOI->isEarlyClobber())
1445 isEarlyClobber = true;
1446 }
1447
1448 if (!hasDef) {
1449 report("Defining instruction does not modify register", MI);
1450 errs() << "Valno #" << VNI->id << " in " << LR << '\n';
1451 }
1452
1453 // Early clobber defs begin at USE slots, but other defs must begin at
1454 // DEF slots.
1455 if (isEarlyClobber) {
1456 if (!VNI->def.isEarlyClobber()) {
1457 report("Early clobber def must be at an early-clobber slot", MBB, LR,
1458 Reg, LaneMask);
1459 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1460 }
1461 } else if (!VNI->def.isRegister()) {
1462 report("Non-PHI, non-early clobber def must be at a register slot",
1463 MBB, LR, Reg, LaneMask);
1464 errs() << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1465 }
1466 }
1467 }
1468
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,unsigned Reg,unsigned LaneMask)1469 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
1470 const LiveRange::const_iterator I,
1471 unsigned Reg, unsigned LaneMask) {
1472 const LiveRange::Segment &S = *I;
1473 const VNInfo *VNI = S.valno;
1474 assert(VNI && "Live segment has no valno");
1475
1476 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
1477 report("Foreign valno in live segment", MF, LR, Reg, LaneMask);
1478 errs() << S << " has a bad valno\n";
1479 }
1480
1481 if (VNI->isUnused()) {
1482 report("Live segment valno is marked unused", MF, LR, Reg, LaneMask);
1483 errs() << S << '\n';
1484 }
1485
1486 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
1487 if (!MBB) {
1488 report("Bad start of live segment, no basic block", MF, LR, Reg, LaneMask);
1489 errs() << S << '\n';
1490 return;
1491 }
1492 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1493 if (S.start != MBBStartIdx && S.start != VNI->def) {
1494 report("Live segment must begin at MBB entry or valno def", MBB, LR, Reg,
1495 LaneMask);
1496 errs() << S << '\n';
1497 }
1498
1499 const MachineBasicBlock *EndMBB =
1500 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
1501 if (!EndMBB) {
1502 report("Bad end of live segment, no basic block", MF, LR, Reg, LaneMask);
1503 errs() << S << '\n';
1504 return;
1505 }
1506
1507 // No more checks for live-out segments.
1508 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
1509 return;
1510
1511 // RegUnit intervals are allowed dead phis.
1512 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
1513 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
1514 return;
1515
1516 // The live segment is ending inside EndMBB
1517 const MachineInstr *MI =
1518 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
1519 if (!MI) {
1520 report("Live segment doesn't end at a valid instruction", EndMBB, LR, Reg,
1521 LaneMask);
1522 errs() << S << '\n';
1523 return;
1524 }
1525
1526 // The block slot must refer to a basic block boundary.
1527 if (S.end.isBlock()) {
1528 report("Live segment ends at B slot of an instruction", EndMBB, LR, Reg,
1529 LaneMask);
1530 errs() << S << '\n';
1531 }
1532
1533 if (S.end.isDead()) {
1534 // Segment ends on the dead slot.
1535 // That means there must be a dead def.
1536 if (!SlotIndex::isSameInstr(S.start, S.end)) {
1537 report("Live segment ending at dead slot spans instructions", EndMBB, LR,
1538 Reg, LaneMask);
1539 errs() << S << '\n';
1540 }
1541 }
1542
1543 // A live segment can only end at an early-clobber slot if it is being
1544 // redefined by an early-clobber def.
1545 if (S.end.isEarlyClobber()) {
1546 if (I+1 == LR.end() || (I+1)->start != S.end) {
1547 report("Live segment ending at early clobber slot must be "
1548 "redefined by an EC def in the same instruction", EndMBB, LR, Reg,
1549 LaneMask);
1550 errs() << S << '\n';
1551 }
1552 }
1553
1554 // The following checks only apply to virtual registers. Physreg liveness
1555 // is too weird to check.
1556 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1557 // A live segment can end with either a redefinition, a kill flag on a
1558 // use, or a dead flag on a def.
1559 bool hasRead = false;
1560 bool hasSubRegDef = false;
1561 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1562 if (!MOI->isReg() || MOI->getReg() != Reg)
1563 continue;
1564 if (LaneMask != 0 &&
1565 (LaneMask & TRI->getSubRegIndexLaneMask(MOI->getSubReg())) == 0)
1566 continue;
1567 if (MOI->isDef() && MOI->getSubReg() != 0)
1568 hasSubRegDef = true;
1569 if (MOI->readsReg())
1570 hasRead = true;
1571 }
1572 if (!S.end.isDead()) {
1573 if (!hasRead) {
1574 // When tracking subregister liveness, the main range must start new
1575 // values on partial register writes, even if there is no read.
1576 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask != 0 ||
1577 !hasSubRegDef) {
1578 report("Instruction ending live segment doesn't read the register",
1579 MI);
1580 errs() << S << " in " << LR << '\n';
1581 }
1582 }
1583 }
1584 }
1585
1586 // Now check all the basic blocks in this live segment.
1587 MachineFunction::const_iterator MFI = MBB;
1588 // Is this live segment the beginning of a non-PHIDef VN?
1589 if (S.start == VNI->def && !VNI->isPHIDef()) {
1590 // Not live-in to any blocks.
1591 if (MBB == EndMBB)
1592 return;
1593 // Skip this block.
1594 ++MFI;
1595 }
1596 for (;;) {
1597 assert(LiveInts->isLiveInToMBB(LR, MFI));
1598 // We don't know how to track physregs into a landing pad.
1599 if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
1600 MFI->isLandingPad()) {
1601 if (&*MFI == EndMBB)
1602 break;
1603 ++MFI;
1604 continue;
1605 }
1606
1607 // Is VNI a PHI-def in the current block?
1608 bool IsPHI = VNI->isPHIDef() &&
1609 VNI->def == LiveInts->getMBBStartIdx(MFI);
1610
1611 // Check that VNI is live-out of all predecessors.
1612 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1613 PE = MFI->pred_end(); PI != PE; ++PI) {
1614 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1615 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
1616
1617 // All predecessors must have a live-out value.
1618 if (!PVNI) {
1619 report("Register not marked live out of predecessor", *PI, LR, Reg,
1620 LaneMask);
1621 errs() << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1622 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1623 << PEnd << '\n';
1624 continue;
1625 }
1626
1627 // Only PHI-defs can take different predecessor values.
1628 if (!IsPHI && PVNI != VNI) {
1629 report("Different value live out of predecessor", *PI, LR, Reg,
1630 LaneMask);
1631 errs() << "Valno #" << PVNI->id << " live out of BB#"
1632 << (*PI)->getNumber() << '@' << PEnd
1633 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1634 << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
1635 }
1636 }
1637 if (&*MFI == EndMBB)
1638 break;
1639 ++MFI;
1640 }
1641 }
1642
verifyLiveRange(const LiveRange & LR,unsigned Reg,unsigned LaneMask)1643 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
1644 unsigned LaneMask) {
1645 for (const VNInfo *VNI : LR.valnos)
1646 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
1647
1648 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
1649 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
1650 }
1651
verifyLiveInterval(const LiveInterval & LI)1652 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1653 unsigned Reg = LI.reg;
1654 assert(TargetRegisterInfo::isVirtualRegister(Reg));
1655 verifyLiveRange(LI, Reg);
1656
1657 unsigned Mask = 0;
1658 unsigned MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
1659 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1660 if ((Mask & SR.LaneMask) != 0)
1661 report("Lane masks of sub ranges overlap in live interval", MF, LI);
1662 if ((SR.LaneMask & ~MaxMask) != 0)
1663 report("Subrange lanemask is invalid", MF, LI);
1664 Mask |= SR.LaneMask;
1665 verifyLiveRange(SR, LI.reg, SR.LaneMask);
1666 if (!LI.covers(SR))
1667 report("A Subrange is not covered by the main range", MF, LI);
1668 }
1669
1670 // Check the LI only has one connected component.
1671 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1672 unsigned NumComp = ConEQ.Classify(&LI);
1673 if (NumComp > 1) {
1674 report("Multiple connected components in live interval", MF, LI);
1675 for (unsigned comp = 0; comp != NumComp; ++comp) {
1676 errs() << comp << ": valnos";
1677 for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1678 E = LI.vni_end(); I!=E; ++I)
1679 if (comp == ConEQ.getEqClass(*I))
1680 errs() << ' ' << (*I)->id;
1681 errs() << '\n';
1682 }
1683 }
1684 }
1685
1686 namespace {
1687 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1688 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1689 // value is zero.
1690 // We use a bool plus an integer to capture the stack state.
1691 struct StackStateOfBB {
StackStateOfBB__anonf7e52e470211::StackStateOfBB1692 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1693 ExitIsSetup(false) { }
StackStateOfBB__anonf7e52e470211::StackStateOfBB1694 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1695 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1696 ExitIsSetup(ExitSetup) { }
1697 // Can be negative, which means we are setting up a frame.
1698 int EntryValue;
1699 int ExitValue;
1700 bool EntryIsSetup;
1701 bool ExitIsSetup;
1702 };
1703 }
1704
1705 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1706 /// by a FrameDestroy <n>, stack adjustments are identical on all
1707 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()1708 void MachineVerifier::verifyStackFrame() {
1709 int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
1710 int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1711
1712 SmallVector<StackStateOfBB, 8> SPState;
1713 SPState.resize(MF->getNumBlockIDs());
1714 SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1715
1716 // Visit the MBBs in DFS order.
1717 for (df_ext_iterator<const MachineFunction*,
1718 SmallPtrSet<const MachineBasicBlock*, 8> >
1719 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1720 DFI != DFE; ++DFI) {
1721 const MachineBasicBlock *MBB = *DFI;
1722
1723 StackStateOfBB BBState;
1724 // Check the exit state of the DFS stack predecessor.
1725 if (DFI.getPathLength() >= 2) {
1726 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1727 assert(Reachable.count(StackPred) &&
1728 "DFS stack predecessor is already visited.\n");
1729 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1730 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1731 BBState.ExitValue = BBState.EntryValue;
1732 BBState.ExitIsSetup = BBState.EntryIsSetup;
1733 }
1734
1735 // Update stack state by checking contents of MBB.
1736 for (const auto &I : *MBB) {
1737 if (I.getOpcode() == FrameSetupOpcode) {
1738 // The first operand of a FrameOpcode should be i32.
1739 int Size = I.getOperand(0).getImm();
1740 assert(Size >= 0 &&
1741 "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1742
1743 if (BBState.ExitIsSetup)
1744 report("FrameSetup is after another FrameSetup", &I);
1745 BBState.ExitValue -= Size;
1746 BBState.ExitIsSetup = true;
1747 }
1748
1749 if (I.getOpcode() == FrameDestroyOpcode) {
1750 // The first operand of a FrameOpcode should be i32.
1751 int Size = I.getOperand(0).getImm();
1752 assert(Size >= 0 &&
1753 "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1754
1755 if (!BBState.ExitIsSetup)
1756 report("FrameDestroy is not after a FrameSetup", &I);
1757 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1758 BBState.ExitValue;
1759 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1760 report("FrameDestroy <n> is after FrameSetup <m>", &I);
1761 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
1762 << AbsSPAdj << ">.\n";
1763 }
1764 BBState.ExitValue += Size;
1765 BBState.ExitIsSetup = false;
1766 }
1767 }
1768 SPState[MBB->getNumber()] = BBState;
1769
1770 // Make sure the exit state of any predecessor is consistent with the entry
1771 // state.
1772 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
1773 E = MBB->pred_end(); I != E; ++I) {
1774 if (Reachable.count(*I) &&
1775 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
1776 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
1777 report("The exit stack state of a predecessor is inconsistent.", MBB);
1778 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
1779 << SPState[(*I)->getNumber()].ExitValue << ", "
1780 << SPState[(*I)->getNumber()].ExitIsSetup
1781 << "), while BB#" << MBB->getNumber() << " has entry state ("
1782 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
1783 }
1784 }
1785
1786 // Make sure the entry state of any successor is consistent with the exit
1787 // state.
1788 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
1789 E = MBB->succ_end(); I != E; ++I) {
1790 if (Reachable.count(*I) &&
1791 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
1792 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
1793 report("The entry stack state of a successor is inconsistent.", MBB);
1794 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state ("
1795 << SPState[(*I)->getNumber()].EntryValue << ", "
1796 << SPState[(*I)->getNumber()].EntryIsSetup
1797 << "), while BB#" << MBB->getNumber() << " has exit state ("
1798 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
1799 }
1800 }
1801
1802 // Make sure a basic block with return ends with zero stack adjustment.
1803 if (!MBB->empty() && MBB->back().isReturn()) {
1804 if (BBState.ExitIsSetup)
1805 report("A return block ends with a FrameSetup.", MBB);
1806 if (BBState.ExitValue)
1807 report("A return block ends with a nonzero stack adjustment.", MBB);
1808 }
1809 }
1810 }
1811